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THE CLOSURE ORDERING OF ADJOINT NILPOTENT ORBITS
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Abstract. Let O be a nilpotent orbit in so(p, q) under the adjoint action of the full
orthogonal group O(p, q). Then the closure of O (with respect to the Euclidean topology) is
a union of O and some nilpotent O(p, #)-orbits of smaller dimensions. In an earlier work, the
first author has determined which nilpotent O(p, #)-orbits belong to this closure. The same
problem for the action of the identity component SO(/?, q)Q of O(p, q) on so(p, q) is much
harder and we propose a conjecture describing the closures of the nilpotent SO(/?, #)°-orbits.
The conjecture is proved when min(/?, q) < 7.

Our method is indirect because we use the Kostant-Sekiguchi correspondence to translate
the problem to that of describing the closures of the unstable orbits for the action of the com-
plex group SOp(C) x SOq(C) on the space Mp,q of complex p x q matrices with the action
given by («, b) x = axb~ι. The fact that the Kostant-Sekiguchi correspondence preserves
the closure relation has been proved recently by Barbasch and Sepanski.

Introduction. For p,q > 1, we denote by 0O = so(p, q) the Lie algebra of the or-

thogonal group Go = O(p, q) and let n = p + q. We consider the adjoint action of Go on

00 and the Go-orbits in 0O consisting of nilpotent matrices, to which we refer as the nilpotent

Go-orbits. Since the identity component GQ = SO(p, q)° of Go has index 4 in Go, a Go-orbit

may be just a single Gg-orbit or it may split into two or four Gg-orbits.

There are only finitely many nilpotent Go-orbits in 0O. The topological concepts, such

as closure and connectedness, will refer to the ordinary Euclidean topology. The G[j-orbits

contained in a given Go-orbit are just its connected components. The closure of a nilpotent

Go-orbit in g0 is a union of this orbit and some nilpotent Go-orbits of smaller dimensions. For

the description of these closures see [5], [6]. The same problem for the nilpotent Gg-orbits is

much harder and still unresolved. This paper deals with that problem in an indirect manner,

as we are going to explain next.

Let 0o = fy) Θ Po be the Cartan decomposition where to = so(p) x so(q) is the Lie

algebra of the maximal compact subgroup Ko = O(p) x O(g) of Go. Let g, t, and p be the

complexifications of 0O, £o, and p 0, respectively, and G = On(C) and K = Op(C) x Oq(C)

the complexifications of Go and Ko. By restricting the adjoint action of G on 0, we obtain

an action of K on 0, and also on I and p. There is a one-to-one correspondence between

the nilpotent Go-orbits in 0O and the nilpotent K-orbits in p. This is a special case of the so
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called Kostant-Sekiguchi correspondence [4], [10]. It also gives a one-to-one correspondence

between the nilpotent Gg-orbits in g0 and the nilpotent #°-orbits in p. (By K° we denote the

identity component SOp (C) x SO^ (C) of K.) For more details concerning this correspondence

in this concrete case see the Appendix. It was shown recently by Vergne [12] that, in the

general case, the nilpotent orbits which correspond to each other under the Kostant-Sekiguchi

correspondence are diffeomorphic manifolds.

There is a natural partial order " > " on nilpotent orbits: we write O\ > O2 if O2 is

contained in the closure of Ό\. We note that, in the case of Λ^-orbits in p, the closure with

respect to the Euclidean topology coincides with the Zariski closure. (This is not true for

GQ-orbits in go ) V e r v recently it was established by Barbasch and Sepanski [2] that, in the

general case, the Kostant-Sekiguchi correspondence is an isomorphism of partially ordered

sets with respect to the closure ordering. (In the special case that we are concerned with, this

has been shown earlier by Ohta [8] for nilpotent Go-orbits in QQ and nilpotent K-orbits in

p.) Hence our original problem of describing the closures of the nilpotent G^-orbits in g0 is

equivalent to that of describing the closures of the nilpotent ^°-orbits in p. The paper deals

explicitly with the latter problem.

We mention that, as a K -module, p is isomorphic to the space Mp^ of p x q complex

matrices on which K = Op(C) x Oq(C) acts by (a, b) x = axb~ι. The nilpotent ^°-orbits

in p correspond to those AΓ°-orbits in Mp,q whose closure contains the zero matrix. (Such

orbits are known in the literature as unstable orbits.)

In Section 1 we recall the parametrization of the nilpotent A'-orbits in p by means of the

so-called αb-diagrams. We also introduce a convenient labelling for the nilpotent Ar°-orbits

in p. An α&-diagram (for the orthogonal groups) is a Young diagram with n boxes whose

rows are filled with alternating letters a's and &'s, where rows of even length occur in pairs of

the same length with one row of the pair having a as the first letter and the other row starting

with the letter b. (For the definition of ab-diagram, refer to [8], [9], for example.) Two such

diagrams are equivalent if one can be obtained from the other by permutation of rows. The

total number of α's (resp. b's) has to be p (resp. q). We denote the set of equivalence classes

of such αZ?-diagrams by X(p, q). This set parametrizes the nilpotent ^Γ-orbits in p. The

nilpotent K-orbit that corresponds to X e X(p, q) is denoted by Oχ. The closure ordering

" > " on the set of nilpotent ^-orbits in p corresponds to a natural combinatorially defined

partial order on X(p, q), which we denote again by " > " . The Hasse diagram of these two

isomorphic partially ordered sets is denoted by Γ(p, q).

A vertex X of Γ(p, q), i.e., an element of X(p, q), is called an ύt-vertex (resp. ^-vertex)

if every row of X of odd length has the letter b (resp. a) in its middle box. If X is an a-

vertex and a ^-vertex, we say that it is an αZ?-vertex. (This means that all rows of X have

even length.) An α-vertex which is not a ^-vertex is called a proper ^-vertex, and one defines

similarly proper ^-vertices. A stable vertex is a vertex which is neither an α-vertex nor a

^-vertex.

If X is a stable vertex, then Oχ is a single A^-orbit. If X is a proper α-vertex (resp.

proper ^-vertex), then Oχ splits into two #°-orbits which we denote by ιOχ and ιιOχ (resp.
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θ\ and Olχ). If X is an <2&-vertex, then Oχ is the union of four A^-orbits. We denote these

orbits by ιOι

χ,
 ιOι

χ,
 llOl

x, and ιιOι

χ. For the exact meaning of these superscripts we refer the

reader to the main text. If X is an αb-vertex, we set ιOχ = ιθ\ U ιO%9

 ιιOχ = ιιOι

χ U ιιOι£,

and we define similarly Ό\ and θ\.

In Section 2 we give a purely mechanical procedure for transforming the Hasse diagram

Γ(p, q) into a new diagram A(p, q) (see Definition 2), whose vertices are the nilpotent K°-

orbits in p. We define a new partial order ">" on the set of these orbits by postulating that

Δ(p, q) is its Hasse diagram. Then our conjecture can be simply stated that the partial order

">:" and the closure order " > " are the same.

In Section 3 we prove (Theorem 1) that if Ό\ and O2 are two nilpotent ^Γ°-orbits in p

and O\ > O2, then also O\ > Oι. The main tool that we employ to prove this theorem is

Proposition 1 which is the symmetric space analogue of a result of Kostant [4, Lemma 4.1.4].

The next three sections deal with the converse of Theorem 1. While we are not able to

prove the converse in general, we prove that it holds in many special cases.

In Section 4 we introduce the concept of pure pairs of αZ?-diagrams, viewed as vertices in

Γ(p, q). There are two types of them: the α-pairs and the fr-pairs. An ordered pair of distinct

^-vertices (X, Y) is called an α-pair if X > Y and every vertex Z such that X > Z > Y is an

α-vertex. The b-pairs are defined similarly. We show that an α-pair cannot also be a £-pair.

A pure pair is either an α-pair or a £-pair. We also introduce the concept of splitting for pure

pairs. We say that an α-pair (resp. Z?-pair) (X, Y) splits if the closure of ιOχ (resp. Oι

χ) does

not contain the entire orbit Oγ. The main result of the section is Theorem 2 which asserts that

the converse of Theorem 1 (and hence the conjecture itself) is valid provided that each pure

pair splits.

In Section 5 we prove that the conjecture is true if min(/?, q) < 1 (Theorem 3). For

that purpose we show that several infinite families of pure pairs split. Some of the required

lemmas are in Section 6 which deals with some additional families of pure pairs.

We do not know how to describe explicitly all pure pairs. A pure pair (X, Y) is said to

be minimal if X > Z > Y implies that Z = X or Z = Y. Two ab-άmgmms are said to be

disjoint if they have no common rows. It is possible to list all disjoint minimal pure pairs.

There are 10 one- or two-parameter families of minimal disjoint Z?-pairs. They are listed in

Table 8. The main result of Section 6 is that all minimal disjoint pure pairs split (Theorem 4).

In the Appendix we construct explicitly the real form g0 = so(/?, q) of g which is θ-

stable, and provide an example illustrating the Kostant-Sekiguchi correspondence in this con-

crete case.

The authors are indebted to the referee for a careful reading of the article and for kind

advice.

1. Labelling of orbits. Let V be an ̂ -dimensional complex vector space, / : V x

V -> C a nondegenerate symmetric bilinear form and G = O(V, f) the orthogonal group of

the pair (V, / ) . We fix an involution θ e G (θ φ 1), and denote by Va (resp. Vb) the + 1 -

eigenspace (resp. — 1-eigenspace) of θ. Let p = dim(Va) and q = dim(V^). Since Va and
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Vb are orthogonal to each other, the restriction fa (resp. fb) of / to Va x Va (resp. Vb x Vb)

is nondegenerate. We shall denote by K the centralizer of θ in G, and by Ar° its identity

component. Clearly, we have K — Ka x Kb where Ka = O(Va, fa) and Kb = O(V^, fb)

are the orthogonal groups, and similarly K° = K® x ^ where Λ^ = SO(Vfl, fa) and

^ = SO(Vb, fb) are the corresponding special orthogonal groups.

We denote by g = so(V, / ) the Lie algebra of G. It consists of all linear operators

u : V -> V such that f(u(x), y) + f(x, u(y)) = 0 for all x,y eV. The Lie algebra I of AT is

the centralizer of θ in g, i.e., ! = (M G g : w(Vα) c Va, u(Vb) C V }̂. Thus 6 = 6α Θfy? where

6fl = 5θ(Vfl, /«) and tb = so(Vb, fb)- We denote by Ad (resp. ad) the adjoint representation

of G (resp. g) on Q. AS a ^-module (under the restriction of Ad), g decomposes as g = 10 p,

where p = {w e g : u(Va) c V̂ , w(V )̂ C Vfl}.

We denote by Λί the nilpotent variety in p, i.e., λί = {u € p : un = 0}. There are only
finitely many A'-orbits in Λ/* and they are parametrized by the so-called α£-diagrams.

One can find the definition of an αfr-diagram in the literature, for example, [8], [9]. To

parametrize nilpotent orbits in the orthogonal case, it is sufficient to treat α£-diagrams in the

following meaning (cf. [8]). We define an ab-diagram to be a Young diagram with n boxes

in which every box is filled by an a or a b so that the α's and the b's alternate along each

row, and the rows of even length occur in pairs which are of the same length with one of them

having a in the first box and the other b in the first box. Furthermore we require that the total

number of α's in such a diagram be p (and consequently the number of b's is q). We say that

two such αfr-diagrams are equivalent if we can obtain one from the other by permuting rows.

The nilpotent K-orbits in p are in one-to-one correspondence with the equivalence classes of

the αb-diagrams. From now on we shall consider equivalent α&-diagrams as being the same,

i.e., we identify an <zZ?-diagram with its equivalence class. We mention that the trivial orbit

{0} corresponds to the αfr-diagram consisting of n rows of length 1, with boxes filled with p

α's and q bJs.

We shall write concrete <3&-diagrams as a sequence of its rows. A row of length 2k + 1

with a (resp. b) in the first box will be written as (ab)ka (resp. (ba)kb). The pair of rows of

even length 2k, one starting with a and the other with b, will be written as (ab)k, (ba)k. For

instance the αb-diagram (1)

(1)

a

a

b

a

b

b

a

b

a

a

b

a

b

b

a

a b a
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will be written as ((ab)3a, (ab)2, (ba)2, aba). If X and Y are arbitrary αZ?-diagrams, then we

denote by X + Y the <zZ?-diagram obtained by writing Y below X and then rearranging the

rows of this extended diagram.

We shall now describe how one can determine the α&-diagram that corresponds to the

nilpotent Λ -̂orbit containing a given nilpotent element u e Λ/"(for the details, see [9]). Let

us define a Jordan chain for u to be a sequence of nonzero vectors υ\, V2, .. , Vk such that

u(vi) = υ/+i for 1 < / < k and u(vk) = 0. We say that k is the length of this chain, and that

v\ (resp. υk) is the top (resp. bottom) vector of this chain. If moreover each Vi e VaUVb then

we say that this Jordan chain is graded. By replacing each Vi by the letter a if υ, e Va and by

b if Vi e Vb, we obtain an alternating sequence of these letters to which we refer as the type of

this graded Jordan chain. A Jordan chain for u is said to be maximal if it cannot be extended

to a larger one. This is the case if and only if the top vector of the chain is not contained in the

image of u. A graded Jordan basis for u is a basis of V consisting of graded Jordan chains

for u (necessarily maximal). They always exist. Let us choose one of them. Then we form

the Young diagram by creating a row of length k for each maximal Jordan chain of length k,

say v\,... , Vk, contained in this basis. We temporarily fill the boxes of this row (successively

from the left to the right) by the vectors v\,... , ι̂ . Finally we replace each of the vectors,

say v, in the resulting diagram by the letter a if v e Va and by b if v e Vb. We obtain an

0&-diagram which is independent (up to equivalence) of the choice of the graded Jordan basis

for u.

We fix, from now on, a basis {eo, e\, ... , ep-\) of Va and a basis {ef

0, e\,... , ef

 χ]

of Vb such that /(e;, ef) = δj+^p-i for 0 < /, j < p and /(e , e' ) = 5, +</ ̂ _ i for 0 <

i, j < q, where <5;; is Kronecker's delta and we identify linear operators on V with their

matrices with respect to this basis. (By definition, δij is 0 if / φ j and 1 if f = j.) The

diagonal matrices in ta form a Cartan subalgebra \)a. These diagonal matrices have the form

ha — diag(/*o, h\,... , hp-\) where A/ +Ap_i_/ = OforO < i < p. The centralizer of \)a in

K® is the maximal torus Ta which consists of all diagonal matrices in K®. We denote by Na

the normalizer of Ta (or \)a) in Ka. The Weyl group of (Cfl, ί)fl) is Wα = (Nα Π K°)/Ta. We

set W* = Na/Ta. Clearly Wa is a normal subgroup of W* and the quotient group W*/Wa

is trivial if p is odd, and has order 2 if p is even. We introduce the real form (ί)α)/? of \}a

consisting of all matrices ha as above with A/ € /? for all 0 < / < p. We define the closed
Weyl chamber Ca c (ί)̂ )/? by the inequalities

(2) A/>Λ|+i, 0 < i < f c - l ,

if p = 2Λ: + 1 is odd, and by

(3) hi > A/+i, 0 < / < ifc-2

and

(4) A^_2> | **_i | ,
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if p = 2k is even. If p is odd we set C* = Ca while for p — 2k even we define C* C (ί)α)/?

by the inequalities (3) above and

(5) hk-2>hk-i > 0 .

We define similarly t)b, Tb, etc. and we set f) = \)a x \)b, T = Ta x 7&, etc.

Given an α&-diagram X, we denote by Oχ the corresponding nilpotent Λ'-orbit in λί. If

Oχ is not trivial, there exists a unique element Hx € C* = C* x C£ such that [//*, Ex] =
2Eχ for some nonzero element Ex e Oχ. We shall refer to this element Hx as the charac-

teristic of Oχ (or of X). If Oχ is the trivial orbit we define Hx = 0. It is well known that

different ΛΓ-orbits in λί have different characteristics. We denote by (Hχ)a (resp. (Hχ)b) the

component of Hx in \)a (resp. \)b).

The eigenvalues (i.e., the diagonal entries) of (Hχ)a and (Hχ)b can be easily determined.

For this purpose we insert in each box of X an integer as follows: if a row has length k then

we insert successively in the boxes of that row the integers

k-l, ifc-3, A: — 5 5 - k , 3 - k , l - k .

Then the integers written in all β-boxes (resp. &-boxes) are the eigenvalues of (Hχ)a (resp.

(Hχ)b). The order in which these eigenvalues are written on the diagonal is determined

uniquely by the condition that Hx e C* = C* x Cb.

