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A CHARACTERIZATION OF SYMMETRIC SIEGEL DOMAINS
BY CONVEXITY OF CAYLEY TRANSFORM IMAGES
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Abstract. We show that a homogeneous Siegel domain is symmetric if and only if
its Cayley transform image is convex. Moreover, this convexity forces the parameter of the
Cayley transform to be specific, so that the Cayley transform coincides with the inverse of the
Cayley transform introduced by Korányi and Wolf.

1. Introduction. A homogeneous Siegel domain is a higher-dimensional analogue of
the right (or upper) half plane in the complex plane C, and is mapped to a bounded domain
by the Cayley transforms introduced in [17]. Among homogeneous Siegel domains, we have
an important subclass consisting of symmetric domains. In our previous paper [9], we gave
a symmetry characterization for tube domains (homogeneous Siegel domains of type I) by
convexity of the Cayley transform images and, in [7], for quasisymmetric Siegel domains.
This article is the final step of these works and establishes the same type of symmetry charac-
terization theorem for general homogeneous Siegel domains.

We mention here some of the works about characterizations of symmetric Siegel do-
mains: a characterization by a certain norm equality related to the Cayley transform im-
age [15], a characterization by the commutativity of the Berezin transform and the Laplace-
Beltrami operator [16] and a characterization by the harmonicity of the Poisson-Hua kernel
[18]. In the latter two, the geometric backgrounds of the symmetry characterizations are clar-
ified through norm equalities involving the Cayley transforms. In [3], we can find several
characterizations of symmetric Siegel domains concerning the isotropy representation and the
action of the automorphism group of the domain. Differential geometric characterizations by
means of the Bergman metric are given in [4] and [2], and an algebraic characterization in
terms of the defining data of Siegel domains is given in [23, Theorem V.3.5] and [5, II, Sätze
3.3 and 3.4].

Let us present the convexity of a Cayley transform image of a symmetric Siegel domain.
In the case of one complex variable, the Cayley transform

w �→ w − 1

w + 1
, w ∈ C ,
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maps the right half plane to the open unit disc, which is obviously a convex set. We have a
similar situation for symmetric Siegel domains. Since a symmetric Siegel domain is a Her-
mitian symmetric space of non-compact type, it has a canonical bounded realization, namely,
the Harish-Chandra realization. In [11], Korányi and Wolf defined in a Lie-theoretic way
(the inverse of) the Cayley transform which maps a symmetric Siegel domain to its Harish-
Chandra realization. It is known that the Harish-Chandra realization coincides with the open
unit ball for the spectral norm defined for the Jordan triple system canonically associated
with the domain (we refer the reader to [12, Section 10], [11] and [7] for details). Thus, the
Cayley transform image of a symmetric Siegel domain is a convex set. We shall show that
this convexity characterizes symmetric Siegel domains among homogeneous domains. Before
proceeding, we would like to mention that it is shown in [13] that the Harish-Chandra real-
ization of a symmetric Siegel domain is characterized essentially among bounded realizations
by its convexity. In other words, the Cayley transform is essentially the only bounded convex
realization of a symmetric Siegel domain.

In this article we deal with the family of Cayley transforms defined by Nomura [17]. This
family is parametrized by the admissible linear forms on the normal j -algebra associated
with the Siegel domain. If the domain is quasisymmetric and the parameter is specific, the
corresponding Cayley transform is the same as Dorfmeister’s given in [6] which we used
in [7] and, in particular, if the domain is symmetric, our Cayley transform with the specific
parameter coincides with Korányi-Wolf’s. Moreover, our family includes Penney’s Cayley
transform defined in [19], which is associated with Vinberg’s ∗-map of the underlying cone of
the domain, and that of Nomura associated with the Bergman kernel (resp. the Szegö kernel)
of the domain appearing in [14, 15, 16] (resp. [18]).

Let us fix the notation in order to present our results. Let Ω be a homogeneous convex
cone in a real vector space V . We put W := VC, the complexification of V . Let U be another
complex vector space and Q : U × U → W an Ω-positive, Hermitian sesquilinear map. The
Siegel domain D for these data is defined by

D := {(u,w) ∈ U × W | Re w − (1/2)Q(u, u) ∈ Ω} .

In the case U = {0}, the domain D is called a tube domain. We note that the tube domain
Ω + iV is contained in D in such a way that D ∩ ({0} × W) = {0} × (Ω + iV ). We denote
by Cs the Cayley transform for Ω + iV , where s is the parameter of the family of Cayley
transforms (see Section 3 for the definition). Using Cs, we introduce the Cayley transform Cs

for D. If D is a tube domain, then Cs reduces to Cs.
Our first main theorem is a refinement of [9, Theorem 1]. Let Ωs be the dual cone of Ω .

For the tube domain Ωs + iV , the Cayley transform C∗
s is defined in a way similar to Cs. In

[9, Theorem 1], we characterized symmetric tube domains by requiring the convexity of both
Cs(Ω + iV ) and C∗

s (Ωs + iV ). In this paper we show that the condition concerning C∗
s can

be removed.
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THEOREM A. Cs(Ω + iV ) is a convex set if and only if Ω + iV is symmetric and the
parameter s is specific so that Cs coincides with the Cayley transform defined in terms of the
Jordan algebra structure associated with Ω .

Here we note that Ω + iV is symmetric if and only if Ω is a symmetric cone. Our second
main theorem generalizes Theorem A to the case of homogeneous Siegel domains.

THEOREM B. Cs(D) is a convex set if and only if D is symmetric and the parameter s
is specific so that Cs coincides with Korányi-Wolf’s Cayley transform.

Our way of proving Theorem B is as follows. First, the convexity of Cs(D) implies the
convexity of Cs(Ω + iV ). By Theorem A, Ω + iV is symmetric and the parameter s is
specific. With this we show that D is quasisymmetric and Cs is identical with Dorfmeister’s
Cayley transform which we used in [7]. Then we can conclude that D is symmetric, because
it is shown in [7, Theorem 2.6] that if the image of Dorfmeister’s Cayley transform for a
quasisymmetric Siegel domain is convex, then the domain is symmetric. In each stage of
the proof, we take two points z1, z2 from the Shilov boundary of D in an appropriate way.
It follows from the convexity of Cs(D) that the midpoint of Cs(z1) and Cs(z2) is contained in
Cs(D̄). Then we carry out some calculations to analyze this inclusion.

The organization of this paper is as follows. In Section 2, we summarize the structure
theory of normal j -algebras. In Section 3.1, we introduce the pseudoinverse maps and then
in Section 3.2 the Cayley transforms of homogeneous Siegel domains. There we present the
precise statement of Theorem B as Theorem 3.1. In Section 4, assuming that the domain is
quasisymmetric, we compare our Cayley transform with Dorfmeister’s. We collect in Section
5 some facts which hold without any restrictions on the homogeneous Siegel domain for later
use. The proof of Theorem A (the precise statement is Theorem 6.1) is given in Section 6.
Theorem B is proved in Section 7.

