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LAGRANGIAN SURFACES IN COMPLEX EUCLIDEAN PLANE
VIA SPHERICAL AND HYPERBOLIC CURVES
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Abstract. We present a method to construct a large family of Lagrangian surfaces in
complex Euclidean planeC2 by using Legendre curves in the 3-sphere and in the anti de Sitter
3-space or, equivalently, by using spherical and hyperbolic curves, respectively. Among this
family, we characterize minimal, constant mean curvature, Hamiltonian-minimal and Will-
more surfaces in terms of simple properties of the curvature of the generating curves. As
applications, we provide explicitly conformal parametrizations of known and new examples of
minimal, constant mean curvature, Hamiltonian-minimal and Willmore surfaces inC2.

1. Introduction. An immersionφ : Mn → M̃n of ann-manifoldMn into a Kaehler
n-manifold M̃n is called aLagrangian immersion if the complex structureJ of M̃n inter-
changes each tangent space ofMn with its corresponding normal space. Lagrangian subman-
ifolds appear naturally in several contexts of mathematical physics. A very important prob-
lem in this setting is to find nontrivial examples of Lagrangian submanifolds with some given
geometric properties. In this line, we find many papers (see the survey article [5]) where the
different authors investigate intrinsic and extrinsic geometric properties related mainly with
the intrinsic curvatures and the mean curvature vector of the submanifolds, respectively.

An important problem in the theory of Lagrangian surfaces is to find non-trivial exam-
ples with some given special geometric properties. For instance, a method was given in [8] to
construct an important family of special Lagrangian submanifolds inCn with large symmetric
groups. Also, a spinor-like representation formula for Lagrangian surfaces inC2 which pa-
rameterizes immersions through two complex functionsF1, F2 and a real one (the Lagrangian
angle) was introduced in [1]. This formula is useful to construct examples of Lagrangian sur-
faces inC2.

In this article, we present a simple specific new method to construct Lagrangian surfaces
in complex Euclidean planeC2 with nice properties that only involves two Legendre curves;
one in the 3-sphereS3 and the other in the anti De Sitter 3-spaceH 3

1 .
Recall that a regular curveγ : I1 → S3 (resp. α : I2 → H 3

1 ) is called aLegendre
curve if 〈γ ′(s), iγ (s)〉 = 0 (resp.〈α′(t), iα(t)〉 = 0) holds identically. For each such pair of
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Legendre curves(γ, α), we consider the map:

φ : I1 × I2 → C2 = C × C; (t, s) �→ (α1(t)γ1(s), α2(t)γ2(s)) .(1.1)

In Section 2, we show that the mapφ defined by (1.1) is a Lagrangian immersion. We
also study geometric properties of such Lagrangian surfaces. In particular, we investigate the
close relationship of such a Lagrangian surface with the curve in the 2-sphereS2 and the curve
in the hyperbolic 2-planeH 2 given by the projections ofγ andα via their corresponding Hopf
fibrations.

In Section 3 we prove an useful “additive formula” (see Theorem 1) involving the La-
grangian angle map ofφ and the Legendre angles ofγ andα for the Lagrangian immersions.
As a consequence, we establish a simple relationship (see Corollary 1) between the mean
curvature vector ofφ and the curvature functions ofγ andα.

The last section provides several nice applications of the results obtained in Section 3.
First we characterize the minimal Lagrangian surfaces obtained by our construction in terms
of geodesics inS3 andH 3

1 . In such a way we are able to provide explicit expressions of the
minimal Lagrangian conformal immersions inC2 in terms of some elementary functions. We
also determine Lagrangian surfaces constructed by our method with constant mean curvature
and, in particular, with parallel mean curvature vector. This enables us to obtain interesting
new examples of Lagrangian tori inC2 with constant mean curvature. Next we characterize
Hamiltonian-minimal Lagrangian surfaces among the family of Lagrangian surfaces using
our construction with Legendre curves such that their curvature functions (in terms of the
arclength parameter) are linear. As a by-product,we are able to establish the explicit expres-
sions of some new Hamiltonian-minimal Lagrangian conformal immersions inC2 in terms of
elementary functions as well. Finally, we apply our construction method to provide new ex-
amples of Willmore Lagrangian surfaces inC2. Our result states that the Lagrangian surfaces
constructed by the pair(γ, α) of Legendre curves are Willmore surfaces if and only ifγ and
α are elastic curves inS3 andH 3

1 , respectively.

2. A new construction method of Lagrangian surfaces. In the complex Euclidean
planeC2 we consider the bilinear Hermitian product defined by

(z,w) = z1w̄1 + z2w̄2, z,w ∈ C2 .