We shall refer to the ^°-orbits in λί c p as the strict nilpotent orbits. The Λ^0-orbits

contained in Oχ are just the connected components of Oχ. The group W*/ W permutes

transitively these components and so the number of these components is 1, 2, or 4. The

element Ex, as described above, is not unique but all such elements lie in the same connected

component of Oχ. If p = 2k is even let xa e Na be the linear operator which interchanges

the vectors e^-x and ek and fixes all the other et 's. If q is even we define xb e Nb similarly.

DEFINITION 1 (labelling of ^Γ°-orbits in λί). We introduce the following notation for

the connected components of the ^-orbit Oχ dλfby considering four possibilities:

(i) Both (Hχ)a and (Hχ)b have 0 eigenvalues: Then Oχ is connected and we do not

need any new notation.

(ii) (Hχ)a has no 0 eigenvalue but (Hχ)b does: Then p is even and Oχ has two

connected components. The component containing the element Ex will be denoted by ιOχ,

and the other one by ιιOχ = A d C ^ X 1 ^ ) .

(iii) (Hχ)a has a 0 eigenvalue but (Hχ)b does not: Then q is even and again Oχ has

two connected components. The component containing the element Ex will be denoted by

Ό\ and the other one by Ό\ = Ad(xb)(Oι

χ).
(iv) Hx has no 0 eigenvalue: Then both p and q must be even and Oχ has four con-

nected components. The one containing the representative Ex is denoted by ιOι

χ and the re-

maining three are ιιθ\ = A d ^ X 1 ^ ) , ιC§ = Aά(xb)(ιOι

χ), and ΠO° = Aά(xaxb)(ιOι

χ).

Note that if p (resp. q) is odd then the left (resp. right) superscripts I, II are not used. In

particular if p and q are odd then all #-orbits in λί are connected. Let us also introduce the

characteristics for the A °̂-orbits in λί. The characteristic Hx of Oχ is not changed in case
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(i), it becomes the characteristic of ιOχ in case (ii), the characteristic of Ό\ in case (iii), and

the characteristic of λθ\ in case (iv). In case (ii), the characteristic of ιιOχ is Ad(xa)(Hχ). In

case (iii), the characteristic of Olχ is Aά{xb)(Hχ). Finally, in case (iv), the characteristics of

the orbits llOl

x,
 ιθ\, UO% are Ad(xa)(Hχ), Aά(xb)(Hx), Aά(xaXb)(Hx), respectively. All

these characteristics belong to the closed Weyl chamber C = Ca x Q>, and different orbits

have different characteristics.

Note also that the left (resp. right) superscripts I and II depend on the choice of the basis

{βi} of Va (resp. {e } of V&) If p — 2k is even then there are exactly two ^-orbits of

maximal isotropic subspaces of Va and the left superscripts I, II depend on the orbit to which

the subspace spanned by {eo,... , e^-i) belongs. If this subspace is chosen from a different

orbit, then the left superscripts I and II get interchanged. The same phenomenon occurs with

the right superscripts when q is even.

We conclude this section with an illustrative example.

EXAMPLE 1. Let Z = ((ab)3a, aba). Then p = 6, q = 4 and we find that

(Hz)a = diag(6, 2, 2, - 2 , - 2 , - 6 ) , (Hz)b = diag(4, 0, 0, - 4 ) .

As a representative Eχ of Oχ satisfying [Hz, Eχ] = 2Ez, we can choose the linear operator

defined by:

e':

0, ex-*-e{

βi (0 < i < 2 ) ,

In terms of matrices we have

/0

-*ί_2 (2 < / < 5),

0
0

1 0 0 0\
0 0 1 0 0

0 0 0 1 0
0 0 0 1
0 0 0 1

0 0 0 0
0 ϊ ϊ 0 0 0 0

ϊ 0 0 0
0 0

ϊ

0

0 0 0
0 0 0 0 ϊ

\o o o o o 0

where 1 stands for —1 and the suppressed entries are zeroes.

As the graded Jordan chains for Ez we can take

-ef

3 e\ -> - 2 0,

- e'2 e\ - 0.

Note that these chains indeed have the types {abΫa and aba, respectively.

Since (Hz)a has no 0 eigenvalue, while (Hz)b does, the nilpotent ^Γ-orbit Oz has

two connected components: ιOz and ιιOz- The characteristic of ιOz is Hz (the same as
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the characteristic of Oz) The characteristic of ιιOz has diag(6, 2, - 2 , 2, - 2 , -6) as its \)a-

component, while its ^-component is the same as that of Hz.

The element Ez belongs to the orbit λΌz> As a representative of the orbit ιιOz we can

take the element Ad(xa)(Ez). Its action on the basis vectors is given by

e\ -> -e έ?4 -eΊ

eo -» eo , e\ ->

or in terms of matrices

e\

Aά(xa)(Ez) =

/o

0

0
0

lo

0

ϊ
0
0

0

0

0

ϊ
0

0

0

ϊ
0
0

0

0

0
0
1

0

0

0

0
0

ϊ

1
0
0
0
0
0

0

0
1
0
0
0
0

0

0
0
0
1
0
0

0

0>
0
1
0
1

0

o
This representative has a graded Jordan basis consisting of two chains

e\ »> -

- eΊ
e\ - e 3

0.

2. Closure ordering conjecture. Let Af = ^ ( p , q) denote the set (of equivalence

classes) of αZ?-diagrams with n (= p + q) boxes, p α's, and q Z?'s. If X e X, we denote by

X' the diagram obtained from X by deleting the first column. We set X ( 0 ) = X and define

recursively X (*+ 1 ) = (X<*>)' for ifc > 0. In particular, X ( 1 ) = X7. For any such diagram Y

we shall denote by na(Y) (resp. n^(F)) the number of α's (resp. £'s) in Y. Clearly, if X e X

then na(X) = p and nb(X) = ^. For X J e A ' w e write X > Y if na(X{k)) > na(Y(k)) and
rib(X{k)) > n^(7 ( / : )) for all k > 0. The relation " > " makes A' into a partially ordered set.

Let ΛΓ/K (resp. λί/K°) denote the set of if-orbits (resp. ^°-orbits) in ΛΛ If O\, O2 are

members of ΛΓ/K (or λί/K°) and O2 is contained in the closure of O\, then we shall write

O\ > O2. This defines a partial order on Λί/K (resp. λί/K°) called the closure ordering. It

is a known fact that the partially ordered sets (X, >) and (ΛΓ/K, >) are isomorphic, and that

an isomorphism is provided by the map that sends X to Oχ.

The description of the closure ordering in ΛΓ/K° is not known at present, and our main

objective is to propose a conjecture in this regard and to provide some evidence for its validity.

Before stating the conjecture we need to introduce a few more definitions.



B .

CLOSURE ORDERING OF ADJOINT NILPOTENT ORBITS

A ,

A

C\

D

E

403

A

B

Γ(2, Γ(2, 2) Γ(3, 2)

FIGURE l.

Γ(4, 2)

If X, 7 € # = #(/>, #) are distinct and X > Y then we shall write X > Y. We
define similarly the relation ">" in the partially ordered sets (λί/K, >) and (λί/K°, >). If

X, Y e X are such that X > 7 and there is no Z e X such that X > Z > F, then we shall

write X -> Y. The finite partially ordered set (X, >) will be represented by its Hasse diagram

Γ = Γ(p, q). Each X G A' is represented by a node in Γ. If X -» y for some X, Y e X,

then the node X is placed in Γ higher than the node Y and these two nodes are joined by a

line. The Hasse diagram of (λί/K, >) is essentially the same as Γ. We just have to replace

each node X G X by the corresponding node Oχ e Λf/K.

EXAMPLE 2. We display in Figure 1 the diagrams Γ(/?, 1) for p = 1, 2 and Γ(p, 2)

for p = 2, 3, 4.

In Γ( l , 1) we have B = (a, b) and, in Γ(2, 1), A = (aba) and £ = (α, α, fc). For p > 2

the diagram Γ(p, 1) is the same as Γ(2, 1) except that A = (aba, ap~2) and B = (ap, b).

For simplicity we write ak for the sequence (a, a,... , α) consisting of k letters α, and we

shall use bk in a similar sense. In Table 1 we list the vertices X of Γ(p, 2), the corresponding

partitions 7Γχ, and the complex dimensions of the orbits Oχ. If Ex is a representative of the

orbit Oχ, then it is known (see [4, Remark 9.5.2]) that

άimc(Ox) = - dimc(G Ex).

The complex dimension of the orbit G Ex can be computed by the formula for the dimension

of the centralizer of Ex in g given in [4, p. 399] (see also [4, Corollary 6.1.4]). The labels for

vertices of different diagrams Γ(p, 2) have been chosen so that X G Γ(p, 2) and (X, a) e

Γ(p + 1, 2) have the same label. For p > 4 the diagram Γ(p,2) is the same as Γ(4, 2).

EXAMPLE 3. We display in Figure 2 the diagrams Γ(p, 3) for p = 3, 4, 5, 6. In Table

2 we list only the vertices X of Γ(6, 3), the corresponding partitions πx, and the complex

dimensions of the orbits Oχ. For p > 6 the diagram Γ(p, 3) is the same as Γ(6, 3).
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CM

H ,

Γ(3, 3)

H

Γ(4,3)

P
2

3

4

TABLE

label

C\
c2D
E

A
C\
c2
D
E

A
B
Cx
c2
D
E

1. Vertices of Γ(p, 2).

X

aba, b
bab,a
ab, ba
a\b2

(ab)2a
aba, a,b
bab,a,a
ab, ba,a
a\b2

(ab)2a, a
aba, aba
aba,a2,b
bab, a3

ab, ba, a
a\b2

*X

3-1
3 1
2 2

I 4

5
3 1 2

3 1 2

2 2 1
I*

5 1
3 2

3 1 3

3 1 3

2 2 - l 2

I 6

dim

2
2
1
0

4
3
3
2
0

6
5
4
4
3
0

A %

B ,

H

I

Γ(5, 3)

FIGURE 2.

c2

G2

DS

h
F

Gi

H

I ,

Γ(6, 3)

We say that a vertex X of Γ is sta&/e (resp. unstable) if the AT-orbit Oχ is connected

(resp. disconnected). An unstable vertex X is an a-vertex (resp. b-vertex) if the linear op-

erator (Hχ)a (resp. (Hχ)b) is nonsingular (i.e., has no 0 eigenvalue). Equivalently, X is an

a -vertex (resp. &-vertex) if the middle letter of each row of odd length (if any) in X is b (resp.

a). If X is both an α-vertex and a b-vertex, then we shall say that it is an ab-vertex. Thus X

is an #^-vertex if and only if it has no rows of odd length, i.e., the corresponding partition πx



CLOSURE ORDERING OF ADJOINT NILPOTENT ORBITS 405

TABLE 2. Vertices of Γ(6, 3).

label

A

B

C\

c2
D

Eι
E2

F

G\
G2

H

I

X

(ab)3a, a2

(ab) a, aba, a
(ab)2a,a3,b
(ba)2b, a4

aba,aba, aba
aba, aba, a2,b
aba, bab,a3

aba,ab, ba,a2

aba,a4,b2

bab,a5,b
ab, ba,a4, b

7ΐχ dim

7 I 2

5-3-1
5 I 4

5 I 4

3 3

3 2 1 3

3 2 1 3

3 2 2 I 2

3 1 6

3 1 6

2 2 1 5

I 9

15

14

12

12

12

11

11

10

7

7

6

0

is very even (in the terminology of [4, Theorem 5.1.4]). An α-vertex that is not a ^-vertex

will be called a. proper α-vertex (or a proper vertex of type ά). One defines similarly a proper

b-vertex (or a proper vertex of type b).

DEFINITION 2 (of the diagram A). We denote by A = A(p, q) the diagram which is

obtained from Γ = Γ(p, q) by the following modifications in three steps:

Step 1: For every vertex pair (X, Y) such that X -> Y and X or Y is unstable erase

the line in Γ joining X to Y.

Step 2: Replace each node X by as many nodes as there are connected components in

Oχ and label them by these components.

Step 3: Insert 2 or 4 lines for each line that was erased in Step 1. For this purpose we

reconsider all pairs (X, Y) from Step 1 and distinguish ten cases.

(i) X is stable and Y is unstable: Then we join Oχ to each of the nodes corresponding

to the connected components of Oγ.

(ii) X is unstable and Y is stable: Then we join each of the nodes corresponding to the

connected components of Oχ to Oγ.

(iii) X is a proper α-vertex and Y a proper ^-vertex: Then we join each of the nodes
ιOχ, ιιOx to each of Oι

γ, O
ι*.

(iv) X is a proper ^-vertex and Y a proper α-vertex: Then we join each of the nodes

Oι

x,O
ι* to each of ιOγ,ιιOγ.

(v) X and Y are proper α-vertices: Then we join ιOχ to ιOγ, and ιιOχ to ιιOγ.

(vi) X and Y are proper ^-vertices: Then we join θ\ to O\, and Oι

x to 0$.

(vii) X is a proper α-vertex and Y an αZ?-vertex: Then we join ιOχ to the nodes ιOι

γ,

γj
(viii) X is a proper ^-vertex and Y an α&-vertex: Then we join Ό\ to the nodes ιOι

γ,

. a n d O j t o ^ , 1 1 ^ ,

(ix) X is an αfr-vertex and Y a proper α-vertex: Then we join the nodes ιOι

χ,
 1O1

χ to

andιιOι

x,
ιιOι*toιlOγ.

(x) X is an αZ?-vertex and Y a proper ^-vertex: Then we join the nodes ιOι

χ,
 ιιOι

χ to
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We remark that if X and Y are α&-vertices, then X -/> Y (i.e., X -> Y does not hold).

We can now state our main conjecture.

CONJECTURE. The above defined diagram A = Δ(p, q) is the Basse diagram of the

partially ordered set (λf/K°, >).

In addition to the closure ordering " > " on λί/K°, we now introduce the new partial

order ">:" on the same set λί/K°. It is defined by postulating that its Hasse diagram is

Δ = Δ(p, q). Our conjecture can be reformulated as follows: The two partial orders " > " and

">:" are the same.

EXAMPLE 4. In order to illustrate Definition 2, we display in Figures 3 and 4 the

diagrams Δ(p, 2) for p = 2, 3,4, 5. For the sake of simplicity we write X instead of Oχ. For

p > 5 the diagram Δ(p, 2) is identical to Δ(5, 2).

3. Comparison of two partial orders. Let O\, Oi c λί be two ϋΓ°-orbits. In order

to prove our conjecture we have to show that Ό\ > O2 holds true if and only if O\ > O2

does. Our objective in this section is to prove that the former condition implies the latter.

ιD [Du

FIGURE 3.

FIGURE 4.
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THEOREM 1. If OuO2e Λί/K° and Oχ h O2 then O{ > O2.

The proof will be given later in this section.

We say that (£, H, F) is a standard triple if {£, H, F] C g, E φ 0, and

[H, E] = 2E, [H, F] = -IF , [F, £] = //.

(Our definition is different from that in [4] where the last relation is replaced by [E9 F] = H.)

We refer to H as the neutral element of this triple. A standard triple (E, H, F) is called a

normal triple if H e I and E, F e p.

If H is the neutral element of a normal triple, we define

{xeg:[H,x] = ix}, ieZ,

= IΠ fl/(H), Pt(H) = pn ΰi(H),

By Zκ(H)° we denote the identity component of the centralizer of H in K. Our proof

of Theorem 1 is based on the following proposition, which is a symmetric space analogue of

[4, Lemma 4.1.4] due to Kostant.

PROPOSITION 1. Let (£, H, F) be a normal triple and let Q be the parabolic sub-

group of K° with Lie algebra c\(H). Then (K® E) Π S2(H) is a dense open subset ofs2(H)

and

(K E)Πs2(H) = (K° E)Πs2(H) = QE = (ZK(H)° . E)+s3(H).

Consequently, Zκ(H)® E is a dense open subset ofp2(H) and

(K E)Π p2(H) = (K° E) Π p2(H) = ZK(H)° E .

PROOF. In this proof we use the Zariski topology. The unipotent radical U of Q has

u := t\(H) + h(H) H as its Lie algebra. Note that ZK(H)° is a Levi factor of Q. As

[E, u] = S3(H), we have dims3(#) = dimu - d imZ u (£) , where ZU(E) is the centralizer

of E in u. Hence άim(U E) = dims3(//). As U E c E + S3(H) and U £ is closed (see

[11, Section 2.5, Proposition] or [7, Satz 4, p. 154]), we conclude that U E = E+ s 3 ( # ) .

By acting with Q = ZK(H)°U, we deduce that Q E = (ZK(H)° E) + s 3 (H).