Thanks are due to Professor Takaaki Nomura for the encouragement and advice in writ-
ing this paper. The author is also grateful to Professor Hideyuki Ishi for stimulating discus-
sions about the content of this paper.

2. Homogeneous Siegel domains. The structure of a homogeneous Siegel domain is
described in terms of a normal j -algebra. Our references are [20, 21, 22]. A triple (g, J, ω)

of a split solvable real Lie algebra g, a linear operator J on g with J 2 = −I and a linear form
ω on g is called a normal j -algebra if the following two conditions hold:

J ([X,Y ] − [JX, JY ]) = [JX, Y ] + [X, JY ] for all X,Y ∈ g ,(2.1)

〈x|y〉ω := 〈[Jx, y], ω〉 defines a J -invariant inner product on g .(2.2)

Let (g, J, ω) be a normal j -algebra. We put n := [g, g] and a := n⊥, the orthogonal
complement of n with respect to the inner product 〈·|·〉ω. Then a is a commutative subalgebra
of g such that ad a is a set of simultaneously diagonalizable operators on g. Let g = a ⊕∑

α∈∆ nα be the corresponding eigenspace decomposition of g, where ∆ is a finite subset of
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a∗ \ {0}, and, for α ∈ a∗, we have put

nα := {X ∈ g | [H,X] = 〈H,α〉X for all H ∈ a} .

The subspaces nα, α ∈ ∆, are orthogonal to each other relative to the inner product 〈·|·〉ω .
The number r := dim a is called the rank of g. We can choose a basis H1, . . . , Hr of a so
that with Em := −JHm, m = 1, . . . , r , we have [Hj,Ek] = δjkEk, 1 ≤ j ≤ k ≤ r . Let
α1, . . . , αr be the dual basis of a∗ with respect to H1, . . . , Hr . Then the elements of ∆ are of
the following forms (not all possibilities need to occur):

(1/2)(αk − αj ), 1 ≤ j < k ≤ r ; (1/2)αm, 1 ≤ m ≤ r ;
αm, 1 ≤ m ≤ r ; (1/2)(αk + αj ), 1 ≤ j < k ≤ r ,

and we have nαm = REm, m = 1, . . . , r . We set

n(0) :=
∑
j<k

n(αk−αj )/2 , g(0) := a ⊕ n(0) ,

g(1/2) :=
r∑

m=1

nαm/2 , g(1) :=
r∑

m=1

nαm ⊕
∑
j<k

n(αk+αj )/2 ,

and put H := H1 + · · · + Hr,E := E1 + · · · + Er . We see that the subspaces g(0), g(1/2)

and g(1) are the 0-, 1/2- and 1-eigenspaces of ad H , respectively. Moreover, we have

[g(α), g(β)] ⊂ g(α + β) ,(2.3)

where, if α + β > 1, then we put g(α + β) = {0}. Also, we have

Jn(αk−αj )/2 = n(αk+αj )/2 , 1 ≤ j < k ≤ r ,

Jnαm/2 = nαm/2 , 1 ≤ m ≤ r ,

so that Jg(0) = g(1), Jg(1/2) = g(1/2). We note that

JT = −[T ,E] , T ∈ g(0) ,(2.4)

JTkj = −[Tkj , Ej ] , Tkj ∈ n(αk−αj )/2 .(2.5)

The subspace n(0) is a nilpotent Lie subalgebra. Let

N(0) := exp n(0) , G(0) := exp g(0) , A := exp a .

Then G(0) = A � N(0) and G(0) acts on V := g(1) by adjoint action. We put Ω := G(0)E,
the G(0)-orbit through E. Then we know that Ω is a regular open convex cone in V on which
G(0) acts simply transitively. Since g(1/2) is invariant under J , we can introduce a complex
structure on g(1/2) by −J . We denote by U this complex vector space. The Lie subalgebra
g(0) acts on U complex linearly by adjoint action. We put W := VC, the complexification
of V and denote by w �→ w∗ the complex conjugation of W relative to the real form V . We
define a sesquilinear map Q : U × U → W by

Q(u, u′) := [Ju, u′] − i[u, u′] , u, u′ ∈ U .(2.6)
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Then we see that this map is Hermitian and Ω-positive:

Q(u, u′) = Q(u′, u)∗ , u, u′ ∈ U,

Q(u, u) ∈ Ω̄ \ {0} for all u ∈ U \ {0} .(2.7)

The Siegel domain corresponding to these data is defined by

D := {(u,w) ∈ U × W | Re w − (1/2)Q(u, u) ∈ Ω} .(2.8)

We know that the Lie group G := exp g acts on D simply transitively by affine automor-
phisms. Every homogeneous Siegel domain is obtained from a normal j -algebra in this way.
Throughout this paper, we always assume that D is irreducible. Hence, the cone Ω is also
irreducible by [10, Theorem 6.3].

Finally, we remark here that the Shilov boundary Σ of D is described as

Σ = {(u,w) ∈ U × W | Re w − (1/2)Q(u, u) = 0} .

3. Cayley transforms. 3.1. Pseudoinverse maps. A linear form ω on g satisfying
(2.2) is said to be admissible. We know the set of admissible forms. To describe it we define
E∗

m ∈ g∗, m = 1, . . . , r , by 〈Ej ,E
∗
m〉 = δjm, j = 1, . . . , r , and E∗

m ≡ 0 on g(0)⊕ g(1/2)⊕
Jn(0). For s = (s1, . . . , sr ) ∈ Rr , we set E∗

s := ∑
smE∗

m and 〈v1|v2〉s := 〈v1|v2〉E∗
s

for
v1, v2 ∈ V . We say that s = (s1, . . . , sr ) ∈ Rr is positive and write s > 0 if s1 > 0, . . . , sr >

0. Then [17, Proposition 3.4] says that the set of admissible linear forms on g coincides with

a∗ + {E∗
s | s > 0} .

Furthermore, we know by [17, Lemma 3.2] that the description of the structure of g in Section
2 is independent of the choice of the admissible linear form ω.

For s = (s1, . . . , sr ) ∈ Rr , we define a one-dimensional representation χs of A by

χs

(
exp

(∑
tmHm

))
:= exp

( ∑
smtm

)
, tm ∈ R .

Since G(0) = A � N(0), we can extend χs to a one-dimensional representation of G(0)

by putting χs|N(0) ≡ 1. In the following, we write hv for h ∈ G(0) and v ∈ V instead
of (Ad h)v for simplicity. Recalling that G(0) acts simply transitively on Ω by the adjoint
action, we transfer χs to a function ∆s on Ω :

∆s(hE) := χs(h) , h ∈ G(0) .