Then〈 , 〉 = �( , ) is the Euclidean metric onC2 andω = −�( , ) is the Kaehler two-form
given byω( · , · ) = 〈J ·, ·〉, whereJ is the complex structure onC2.

Let φ : M → C2 be an isometric Lagrangian immersion of a surfaceM into C2, i.e.,
an immersion satisfyingω|M ≡ 0. We denote the Riemannian connections ofM andC2

by ∇ and∇̄, respectively. We also denote by〈 , 〉 the induced metric onM. Then we have
φ∗TC2 = φ∗TM ⊕ T ⊥M, whereTM andT ⊥M are the tangent and normal bundles ofM,
respectively. The second fundamental formσ is given byσ(x, y) = JAJxy, whereA is the
shape operator. Thus, the (0,3)-tensorC(x, y, z) = 〈σ(x, y), J z〉 is totally symmetric.

The space of oriented Lagrangian planes inC2 can be identified with the symmetric
spaceU(2)/SO(2), so the determinant map, det: U(2)/SO(2) → S1, is well-defined. IfM
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is an orientable Lagrangian surface inC2 andν : M → U(2)/SO(2) is its Gauss map, then
det◦ν : M → S1 can be expressed as det◦ν = eiβφ for some functionβφ : M → R/2πZ.
This functionβφ is called theLagrangian angle map of φ. The Lagrangian angle mapβφ
satisfies

J∇βφ = 2H ,(2.1)

whereH is the mean curvature ofφ, defined byH = (1/2)traceσ .
The Lagrangian immersionφ is called minimal ifH = 0 identically, or equivalently,

the Lagrangian angle mapβφ is constant. The minimality on the surfaces means that the
surface is a critical point of the area functional over any compactly supported variation. On
the other hand, Hamiltonian-minimal Lagrangian surfaces are Lagrangian surfaces which are
critical points of the area functional with respectto a special class of infinitesimal variations
preserving the Lagrangian constraint; namely, the class of compactly supported Hamiltonian
vector fields (see [13]). Such Lagrangian surfacesare characterized by the harmonicity of the
Lagrangian angle mapβφ (cf. [9]).

Let S3 andH 3
1 denote the unit hypersphere and the unit anti De Sitter space inC2 given

respectively by

S3 = {(z,w) ∈ C2 ; |z|2 + |w|2 = 1} , H 3
1 = {(z,w) ∈ C2 ; |z|2 − |w|2 = −1} .

Let γ := γ (s) = (γ1, γ2) : I1 → S3 be a unit speed Legendre curve inS3 andα =
α(t) = (α1, α2) : I2 → H 3

1 a unit speed Legendre curve inH 3
1 . Thenγ andα satisfy

|γ1|2 + |γ2|2 = 1 , |γ ′
1|2 + |γ ′

2|2 = 1 , γ ′
1γ̄1 + γ ′

2γ̄2 = 0 ,(2.2)

|α1|2 − |α2|2 = −1 , |α′
1|2 − |α′

2|2 = 1 , α′
1ᾱ1 − α′

2ᾱ2 = 0 .(2.3)

PROPOSITION 2.1. Let γ be a unit speed Legendre curve in S3 and α be a unit speed
Legendre curve in H 3

1 . Consider the map: φ : I1 × I2 ⊂ R2 → C2 = C × C defined by

φ(t, s) = (α1(t)γ1(s), α2(t)γ2(s)) .(2.4)

Then φ is a Lagrangian conformal immersion in C2 such that the induced metric is given by

〈 , 〉 = (|γ1|2 + |α1|2)(dt2 + ds2)(2.5)

and the intrinsic tensor C(x, y, z) = 〈σ(x, y), J z〉 is given by

Cttt = 〈α′′
1, Jα

′
1〉|γ1|2 + 〈α′′

2, Jα
′
2〉|γ2|2 ,

Ctts = 〈γ ′
1, J γ1〉 ,

Ctss = 〈α′
1, Jα1〉 ,

Csss = |α1|2〈γ ′′
1 , J γ

′
1〉 + |α2|2〈γ ′′

2 , J γ
′
2〉 ,

(2.6)

where Cttt = C(∂t , ∂t , ∂t ), Ctts = C(∂t , ∂t , ∂s), . . . , etc. The J in (2.6) is the +π/2-rotation
acting on C ≡ R2.
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PROOF. From (2.4) we get

φt = (α′
1(t)γ1(s), α

′
2(t)γ2(s)) , φs = (α1(t)γ

′
1(s), α2(t)γ

′
2(s)) .(2.7)

Thus, by applying (2.2) and (2.3), we find

|φt |2 = |α′
1|2|γ1|2 + |α′

2|2|γ2|2
= |α′

1|2|γ1|2 + (|α′
1|2 − 1)(1 − |γ1|2)

= |α′
1|2 + |γ1|2 − 1

= |α′
2|2 + |γ1|2 .