Since [£, q(//)] = $2(H), Q £ is a dense open subset of s2(H). Now let JC e (A'

£) Γ t s 2 (#) . Then dimZg( c) = dimZg(£;). As ZQ(E) = Zq(E), we have dimZq(jc) <

dimZq(£") and consequently dim(2 x) > dim(|2 E). Hence Q x is also a dense open

subset of s2(H). It follows that Q x = Q E.ln particular x e Q E. We have shown that

(K E)Πs2(H) = QE. D

We represent a linear operator L on V by its matrix, which we also denote by L. It will

be convenient to partition this matrix as follows:
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_ ί La Lab\
~\Lba Lb)'

where La (resp. Lb) is a square block of size p (resp. q). Let Sk denote the matrix of order k

whose (/, j)-th entry is δ +y^+i for /, j = 1, 2 , . . . , k. We have L € p if and only if Lα = 0,

Lb = 0, and Lba = —Sq

 {LabSp. (By *X we denote the transpose of a matrix X.) Hence

a matrix L e p is uniquely determined by its αfr-block Lab Equivalently, a linear operator

L € p is uniquely determined by the images L(e[) € Va of the basis vectors e\ of V .̂
If L e p, then the subspaces VΛ and V& are L2-invariant. Thus (L2)ab = 0 and (L2)ba =

0. We also have (L2)a = LabLba and (L2)/> = LbaLab> The matrices (L 2)α and (L2)^, are

symmetric with respect to the non-principal diagonal, i.e., we have (L2)a = Sp^L^aSp

and (L2)b = Sq^L^bSq. Let us prove the second assertion. As (L2)b = LbaLab =

-SqtLabSpLab, we have

bq \L )b^q ~~ ̂ q \ ^q Lab^pLa,b)^q

It follows that (L2)k

a and (L2)k

b have the same symmetry properties for each k > 1.

The following observation will be also useful. If x € Ka, y e Kb, and L e p, then

(Ad(x)(L)W = xLab , (Ad(v)(L)U = Laby-χ .

In other words, as a /£-module, p is isomorphic to the space of p x q complex matrices z on

which K = Ka x Kb acts by (JC, v) z = xzy~x.

Let X, y, Z € Λ\ For convenience we write X > Y, Z for the pair of statements X > Y

and X > Z, and X, K > Z for the pair of statements X > Z and 7 > Z. Similar notation

will be used for orbits.

We proceed with a series of five lemmas needed for the proof of Theorem 1.

L E M M A 1. Let X = ((ab)ma, {ba)m~xb\ Y = ((ab)m, φa)m), m>\. Form even,

we have

O\ > lO\, llO\ Oxi > IO? , ΠO?
and, for m odd,

lOx>
lO\, ιO*; λlOx>

ιιθ\,nO1}.

PROOF. Assume that m is even. Since S2(Hγ) C $2(Hχ), Proposition 1 implies that

Ό\ > ιOι

γ. Since W* leaves Ό\ invariant and permutes transitively the components ιθ\

and llO\, we also have θ\ > ιιθ\. By using the action of W£, we derive now easily that

°\ > l°Y' ll°γ- τ h e c a s e o f o d d m c a n b e heated similarly. •

LEMMA 2. LetX = ((ab)m, (ba)m, (ab)k, (ba)k), Y = {{ab)m~xa, (ab)m-ιa, (ba)kb,

(ba)kb) where m > k > 0 and m = k mod 2. For m even, we have
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and, for m odd,
ιoι

x,
 ιιoι

x>o\, ιoιl πσ°>σ?.
PROOF. We have p = q = 2m + 2k. Let us choose a representative L e p2(#y) of

ΣOy (resp. θ\) if ra is even (resp. odd) such that its α&-block, Lab, is the {0, l}-matrix having

Γs at the positions (/, /) for 1 < / < m — k and positions (/, / + 2) for m — k < i < p — 2. To

verify this claim it suffices to check that L € Oγ because then Proposition 1 shows that in fact

L e ιOγ. Now we observe that L has a graded Jordan basis consisting of four Jordan chains:

two of type (ab)m~ιa with top vectors ep-\ and ep-2, and another two of type {ba)kb with

top vectors e' m+k and ef

 m+k_ι. For instance if m = 4 and k — 2, these Jordan chains are:

e\\ —> —e'u —>• —£9 —> £7 —>• 5̂ —> — 3̂ —> —e\ -> 0,

eio -• -e'% -> -e6 -• 4 -> e2 -> -^0 -• -^0 -^ 0,

1̂0 -• 8̂ -> - 4 "^ ~^4 -> 4 -^ ° '

e'9-> ej -+ —e'5 -> -^3 -* *i -> 0.

By applying the permutation

(1, 2 , . . . , m - k)(p, p-l,...,m + 3k+l)eWb

to L, we obtain an element of S2(Hχ). By Proposition 1 we have L e ιOι

χ. Hence we deduce

that λθ\ > ιOγ for m even, and ιOι

χ > θ\ for m odd. The remaining assertions follow

easily by using the action of W*. D

LEMMA 3. Let X = ((ab)ma, (ba)kb), Y = ((ba)m~ιb, (ab)k+xa) where m - 2 >

k > 0 and mψk mod 2. For m eve/i, we have

O\ > O\ , θ £ > Oy1

and, /or m odd,

^ x > ιOγ , π O χ > ιιOγ .

PROOF. Set m + k + 1 = 2r and define L e S2(Hχ) by

e'o -> 0, ^ -> ^ (0 < 1 < r - k - 1), ^^._^_! -> er_^_i - e 0 ,

e'r_k -> ^r-it-i + 0̂ , e\ -• c, _i (r - / : < / < m + * ) .

By Proposition 1, L belongs to the closure of the strict orbit Oι

χ for m even, and the closure

of ιOχ if m is odd. We claim that L belongs to θ\ for m even and to ιOγ for m odd. Indeed,

L has a graded Jordan basis consisting of two chains. One of them has type (ba)m~ιb and

top vector e'm+k, while the other one has type {ab)kJtXa and top vector em+*. This means that

L G Oy. Our conditions imply that r—k>2.\ir—k — 2 then also L e p2(//y). Otherwise

we transform L by the element of Wa which acts on the basis {et} by two cyclic permutations:
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βo -> er-k-\ -> βr-k-2 -> * * -> e\ -> ^0 ,

The new element belongs to p2(Hγ). Now our claim follows from Proposition 1. We deduce

that Ό\ > Ό\ for m even, and 1Oχ > ιOγ for m odd. The remaining assertions follow easily

by using the action of W*. •

LEMMA 4. LetX = ((ab)ka, (ab)m, (ba)m), Y = ((ba)k-γb, (ab)ma, (ab)ma) where

k > m > 0 and k = m mod 2. For m even, we have

Ό\ > Ό\ , Ό\ > Oιj

and, for m odd,
ιOχ > ιOγ , ιιOχ > ιιOγ .

PROOF. Set m + k = 2r and define L e λί by specifying the action of L on the basis

elements of V&.

We must treat the case m = 0 separately. For m = 0, L is defined by £Q -• 0, e\ -> e;

(0 < / < k). We have L e p2(//χ). L has a graded Jordan basis consisting of three chains,

one of type (ba)k~ιb and the other two of type a. The respective top vectors aieef

k_ι,eo and

ek Note that, in this case, k = 2r. Let zα £ Nα Π K® be the element that permutes the basis

vectors via two cycles

Then Ad(zβ)(L) e p is the element defined by

ef

0 -+ 0 , e -• ^ _i (0 < i < r), e'r-+ er, e\ -> β, +i (r < i < k).

Now Ad(zα)(L) lies in the same ^°-orbit as L and one may check that Ad(zα)(L) €
so that L € Oy.

For m > 0, L is given by

έ?Q -• 0, ^ -> ei (0 < i < r - m, 2m + r < i < 2m + k),

4-m ^^ e θ , ^ ^^ ^/-l (r — m < i < 2m + r ) .

L has a graded Jordan basis consisting of three chains, one of type (bα)k~ιb and the other

two of type (αb)mα. The respective top vectors are e'k+lm_v ek+2m, and e2m+r-\- Let zα €

NαC\K® be the element that cyclically permutes the vectors eo,..., er-m-\ via e t —>• e;_i and

^o -» ^r-m-i and hence also the vectors 6?2m+r+i, , e*+2m via ^ -• ^/+i and

e2m+r+i Then Ad(zα)(L) e p is the element defined by

*ό -• 0, ^ -+ ei-ι (0 < / < 2m + r ) ,

(2m H- r < / < / : + 2m).

Now Ad(zα)(L) lies in the same Λ °̂-orbit as L and one may check that Ad(zΛ)(L) G p2(Hγ).

We conclude that L e JOy if m is odd and L e θ\ if m is even.
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Hence ιOχ > ιOγ for m odd, and θ\ > θ\ for m even. By using the action of W*9 we

obtain the remaining two assertions of the lemma. •

LEMMA 5. LetX = ((ab)k, (ba)k, (ba)m~lb)andY = ((ba)k~xb, (ba)k~xb, {ab)ma\

where k > m > 1 and k = m mod 2. For m even, we have

o\ > o\, o\ > e>p
and, for m odd,

1Oχ>1Oγ, llOχ>llOγ.

PROOF. Set m + k = 2r and define L e λί by specifying the action of L on the basis

elements of Vb

e'0-+0, e[-+0, 4-m+i "* eo. «, -+ ^/-l C1 < « < k - m),

e\ —> ̂ /_2 (A: — m H- 1 < f < m + 2/:).

L has a graded Jordan basis consisting of three chains, two of type φa)k~xb and the other

one of type {ab)ma. The respective top vectors are ^ + m - 2 ' e2k+m-v a n c* e2k+m-2- Let

Za £ NaΓλ K® be the element that cyclically permutes the vectors eo,..., βfc-m-i via ^z ->

£;_i and ô ^^ ek-m-ι and hence also the vectors ^ + 2m-i, , £2fc+m-2 via e, ->• ̂  + i and

^2^+m-2 -> ^+2m-i Then Ad(zα)(L) G p is the element defined by

e'o -> 0, £?Ί -> 0, e\ -> βi-2 (1 < i < it + 2m),

ej -• β, -i (ifc + 2m < ΐ < m + 2ifc, 3r < / < m + 2ik).

Now Ad(zfl)(L) lies in the same A °̂-orbit as L and one may check that Aά(za)(L) € p2(Hγ).

We conclude that L e ιOγ if m is odd and L € (9y if m is even.
Hence ^ x > ιOγ for m odd, and Ό\ > θ\ for m even. By using the action of W*, we

obtain the remaining two assertions of the lemma. D

PROOF OF THEOREM 1. Let P, Q e X be such that O\ c OP and (?2 C OQ. In

view of Definition 2 and the definition of ">:", without any loss of generality, we may assume

that P -> Q. We shall distinguish ten possibilities for the pair (P, Q) according to the cases

(i)-(x) of Definition 2.

In the case (i), Op is connected. Thus O\ = Op and the whole orbit OQ is contained in

the closure of O\. Hence the assertion of the theorem holds.

In the case (ii), OQ is connected. Then OQ is contained in the closure of at least one

connected component of Op. As W* permutes transitively these connected components (and

leaves OQ invariant) we infer that the assertion of the theorem holds.

In the case (iii), W* permutes transitively the two components of Op and leaves invari-

ant each connected component of OQ. On the other hand, W£ permutes transitively the two

components of OQ and leaves invariant each connected component of Op. Since each con-

nected component of OQ lies in the closure of at least one connected component of Op, the
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assertion of the theorem holds.

In the case (iv), the argument is similar to the one in the case (iii).

Now assume that P -> Q belongs to one of the cases (v)-(x). By symmetry (i.e., by

switching Va and Vb, if necessary), it suffices to consider only the cases (v), (vii), and (ix).

Note that in these cases (Hp)a has no 0 eigenvalue. Without any loss of generality we may

assume that Hp (resp. HQ) is the characteristic of Ό\ (resp. O2), i.e., that Ep e Ό\ (resp.

EQ e O2). The assertion of the theorem will be deduced from Lemmas 1-5. We can write

P = X + Z and Q = Y + Z where Z is the αfr-diagram made up of the common rows of

P and Q. Then X and Y have no common rows and X -> Y. Such pairs (X, Y) are listed

in [8, Table V, p. 182, type (BDI)] (see also [6, formulae (8.9-17)]). The entry (3) in that

table has two misprints: ή(= X) should be ((ab)p+ιa, (ba)q~ιb) and σ ( = Y) should be

((ab)pa, (ba)qb). We remark that if P —• Q belongs to one of the cases (vii) or (ix) then

X -> Y belongs to the same case. On the other hand if P -> Q belongs to the case (v) then

X -» Y may belong to any of the cases (v), (vii), (ix).

By close inspection of Ohta's list, we deduce that the pair (X, Y) is exactly one of the

pairs treated in Lemmas 1-5. If Z is empty, i.e., P = X and Q = Y, then the assertion of the

theorem follows immediately from Lemmas 1-5. Assume now that Z is not empty.

Let V\ (resp. V2) denote the ambient vector space of the orbit Oχ (resp. Oχ) and f\

(resp. /2) its symmetric bilinear form. We set p\ = na(Z), q\ = nt,(Z), P2 = na(X) =

na(Y), and qi = rib(X) = nb(Y). Hence p = p\ + p2 and q — q\ -\- q2- The basis vectors e t

and e'i of these spaces will now be renamed β[ (1) and e\ (1) for Vi and et (2) and e'^2) for V̂

As (Hp)a is nonsingular, p\ and p2 are even.

Assume first that q\ or ^2 is even. Then we can choose an isometry φ : (Vi 0 V2, f\ Θ

fϊ) -+ (V, f) such that {e, (l)} U {έ?/(2)} (resp {^(1)} U {̂ -(2)}) is mapped bijectively onto

\ex} (resp. {e^}) and the following conditions are satisfied:

(i) if φ(βi(k)) = eh i < (pk - l)/2, then j < (p - l)/2 and φ(ePk-i-χ(k)) =

ep-j-u(k= 1,2)',

(ii) if φie'iQc)) = e'p i < (qk-l)/2, then; < ( ^ - D / Σ a n d ^ ^ ^ , ^ * ) ) = ef

q_j_v

( t = l , 2 ) ;

(iii) if λy (resp. μy) is the eigenvalue of φ o (//z 0 Hx) o ^ - 1 belonging to the

eigenvector £ ; (resp e'.)» m e n m e ^ / s (resp. μ/s) are non-increasing.

By identifying Vi and V2 with their images in V, we have V = V\ 0 V2 and V\ _L l^

Moreover

0 (V2)fl , Vb = (Vi)fc 0

and we may assume that Ep = Ez Θ Ex and £ g = £ z 0 Ey. Since X -> y, Lemmas

1-5 imply that Ey lies in the closure of the strict orbit of Ex. Consequently, EQ lies in the

closure of the strict orbit of Ep, i.e., O\ >U2-

Now let q\ and #2 be odd. We can choose an isometry φ so that (i) holds as well as the

part of (iii) that refers to the λj 's, and such that φ maps (V\ )b 0 (Y2)b onto Vb. Although now
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Hp and Hχ Θ Hx are not equal, they are ^-conjugate. Consequently, Ep and Eχ Θ Ex

belong to the same Ar°-orbit, i.e., to O\. Similarly, Eχ Θ Ey belongs to Ό2. The rest of the

argument is the same as in the previous case. D

The following example illustrates the argument used in the above proof.

EXAMPLE 5. Let X = ((ab)3a, (ba)2b) and Y = ((ab)3, (ba)3), and let Z be as in

Example 1. Set P = X + Z and Q = Y + Z. Then P, Q e X(p, q) with p = 12 and q = 10.

Note that Oγ has four connected components, while OQ has only two: 1OQ and 11OQ. We

find that

(Hp)a = diag(6, 6, 2, 2, 2, 2, - 2 , - 2 , - 2 , - 2 , - 6 , - 6 ) ,

CH»a = diag(4, 4, 4, 0, 0, 0, 0, - 4 , - 4 , - 4 ) ,

(HQ)a = diag(6, 5, 3, 2, 2, 1, - 1 , - 2 , - 2 , - 3 , - 5 , - 6 ) ,

(HQ)b = diag(5, 4, 3, 1, 0, 0, - 1 , - 3 , - 4 , - 5 ) .

Let Vi (resp. V2) denote the ambient vector space of the orbit Oχ (resp. Όz)- The basis

vectors β[ and e'ι of these spaces will now be renamed e;(l) and e'^Y) for Vi and e/(2) and

e (2) for V2 We embed Vi and V2 isometrically into V by sending

^(2) -• e'2 , ^(2) -> ^ , 4(2) -• ^ , 4(2) ^ 4

and

e2(l)

4(i) -> 4, 4(i)-> 4, 4(i)-• 4, 4(i)-> 4, 4(i)-• 4,
By identifying Vi and V2 with their images in V, we have V = V\ 0 V2 and Vi ± V2.