We remark that by [17, (3.15)], we have, for s > 0,

〈v1|v2〉s = Dv1Dv2 log ∆−s(E) , v1, v2 ∈ V .

Let s > 0. For x ∈ Ω , we define the pseudoinverse Is(x) of x by

〈Is(x)|y〉s = −Dy log ∆−s(x) , y ∈ V .(3.1)
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We call Is : Ω → V the pseudoinverse map. We see that Is(E) = E and Is gives a
diffeomorphism of Ω onto Ωs, where Ωs is the dual cone of Ω realized in V by means of the
inner product 〈·|·〉s:

Ωs := {x ∈ V | 〈x|y〉s > 0 for all y ∈ Ω̄ \ {0}} .

Let G(0)C be the complexification of G(0). We extend 〈·|·〉s to W by complex bilinearity and
denote it by the same symbol. We know that Is is analytically continued to a rational map
W → W which is G(0)C-equivariant: Is(hx) = sh−1Is(x) (h ∈ G(0)C), where, for a linear
operator T on W , sT stands for the transpose of T relative to 〈·|·〉s.

Starting with the dual cone Ωs, we obtain a similar map I∗
s : Ωs → Ω . We see that I∗

s is
analytically continued to a rational map W → W which is G(0)C-equivariant: I∗

s (sh−1x) =
hI∗

s (x) (h ∈ G(0)C). Thus, Is is a birational map with I−1
s = I∗

s . Moreover, we see by [17,
Theorem 3.19] that Is (resp. I∗

s ) is holomorphic on Ω + iV (resp. Ωs + iV ) and Is(Ω + iV )

(resp. I∗
s (Ωs + iV )) is contained in the holomorphic domain of I∗

s (resp. Is).
3.2. Parametrized family of Cayley transforms. We keep to the notation in Section

3.1 and continue to suppose that s > 0. We define a sesquilinear form (·|·)s on U by

(u1|u2)s := 〈Q(u1, u2)|E〉s = 〈Q(u1, u2), E
∗
s 〉 , u1, u2 ∈ U .(3.2)

Then (·|·)s is a positive definite Hermitian inner product on U . The subspaces nαm/2 (m =
1, . . . , r) are orthogonal to each other with respect to (·|·)s. For u ∈ U , we set ‖u‖s :=
(u|u)

1/2
s . Let um ∈ nαm/2. Then we see by (2.6) that Q(um, um) ∈ nαm . Moreover, we know

by (3.2) that

Q(um, um) = s−1
m ‖um‖2

s Em .(3.3)

For every w ∈ W , we define a complex linear operator ϕs(w) on U by

(ϕs(w)u1|u2)s = 〈w|Q(u1, u2)〉s , u1, u2 ∈ U .(3.4)

The assignment w �→ ϕs(w) is also complex linear and ϕs(E) = id.
We put

S := {w ∈ W | w + E ∈ Ω + iV } , S := {(u,w) ∈ U × W | w ∈ S} .

The Cayley transform Cs : S → W for the tube domain Ω + iV is defined by

Cs(w) := E − 2Is(w + E) , w ∈ S .

Observe that the closure Ω̄ + iV is contained in S. Using Cs, we introduce the Cayley trans-
form Cs : S → U × W for D by

Cs(u,w) := (2ϕs(Is(w + E))u,Cs(w)) , (u,w) ∈ S .(3.5)

By [17, Theorem 4.17], the Cayley transform image Cs(D) of D is bounded.
Note that since the definition of the Hermitian map Q in [17] is different from ours (2.6)

by the multiplication constant 1/2, the Siegel domain dealt with in [17] is expressed as T (D),
where T (u,w) := (

√
2u,w) ((u,w) ∈ U × W). This modification is made so that we have
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Re(u1|u2)s = 〈u1|u2〉E∗
s

for u1, u2 ∈ U . However, the pseudoinverse map Is, the linear map
ϕs : W → EndC U and the Cayley transform Cs are the same as those of [17].

We see that the inverse maps of Cs, Cs are given by

C−1
s (w) = 2I∗

s (E − w) − E , w ∈ S∗ ,

C−1
s (u,w) = (ϕs(E − w)−1u,C−1

s (w)) , (u,w) ∈ S∗ ,

where we have put

S∗ := {w ∈ W | E − w ∈ Ωs + iV } , S∗ := {(u,w) ∈ U × W | w ∈ S∗} .

We would like to remark that our Cayley transform Cs for the tube domain Ω + iV

is identical with the Cayley transform given in [9]. In [9], we started with a homogeneous
convex cone Ω and a split solvable Lie group H acting simply transitively on Ω . If we take
G(0) as H and E as the base point, V = g(1) becomes a clan with the unit element E by the
following product:

x�y = [Jx, y] , x, y ∈ V .

Moreover, the normal decomposition of the clan V is given by V = ∑
k≥j n(αk+αj )/2 (see

also [4, Section 2]). Hence, the inner product 〈·|·〉s and the pseudoinverse map Is defined in
[9] coincide with ours.

Now we are in a position to state our main theorem in its precise form.

THEOREM 3.1. Let D be an irreducible homogeneous Siegel domain. Suppose that
the parameter s = (s1, . . . , sr ) ∈ Rr is positive. Then Cs(D) is a convex set if and only if D is
symmetric and s1 = · · · = sr .

4. Quasisymmetric Siegel domains. Let D be the homogeneous Siegel domain de-
fined by (2.8). Since D is holomorphically equivalent to a bounded domain, the Bergman
space of D has the reproducing kernel called the Bergman kernel, which we denote by κ . By
homogeneity we have an explicit expression for κ . Let

bm := (1/2) dimR nαm/2 , m = 1, . . . , r ,

nkj := dim n(αk+αj )/2 , 1 ≤ j < k ≤ r ,

dm := 1 + (1/2)
∑
i<m

nmi + (1/2)
∑
i>m

nim , m = 1, . . . , r ,

b := (b1, . . . , br ) , d := (d1, . . . , dr ) .

Then, by [15, Section 1.3], we have for zj = (uj ,wj ) ∈ D, j = 1, 2,

κ(z1, z2) = ∆−2d−b(w1 + w∗
2 − Q(u1, u2))

up to a positive constant multiple.
If the cone Ω is self-dual with respect to the inner product 〈·|·〉2d+b, that is, Ω = Ω2d+b,

then D is said to be quasisymmetric. We quote here the following criterion due to D’Atri and
Dotti Miatello.
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PROPOSITION 4.1 [4, Proposition 3]. The Siegel domain D is quasisymmetric if and
only if

(1) nkj are independent of k, j ;
(2) bm are independent of m.

We assume that a parameter s = (s1, . . . , sr ) is positive. We introduce a non-associative
product on V by

〈xy|z〉s = −(1/2)DxDyDz log ∆−s(E) (x, y, z ∈ V ) .(4.1)

LEMMA 4.2. Even if s is replaced by s′ := ps (p > 0), the product defined by (4.1),
the pseudoinverse map Is, the linear map ϕs and the Cayley transform Cs all remain the same.

PROOF. By definition, we have 〈·|·〉s′ = p〈·|·〉s and ∆−s′ = ∆
p
−s, so that the product

defined by (4.1) will not change under the replacement of s by s′, and Is′ = Is by (3.1).
Moreover, since (·|·)s′ = p(·|·)s, we know by (3.4) that ϕs′ = ϕs. Therefore, we have Cs′ =
Cs. �

Let us suppose that D is quasisymmetric and s1 = · · · = sr > 0. In view of Lemma 4.2,
we simply write I, ϕ and C instead of Is, ϕs and Cs respectively in this section. Noting that
2d1 + b1 = · · · = 2dr + br by Proposition 4.1, we know by Lemma 4.2 and [6, Theorem 2.1]
that the vector space V equipped with the product defined by (4.1) is a Jordan algebra with
the unit element E. This means that in addition to the commutativity xy = yx, we have the
Jordan identity x(x2y) = x2(xy) for all x, y ∈ V . The complexification W of V is a complex
Jordan algebra in a natural way. The following proposition is due to Dorfmeister (see also
[14, Section 4]).

PROPOSITION 4.3 [6, Theorem 2.1]. The linear map ϕ : w �→ ϕ(w) is a ∗-represen-
tation of the Jordan algebra W :

ϕ(w∗) = ϕ(w)∗ , w ∈ W ,

ϕ(w1w2) = (1/2)(ϕ(w1)ϕ(w2) + ϕ(w2)ϕ(w1)) , w1, w2 ∈ W ,

where, for a linear operator T on U , we denote by T ∗ the adjoint operator of T relative to
(·|·)s.

Moreover, since 2dj + bj are all equal for j = 1, . . . , r , we know by Lemma 4.2 and
[14, Proposition 4.4] that I(w) = w−1 for invertible w ∈ W , where the right-hand side is the
Jordan algebra inverse of w. Hence,

C(u,w) = (2ϕ((w + E)−1)u, (w − E)(w + E)−1) , (u,w) ∈ S .

Here we note that ϕ((w + E)−1) = ϕ(w + E)−1 by Proposition 4.3 and ϕ(E) = id. Thus,
our Cayley transform C coincides with the Cayley transform treated in [7].

5. Basic facts. We collect here some of the facts that are true without any restrictions
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on the homogeneous Siegel domain D. In this section we always suppose that the positive in-
tegers j, k, l satisfy 1 ≤ j < k < l ≤ r and wkj ∈ (n(αk+αj )/2)C, wlj ∈ (n(αl+αj )/2)C, wlk ∈
(n(αl+αk)/2)C.

We set

Slk := (1/2)([Jwlj ,wkj ] + [Jwkj ,wlj ]) ∈ (n(αl+αk)/2)C .

We put ν[w] := 〈w|w〉s (w ∈ W), where we note that ν[iw] = −ν[w]. Since the clan
structure in V is introduced in a manner compatible with the normal j -algebra structure as
we remarked at the end of Section 3, we can quote the following two propositions from [8],
where we note that they are valid not only for real tj , tk, tl but also for complex tj , tk, tl .

PROPOSITION 5.1 [8, Proposition 4.2]. Let tj , tk, tl ∈ C. Then one has

exp(Jwlj + Jwkj ) exp(Jwlk) exp(tjHj + tkHk + tlHl)E

=
∑

m�=j,k,l

Em + etj Ej + (etk + (2sk)
−1etj ν[wkj ])Ek

+ (etl + (2sl)
−1etkν[wlk] + (2sl)

−1etj ν[wlj ])El

+ etj wlj + etj wkj + (etj Slk + etkwlk) .

PROPOSITION 5.2 [8, Proposition 4.6]. One has

s(exp(Jwlj + Jwkj ) exp(Jwlk) exp(tjHj + tkHk + tlHl))
−1E

=
∑

m�=j,k,l

Em + (e−tj + (2sj )
−1(e−tk + (2sk)

−1e−tl ν[wlk])ν[wkj ]

+ (2sj )
−1e−tl ν[wlj ] − s−1

j e−tl 〈Slk |wlk〉s)Ej

+ (e−tk + (2sk)
−1e−tl ν[wlk])Ek + e−tlEl

+ (e−tl s(ad Jwlj )wlk − (e−tk + (2sk)
−1e−tl ν[wlk])wkj )

+ e−tl (s(ad Jwkj )wlk − wlj ) − e−tlwlk .

We also use the following two lemmas to compute the Cayley transforms.

LEMMA 5.3. We have the following.
(1) For all x ∈ V , one has ϕs(x) = adU Jx + (adU Jx)∗.
(2) The linear operators ϕs(Em) (m = 1, . . . , r) are orthogonal projections onto

nαm/2.

PROOF. (1) Definition (2.6) of Q and the Jacobi identity together with the fact that
ad Jx commutes with J give

(ad Jx)Q(u, u′) = Q(u, (ad Jx)u′) + Q((ad Jx)u, u′) .

Hence, it follows that

〈Q(u, u′)|s(ad Jx)E〉s = ((ad Jx)∗u|u′)s + ((ad Jx)u|u′)s .(5.1)
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Here we note that s(ad Jx)E = x. In fact, we obtain by (2.4) that, for any v ∈ V ,

〈v|s(ad Jx)E〉s = 〈[J [Jx, v], E], E∗
s 〉 = 〈v|x〉s .

Therefore, the left-hand side of (5.1) is equal to (ϕ(x)u|u′)s, and the proof is completed.
(2) The linear operator 2 adU Hm is an orthogonal projection onto nαm/2, and thus it is

self-adjoint. Hence, (1) yields ϕs(Em) = 2 adU Hm, and (2) follows. �

LEMMA 5.4 [14, Lemma 3.4]. We have ϕs(
s(AdV h)x) = (AdU h)sϕs(x)(AdU h) for

all h ∈ G(0) and x ∈ V .

We have some inequalities concerning the dimensions of the root spaces of g.

LEMMA 5.5 [15, Corollary 4.4]. We have the following.
(1) If nlk �= 0, then one has nlj ≥ nkj .
(2) If nkj �= 0, then one has nlj ≥ nlk .

PROPOSITION 5.6. For vkj ∈ n(αk+αj )/2 and uj ∈ nαj /2, one has

‖(ad Jvkj )uj‖2
s = (2sj )

−1‖vkj‖2
s ‖uj‖2

s .