Moreover

Θ

Since EZΦ Ex e ιOP, Ez Θ Eγ e ιOQ, and £y G K° £ x , we deduce that £ z 0 £ r G

^° ( £ z θ Ex). Thus ! O P > ιOQ and consequently also π(9/> > ιιOQ. D

4. Simplification of the conjecture. In this section we simplify our problem and

prepare the ground for the verification of the conjecture for small values of p or q, to be

carried out in the next section.

We define a path in Γ = Γ(p, q) to be a sequence of vertices (Xo, X\,... , X*) of Γ

such that Xo -^ X\ -> - -^ Xk> We also say that the length of this path is k and that this

path 70ms Xo to Xk- If X > Y then there exists a path joining X to Y (by the definition of

Hasse diagrams). We say that a pair (X, Y) of vertices of Γ is an a-pair if X > F and every

vertex Z such that X > Z > 7 is an α-vertex. A b-pair is defined similarly. We say that

(X, Y) is a pwre /?α/r if it is either an α-pair or a Z?-pair. We remark that an α-pair cannot be a
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ib-pair (see Lemma 7 (iii) below). A maximal a-pair (or ma-pair for short) is an α-pair (X, Y)

such that there is no α-pair (P, Q) with P > X > Y > Q and P > X or Y > Q. We define

similarly the maximal b-pairs (or m^-pairs). A maximal pure pair (or m/7-pair) is an mα-pair

or an m&-pair.

LEMMA 6. Let X, Y e X(p, α). //((X, α), (F, α)) w α t-pα/r m Γ ( p + 1, q), then

(X, Y) is a b-pair in Γ(p, q). The converse holds if p > 2q.

PROOF. Assume that (X, Y) is not a fc-pair. Then there exists a vertex Z such that X >

Z > Y and Z is either stable or a proper α-vertex. It follows that (X, a) > (Z, α) > (7, α)

and (Z, α) is stable. Hence ((X, a), (Γ, a)) is not a &-pair. This proves the first assertion.

Now assume that p > 2q and that (X, Y) is a &-pair. Let P be any vertex such that

(X, α) > P > (Y, a). Since p > 2q, P necessarily has the form P = (Z, a). It follows that

X > Z > Y and so Z must be a Z?-vertex. Consequently, P is a proper Z?-vertex. The second

assertion is proved. •

REMARK. The hypothesis p > 2q in the above lemma is probably superfluous.

To break the monotony and help the reader digest the above definitions, we give two

examples which will be needed in the next section.

EXAMPLE 6. Let us enumerate the unstable vertices and pure pairs in Γ(p,q) for

p >q < 3. (These diagrams are displayed in Figures 1 and 2.)

All vertices of Γ(p, 1) are stable except for the proper α-vertex A = (aba) when p = 2.

In Γ(2, 2), C\ is a proper α-vertex, C2 a proper b-vertex, and D an αfr-vertex. (C\, D) is

an α-pair, and (C2, D) a &-pair. For p > 2, the unstable vertices of Γ(p, 2) are A, C2, and D

(all of them proper Z?-vertices), and B is a proper α-vertex if /? = 4. The fr-pairs are (A, C2)

and (C2, £0 (both maximal).

We now consider the diagrams Γ(p, 3), p > 3. If p is odd, all vertices are stable. If

p = 4 the unstable vertices are A, E\, and F (all of them proper α-vertices), and (£Ί, F) is

the only α-pair. Finally if p is even and > 6 then all vertices are stable except that D is a

proper α-vertex if p = 6. EXAMPLE 7. For large p and α the diagram Γ(p, q) is rather

complicated. We shall describe here only the part Γu(p, q) of Γ(p, q) which consists of the

unstable vertices and the lines between them. We do this only for p > α = 4. In Table 3 we

list all vertices of Γ(p, 4) for p > 4.

In the "type" columns, for each p = 4, 5 , . . . , 9 we indicate the type of the vertex X.

The letter α means that X is a proper α-vertex, the letter b stands for a proper Z?-vertex, ab

stands for an α&-vertex, and s for a stable vertex. The asterisk indicates that the vertex with

that label does not exist for that particular value of p. If p > 9, the type of the vertex is the

same as for p = 9. In the "dim" columns we list the complex dimensions of Oχ for each

value of p = 4, 5, 6, 7, 8.

In Figures 5 and 6, we display the subdiagrams Γu(p, 4) for p = 4, 5, 6, 7 and list on

the side all m/?-pairs. The subdiagram Γu (8, 4) is the same as Γu (7,4) except for an additional
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label

A

B

C

D

Ex
E2

F\
F2

F3

G

H

I

J\

h
K

Lx

Ll

Mi

M2

M 3

NX

N2

0

Pi

Pi

Q
R

X

(ab)4a

(ab) a, aba

(ab)2a, (ab)2a

(ab) a, aba, aba

(abΫa, b

(baΫb

(abΫa, aba, b

(ab)2a, bab

(ba)2b, aba

aba, aba, aba, aba

(ab) a, ab, ba

abab, baba

aba, aba, aba, b

aba, aba, bab

aba, aba, ab, ba

(ab)2a, b2

(ba)2b, b

aba, aba, b

aba, bab, b

bab, bab

aba, ab, ba, b

bab, ab, ba

ab, ba, ab, ba

aba, b3

bab, b2

ab, ba, b2

b4

TABLE 3.

*X

9\P-5

7 3 \P~6

52 \P~6

5 3 2 \P~Ί

7 \P~3

1-\P~3

5-3-lP-4

5 3 \P~4

5-3-\P~4

3 4 . ιP-s

5 22 \P-5

42.1P-4

33 . iP-5
3 3 l ^ - 5

32 . 22 . \p-6
5-\P-{

5 \P~ι

32 . iP-2
32 . IP'2

3 2. iP-2
3 . 2 2 . \P~3

3 2 2 . \P~3

24 \P-4

3-1P+1
3-F+l
22 \P
\P+4

Vertices of Γ(p, 4)

4

*

*

*

*

a

b

*

b

a

*

*

ab

*

*

*

s

s

a

s

b

a

b

ab

s

s

s

s

5

b

*

*

*

s

b

s

b

s

*

b

b

*

s

*

s

s

s

s

b

s

b

b

s

s

s

s

type

6

b

a

b

*

s

b

s

b

s

*

b

b

a

s

a

s

s

s

s

b

s

b

b

s

s

s

s

1

b

s

b

s

s

b

s

b

s

*

b

b

s

s

s

s

s

s

s

b

s

b

b

s

s

s

s

8

b

s

b

s

s

b

s

b

s

a

b

b

s

s

s

s

s

s

s

b

s

b

b

s

s

s

s

9

b

s

b

s

s

b

s

b

s

s

b

b

s

s

s

s

s

s

s

b

s

b

b

s

s

s

s

4

12

12

11

11

10

10

10

9

9

9

8

8

6

6

6

5

0

5

16

15

15

14

14

14

13

13

12

12

12

11

11

11

10

10

8

7

7

6

0

dim

6

20

19

18

18

18

17

17

17

16

16

15

15

14

14

14

13

13

13

12

12

10

8

8

7

0

7

24

23

22

21

21

21

20

20

20

19

19

18

18

17

16

16

15

15

15

14

14

12

9

9

8

0

8

28

27

26

25

24

24

23

23

23

22

22

22

21

21

20

18

18

17

17

17

16

16

14

10

10

9

0

isolated vertex, namely G. If p > 8, it follows easily from Lemma 6 that Γu (/?, 4) is the same

asΓM(7,4).

The following lemma is useful for identification of pure pairs.

LEMMA 7. Let X, Y e X with X > Y. Then:

(i) IfX and Y are ab-vertices, there exists a stable vertex Z such that X > Z > Y.

(ii) If(X,Y) is a pure pair, every path joining X to Y contains at most one ab-vertex.

(iii) If (X, Y) is a pure pair, X orY is not an ab-vertex.

PROOF. It is clear that (i) implies (ii), and (ii) implies (iii). To prove (i), it suffices

to consider the case X = ((ab)m, (ba)m, (ab)k, (ba)k), Y = {{ab)m~\ {ba)m~\ (ab)k+\

(ba)k+ι), where m - 2 > k > 0. In that case we can take Z = ((ab)m~ιa, (ba)m~ιb,

(abfa, (ba)kb). •

In the next lemma we collect some elementary facts concerning the partial order ">:".
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,//)
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ΓM(5,4)

F2

E2

(C, M3)
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0 (M3, 0)

M 3 )

\ N ^ (A,£2)

\ N 2 (C, M3)
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\ ° (M3, 0)

FIGURE 6.
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LEMMA 8. Let X, Y be vertices of Γ such that X > Y.

(i) If X is stable, then Oχ > U2for each connected component O2 ofθγ.

(ii) If Y is stable, then Ό\ > Oγ for each connected component O\ ofθχ.

(iii) IfX and Y are proper a-vertices, then ιOχ > ιOγ andιιθχ > ιιOγ.

(iv) IfX and Y are proper b-vertices, then θ\ > θ\ and θ\ > O^.

(v) If X and Y are proper vertices of different types, then O\ > O2 for each con-

nected component O\ (resp. U2)ofθχ (resp. Oγ).

(vi) If X is a proper a-vertex and Y an ab-vertex, then ιOχ > ιθ\, ιOγ and uOχ >
ιιoι

γ,
ιιoιl

(vii) IfX is an ab-vertex and Y a proper a-vertex, then ιθ\, ιOlχ > ιOγ and ιιOι

χ,

« > ιιOγ.

(viii) If X is a proper b-vertex and Y an ab-vertex, then Ό\ > ιΌ\, ιιΌ\ and Oιl >

iιιoιi
(ix) If X is an ab-vertex and Y a proper b-vertex, then ιθ\, ιIOι

χ > θ\ and λΌ\,
ιιΌ\ > Oιl

PROOF. Let (X = XQ,X\, ... ,Xk = Y) be a path joining X to Y and having the

minimal length k. We prove the lemma by induction on k. If k = 1 all the assertions of the

lemma follow immediately from Definition 2. Now let it > 1 and let Z = Xk-\ -

To prove the assertion (iii), we consider several possibilities for Z.

Case 1: Z is stable. Then by applying the induction hypothesis (ii) to the pair (X, Z),

we obtain that ιOχ, ιιOχ > ΌZ- Since Oz >: ιOγ, ιιOγ by Definition 2, it follows that (iii)

holds.

Case 2: Z is a proper ̂ -vertex. Then ιOχ > ιOz and ιιOχ > ιιOz by the induction

hypothesis (iii), and ιOz > lOγ and IlOz > ιιOγ by Definition 2. Consequently (iii) holds.

Case 3: Z is a proper ̂ -vertex. By the induction hypothesis (v) we have ιOχ, ιιOχ >

Ό\ and, by Definition 2, Ό\ > ιOγ, ιιOγ. Hence (iii) holds.

Case 4: Z is an ab-vertex. By the induction hypothesis (vii) we have ιOχ >; ιOι

z and
ιιOχ > ιιOι

z. By Definition 2 we have λΌ\ > ιOγ and ιιOι

z > ιιOγ. So, again (iii) holds.

We omit the routine details of the proof for the other assertions. •
We shall also need the following useful fact.

LEMMA 9. Let X, Y be vertices of Γ such that X > Y. If (X, Y) is not pure, then

O\ > O2 for each connected component 01 (resp. O2) ofθχ (resp. Oγ).

PROOF. If there exists a stable vertex Z such that X > Z > Y, then the assertion

follows from Lemma 8 (i), (ii). We assume from now on that there are no such stable vertices.

Lemma 7 implies that X or Y is not an α^-vertex.

If X and Y are proper vertices of different types, then the assertion follows from Lemma

8 (v). Assume now that X and Y are proper vertices of the same type, say type a. Since the

pair (X, Y) is not pure, there exists a proper ̂ -vertex Z such that X > Z > Y. By Lemma 8

(v) we have Ό\ > Ό\ and Ό\ >z O2. Hence the assertion follows.
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Assume now that X is an αb-vertex. Then Y is necessarily a proper vertex, say a proper

α-vertex. Since (X, Y) is not pure, there exists a proper Z?-vertex Z with X > Z > Y. Without

any loss of generality, we may assume that O\ = ιθ\. By Lemma 8 (ix) we have O\ h Oι

z,

and by Lemma 8 (v) we have θ\ > 02. The assertion follows.

The case where Y is an α&-vertex can be treated similarly. •

Let X be an αb-vertex. Recall that the Λ:-orbit Oχ has four connected components ιOι

χ9
uOι

x, and Π O ° . In this case we define the sets ιOχ, nOχ, θ\, and Oι* by

ι<Dχ = lO\ U lO\ , ιιOχ = llO\ U

o\ = ιo\ u ιιo\, 05 = ιό* u
It follows from Lemma 8 that if (X, Y) is an α-pair (resp. Z?-pair), then

ιOχ ΠθγD ιOγ (resp. Ό\ Πθγ Dθι

γ),

where the bar denotes the closure in the Zariski topology. Clearly, the superscripts I can be

replaced by II. As we shall see below, our conjecture is equivalent to the assertion that the

above inclusion signs can be replaced by the equality signs. This motivates the following

definition.

DEFINITION 3. We say that an α-pair (X, Y) splits if

ιOχ Π Oγ C ιOγ (or, equivalent^, ιιOχ Π Oγ C uOγ).

One defines the concept of splitting for fr-pairs similarly (just move the superscripts I and II

from the left to the right).

We can now state the main result of this section.

THEOREM 2. In order to prove the conjecture, it suffices to prove that every mp-pair

splits.

PROOF. Assume that every m/?-pair splits. This clearly implies that every pure pair

splits. Let O\, Oi C λί be j£°-orbits such that O\ > O2. We have to show that

(6) Όx > O2 .

There are unique vertices X, Y e X such that O\ C Oχ and O2 C Oγ. As O\ > O2, we

have X > Y. Without any loss of generality we may assume that X / 7 , and so X > Y. If

(X, Y) is not pure, then (6) follows from Lemma 9.

Now assume that (X, Y) is a pure pair, say an α-pair. Without any loss of generality, we

may assume that O\ c ιOχ. Since (X, Y) splits and O\ > O2, we must have O2 C ιOγ.

Now (6) follows from Lemma 8 (vi), (vii). D

5. Special cases of the conjecture. In this section we shall prove that several infinite

families of pure pairs split and verify our conjecture when min(/?, q) < 7.

Let B be the Borel subgroup of K° consisting of all upper triangular matrices in K°. We
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have B = Ba x Bb where Ba = B Π K® and Bb = B Π K% are the Borel subgroups of ^

and ^ , respectively.

As in Section 1, for X G X = X(p,q),we shall denote by Ex a representative of the

orbit Oχ such that [Z/χ, Ex] = 2£χ. If X is a proper α-vertex (resp. proper ^-vertex, an

flfc-vertex), then Ex e ιOχ (resp. Ex e θ\, Ex e ιθ\).

The following proposition and Proposition 1 play a key role in the sequel.

PROPOSITION 2. Let (X, Y) be an a-pair in Γ = Γ(p, q). If B Ex Π Oγ c !Oy,

ί/ẑ n (X, F) splits. The analogous assertion is valid for b-pairs. (We use the dot to denote the

adjoint action.)

PROOF. Assume that B Ex Π Oγ c ΣOy. By [7, Satz 2, pp. 182-183] we have

K° Ex = K° - B Ex. Hence if X is a proper α-vertex, then

i.e., (X, F) splits. If X is an flfr-vertex (and so F is a proper α-vertex) then ιOχ = ιO1

χ UιOlχ.

As Ex G ! O ^ , the above argument gives ιOι

χ Π Oγ C ιOγ. As ιOγ is ^-invariant, by

applying a suitable element of Wζ, we obtain that also ιOlχ Π Oγ C ιOγ. Hence (X, F)

splits. •

We note that, by Proposition 1, B Ex C $2(Hχ) C l£ 0 £χ .

LEMMA 10. LeίX, 7 G Af(pi,^i), Z e X(p2,q2), andlet X = X + Z, Ϋ = Y + Z,

p = p\ + q\ and q — q\ + ^2 Assume that (X, F) w β b-pair in Γ(p\, q\) and (X, Y) a

b-pair in Γ(p, q). Then if(X, Ϋ) splits so does (X, Y).

PROOF. Letni = p\+q\,n2 = /?2+^2»and« = p+q. We consider O n i ( Q x O Π 2 ( C )

as embedded in On (C) in the standard way. We may assume that the bases of the underlying

vector spaces are chosen so that Oι

γxOι

z C Oι~ (and consequently Olγ x Ό\ C Oιh. Assume

that (X, Y) does not split. Then Ό\ D Oγ, and so θ\ x O !

z D Oγ x Ό\. As Oy x Ό\

meets both θ l and O?, this contradicts the hypothesis that (X, F) splits. •

Recall that for X G X and A: > 0 we have defined the diagrams X^ (see Section 2).

If A: is even then X^ is an αb-diagram, but this may fail for odd k. When k is odd, then

na(X{k)) = nb{X{k)) and we introduce the parameter r*(X) = nα(X ( f c )). When fc is even, we

introduce two parameters: rk,a(X) = «α(^ ( / : )) andr^^(X) = nb(X^). In particular we have

ro,α(X) = /? and ro,&(X) = ^ for all X e X. The following lemma explains the meaning of

these parameters.

LEMMA 11. If X e X and L e Oχ, then rank(L2*)α = r2*,fl(X), mnk(L2k)b =

rikAX), andmnk(L2k+ι)ab = r2^+i(X).

PROOF. This follows immediately by considering a graded Jordan basis for L. •

Let us outline the procedure that we use repeatedly in our verifications below. Let,
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say, (X, Y) be an mb-pair. As usual, Hx denotes the characteristic of Oχ. Next let L e

S2(Hχ) Π Oγ be an arbitrary element. We use Lemma 11 and Proposition 1 to prove that

L must belong to Ό\. Then Proposition 2 shows that (X, Y) splits. The arguments use the

vectors υ, := He\) e Va, 0 < i < q. The matrix Sq(L2)b is the negative of the Gram matrix

of the sequence t>o, v\,... , vq-\. (Recall that the matrices Sk have been defined in Section 3.)

Hence its rank r2,b(X) is the dimension of the quotient space of L(Vb) = (vo, υ\, ... , vq-\)

modulo its radical. Similarly, in certain cases we may use the vectors v[ := L(e{) e Vb>

0 < / < / ? . The matrix Sp(L2)a is the negative of the Gram matrix of these vectors. Let us

illustrate this method by proving several useful lemmas. We remark that although we state

these lemmas just for one kind of pure pairs, the analogous assertion is also valid for the other

kind.

In the proofs of these lemmas and Theorem 3 we often use the action of Ka or Kb in

order to modify the orbit representative that we are working with. If say p = 2k is even, then

K® contains the subgroup isomorphic to GL^(C) which leaves invariant the maximal totally

isotropic subspaces {eo, e\, ... , ejc-i) and (ek, e*+i» > ep-\) Most often we use elements

from this subgroup or from the intersection of it with the Borel subgroup Ba. The specific

details for the choice of these "suitable elements" will be omitted.

LEMMA 12. The a-pair (X = ((aba)k, bk+m), Y = ((ab, ba)k, bm)) splits.

(The notation means that, in X, aba is repeated k times and, in F, (ab, ba) is repeated k

times.)

PROOF. Note that p = 2k and q = 2k + m. Let L e 52(HX) Π Oγ and let v\ = L{ei)

for 0 < i < p. As (Hχ)a = diag(2, 2 , . . . , 2, - 2 , . . . , - 2 , -2) and (Hχ)b = 0, we have

v\ = 0 for / < k. As rank Lab = π (Y) = k, the vectors υ[ for / > k form a basis of L(Va).

As rank (L2)a = r2,α(F) = 0, L(Va) is totally isotropic. By applying a suitable element

of Kb and by using Witt's theorem (see, e.g., [1, p. 121, Theorem 3.9]), we may assume

that L(Va) = (e'o, e\,... , e'k_χ). By inspecting the eigenspaces of ad(//y), we see that

L e $2(Hγ). Hence, by Proposition 1, L e ιOγ. By Proposition 2, (X, Y) splits. •

LEMMA 13. If X = {{ababaf, {bab)r,am) and Y = ((bab)k+r,am+2k), then the

b-pair (X, Y) splits.

PROOF. Note that p = 3k + m + r and q = 2k + 2r. Let L e s2(Hx) Π Oγ and

let Vi — L(e[) for 0 < / < q. By inspection of the eigenspaces of ad(//χ), we see that

Vi e { e o , e \ , ... , e k - \ ) f o r 0 < / < k + r a n d υ / G ( ^ o , ̂ l , , e p - k - \ ) f o τ k + r < i < q .

It follows that the vectors v, for / < /: + r belong to the radical of L(Vb). Since ri(7) =

n,b(Y) = ^+λ*, the subspace L(Vb) has dimension /:+r and is nondegenerate. Consequently,

Vi =Ofoτi < k + r. It follows that L e s2(Hγ). By Proposition 1, L e Oι

γ. Hence (X, F)

splits by Proposition 2. D

LEMMA 14. //X = ((αfc)3α, (ate)*, Z?*+m+2) and Y = {(ba)2b, {ab, ba)k+\ bm),
then the a-pair (X, Y) splits.
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PROOF. We have p = 2k + 4, q — 2k + m + 5, and

(Hχ)a = diag(6, 2 , . . . , 2, - 2 , . . . , - 2 , - 6 ) ,

(Hx)b = diag(4, 0, 0, . . . , 0, 0, - 4 ) ,

( t f y ) f l = d i a g ( 2 , l , . . . , 1 , - 1 , . . . , - 1 , - 2 ) ,

(Hγ)b = diag(4, 1,.. . , 1, 0, 0, . . . , 0, 0, - 1 , . . . , - 1 , - 4 ) ,

with m + 1 zeroes in (Hγ)b. Let L e S2(Hχ) Π Oγ and vf

t = L(βi) for 0 < i < p. By

inspecting the eigenspaces of ad(/fχ) we see that υ'o = 0, v[ e (e'o) for 0 < i < k + 1, and

v[ e (e'o, e\,... , e'q_2) for * + 1 < i < p - 1.

Let us write Lab = (ξij) with 1 < i < p and 1 < j < q. Since L e S2(Hχ), we must

h a v e ξi\ — 0 f o r 2 < i < p , ξij =0fork + 2<i<p a n d 2 < j < q, a n d a l s o ξpq = 0 .

Since rank Lab = r\ (Y) = k 4- 3, at least one of the entries ξiq,k + 2 < i < p, is nonzero.

As rank(L 2 ) α = r2,a(Y) = ι a n d

(L2)a = LabLba = ~LabSq

tLabSp ,

we deduce that ξ\\ξiq = 0 for k + 2 < / < p. Consequently, ξ\\ = 0 , and so L(Va) C

(e'0,e[,... ,e'2) ^ follows that ^Q belongs to the radical of L(Va). The dimension of this

radical is k + 2. By applying a suitable element of K®, we may assume that ξk+3,q φ 0 and

ξiq = 0 for i > k + 3.

All entries of (L2)^ are 0 apart from the non-diagonal entries in the first row or last

column. The (1, y')-th entry of this matrix is —ξk+3,qξk+2,j for 2 < j < q. Since this

matrix is symmetric with respect to the side diagonal, it follows that all entries of (L4)/, are 0

except possibly the entry in the upper right hand corner which is equal to ξ£+3 qf(
vk+2> vk+2^-

Since rank(L4)^ = r^biY) = 1> this entry is not 0. We conclude that the vector vF

k+2 is

nonisotropic. By transforming L with a suitable element of K®, we may assume that the

vectors ι> belong to the radical of L( Va) for i > k + 2. As a side effect of this transformation,

the entries ξlA for k + 2 < i < p may become nonzero. By transforming L with a suitable

element of Kb which fixes the vectors ef

0 and e' v we may further assume that the radical

of L(Va) is (e'o, e\,... , e'M). Consequently, now υ'k+2 e (^, e[,... , 4+m+2> Finally, by

transforming L with the element of Wa which exchanges the vectors eo and ek+\ and also

£&+2 a n d eq, we obtain an element in 52{Hγ). By Propositions 1 and 2, (X, y) splits. D

We can now verify the conjecture when p or q is small. In the proof we shall also use

several lemmas from the next section.

THEOREM 3. The conjecture is true if min(/?, q) < 7.

PROOF. Without any loss of generality we may assume that p > q. By Theorem 2, it

suffices to show that all m/7-pairs split. By Lemma 10, if (X, Y) and (X + Z, Y + Z) are both

&-pairs and if the latter pair splits then also the former does. We shall use this to reduce the

consideration of Z?-pairs to large values of p by taking Z = (ak). (It suffices for us to take

P > Ίq-)
If q < 3 then the pure pairs are listed in Example 6. If q = 1 there are no pure pairs.
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P

6

8

10

TABLE

label

A

B

C

D

E

F

G

H

I

J

K

L

4. Unstable vertices of Γ {p, 5]

X

{ab)5a

{ab) a, aba, b

{ab) a, ab, ba

{ba)2b, {aba)2

abab, baba, aba

{abaγ,b2

{aba)2,ab, ba,b

aba, {ab, ba)

{ab)3a, {aba)2

{aba)4,b

{abaΫ,ab, ba

{aba)5

*X

11

7-3-1

7-2 2

5 3 2

4 2 3

3 3 - l 2

3 2 2 2 1

3-2 4

7 3 2

3 4 - l

3 3 - 2 2

3 5

dim

25

23

22

21

20

18

17

15

32

26

25

35

Let q = 2. The pairs (C2, D) and, for p = 2, the pair (C\, D) split by Lemma 12. The

pair (A, C2) splits by Lemma 13.

Now let q = 3. Then (see Example 6) there is only one pure pair, namely the α-pair

(£1, F) when p = 4. One can show that this pair splits by using Lemma 12. Indeed,

by that lemma, the α-pair (X = ((aba)2,b2),Y = ((ab,ba)2)) splits. As X > Z =

(aba, ab, ba, b) > Y, it follows that (X, Z) splits. As X = Ex + (b) and Z = F + (*),

(£1, F) splits by Lemma 10.

Next let q = 4. The mp-pairs are exhibited in Figures 5 and 6. If p = 4 there are three

mα-pairs and three m^-pairs and, by symmetry, it suffices to show only that the m£-pairs

split. The α-pair (7i, K), for p = 6, and the &-pair (M3, 0 ) split by Lemma 12. The &-pair

(C, M3) splits by Lemma 13, (A, £2) by Lemma 15, and (E2, H) by Lemma 14. In the case

of (A, £2) this may not be so obvious, so we give a few more details. By taking k = 2 and

r = p - 5 in Lemma 15, we see that the fc-pair (X, Y), with X = (((α&)4α)2, α^~5) and

y = (((fcα)3fc)2, aP~ι)9 splits. Since

X = (A, (ab)4a) > ( £ 2 , (αfc)4tf) > (£2, (&α)3fc, a 2 ) = Y,

it follows that the pair (A, (ab)4a) > (£2, (ab)4a) splits. Now, by Lemma 10, the £-pair

(A, £ 2 ) splits.

Now let q = 5. In Table 4 we list the unstable vertices of Γ(p, 5). They exist only for

p = 6, 8, and 10 and they are all proper α-vertices. The notation in this table is the same as

in Table 1. If p = 6, the mα-pairs are (B, D), (D, £) , and (£, H). To prove the maximality

of these pairs, it suffices to observe that

C > (ababa, aba, bab) > £ > (abab, baba, a,a,b) > G .

The subdiagram Γu(6, 5) is exhibited on Figure 7. If p = 8 there is only one α-pair, (J, K),

and f or p = 10 there are no a -pairs.

The pairs (F, H) and (J, K) split by Lemma 12, the pair (D, F) splits by Lemma 13,

and (B, D) by Lemma 14. Perhaps the last claim needs an explanation. Let B = (B, b2),
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((aba)6)

Γu(6,5) ΓM(12,6)

FIGURE 7.

D = (D, b2), and Y = ((bafb, (ab, ba)2). Then the α-pair (B, Y) in Γ(6, 7) splits by

Lemma 14. Since B > D > Y, the β-pair (i?, D) also splits. Consequently, (#, D) splits by

Lemma 10.

Now let q = 6. We first list in Table 5 all α-vertices X in the diagrams Γ(p, 6). They

exist only for p = 6, 8, 10, and 12. We also list there the corresponding partitions πx, the

complex dimensions of the orbits Oχ, and introduce labels for the vertices, except that the

isolated a -vertex in case p = 12 is not labelled. The £-vertices in the diagrams Γ(p,6)

are listed separately in Table 6. We reuse the letters A-V to label the ^-vertices. The orbit

dimensions are now given only for p = 12.

When p = 6, because of symmetry, it suffices to prove only that the mb-pairs split,

which will be dealt with later. The other mα-pairs are: ( β , S), (5, ί/), and (t/, W) for p = 8,

and (Ύ, Z) for /> = 10. The pairs (I/, W) and (7, Z) split by Lemma 12, the pair (S, ί/) by

Lemma 13, and ( β , 5) by Lemma 14.

We consider now the m&-pairs. As explained in the beginning of this proof, we may

assume that p > 12. By using Table 6, one can determine these pairs. For fixed p > 12,

there are eight of them: (Λ, C), (B, L), (C, G), (D, 5), (F, K), (L, rt), (tf, β) , and (5, V).

(Some of them should be omitted or modified if 6 < p < 12.) The maximality of these pairs

follows from
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TABLE 5. α-verticesof Γ(/?,6).

P

6

8

10

12

label

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0

P

Q
R

S

T

u
V

w
X

Y

z

X

(ab)5a,b

(ba)4b, aba

(ab)3a, (ba)2b

(ab)3, (ba)3

(ab)3a,aba,b2

(ab)3a,ab,ba,b

(ba)2b,(aba)2,b

abab, baba, aba,b

(ba)2b,aba,ab,ba

abab, baba,ab, ba

(aba)3,b3

(aba)2,ab,ba,b2

aba, (ab,ba)2,b

(ab, ba)3

(abya, aba

((ab)3a)2

(ab)3a,(aba)2,b

(abya, aba, ab, ba

(ba)2b, (aba)3

abab, baba, (aba)2

(aba)Λ,b2

(aba) ,ab, ba, b

(aba)2,(ab,ba)2

(ab)3a, (aba)3

(aba)5,b

(aba)4,ab, ba

(aba)6

πx

11 1

9-3
7-5

6 2

7-3 I2

7 22 1

5 32 1

4 2 3 1

5 3 22

4 2 22

33 13

32 2 2 12

3 2 4 1
2 6

11 3

7 2

7 3 2 1

7 3 2 2

5 3 3

4 2 3 2

3 4 1 2

3 3 2 2 1

3 2 2 4

7 3 3

3 5 1

3 4 2 2

3 6

dim

30

29

28

27

27

26

25

24

24

23

21

20

18

15

41

39

37

36

34

33

30

29

27

48

40

39

51

A > ((ab)5a, aba, aP~%) > E , B > «ab)4a, (aba)2, aP~9) > G ,

C > ((ba)4b, aba, aP~6) > F , D > ((ababa)2, (aba)2, aP~w) > K ,

E > ((ab)3a, babab, aP~β) > H , F > ((ba)3b, (aba)2, aP~Ί) > M ,

H > (ababa, babab, aba, aP~Ί) > J > (ababa, (aba)2, bab, aP~s) > P,

M > (babab, aba, bab, aP~5) > O > ((aba)2, (bab)2, aP~6) > T .

The subdiagram Γu(l2, 6) is exhibited on Figure 7. It contains a single isolated a -vertex,

((aba)6).

The pair (Λ, C) splits by Lemma 15, (D, S) by Lemma 13, (S, V) by Lemma 12, and (L, R)

by Lemma 14. The pairs (C, G) and (F, K) split by Lemma 16, and (B, L) by Lemma 18

(see the next section). It remains to consider the fc-pair (N, Q).

For the reader's convenience we list the relevant characteristics:

HN = diag(4, 0, 0, . . . , 0, 0, - 4 , 2, 2, 2, -2, -2, -2),

HQ = diag(3, 1, 1, 0, 0, . . . , 0,0, - 1 , - 1 , - 3 , 3, 1, 1, - 1 , - 1 , - 3 ) .
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TABLE 6. Z?-vertices of Γ(p,6).

label

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P

Q
R
S
T

u
V

X

(ab)6a,aP-7

(ab)4a,(ab)2a,aP-*
(ba)5b,aP~5

(ababa)3, aP~9

(ab)4a,bab,aP~6

(ba)3b,(ab)2a,aP~6

(ab)4a,ab,ba,aP~Ί

(ab)3,(ba)3,aP~6

(ababa)2, bab, aP~7

(ab)2a, abab, baba, aP~Ί

(ababa)2, ab,ba,aP~s

(ba)3b,bab,aP~4

(ba)3b,ab,ba,aP~5

(ab)2a,(bab)2,aP~5

abab, baba, bab, ap

ababa, bab, ab, ba, ap~6

abab, baba, ab, ba, ap~6

(ab)2a,(ab,ba)2,aP-η

(bab)3,aP~3

(bab)2,ab,ba,aP~4

bab,(ab,ba)2,aP~5

(ab,ba)3,aP~β

1 3 . 1 P - 7

9 - 5 - \P-*

11 \P~5

53. iP-9
9 . 3 . 1 / > - 6

7 - 5 - \ P ~ 6

9 . 2

2 \P-η

β2 • \P~6

52 - 3 -\P-η

5-4 2 \P~Ί

5 2 . 2 2 . ip-8

7-3- \P~4

7 2 2 l/>-5
5-32.1^-5

4 2 3 \P~5

5 3 2 2 . IP-6

42 . 2 2 . 1P-6

5 2 4 l/?-7

3 3 . iP-3

3 2 . 2 2 . l P - 4
3 - 2 4 - I / 7 " 5

2 6 . \P~6

dim

66
64
60
60
59
58
58
57
56
55
55
51
50
49
48
48
47
46
39
38
36
33

We choose a representative EM Oι

N such that is the {0, l}-matrix having Γs

at the positions (1, 2), (2, 4), (3, 5), (p - 2, 5), and (p - 1, 6). Let L e B EN Π OQ

and let υι = L(^) for 0 < / < 6. As the Borel subgroup B consists of upper triangular

matrices, we have ι>o = 0, υi, vi e {eo), t>3 ^ (̂ 0, î)» 4̂ e (̂ 0, ^1, , £/?-3>, and ι>5 e

(̂ 0, ^1, , ep-2). Assume that the vector υ* is isotropic. By applying a suitable element of

Ka, which fixes the four vectors eo, e\, ep-2, and ep-u we may assume that V4 s (eo, e\, ei).