PROOF. We have [Juj , uj ] = Q(uj , uj ) = s−1
j ‖uj‖2

s Ej by (2.6) and (3.3). Taking the
commutator with Jvkj , we see by the Jacobi identity and (2.5) that

[[Jvkj , uj ], Juj ] + [[Juj , J vkj ], uj ] = −s−1
j ‖uj‖2

s vkj .

Taking the commutator with Jvkj once again, we obtain

[[[Jvkj , uj ], Juj ], J vkj ] + [[[Juj, J vkj ], uj ], J vkj ] = s−1
j ‖uj‖2

s [Jvkj , vkj ] .(5.2)

Since Jvkj ∈ n(αk−αj )/2 and [Jvkj , uj ], [Juj , J vkj ] ∈ nαk/2, one has

[[Jvkj , uj ], J vkj ] = [[Juj , J vkj ], J vkj ] = 0 .

It follows from the Jacobi identity that both terms of the left-hand side of (5.2) are equal
to [[Jvkj , Juj ], [Jvkj , uj ]]. Since the operator adU Jvkj is complex linear, we have
[Jvkj , Juj ] = J [Jvkj , uj ]. Hence, we see by (5.2) that

[J [Jvkj , uj ], [Jvkj , uj ]] = (2sj )
−1‖uj‖2

s [Jvkj , vkj ] .

Applying E∗
s to both sides, we obtain the proposition by (2.6) and (3.2). �

If nkj �= 0, then Lemma 5.6 says that for a non-zero vkj ∈ n(αk+αj )/2, the linear map
nαj /2 � uj �→ (ad Jvkj )uj ∈ nαk/2 is injective. Hence, we obtain the following.

LEMMA 5.7. If nkj �= 0, one has bj ≤ bk .

LEMMA 5.8 [8, Lemma 7.5]. Let am ∈ R (m = 1, . . . , r) and vkj ∈ n(αk+αj )/2.
Then we have

∑
amEm + vkj ∈ Ω if and only if am > 0 (m = 1, . . . , r) and ajak −

(2sk)
−1‖vkj‖2

s > 0.

Furthermore, we have the following lemma.
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LEMMA 5.9. Let am ∈ R (m = 1, . . . , r), vlj ∈ n(αl+αj )/2 and vlk ∈ n(αl+αk)/2. Then
we have

∑
amEm + vlj + vlk ∈ Ω if and only if

(i) am > 0 (m = 1, . . . , r);
(ii) ajakal − ak(2sl)

−1‖vlj‖2
s − aj (2sl)

−1‖vlk‖2
s > 0.

REMARK 5.10. The conditions (i) and (ii) imply that

ajal − (2sl)
−1‖vlj‖2

s > 0 , akal − (2sl)
−1‖vkj ‖2

s > 0 .

PROOF OF LEMMA 5.9. For simplicity, we set v1 := ∑
amEm + vlj + vlk . Let us

assume that v1 ∈ Ω . Then it is clear that am > 0 (m = 1, . . . , r). It follows easily from (2.6)
and (3.3) that [Jwlj , vlj ]=−(aj sl)

−1‖vlj‖2
s El . Hence, by [8, Lemma 4.1], we have

v2 := (exp Jwlj )v1 =
∑
m�=l

amEm + (al − a−1
j (2sl)

−1‖vlj‖2
s )El + vlk .

Since exp Jwlj ∈ G(0), we have v2 ∈ Ω = G(0)E. Therefore, we obtain (ii) by Lemma 5.8.
Conversely, we assume that (i) and (ii) hold. Then we have v2 ∈ Ω , so that v1 =

(exp Jwlj )
−1v2 ∈ Ω . �

6. Refinement of the previous theorem. Before proving Theorem 3.1, we would
like to present a refinement of [9, Theorem 1].

THEOREM 6.1. Let s = (s1, . . . , sr ) ∈ Rr be positive. Then Cs(Ω + iV ) is a convex
set if and only if Ω is a symmetric cone and s1 = · · · = sr .

In view of [9, Theorem 1], it is enough to prove the ‘only if’ part of Theorem 6.1. More
precisely, our only task is to prove Propositions 7 and 13 of [9] under the single assumption
that Cs(Ω + iV ) is convex. Now we suppose that Cs(Ω + iV ) is a convex set. As in the
previous section, we assume that the positive integers j, k, l satisfy 1 ≤ j < k < l ≤ r .

6.1. First step. First we show that s1 = · · · = sr .

PROPOSITION 6.2. If nkj �= 0, then one has sk = sj .

PROOF. Since the inequality sj ≥ sk is shown by [9, Lemma 5] under the same assump-
tion as here, it suffices to show that sk ≥ sj . Let us take any non-zero δ ∈ R and non-zero
vkj ∈ n(αk+αj )/2. Let us compute the Cayley transform images Cs(z1) and Cs(z2) of the
following two points of Ω̄ + iV :

z1 := i(δEk + vkj ) , z2 := −i(δEk + vkj ) .

We set

p := log((2sk)
−1‖vkj ‖2

s + 1 + iδ) .

If we put in Proposition 5.1

tj = tl = 0 , tk = p , wlj = wlk = 0 , wkj = ivkj ,
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then the formula in Proposition 5.1 becomes exp J (ivkj ) exp(pHk)E = z1 + E. Put
η := exp J (ivkj ) exp(pHk). Since Is(z1 + E) = Is(ηE) = sη−1E, we have by Proposi-
tion 5.2

Cs(z1) = −
∑

m�=j,k

Em + (2e−p(2sj )
−1‖vkj ‖2

s − 1)Ej + (1 − 2e−p)Ek + 2ie−pvkj .

Replacement of δ by −δ and vkj by −vkj gives

Cs(z2) = −
∑

m�=j,k

Em + (2e−p̄(2sj )
−1‖vkj‖2

s − 1)Ej + (1 − 2e−p̄)Ek − 2ie−p̄vkj .

Consider ξ := (1/2)(Cs(z1) + Cs(z2)), the midpoint of Cs(z1) and Cs(z2). We have

ξ = −
∑

m�=j,k

Em + (2(Re e−p)(2sj )
−1‖vkj ‖2

s − 1)Ej + (1 − 2 Re e−p)Ek − 2(Im e−p)vkj .

Since Cs(Ω̄ + iV ) is also a convex set, we have ξ ∈ Cs(Ω̄ + iV ), so that C−1
s (ξ) ∈ Ω̄ + iV .