By inspecting the eigenspaces of 2LU(HQ), we see that L belongs to S2(HQ). Hence (N, Q)

splits by Propositions 1 and 2.

It remains to consider the case where V4 is nonisotropic. Write v\ = ξeo, V2 = ηeo, and

ι;3 = aeo + βe\. As Lα̂ , has rank A, β φθ. The entry in the upper right hand corner of the

matrix (L4)a is equal to —ξ2f(v4, V4). Since L 4 = 0, this entry must be 0. This forces ξ = 0.

As Lab has rank 4, we must have η φ 0. The 6 x 6 matrix (L2)^ has all entries zero except

those in the 3 x 3 block in the upper right hand corner which has the form:

0
0

f(V4, V4)

0
f(V4, V5)

As r2,b(Q) = 2, this block must have rank 2. Since /(ι>4, i^) φ 0, we have f(vs, V3) = 0.
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As β φ 0, this implies that υs e (eo, e\,... , ep-i). By subtracting a suitable scalar multiple

of t>4 from V5, we may assume that V5 is isotropic. By transforming L with the element of Wb

that exchanges ef

0 and e\ and also e'A and e'5, we reduce this case to the previous case where

V4 is isotropic.

This completes the proof of the assertion that the Z?-pair (N, Q) splits.

Finally let q = 7 . Then every unstable vertex is necessarily a proper a -vertex. They exist

only for p = 8, 10, 12, and 14. The subdiagrams Γu(p, 7) for p = 8 and p = 10 are shown

in Figure 8. If p = 14, then there is only one a -vertex, namely {{aba)1), and so there are no

α-pairs. If p — \2, then there are three α-vertices:

A = {{ab)3a, {aba)4), B = {{aba)6, b), C = {{aba)5, ab, ba),

and only one α-pair, namely {B, C). This pair splits by Lemma 12. If p = 10, then there are

nine a -vertices:

O

.A

ΓM(10,7)

FIGURE 8.
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TABLE 7. Unstable vertices of Γ(8, 7).

427

label
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S

X

(ab)Ίa
(abΫa,aba,b
(abΫa, ab, ba
(ba)4b,(aba)2

((ab)3a)2, b
(ab)3a,(ba)2b,aba
(abΫa, abab, baba

ababab, bababa, aba
(abΫa, (aba)2, b2

(ab) a, aba, ab, ba, b
(abΫa, (ab, ba)2

(ba)2b,(abaγ,b
(ba)2b,(aba)2,ab,ba
abab, baba, (aba)2, b

abab,baba, aba, ab, ba
(aba)4,b3

(abaγ,ab,ba,b2

(aba)2,(ab,ba)2,b
aba, (ab, ba)

*X

15
1 1 - 3 1
11 2 2

9 3 2

7 2 1
7 5 3
7 4 2

6 2 3
7 3 2 12

7 3 2 2 • 1

7 2 4

5 3 3 1

5 3 2 2 2

4 2 3 2 1

4 2 3 2 2

3 4 1 3

3 3 2 2 1 2

3 2 - 2 4 1

3 2 6

dim
49
47
46
45
45
44
43
43
42
41
39
39
38
38
37
34
33
31
28

A = ((ab)5a, (aba)2) B = (((ab)3a)2, aba) C = ((ab)3a, (aba)3, b)

D = ((ab)3a, (aba)2, ab, ba) E = ((ba)2b, (aba)4) F = (abab, baba, (aba)3)

G = ((aba)5, b2) H = ((aba)4, ab, ba, b) I = ((aba)3, (ab, ba)2)

and three m<z-pairs, namely (C, E), (E, G), and (G, I). To prove the maximality of these

pairs, it suffices to observe that

D > (ababa, (aba)3, bab) > F > ((aba)4, bab, a,b)> H.

The pair (C, E) splits by Lemma 14, (E, G) by Lemma 13, and (G, I) by Lemma 12.

It remains to consider the case p = 8. Then there are nineteen a -vertices and we list all

of them in Table 7.

There are seven mα-pairs: (B, D), (D, /), (E, H), (I, M), (L, O), (L, P), and (P, S).
The maximality of these pairs follows from

C > ((ab)4a, aba, bab) > F, D> ((ba)3b, (ab)2a, aba) > H ,

E > ((ab)3a, (ab)2a, bab) > G > ((ab)3a, aba, bab, a,b)> J ,

J > ((ababa)2, aba, ab, ba, b) > N > ((aba)3, (bab)2) > Q ,

K > (ababa, aba, bab, ab, ba) > O .

The pair (P, S) splits by Lemma 12, the pair (L, P) by Lemma 13 (with a and b switched),

and the pair (/, M) by Lemma 14.

We consider first the pair (B, D). We have

HB = diag(10, 6, 2, 2, -2, -2, - 6 , -10, 8,4, 0, 0, 0, - 4 , - 8 ) ,

HD = diag(6, 2, 2, 2, - 2 , - 2 , - 2 , - 6 , 8, 4, 0, 0, 0, - 4 , - 8 ) .
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We choose the representative EB e ιOβ such that (Eβ)ab is the {0, l}-matrix having Γs at the

positions (4, 5), (5, 6), and at the positions (i, i) for i = 1, 2, 3, 6, 7. Let L € B HB Π OD

and let

υ[ = L(ei) = ξi,0e
f

0 + ξiΛe[ + + ξi,6e
f

6 .

We have vf

0 = 0; ξ\j = 0 for j > 0; §/,; = 0 for i = 2, 3 and y > 1, §4,y = 0 for j > 2;

§ 5 j = 0 for j = 5, 6; and £6,6 = 0. As r\(D) = 6, the subspace L(Va) has dimension 6, and

so §4,2 7̂  0. The condition rank(L8)^ = rg ^(D) = 1 implies that §i,o, §2,1, and §6,5 are all

nonzero. As §2,1 and §6,5 are nonzero, we may assume that §3,1 = §7,5 = 0. Now the same

condition implies that the vector υf

5 is nonisotropic. The condition rank (L2)a = r2,fl(D) = 5

implies that §5,4§7,6 = 0. Next the condition r%,a(D) = 0 implies that (Ls)a = 0. By

computing the (1, 7)-entry, we find that §7,6 = 0. By applying the permutation (1, 2)(7, 8) e

Wa to L we obtain an element of 52(Ho). We now invoke Proposition 1 to conclude that

L € 1OD Hence (B, D) splits by Proposition 2.
Next let us consider the pair (D, / ) . We have

HD = diag(6, 2, 2, 2, - 2 , - 2 , - 2 , - 6 , 8, 4, 0, 0, 0, - 4 , - 8 ) ,

Hi = diag(6, 2, 2, 2, - 2 , - 2 , - 2 , - 6 , 4, 0, 0, 0, 0, 0, - 4 ) .

Let L G 52(HD) Π Όι and let υί = L{e{) for 0 < i < 8. We have υ'o € (*Q); fp v^, vf
3 e

{eQ9e[);υf

49υ
f

s,υ
f

6 e (ef

0,e've'2,e've'4),andυ'7 e (e'o, e\, e'2, e'v e\, ef

5). Asπ(/) = r2>f l(/) =

5, the subspace L(Vα) has dimension 5 and is nondegenerate. Since e'§ is orthogonal to L(Va),

it follows that υf

0 = 0. By transforming L with the element of Wb that exchanges e'o and ^j

and also e'5 and ^^, we obtain an element in $2(Hi). Hence (D, I) splits by Propositions 1

and 2.

We consider next the pair (E, H). Let X = (E, b) and Y = ((ab)3, (ba)3, ab, ba). As

X > (//, b) > y, it suffices to prove that (X, Y) splits. We have

# * = diag(6, 6, 2, 2, - 2 , - 2 , - 6 , - 6 , 4, 4, 0, 0, 0, 0, - 4 , - 4 ) ,

// r = diag(5, 3, 1, 1, - 1 , - 1 , - 3 , - 5 , 5, 3, 1, 1, - 1 , - 1 , - 3 , - 5 ) .

We choose the representative Ex e ιOχ such that (Eχ)ab is the {0, l}-matrix having Γs at

the positions (1, 1), (2, 2), (3, 3), (4, 6), (5, 7), and (6, 8). Let L e B Hx Π Oγ and let

We have υ'o = υ[ = 0; ξitj = 0 for / = 2, 3, 4 and j > i - 2, ξ5J = 0 for j = 6, 7; and

ξ6 η = 0. The condition rank(L4)^ = r^b{Y) = 2 implies that §2,0* §3,i» §4,2, and §5,5 are all

nonzero. The condition rank(L2)α = Γ2,α(y) = 4 now implies that §6,6§7,7 = 0.

If §6 6 = 0 then r\^a (Y) = 2 implies that §7,6 or §7,7 is not 0. As §5,5 φ 0, we may assume

that also §6,5 = 0. As r\(Y) = 6, the vectors v[ for 2 < / < 8 form a basis of L(Va). Since

f2,a(Y) =4,L(Va) has 2-dimensional radical. Hence the maximal totally isotropic subspaces

of L{Va) have dimension 4. Let M be such a subspace containing (v'2,v'3,v'4) = (e'o, e\, er

2).

Thus M — (e'Q, e'v er

2, υ), where v is a linear combination of υ'5, v'6, and υ7. Since 1; is

orthogonal to ef

Q and ^j and at least one of §7,6 and §7,7 is not 0, it follows that υ must be
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a linear combination of υ'5 and υ'6 only. Since v is also orthogonal to e'2 and £5,5 φ 0, it

follows that in fact υ is a scalar multiple of υf

β. This proves that vr

β is isotropic, i.e., one of the

coordinates §6,3 and §6,4 must be 0. By using the transposition (4, 5) e W£ (if necessary),

we may assume that §6,4 = 0> a n d, consequently, §6,3 Φ 0. If §7,7 7̂  0, we may assume that

§7,6 = 0. By applying the permutations (2, 3)(6, 7) e Wa and (1, 2)(7, 8) € W& to L, we
obtain an element of $2(Hγ).

If §6 6 φ 0, then §7,7 = 0 and we may assume that §7,5 = §7,6 = 0. We now repeat the

argument from the previous paragraph to show that υ'Ί must be isotropic. We also may assume

that §7,4 = 0, and, consequently, §7,3 φ 0. By applying the permutation (3, 2, 1)(6, 7, 8) e

Wa to L we obtain an element of $2(Hγ).

By Proposition 1, this proves that (in both cases) L e ιOγ. Hence (X, F) splits by

Proposition 2.

Finally, we consider the pair (L, O). Let X = (L, b) and Y = (abab, baba, (ab, ba)2).

As X > ( 0 , b) > F, it suffices to prove that (X, 7) splits. We have

Hx = diag(2, 2, 2, 2, - 2 , - 2 , - 2 , - 2 , 4, 0, 0, 0, 0, 0, 0, - 4 ) ,

Hγ = diag(3, 1, 1, 1, - 1 , - 1 , - 1 , - 3 , 3, 1, 1, 1, - 1 , - 1 , - 1 , - 3 ) .

Let L e s2(Hχ) Π Oγ and let v\ = L(e;) for 0 < i < 8. We have υ\ e (ef

0) for 0 < / < 4

and υ[ e (e'o, e\,... , e'6) for 4 < / < 8. As r\(Y) = 5, the subspace L(Va) has dimension

5, and so at least one of the vectors UQ, υ[, vf

2, v'3 is nonzero and e'o, v'4, v'5, υ'6, v'Ί form a

basis of L(Va). As r2,a(Y) = 2, this subspace has 3-dimensional radical and e'Q obviously

belongs to the radical. By applying a suitable element of K® which fixes e'Q and e'Ί, we may

assume that {e'o, v'4, υ'5) is the radical of L(Va) and that {e'o, v'A, υ'5, v
f

6) is a maximal totally

isotropic subspace of L(Va). Next, by applying a suitable element of Kb, we may assume that

v[ e {e'o,... , έ?j_3) for i = 4, 5, 6. Now the radical of L(Va) is (^Q, e've'2). Consequently,

v'Ί = §O^Q H h §4̂ 4 with §4 φ 0. If UQ = 0, then L e S2(Hγ). Assume now that v'o φ 0.

Then we may assume that υ[ = vf

2 = v'3 = 0. The condition rank(L4)^ = r^b(Y) = 0

implies that v'Ί is isotropic, i.e., §3 = 0. We now apply the permutation (1, 2)(7, 8) e Wa

and then the permutation (4, 5) e Wζ. The new element L then belongs to S2(Hγ). By

Proposition 1 we conclude that L e ιOγ. Hence (X, Y) splits by Proposition 2.

This completes the proof of the theorem. D

6. Disjoint minimal pure pairs. We say that the ab-άmgmms X,Y e X = X(p, q)

are disjoint if they have no common rows. In general, if X, Y e X then we have X = P + Z,

Y = Q + Z, where F , β G # ( p i , $1), Z e X(p - puq - q\), and X and F are disjoint. If

(X, Y) is a pure pair in Γ = Γ(p, q), then (P, β) is also a pure pair (of the same kind). We

say that a pure pair (X, Y) is minimal if X -> F. (Recall that the last condition means that

there are no vertices U in Γ such that X > U > Y.) If X = P + Z, F = β + Z> as above,

and (X, F) is a minimal pure pair in Γ, then (P, β) is necessarily a minimal pure pair in

Γ(p\,q\). The converse of this statement is false as shown by the following counterexample:

P = ((ba)3b, a), Q = ((ab)2a, bab), and Z = ((ab)2a). Then (P, Q) is a minimal &-pair
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TABLE 8. Disjoint minimal &-pairs in Γ(p, q).

No.

1

2

3

4

5

6

7

8

9

10

X

(ab)2ka, (ba)2k-ιb
(ba)2k+1b,(ab)2ka
(ab)2k,(ba)2kΛab)2m,φa)2m

(ab)2k+ι,(ba)2k+ι,(ab)2m+ι,(ba)2m+ι

(ab)2ka, φa)2m-χb
(ba)2k+ιb,(ab)2ma
(ab)2ka,(ab)2m,(ba)2m

(ba)2k+lb,(ab)2m+l,(ba)2m+l

(ab)2k,(ba)2k,(ba)2m-ιb
(ab)2k+\(ba)2k+l,(ab)2ma

Y

(ab)2k,φa)2k

(ab)2k+\(ba)2k+l

((ba)2k-{b)2,((ab)2ma)2

((ab)2ka)2, «ba)2m+ιb)2

(ba)2k-ιb,(ab)2ma
(ab)2ka, (ba)2m+ιb
(ba)2k-ιb,((ab)2ma)2

(ab)2ka, ((ba)2m+ιb)2

((ba)2k-ιb)2,(ab)2ma
«ab)2ka)2, (ba)2m+ιb

k> 1
k>0

k > m > 0
k > m > 0
k > m > 1
k > m > 0
k > m > 0
k > m > 0
fc > m > 1

fc > m > 0

in Γ(4,4). On the other hand (X = P + Z, Y = Q + Z), which is a &-pair in Γ(7, 6), is not

minimal. Indeed, we have X > U > Y with £/ = ((ab)3, (ba)3, a).

In this section we consider the minimal pure pairs (X, Y) in Γ that are disjoint. To be

specific, we shall consider only the disjoint minimal &-pairs in Γ. The list of all such pairs

(X, y), which can be extracted from [8] or [6], is given in Table 8. It consists of 10 one- or

two-parameter families. The parameters are the nonnegative integers k and m.