We shall compute C−1
s (ξ). We put in Proposition 5.2

tj = −log(1 − ((2sk)
−1‖vkj‖2

s + 1)−1(2sj )
−1‖vkj ‖2

s ) ,

tk = −log(Re e−p) , tl = 0 ,

wkj = δ((2sk)
−1‖vkj‖2

s + 1)−1vkj , wlk = wlj = 0 ,

(6.1)

and set η̃ := exp(Jwkj ) exp(tjHj + tkHk). Here we note that the established inequality
sj ≥ sk guarantees tj ∈ R and that Re e−p > 0 implies tk ∈ R. Then the formula in
Proposition 5.2 becomes sη̃−1E = 2−1(E − ξ). Since 2I∗

s (E − ξ) = I∗
s (sη̃−1E) = η̃E, we

have by Proposition 5.1

C−1
s (ξ) = (etj − 1)Ej + (etk + etj (2sk)

−1‖wkj‖2
s − 1)Ek + etj wkj .

Since C−1
s (ξ) ∈ Ω̄ + iV , we know by Lemma 5.8 that

(etj − 1)(etk + etj (2sk)
−1‖wkj‖2

s − 1) − (2sk)
−1‖etj wkj‖2

s ≥ 0 .(6.2)

Multiply both sides by e−tj ((2sk)
−1‖vkj ‖2

s + 1)2. Then (6.1) and some simplification yield

((2sk)
−1‖vkj ‖2

s + 1)(2sj )
−1‖vkj‖2

s (e
tk − 1) − δ2(2sk)

−1‖vkj ‖2
s ≥ 0 .

Further simplification using etk = (Re ep)−1((Re ep)2 + (Im ep)2) and ‖vkj ‖s �= 0 gives

((2sk)
−1‖vkj ‖2

s + 1)2 − ((2sk)
−1‖vkj ‖2

s + 1) ≥ δ2s−1
k (sj − sk) .

Since the left-hand side is independent of δ, and since sj ≥ sk , the arbitrariness of δ forces
sj = sk . �

We now obtain the following proposition by Asano’s theorem [1, Theorem 4] from
Proposition 6.2, as we did in [9, Proposition 9].

PROPOSITION 6.3. The numbers sm, m = 1, . . . , r , are independent of m.

6.2. Second step. In view of Proposition 6.3, we put for simplicity s = sm, m =
1, . . . , r , independent of m.
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PROPOSITION 6.4. If nlk �= 0, then one has nlj = nkj .

PROOF. Let us assume that nlk �= 0. By Lemma 5.5 (1) it is enough to show that
nlj ≤ nkj . Let us take any non-zero vlk ∈ n(αl+αk)/2. For every vlj ∈ n(αl+αj )/2, we have
s(ad Jvlk)vlj ∈ n(αk+αj )/2 by [8, Lemmas 4.4 and 7.7]. We shall prove that the linear map
n(αl+αj )/2 � vlj �→ s(ad Jvlk)vlj ∈ n(αk+αj )/2 is injective, which implies nlj ≤ nkj .

Let us suppose that vlj ∈ n(αl+αj )/2 and s(ad Jvlk)vlj = 0. Let δ ∈ R and consider the
following two points of Ω̄ + iV :

z1 := i(δEl + vlk + vlj ) , z2 := −i(δEl + vlk + vlj ) .

We set in Proposition 5.1

tj = tk = 0 , tl = log(1 + (2s)−1‖vlk‖2
s + (2s)−1‖vlj‖2

s + iδ) ,

wkj = 0 , wlj = ivlj , wlk = ivlk

and put η := exp Jwlj exp Jwlk exp(tlHl). Then the formula in Proposition 5.1 becomes
ηE = z1 + E. Since Is(z1 + E) = Is(ηE) = sη−1E, we know by Proposition 5.2 (note that
s(ad Jvlj )vlk = s(ad Jvlk)vlj = 0 by [8, Lemma 7.7]) that

Cs(z1) = −
∑

m�=j,k,l

Em + (2q−1(2s)−1‖vlj‖2
s − 1)Ej

+ (2q−1(2s)−1‖vlk‖2
s − 1)Ek + (1 − 2q−1)El + 2iq−1vlj + 2iq−1vlk ,

where we have put

q := 1 + (2s)−1‖vlk‖2
s + (2s)−1‖vlj‖2

s + iδ .

A similar argument gives

Cs(z2) = −
∑

m�=j,k,l

Em + (2q̄−1(2s)−1‖vlj‖2
s − 1)Ej + (2q̄−1(2s)−1‖vlk‖2

s − 1)Ek

+ (1 − 2q̄−1)El − 2iq̄−1vlj − 2iq̄−1vlk .

We set ξ := (1/2)(Cs(z1) + Cs(z2)), the midpoint of Cs(z1) and Cs(z2). Then

ξ = −
∑

m�=j,k,l

Em + (2 Re(q−1)(2s)−1‖vlj‖2
s − 1)Ej

+ (2 Re(q−1)(2s)−1‖vlk‖2
s − 1)Ek + (1 − 2 Re(q−1))El

− 2 Im(q−1)vlj − 2 Im(q−1)vlk .

By the convexity of Cs(Ω̄ + iV ), we have ξ ∈ Cs(Ω̄ + iV ), so that C−1
s (ξ) ∈ Ω̄ + iV .

Let us compute C−1
s (ξ). In Proposition 5.2, put

wkj = 0 , wlk = (Re q)−1(Im q)vlk , wlj = (Re q)−1(Im q)vlj ,

tj = −log(1 − (Re q)−1(2s)−1‖vlj‖2
s ) ,

tk = −log(1 − (Re q)−1(2s)−1‖vlk‖2
s ) , tl = −log(Re(q−1)) ,

(6.3)
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where we note that tj , tk, tl ∈ R. We set

η̃ := exp Jwlj exp Jwlk exp(tjHj + tkHk + tlHl) .

Then the formula in Proposition 5.2 becomes sη̃−1E = 2−1(E − ξ) by virtue of
s(ad Jvlk)vlj = 0 and [8, Lemma 7.7] again. Since 2I∗

s (E − ξ) = I∗
s (sη̃−1E) = η̃E,

we obtain by Proposition 5.1

C−1
s (ξ) = (etj − 1)Ej + (etk − 1)Ek + (etl + etk (2s)−1‖wlk‖2

s + etj (2s)−1‖wlj‖2
s − 1)El

+ etj wlj + etkwlk .

Since C−1
s (ξ) ∈ Ω̄ + iV , we know by Lemma 5.9 (ii) that

(etk − 1){(etj − 1)(etl + etk (2s)−1‖wlk‖2
s + etj (2s)−1‖wlj‖2

s − 1) − e2tj (2s)−1‖wlj‖2
s }

−(etj − 1)e2tk (2s)−1‖wlk‖2
s ≥ 0 .

After some simplification, we obtain

(etk − 1){(etj − 1)(etl − 1) − etj (2s)−1‖wlj‖2
s } ≥ (etj − 1)etk (2s)−1‖wlk‖2

s .