If our conjecture is true, then all pure pairs must split. In particular all the pairs listed in

Table 8 must split. In order to provide some additional evidence for the conjecture, we prove

below that this is indeed the case.

THEOREM 4. All disjoint minimal pure pairs split.

The proof is contained in the series of lemmas that follow. Some of these lemmas are

stronger than what is needed for this theorem. (Some of them have been used in the proof of

Theorem 3 in the previous section.)

LEMMA 15. IfX = (((ab)2ka)2, ar) and Y = (((ba)2k-ιb)2, ar+A), then the b-pair

(X, Y) splits. Consequently the b-pairs of the first family of Table 8 split.

PROOF. We have p = 4k + r + 2, q = 4k, and

(Hχ)a = diag(#, q, q - 4, q - 4, . . . , 4, 4, 0, . . . , 0, - 4 , - 4 , . . . ,Λ-q,4-q,-q, -q),

(Hχ)b = diag(# - 2, q - 2, q - 6, q - 6, . . . , 2, 2, - 2 , - 2 , . . . , 6 - q, 6 - q, 2 - q,

2-q),

(Hγ)a = di<ιg(q - 4, q - 4 , . . . , 8, 8, 4, 4, 0, . . . , 0, - 8 , - 8 , - 4 , - 4 , . . . , 4 - q, 4 - q),

and (Hγ)b = (Hχ)b. (All the eigenvalues of Hx and Hy have multiplicity 2 except that 0 has

multiplicity r + 2 in Hx and r + 6 in Hy.)

Let L G S2(Hχ) Π Oy and let ι>/ = L(e ) for 0 < i < q. Let us introduce the subspaces

Vi = (υo, υ\,... , Vi) for 0 < i < q. By inspecting the eigenspaces of ad(//χ), we see that

V2/+1 C (eo, e\,... , *2i+i) for 0 < / < k and V2/+1 C (eo» ei,- - . ^2i+r+i) for/: < 1 < 2fc.

This implies that V2/+1 is orthogonal to V2/+1 if Ϊ + 7 < 2&. In particular, Vi is contained in

the radical of L(V&) = Vq-\. As π ( y ) = n,b(Y) = q —2, this subspace is nondegenerate
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and has dimension q — 2. It follows that V\ = 0, i.e., vo = v\ = 0, and that the vectors

V2,V3,... ,υq-ι are linearly independent. By Witt's theorem, there exists an x e Ka such

that x(V2i+\) — {eo, e\,... , ̂ 2/-i) for 0 < i < k. The above orthogonality conditions then

imply that JC(V2/+I) C {eo, e\,... , e2ί+r+3> for k < i < 2k. By inspecting the eigenspaces

of ad(//y), we conclude that Ad(;c)(L) e $2(Hγ). Hence L e Oι

γ by Proposition 1. So,

(X, Y) splits by Proposition 2.

The £-pairs in the first family of Table 8 split because for r = 0 we have

X > {{ab)lka, (ba)2k~ιb, a2) > ((ab)2k, (ba)2k, a2) > Y . D

LEMMA 16. If X = {(ba)2k+xb,{ab)2ka,ar+2) and Y = (((ab)2ka)2,ab,ba,ar),

then the b-pair (X, Y) splits. Consequently, the b-pairs of the second family of Table 8 split.

PROOF. We have p = Ak 4- r + 4, q = 4k + 2. The eigenvalues of (Hχ)a are the

integers 4/ for —k<i<k. Each of them has multiplicity 2, except that 0 has multiplicity

r + 4. The eigenvalues of (Hχ)b are the integers q — 4i for 0 < / < 2& + 1. Each of them

has multiplicity 2, except for ±q which are simple. Hence

(Hχ)a = diag(4Jfc, 4k, 4k - 4, 4k - 4 , . . . , 4, 4, 0, . . . , 0, - 4 , - 4 , . . . , -4fc, -4fc),

(Hx)b = diag(#, $ - 4, $ - 4 , . . . , 2, 2, - 2 , - 2 , . . . , 4 - 4, 4 - 4, - 4 ) .

We choose the representative Ex e θ\ such that {Eχ)ab is the {0, l}-matrix with Γs at the

positions (/, 1 + 1) for 1 < / < 2k + 1, positions (p — i,q — i + 1) for 1 < / < 2£, and also

at the position (/?, q). Let L € # £ * Π Or and let

v/ = L(e ) = £/,oeo + £/,iei H 1- ft,p-iέ?p_i

for 0 < / < ^. Since the Borel subgroup B = Ba x Bb consists of upper triangular matrices,

we see that υo = 0, ξ/,7 = 0 if / < j and 1 < / < 2k + 1, and also that ξq-ijP-j = 0 if / > j

and 1 < i < 2k.

It is easy to check that L4*O;) = 0 for / < p - 2, L4k(ep-2) = λe0, and L4k(ep-\) =

λe\, where λ is the product of the coefficients §;,/-i for 1 < / < 2k + 1 and ^_/5/7_/_i for

1 < / < 2k. (The fact that these two coefficients λ are the same follows from the symmetry

property of (L2)a mentioned in Section 3.) From the fact that rank(L4*)α = r^k,a(Y) = 2

it follows that λ / 0 and so all of the mentioned coefficients are nonzero. Since r^k,b(Y) =

0, we have (L4k)b = 0. By computing L4k(e'q_3), we find that ξq-\,P-\ = 0. Then, by

computing L4k(ef

 χ), we see that also έ^_i?/7_2 = 0. By subtracting from υq-\ a suitable

linear combination of ι>2A:+2, υ2k+3, , ̂ - 2 , we may assume that also ^ _ I J P _ / _ I = 0 for

1 < / < 2k. This means that vq-\ is orthogonal to υ, for 0 < / < 2k + 1. As dimL(V^) =

Π (Y) = q — 1 and rank (L2)/> = Γ2,^(F) = q — 4, the maximal totally isotropic subspaces of

L(Vb) have dimension 2k + 2. Let Mr = (Λf, υ> be a maximal totally isotropic subspace of

L(Vb) containing the totally isotropic subspace

M = (υ\,V2,... ,V2k+ι) = (eo,e\,... ,e2k).
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We may assume that υ = ζq-\vq-ι +ζq-2Vq-2~\ \-ζ2k+2V2k+2> Since υ is orthogonal to M

and ξq-i,p-i-\ φ 0 for 1 < i < 2k, we must have ζq-ι = 0 for the same Γs. Hence ζq-\ φ 0

and vq-\ must be isotropic. By using Witt's theorem and by applying a suitable element of

Ka which fixes the vectors e\ and ep-ι-\ for 0 < / < 2k + 1, we may assume that ξq-\j = 0

for i > 2k + 1. Since ξq-\,2k+\ and %2k+2,p-2k-\ are nonzero, we may assume that ξq-\,2k

andξ2k+2,p-2k-2 areO. Next we apply the permutation (2k + 1 , 2k + 2)(p — 2k—l, p — 2k)e

Wa to L. After this modification, ξq-\,2k > §2fc+i,2£+i> and &k+2,p-2k-2 are nonzero, while

ζq-\,2k+\ = &k+2,p-2k-\ = 0. Finally we apply to L the permutation

(1, 2k + 1, 2k, . . . , 2)(2Jk + 2, 2fc + 3 , . . . , q) e Wb .

By inspecting the eigenspaces of ad(//y), we find that the new L belongs to $2(Hγ). By

Proposition 1 we conclude that L e Oι

γ. Hence (X, Y) splits by Proposition 2.

For r = 0 we have X = ((fo*)2*+1fc, ( α ^ ) 2 ^ , α2) > ((α^) 2 / : + 1 , (ba)2k+\ a2) > Y. It

follows that the b-pairs in the second family of Table 8 split. •

LEMMA 17. The b-pairs of the third and fourth family of Table 8 split.

PROOF. Let us switch the letters a and b in X and Y of the fourth family. We then

combine the resulting α-pairs with the £-pairs of the third family. We obtain a single family

of pure pairs (X, Y) with

X = ((ab)k, (ba)k, (ab)m, (ba)m), Y = (((ba)k-{b)2, ((ab)ma)2),

where k > m > 0 and k = m (mod 2). Thus p — q = 2k + 2m is divisible by 4, and

the difference r = k — m is even. The eigenvalues of (Hχ)a are the odd integers 2i — 1

for —k<i< k. Those for — m < i < m have multiplicity 2, while the other eigenvalues

are simple. As matrices, (Hχ)b = (Hχ)a. We choose the representative Ex of ιθ\ such

that (Eχ)ab is the {0, l}-matrix having Γs at the positions (/, / + 1) for 1 < / < r and

p — r < i < p, and also at the positions (/, / + 2) for r <i<p — r.

Let L e B Ex (Ί Oγ and let

for 0 < i < p. As B consists of upper triangular matrices, we have vo = 0, ξij = 0 if j > i

and 0 < / < r or p — r < i < p, and also if j > i — 1 and r < i < p — r. For simplicity, we

shall write α; = §/,;-i for 0 < Ϊ <rorp — r<i < p, and ^ = ξij-2 for r < i < p — r.

As ri(F) = p — 2, it follows that βι φ 0 for r 4- 1 < / < p — r. Furthermore, at

least one of α?r, β r+i and at least one of ap-r, βp- r is not 0. By performing some elementary

row and column operations belonging to K® and/or K®, we may additionally assume that

ξk+m+2i+\,k+m+2i-2 = 0 for — m < i < m. One can easily check that L2k~2(e'^) — 0 for

i < p - 2 and that L2k-2(ef

p_2) = λ'e'Q and L 2 ^- 2 (^_j) = λ'e\ + μ r ^ for some scalars

λ' and μr. As r2k-2,b(Y) = 2, λr is not 0. Similarly, we have L2k~2(ep-2) = λeo for some

scalar λ. As rank (L2k~2)a = r2k-2,a(Y) = 0, λ must be 0.
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We shall now compute the coefficient λ'. Set V; = (eo,..., e{) and V! = (er

Qi..., e\).

The above conditions on the structure of L show that

Li+ι(V() = 0, 0 < i < r ,

.) = 0, 0 < i < 2m ,

^(Vp-r+i) = 0 , 0 < i < r ,

and that the same relations hold for V/.

We will determine L2*~2(έ^_2) in stages. First, we have

L(e 2) = Oip-2ep-^ (mod VP-A) ,

L 2(e' 2 ) = -ctp-iaτe' (mod V' 5 ) .

"p-2

As L ^ " 4 ( V' <) = 0, we obtain that

By repeating this argument, we obtain that

L2k~2(e'p_2) = ( - l ) Ί Y[ ap-2j0ί\+2j jL2k~2~2t(ef

p_2_2t),

By using the above formula for t = r/2 — 1, we obtain that

where
α = Π αp

i<y<r/2

For 1 < t < m, we have

/ \ _/ i\r/2+r_ .. o TΊ n n Ί2k-2-r-2t(J \
σ—2' —v -U a'\&p—rPr+2 I I P/7-r+l-4yPr+2+4y^ V^ir7_r_3_4/J

+ βp-rβr+3

Let

* = l l βp-r+l-4jβr+2+4j, C— | | βp-r-4j βr+?>+4j
\<j<m l<j<m

Then, by using the above formula with ί = m — 1, we obtain that

= ( - l ) ^ + ^ ) / 2

β . [α/,_Γj8Γ+2 b ^ r + i α p _ r + i + j8p_r)8r+3 c α ^ - π - i J L
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For 1 < t < r/2, we have

>/2+< L r β r + 2 . b . βr

By taking t = r/2 — 1, we see that

Π α ' «P-ί
</<r

• ί α p _ r I I ^Γ+4i + li8r+4/+2+αr I } j8r+4i+3jfJΓ+4i+4 )
^ 0<i<m 0<i<m '

Similar calculations show that λ has the same expression as λ' except that the factor ap-\ is

replaced by a\.

Assume first that ap-r Φ 0. It is not hard to see that we can then assume that βp-r — 0

without spoiling the zero entries which we have already claimed. Observe that r +4(m — 1) +

4 = p — r and so the last product in the above formula for λr is 0. Hence

λ' = (-l)k~lap-\ap-r J~] OLiOίp-i ]~[ 0r+4i + lj8r+4/+2.
\<i<r 0<i<m

Since λr φθ and λ = 0, we deduce from the expressions above that the α/'s are nonzero for

i φ 1, r and that αi = 0.

Assume now that ap-r = 0, and consequently ^ _ r ^ 0. In this case the formula for λ'

becomes

l</<r 0</<m

Recall that the coefficient λ has the same expression except that the factor ap-\ should be

replaced by a \. Since λ' φ 0 and λ .= 0, we deduce that αf 's are nonzero for / 7̂  1, p — r and

thatαi = 0.

Hence a\ = 0 in both cases. If r = 2 then L e S2(Hγ). Assume now that r > 2.

Since αf 7̂  0 for 1 < / < r, by subtracting a linear combination of the rows with indices

2, 3 , . . . , r — 1 from the first row of L, we may assume that £;,o = 0 for i < r. We now apply

the permutation

(r - 1, r - 2, . . . , 2, 1)(/? - r + 2, /? - r + 3, . . . , p) e Wa

to L. Then this modified L belongs to S2(Hγ). We can check this (using the fact that r is even)

by listing the eigenvalues of Hy and by inspecting the eigenspaces of ad(//y). By Proposition

1 we conclude that L e θ\ for k even and L e ιOγ for k odd. By Proposition 2, (X, Y)

splits. D
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LEMMA 18. IfX = ((ab)2ka, (ab)2ma, ar\ Y = ((ba)2k-χb, {ba)lm-χb, ar+A\ r >

0, and k > m > 0, then the b-pair (X,Y) splits. Consequently, the b-pairs of the fifth family

of Tabled split.

PROOF. We have p = 2k + 2m + r + 2 and q = 2k + 2m. The eigenvalues of (Hχ)a

are the integers Ai, —k<i< k. Those for — m < i < m have multiplicity 2 except that 0

has multiplicity r + 2. The other eigenvalues are simple. The eigenvalues of (Hχ)b are the

integers Ai — 2, — k < i < k. Those for — m < i < m have multiplicity 2, while the other

ones are simple. Let L e S2(Hχ) Π Oγ and let υ; = L{e\), 0 < i < q. Let us introduce the

subspaces V; = (VQ, v\,... , υ;) for 0 < i < q. Since r\(Y) = r2,b(Y) = q — 2, the subspace

Vq-ι = L(Vb) is nondegenerate and has dimension q — 2. By inspecting the eigenspaces of

ad(//χ), we see that

Vi = ξi,oeo + §i,i^i H h §/,/^ , 0 < i < k - m ,

-2/-l C {eo, ̂ l, . . . , ̂ +m-2/-l> , 0 < i < m ,

l C (βo, βi, . . . , ek+m+r+2i+\) , 0 < ί < m ,

V^_/_i c (eo.^i, . . . ,ep-i-2), 0 <i < k -m .

As υo G (̂ o> and eo is obviously orthogonal to L(Vb), it follows that υo = 0. As r4k-2,b(Y) =

1, we have (L^k~2)b φ 0. From this fact one can deduce that ξij φ 0 for 0 < / < k — m.

Hence the vectors υ, , 0 < / < fc — m, are linearly independent. The subspace Vĵ -m+i is

orthogonal to Vk+3m-i It is clear that Vit-m+i has dimension k — m or k — m + 1. Hence its

subspace that is orthogonal to the vectors υ/ for A: + 3m < / < q is contained in the radical

of L(Vb), and so it is 0. It follows that Vjfc_m+i has dimension k — m. Consequently, V, has

dimension z for / < k — m and dimension / — 1 for / > k — m.

By Witt's theorem, there exists an x e Ka such that JC(V ) = (eo, e\,... , βi-\) for

0 < i < fc - m, and x(Vjt+m_2/-i) = (^o. ^l. , ̂ +m-2/-3> for 0 < f < m. Since V/

is orthogonal to V^-i-/ for 0 < / < fc — m, and Vk+m-2i-\ is orthogonal to V)t+m+2/+i

for 0 < / < m, it follows that x(Vq-\-i) C (eo, e\,... , ep-i-\) for 0 < / < k — m, and

x(V^+ m + 2/+i) C (βo. ̂ l, . ^+w+r+2ι+3> for 0 < / < m.

Now the eigenvalues of (Hγ)a are the integers Ai for —£ < / < k. Those for —m <

1 < m have multiplicity 2 except that 0 has multiplicity r + 6, and the other ones are simple.

The eigenvalues of (Hγ)b are the same as those of (Hχ)b (with the same multiplicities). By

inspecting the eigenspaces of ad(//y), we conclude that Ad(x)(L) e S2(Hγ). By Proposition

1, L e Oι

γ. Hence (X, F) splits by Proposition 2.