Multiplying both sides by e−tj e−tk , we see by using (6.3) that the above inequality becomes,
after dividing by (Re q)−3(2s)−1‖vlk‖2

s ,

(Re q)(etl − 1)(2s)−1‖vlj‖2
s ≥ 2(Im q)2(2s)−1‖vlj‖2

s .(6.4)

By using etl = (Re q)−1((Re q)2 + (Im q)2), we arrive at

(2s)−1‖vlj‖2
s (X

2 − X) ≥ δ2(2s)−1‖vlj‖2
s ,

where X := 1 + (2s)−1‖vlk‖2
s + (2s)−1‖vlj‖2

s . Since δ ∈ R is arbitrary and the left-hand side
is independent of δ, we must have vlj = 0, which we had to show. �

Now that Propositions 7 and 13 in [9] are proven without using the convexity of C∗
s (Ωs+

iV ), the proof of Theorem 6.1 is completed.

7. Proof of the main theorem. Let D be the homogeneous Siegel domain defined
by (2.8). If D is symmetric and the parameter s satisfies s1 = · · · = sr > 0, then we know
by Section 4 that Cs is identical with the Cayley transform treated in [7], so that the Cayley
transform image Cs(D) is a convex set by [7, Theorem 2.6]. We now prove the ‘only if’ part
of Theorem 3.1.

LEMMA 7.1. One has

Cs(D) ∩ ({0} × W) = {0} × Cs(Ω + iV ) .

PROOF. Since D ∩ ({0}×W) = {0}× (Ω + iV ), we have clearly by (3.5) that Cs(D)∩
({0} × W) ⊃ {0} × Cs(Ω + iV ). For (u,w) ∈ D, we have w ∈ Ω + iV by (2.8) and (2.7).
Hence, we have Cs(D) ∩ ({0} × W) ⊂ {0} × Cs(Ω + iV ). �

LEMMA 7.2. Let 1 ≤ j < k ≤ r . For uk ∈ nαk/2 and vkj ∈ n(αk+αj )/2, one has
(ad Jvkj )

∗uk ∈ nαj /2.
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PROOF. If u′ ∈ (nαj/2)
⊥ = ∑

m�=j nαm/2, then we have (ad Jvkj )u
′ = 0. Hence,

((ad Jvkj )
∗uk|u′)s = (uk|(ad Jvkj )u

′)s = 0 .

This implies (ad Jvkj )
∗uk ∈ nαj/2. �

From now on, we assume that Cs(D) is a convex set. By Lemma 7.1, Cs(Ω + iV ) is also
convex, so that Ω is a symmetric cone and s1 = · · · = sr by Theorem 6.1. Then we know by
[24, Proposition 3] that nkj , 1 ≤ j < k ≤ r , are independent of j, k and they are all non-zero.
We set s := sm, m = 1, . . . , r , independent of m, as in the previous section.

PROPOSITION 7.3. Let 1 ≤ j < k ≤ r . For any non-zero vkj ∈ n(αk+αj )/2, the linear
map (ad Jvkj )

∗∣∣
�αk/2

: nαk/2 → nαj /2 is injective. Hence, we obtain bk ≤ bj .

PROOF. Let us assume that uk ∈ nαk/2 and (ad Jvkj )
∗uk = 0. Let δ > 0 be arbitrary.

We consider the following two points on the Shilov boundary of D:

z1 = (uz1 , wz1) := (uk, (1/2)Q(uk, uk) + i(δEk + vkj )) ,

z2 = (uz2, wz2) := (−uk, (1/2)Q(uk, uk) − i(δEk + vkj )) .

We know by (3.3) that

wz1 = ((2s)−1‖uk‖2
s + iδ)Ek + ivkj , wz2 = ((2s)−1‖uk‖2

s − iδ)Ek − ivkj .

Let us compute the Cayley transforms ξ1 := Cs(z1) and ξ2 := Cs(z2) of z1, z2. In what
follows, we will write ξj = (uξj , wξj ), j = 1, 2. We put

p := log(1 + (2s)−1‖uk‖2
s + (2s)−1‖vkj‖2

s + iδ) .

We set in Proposition 5.1

tj = tl = 0 , tk = p , wlj = wlk = 0 , wkj = ivkj

and put η := exp Jwkj exp(tkHk). Then the formula in Proposition 5.1 becomes ηE = wz1 +
E. Since Is(wz1 + E) = Is(ηE) = sη−1E, we have by Proposition 5.2

Is(wz1 + E) =
∑

m�=j,k

Em + (1 − (2s)−1e−p‖vkj ‖2
s )Ej + e−pEk − ie−pvkj .

Hence, we obtain by Lemma 5.3 and the assumption (ad Jvkj )
∗uk = 0 that

uξ1 = 2e−puk ,

wξ1 = −
∑

m�=j,k

Em + (s−1e−p‖vkj ‖2
s − 1)Ej + (1 − 2e−p)Ek + 2ie−pvkj .

Similarly, we have

uξ2 = −2e−p̄uk ,

wξ2 = −
∑

m�=j,k

Em + (s−1e−p̄‖vkj ‖2
s − 1)Ej + (1 − 2e−p̄)Ek − 2ie−p̄vkj .
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We set ξ = (uξ ,wξ ) := (1/2)(ξ1 + ξ2), the midpoint of ξ1 and ξ2. Then

uξ = 2i(Im e−p)uk ,

wξ = −
∑

m�=j,k

Em + (s−1(Re e−p)‖vkj‖2
s − 1)Ej + (1 − 2(Re e−p))Ek − 2(Im e−p)vkj .

Since Cs(D̄) is a convex set, one has ξ ∈ Cs(D̄).
To compute the inverse Cayley transform C−1

s (ξ) of ξ , we put, in Proposition 5.2,

tj = −log(1 − (2s Re ep)−1‖vkj‖2
s ) , tk = −log(Re e−p) , tl = 0 ,

wlj = wlk = 0 , wkj = (Re ep)−1(Im ep)vkj

(7.1)

and set η̃ := exp Jwkj exp(tjHj + tkHk), where we note that tj , tk ∈ R. Then the formula in
Proposition 5.2 becomes sη̃−1E = (1/2)(E −wξ). Since 2I∗

s (E −wξ) = I∗
s (sη̃−1E) = η̃E,

we have by Proposition 5.1

C−1
s (wξ ) = (etj − 1)Ej + (etk + (2s)−1etj ‖wkj ‖2

s − 1)Ek + etj wkj .

On the other hand, we know by Lemma 5.4 that

ϕs(E − wξ) = 2(AdU η̃−1)∗(AdU η̃−1) .

Since ad Jvkj commutes with J , we also have (ad Jvkj )
∗Juk = 0. Since uξ = 2i(Im e−p)uk ,

ϕs(E − wξ)
−1uξ = (1/2) AdU η̃(AdU exp(tjHj + tkHk))

∗uξ

= (1/2)etk (AdU exp Jwkj )uξ

= i(Im e−p)etkuk ,

where the last equality follows from (ad Jwkj )uk = 0. Therefore, we obtain

C−1
s (ξ) = (i(Im e−p)etkuk, (e

tj − 1)Ej + (etk + (2s)−1etj ‖wkj‖2
s − 1)Ek + etj wkj ) .

We put ζ = (uζ ,wζ ) := C−1
s (ξ). Since Cs(D̄) is convex, we obtain ζ ∈ D̄, so that we know

by (2.8) that wζ − (1/2)Q(uζ , uζ ) ∈ Ω̄ . Hence, it follows from (3.3) that

(etj − 1)Ej + (etk + (2s)−1etj ‖wkj‖2
s − 1 − (2s)−1(Im e−p)2e2tk‖uk‖2

s )Ek + etj wkj ∈ Ω̄ .

Then, by Proposition 5.8,

(etj −1)(etk +(2s)−1etj ‖wkj‖2
s −1−(2s)−1(Im e−p)2e2tk‖uk‖2

s ) − (2s)−1e2tj ‖wkj ‖2
s ≥0 .

A simplification gives

(etj − 1)(etk − 1 − (2s)−1(Im e−p)2e2tk‖uk‖2
s ) − (2s)−1etj ‖wkj‖2

s ≥ 0 .

Multiplying both sides by e−tj , we obtain by (7.1) that

1 − (Re ep)−1 − δ2(Re ep)−3‖uk‖2
s ≥ 0 ,

where we have divided the inequality by (2s)−1‖vkj‖2
s > 0. This must be true for any δ ∈ R,

so that we have uk = 0. Therefore, the linear map (ad Jvkj )
∗|�αk/2 : nαk/2 → nαj /2 is

injective. �
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We know by Lemma 5.7 and Proposition 7.3 that dim nαm/2, m = 1, . . . , r , are inde-
pendent of m. Now Proposition 4.1 tells us that D is quasisymmetric. Since s1 = · · · = sr ,
we see by Section 4 that Cs coincides with the Cayley transform defined in [7]. Therefore, it
follows from [7, Theorem 2.6] that D is symmetric.

REFERENCES

[ 1 ] H. ASANO, On the irreducibility of homogeneous convex cones, J. Fac. Sci. Univ. Tokyo Sect. I 15 (1968),
201–208.

[ 2 ] K. AZUKAWA, Curvature operator of the Bergman metric on a homogeneous bounded domain, Tohoku Math.
J. (2) 37 (1985), 197–223.

[ 3 ] J. E. D’ATRI, J. DORFMEISTER AND ZHAO YAN DA, The isotropy representation for homogeneous Siegel
domains, Pacific J. Math. 120 (1985), 295–326.

[ 4 ] J. E. D’ATRI AND I. DOTTI MIATELLO, A characterization of bounded symmetric domains by curvature,
Trans. Amer. Math. Soc. 276 (1983), 531–540.

[ 5 ] J. DORFMEISTER, Homogene Siegel-Gebiete, Habilitationsschrift, Münster, 1978.
[ 6 ] J. DORFMEISTER, Quasisymmetric Siegel domains and the automorphisms of homogeneous Siegel domains,

Amer. J. Math. 102 (1980), 537–563.
[ 7 ] C. KAI, Symmetry characterization of quasisymmetric Siegel domains by convexity of Cayley transform im-

ages, J. Lie Theory 16 (2006), 47–56.
[ 8 ] C. KAI AND T. NOMURA, A characterization of symmetric cones through pseudoinverse maps, J. Math. Soc.

Japan 57 (2005), 195–215.
[ 9 ] C. KAI AND T. NOMURA, A characterization of symmetric tube domains by convexity of Cayley transform

images, Differential Geom. Appl. 23 (2005), 38–54.
[10] S. KANEYUKI, On the automorphism groups of homogeneous bounded domains, J. Fac. Sci. Univ. Tokyo

Sect. I 14 (1967), 89–130.
[11] A. KORÁNYI AND J. A. WOLF, Realization of hermitian symmetric spaces as generalized half-planes, Ann.

of Math. (2) 81 (1965), 265–288.
[12] O. LOOS, Bounded symmetric domains and Jordan pairs, Lecture Notes, Univ. California at Irvine, Cal., 1977.
[13] N. MOK AND I.-H. TSAI, Rigidity of convex realizations of irreducible bounded symmetric domains of rank

≥ 2, J. Reine Angew. Math. 431 (1992), 91–122.
[14] T. NOMURA, On Penney’s Cayley transform of a homogeneous Siegel domain, J. Lie Theory 11 (2001),

185–206.
[15] T. NOMURA, A characterization of symmetric Siegel domains through a Cayley transform, Transform. Groups

6 (2001), 227–260.
[16] T. NOMURA, Berezin transforms and Laplace-Beltrami operators on homogeneous Siegel domains, Differen-

tial Geom. Appl. 15 (2001), 91–106.
[17] T. NOMURA, Family of Cayley transforms of a homogeneous Siegel domain parametrized by admissible linear

forms, Differential Geom. Appl. 18 (2003), 55–78.
[18] T. NOMURA, Geometric norm equality related to the harmonicity of the Poisson kernel for homogeneous

Siegel domains, J. Funct. Anal. 198 (2003), 229–267.
[19] R. PENNEY, The Harish-Chandra realization for non-symmetric domains in Cn, Topics in Geometry, 295–313,

Progr. Nonlinear Differential Equations Appl. 20, Birkhäuser, Boston, Mass., 1996.
[20] I. I. PYATETSKII-SHAPIRO, Automorphic functions and the geometry of classical domains, Gordon and

Breach, New York, 1969.
[21] H. ROSSI, Lectures on representations of groups of holomorphic transformations of Siegel domains, Lecture

Notes, Brandeis University, 1972.



118 C. KAI

[22] H. ROSSI AND M. VERGNE, Representations of certain solvable Lie groups on Hilbert spaces of holomorphic
functions and the application to the holomorphic discrete series of a semisimple Lie group, J. Funct. Anal.
13 (1973), 324–389.

[23] I. SATAKE, Algebraic structures of symmetric domains, Iwanami Shoten, Tokyo; Princeton Univ. Press,
Princeton, N.J., 1980.

[24] E. B. VINBERG, Structure of the group of automorphisms of a homogeneous convex cone, Trudy Moskov
Mat. Obshch. 13 (1965), 56–83; Trans. Moscow Math. Soc. 13 (1967), 63–93.

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

KYOTO UNIVERSITY

SAKYO-KU 606–8502, KYOTO

JAPAN

E-mail address: kai@math.kyoto-u.ac.jp