The second assertion follows from the first by taking r = 0 because then

X > ((ab)2ka, (ba)2m-ιb,a2) > ((ba)2k~[b, (ab)2ma,a2) > Y.

D

LEMMA 19. The b-pairs of the sixth family of Table 8 split.

PROOF. We have p = q — 2k + 2m + 2 and let r = k - m and s = k + m + 1.

The eigenvalues of (//χ) α are the integers Ai for —k<i< k. Those for —m < i < m
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have multiplicity 2, while the other eigenvalues are simple. The eigenvalues of (Hχ)b are

the integers 4/ + 2 for —k — 1 < i < k. Those for — m < i < m have multiplicity 2 and

the other ones are simple. We choose the representative Eχ G Ol

x such that (Eχ)ab is the

{0, l}-matrix having Vs at the positions (ι — 1, i) for 1 < i < p — r, and the positions (/, i)

for p — r < i < p.

Let L G B Ex Π Oγ and let

Vi = L{e[) = ξi^eo + ξi,\e\ H h ξitP-\ep-ι

for 0 < / < q. As B consists of upper triangular matrices, we have VQ — 0, ξij = 0 if

j > i and 0 < / < q — r — 1, and also if j > i and q — r — 1 < i < q. For simplicity,

we shall write αz = §/,/_i for 0 < / < q — r and βi = ξ/,/ for ^ — r — 1 < / < g. As

rankLα^ = r\{Y) = q — l,we conclude that the vectors υ/ for 0 < / < ^ form a basis of

L(V^). It follows that α; ^ 0 for 0 < / < q — r — 1. By applying suitable elements from Ba

and Bb, we may further assume that the coefficients ^+2/+i,5+2/-i are 0 for — m <i<m.A

simple computation shows that L4k(eι) = 0 for i < p — 1 and L4k(ep-\) = λeo where

Y\ ctiβq-Λ ]"[ on.
\<i<r r<i<q—r

As rank (LAk)a = rw,a(Y) = 1, λ is not 0. Hence aq-r-\ φ 0 and βi φ 0 for q - r - 1 <

i < q - 1. Now the condition rank(L4k)b = r^k^bij) = 0 implies that (L4k)b = 0. By

computing the (1, q — 1) entry of (L4k)b we find that it is equal to the above expression for λ

except that the factor a\ should be replaced by a\βq-\. As this entry must be 0, we infer that

βq_ι =0. Finally we apply the permutation

(r + 1, r, . . . , 2, \){q - r, q - r + 1, . . . ,q) G Wb

to modify L further. By listing the eigenvalues of Hy and by inspecting the eigenspaces of

ad(//y), we see that L e S2(Hγ). Proposition 1 shows that L e θ\, and so (X, Y) splits by

Proposition 2. •

LEMMA 20. The b-pairs of the seventh and eighth family of Table 8 split.

PROOF. Let us switch the letters a and b in X and Y of the eighth family. We then

combine the resulting α-pairs with the &-pairs of the seventh family. We obtain a single

family of pure pairs (X, Y) with

X = {(ab)ka, (ab)m, (ba)m), Y = ((ba)k~ιb, ((ab)maf),

where k > m > 0 and k = m (mod 2). Set k — m — 2r. Thus p = k + 2m + 1 and

# = k + 2m. The eigenvalues of (Hχ)a are the odd integers 2i — 1 for — m < i < m and

the even integers 2k — Ai for 0 < i < k. Those of (Hχ)b are the same odd integers and

the even integers 2k — 4/ — 2 for 0 < i < k. All these eigenvalues of Hx are simple. We

choose the representative Ex of Ό\ if k is even and of ιOχ if k is odd such that {Eχ)ab is the

{0, l}-matrix having Γs at the positions (ι, i) for 1 < / < r and q — r < i < q, and also at
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the positions (/, i + 1) for r < i < q — r. Let L e B Eχ Πθγ and let

Vi = L(e ) = ξitoeo + ξi,\e\ H h ξitP-\ep-\

for 0 < i < q. As B consists of upper triangular matrices, we have ξij = 0 if j > i and

0 < / < r or q — r < i < q, and also if j > i and r < i < q — r. For simplicity, we shall

write oti = ξij for 0 < / < r or q — r < i < q, and /3; = ξij-\ for r < i < q — r.

As r\(Y) = q — 1, it follows that $• φ 0 for r < / < q — r. One can easily check that

L 2 / : - 2 (^) = 0 for i < q - 1 and that L2k-2(ef

q_ι) = λfef

0, where

λf = {-\)k-χa2

q_x

^ 0<i<m

As r2k-2,b(Y) = 1, λ; is not 0. We conclude that α, is not 0 for ι ^ 0. Similarly, we have

L2k~2{ep-2) = λ^o, where the scalar λ is given by the same expression as λ' except that the

factor ct2_ι should be replaced by the product aoθίq-\. As r2k-2,a(Y) = 0, λ must be 0. It

follows that α?o = 0.

If r = 1 then L e S2(Hγ). (This can be checked by listing the eigenvalues of Hy and

inspecting the eigenspaces of ad(//y).) Assume now that r > 1. As α, ^ 0 for 0 < / < r, we

may assume that £;,o = 0 for the same Γs. We now apply the permutation

(r, r - 1,. . . , 2, l)(p - r + 1, p - r + 2, . . . , p) e Wa

to L. Again we can check that we obtain an element of S2(Hγ). By Proposition 1 we conclude

that L e θ\ for k even and L e ιOγ for k odd. By Proposition 2, (X, Y) splits. D

LEMMA 21. The b-pairs of the last two families of Table 8 split.

PROOF. Let us switch the letters a and b in X and Y of the tenth family. We then

combine the resulting a -pairs with the Z?-pairs of the ninth family. We obtain a single family

of pure pairs (X, Y) with

X = ((ab)k, (ba)k, (ba)m~ιb), Y = (((ba)k~ιb)2, (ab)ma),

where k > m > 1 and k = m (mod 2). Thus p = 2k + m — 1 and g = 2k + m. We set

r — k — m. The eigenvalues of (Hχ)a are the odd integers 2i — 1 for — k < i < k and the

even integers 2m — 4/ for 0 < i < m. Those of (Hχ)b are the same odd integers and the

even integers 2m — 4i — 2 for 0 < i < m. All these eigenvalues of Hx are simple. We

choose the representative Ex of θ\ if k is even and of ιOχ if k is odd such that (Eχ)ab is the

{0, l}-matrix having Γs at the positions (/, / + 1) for 1 < i < r and the positions (/, / + 2)

for r <i < p- 1. Let L e B Ex Π Oγ and let

Vi = L(e ) = £/,Oέ?o + §/, 1*1 + + ξi,p-\ep-ι

for 0 < / < q. As B consists of upper triangular matrices, we have ι>o = 0, and ξij = 0 for

0 < i < r and 7 > / and also for r < i < q and j > i — 1. For simplicity, we shall write

of/ = ξij-\ for 0 < i < r and βi = ξij-2 for r < i < q.
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As r\ (Y) = q - 2, it follows that βi φ O's for r + 1 <i < q. One can easily check that
L2k-2{e\) = 0 for Ϊ < q - 2 and that L2k~2{ef

q_2) = λ'ef

0 and L2k-2(e'q_χ) = λ'e[ + μ!e'Q
for some scalars λ' and μ!. A computation gives the following formula for λf:

λ' = (-l)*- 1 Π aiβq-i+ι Π j
0<i<m

As r2£-2,fc(T) = 2, λr is not 0. We conclude that α, is not 0 for z ^ 1. Similarly, we have
L2k~2(ei) = 0 for i < p — 2 and L2k~2{ep-2) — λeo, where the scalar λ is given by the same
expression as λ' except that the factor βq-\ should be replaced by ot\. As r2k-2,a(Y) = 0, λ
must be 0. We conclude that a\ = 0.

If r = 2 then L e S2(Hγ). (This can be checked by listing the eigenvalues of Hy and
inspecting the eigenspaces of ad(/fy).) Assume now that r > 2. As α; φ 0 for 1 < / < r, we
may assume that §;,o = 0 for the same Γs. We now apply the permutation

(r - 1, r - 2, ... , 2, l)(jfc + 2m + 1, k + 2m + 2,... , p) e Wa

to L. Again we can check that we obtain an element of S2(Hγ). By Proposition 1 we conclude
that L e θ\ for k even and L e ιOγ for k odd. By Proposition 2, (X, Y) splits. D

7. Appendix. Define three commuting real involutory symmetric matrices of order
n:

fsp o\ (ip o \ . . . (sp o

where 5jt is the matrix of order k defined in Section 3 and Ik is the identity matrix of order k.
By viewing G as a matrix group, we have

G = {x eGLn(C) '

Q = {Xegίn(C)

If we partition X as in Section 3:

_ ί Xa Xab\
\Xba Xb J 'X

then

Q = {X e gίn(Q : *XaSp + SpXa = 0, ' X ^ 4- SqXb = 0, 'Xe*Sp + S^Xte = 0}.

The involution θ of G (see Section 1) is given by θ(x) = J7.XJ2, and its differential d^
is the involutorial automorphism of % given by dθ(X) = J2XJ2. The eigenspaces t and p of
άθ are

ί = {X e g : Xfl* = 0, Xfc, = 0},
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We also use the standard definitions:
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50n(C) = {Xe Qln(Q : 'X + X = 0},

O(p, q) = {xe GLn(R) : ιxhx = J2],

so(/7, q) = {Xe Qin(R) : ιXJ2 + J2X = 0}.

The map σ : G -+ G, defined by σ(x) — JxJ, is an antiholomorphic involutory

automoφhism of G. Its differential dσ : g -+ g, given by dσ(X) = JXJ, is a conjugation of

g. We introduce the real forms of G and g:

Go = {x G G : σ( c) = JC} , β0 = {X € g : dσ(X) = X}.

Since θ and σ commute, Go (resp. g0) *s stable under # (resp. άθ). We denote by #o (resp.

d^o) the restriction of θ (resp. d#) to Go (resp. go)

One can easily verify that Go = O(p, q), and, consequently, $0 = so(p, q). An explicit

isomorphism can be constructed as follows. Choose a matrix P of order n which commutes

with J2 (and, consequently, also with / and J\) and such that P2 = J = P~~ι P. It is easy to

construct such a matrix. For instance, if p = 4 and q = 3, then we can take P to be the block

diagonal matrix

\

P =

where ξ = (1 — ί)/2. It is now straightforward to check that P~ιGP = On(C) and

P~ιG0P = O(p, q), and, consequently, P~ιgP = son(C) and P~lQO

p = B°(P> 4)> Hence,

as our desired isomoφhism we can take the map Go -> O(p, ^) sending JC h-̂  P~ιxP.

It is easy to verify that

00 = {X € Q I X* = -Xa, Xt = -Xb, Xba = X*ab) ,

where the asterisk denotes the transpose conjugate of a matrix. As θ and σ commute, Go

(resp. go) i s ^-stable (resp. d#-stable). We have the Cartan decomposition g0

 == ô + Pn>

where to = t Π g 0 and p 0 = p Π g0

 a r e m e eigenspaces of the restriction d#|g0 for the

eigenvalues +1 and —1, respectively. Hence

(ξ
0
0

1

\

0

ξ
ξ
0

0
ξ

ξ
0

ξ
0
0
ξ

1
0

-ξ

0
i
0

— (

0

= {X € ϊ : X* = -Xa, Xt = -X^} - {X e g0 : ^ ^ - 0},

= {X e p : X t e = ^ } = {X e fl0 : Xβ = 0, X* = 0}.

The subgroup Ko = {x € Go : ^( i ) = JC} has ϊo as its Lie algebra. K$ is a maximal compact

subgroup of Go and is isomorphic to O(p) x
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Let us also introduce the conjugation r : V -> V, i.e., an involutory real linear map

satisfying τ(iυ) = —iτ(υ) for all υ e V, by stipulating that τ(eι) = ep-[-\ for 0 < / < p

and τ{e\) = -e'q_._x for 0 < i < q. Thus if

v = §0*0 4- ξ\eχ + + ξp-ιep-ι 4 170̂ 0 + ^e\ + ' " ' + fy-i^-i

then

τ(υ) = ξp-\e0 4 ξp-ie\ 4- • + l o ^ - i - ^ - l ^ o - ^-2^1 W)^_i

If we identify υ e V with the column vector of its coordinates with respect to the basis

{eo,... , ep-\, e'o,... , ef

 χ}, then we have τ(v) = Jv. We have V = Vo Θ / Vb, where

Vb = {v e V : τ(υ) = υ} is the real form of V defined by τ. For the ι> given above, v e VQ

holds if and only if §/ = ξp-\-i for 0 < i < p and r\[ = —ηq-i-\ for 0 < / < q. The

conjugation τ induces the conjugation L ι - > τ o L o τ ~ 1 o n GL(V). Our group G is stable

under the latter conjugation, and its restriction to G coincides with σ.

By restricting the symmetric bilinear form / : V x V —• C, we obtain a nondegenerate

real valued symmetric bilinear form /o : Vb χ Vb —> R of signature (p,q). Indeed, if we set

Vo

+ = VbnVβ and Vo~ = Vb Π VJ,, then Vo = Vo

+ Θ Vo~, Vo

+ is orthogonal to Vo~, and the

restriction of /o to VQ~ X VQ^ (resp. VQ~ X VQ~) is positive (resp. negative) definite. If p = 2k

is even, then the vectors

— (ej + ep-j-ι), -j=(ej - ^ - y - i ) , 0 < j < k ,

form an orthonormal basis of Vo

+. If p = 2k -f 1 is odd, then we have to add also the vector

βfc. One can similarly construct an orthonormal basis of Vo~.

We have one more interpretation of the real forms Go and g0:

Go = {JC e GL(Vo) : /O(JC(V), X(W)) = /0(v, w), for any v, w e Vo},

9o = {X€ fll(Vb) : /o(X(v), u;) + / 0 (υ, X(u )) = 0, for any v,w e Vo},

provided that we identify a linear operator on the real vector space Vb with its complex exten-

sion to V.

Recall that standard triples and normal triples were defined in Section 3. We say that

a normal triple (£ ' , Hf, Ff) is a complex Cayley triple if άσ(Ef) = — Ff. A standard triple

(E, H, F) in the real form g0 is called a real Cayley triple if d#o(£) = F (and consequently

άθ$(F) = E and d#o(#) = —H). The Cayley transformation maps the real Cayley triples

(£, //, F) to the complex Cayley triples (£", //', F') according to the formulas

E' = ~{H + i F - iE), //' = ι ( £ + F), F ' = - ( - # + Ϊ F - i £ ) .

The inverse Cayley transformation is given by

E = - ( - # ' + E' + F r ) , H = E'-F', F = - - ( # ' 4- £ ' 4- F r ) .

Assume that the complex Cayley triple (£ ' , //', F') is the Cayley transform of the real

Cayley triple (£, H, F). The Kostant-Sekiguchi correspondence associates to the nonzero
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nilpotent GQ-orbit GQ E in Q0 the nilpotent ^f°-orbit K° E' in p. This establishes a bijection

from the set of nonzero nilpotent GQ-orbits in g0 to the set of the nonzero nilpotent Ar°-orbits

in p.

EXAMPLE 8. Let us find a representative of the nilpotent G^-orbit in g0

 m a t corre-

sponds to the nilpotent Ar°-orbit ιOχ in p, where X = (babab, aba). Thus p = q = 4 in this

example. The characteristic Hx of the orbit ιOχ is given by

Hx = diag(2, 2, - 2 , - 2 , 4, 0, 0, - 4 ) .

We need a nonzero element E1 e p2(Hχ) such that the element F' defined by F' = άσ {E') =

JEfJ satisfies the equation [F\ Ef] = Hx. A simple computation produces such a matrix:

0 1 1 0\

0 Λ/3 -Λ/3 0

0 - 2 0 0

0 0 Λ/3 - 1

0 0 - V 3 - 1
\0 0 0 0

Consequently, F ; is given by:

0
0

0
0

0
0

Ff =

0
2
0
0

0
0

-V3
1

0
0

o\
0
0
0

0
-1
-1

Vo 0

0
0
0

- 2

0
0
0
0

Hence we have a complex Cayley triple (£", H\ F') with Hf = Flχ. By applying the inverse

Cayley transformation, we find the representative

1-2

0

0

0

0

- 1

- 1

Vo

0
-2
0
0

-2
-V3

v/3

0

0
0
2
0
0

- 2

0
0
0
2
0

- 1
- 1
0

0
2
0
0

- 4
0
0
0

1

V3
-V3

1
0
0
0
0

1
-V3

v/3

1
0
0
0
0

°\
0
2
0
0
0
0
4/

£ 0 0

of the nilpotent G^-orbit in g0 that corresponds to ιOχ by the Kostant-Sekiguchi bijection. D
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