(2.8)

On the other hand, from the last equation of (2.3), we have

|α1|2(1 + |α′
2|2) = |α1|2|α′

1|2
= |α2|2|α′

2|2 = |α′
2|2(1 + |α1|2) .

(2.9)

Thus, we obtain|α1|2 = |α′
2|2. Substituting this into (2.8) gives|φt |2 = |α1|2 + |γ1|2. Simi-

larly, we also have|φs |2 = |α1|2 + |γ1|2. By the last equations in (2.2) and (2.3), we have

(φt , φs) = α′
1ᾱ1γ1γ̄

′
1 + α′

2ᾱ2γ2γ̄
′
2 = 0 .(2.10)

Thus, by taking the imaginary part in (2.10), we see thatφ is a Lagrangian immersion whose
induced metric viaφ is given by (2.5).

It follows from (2.2) and (2.4) that

(φtt , φs) = ((α′′
1γ1, α

′′
2γ2), (α1γ

′
1, α2γ

′
2))

= α′′
1ᾱ1γ1γ̄

′
1 + α′′

2ᾱ2γ2γ̄
′
2

= γ1γ̄
′
1(α

′′
1ᾱ1 − α′′

2ᾱ2)

= −γ1γ̄
′
1 ,

(2.11)

where we have applied the identity:α′′
1ᾱ1 − α′′

2ᾱ2 = −1 deduced from the last equation of
(2.3). Similarly, we also have

(φtt , φt ) = α′′
1ᾱ

′
1|γ1|2 + α′′

2ᾱ
′
2|γ2|2 .(2.12)

By taking the imaginary parts in (2.11) and (2.12), we obtain the first two equations of (2.6).
Similarly, we also have the last two equations of (2.6). �

In the same spirit as the proof of (2.6), we find by taking the real parts that

〈∇∂t ∂t , ∂t 〉 = 〈α′′
1, α

′
1〉|γ1|2 + 〈α′′

2, α
′
2〉|γ2|2 ,

〈∇∂t ∂t , ∂s〉 = −〈∇∂t ∂s, ∂t 〉 = −〈γ ′
1, γ1〉 ,

〈∇∂t ∂s , ∂s〉 = −〈∇∂s ∂s, ∂t 〉 = 〈α′
1, α1〉 ,

〈∇∂s ∂s , ∂s〉 = |α1|2〈γ ′′
1 , γ

′
1〉 + |α2|2〈γ ′′

2 , γ
′
2〉 .

(2.13)



LAGRANGIAN SURFACES IN COMPLEX EUCLIDEAN PLANE 569

Sinceφ is a conformal Lagrangian immersion, the Laplacian of the Lagrangian surface with
the induced metric (2.5) is given by


 = e−2u
(
∂2

∂t2
+ ∂2

∂s2

)
,(2.14)

wheree2u = |γ1|2 + |α1|2.

Via the Hopf fibration, Legendre curves inS3 andH 3
1 are projected into curves inS2 and

H 2, respectively. Hence, it is interesting to describe the geometry of the Lagrangian surfaces
obtained in Proposition 2.1 by using the geometry of the curves inS2 andH 2. We study this
as follows:

Let S2(1/2) := {(x1, x2, x3) ∈ R3 ; x2
1 + x2

2 + x2
3 = 1/4} which is the 2-sphere with

radius 1/2 in R3. The Hopf fibrationπ : S3 → S2(1/2) ≡ CP 1(4) is given by

π(z,w) = 1

2
(2zw̄, |z|2 − |w|2) , (z,w) ∈ S3 ⊂ C2 .(2.15)

Notice that (2.15) is well-defined, since|2zw̄|2 + (|z|2 − |w|2)2 = (|z|2 + |w|2)2 = 1.
For each Legendre curveγ = γ (s) in S3, the projectionξ = π ◦γ is a curve inS2(1/2).

Conversely, each curveξ in S2(1/2) gives rise to a horizontal lift̃ξ in S3 via π which is
unique up to a factoreiθ1, θ1 ∈ R. Notice that each horizontal lift ofξ is a Legendre curve in
S3.

Since the Hopf fibrationπ is a Riemannian submersion, each unit speed Legendre curve
γ in S3 is projected to a unit speed curveξ in S2(1/2)with the same curvature function. From
(2.15), it is not difficult to see that

|γ1|2 = 1

2
+ ξ3 , 〈γ ′

1, J γ1〉 = (ξ × ξ ′)3 ,(2.16)

where× denotes the cross product inR3 and(ξ × ξ ′)3 is the third coordinate ofξ × ξ ′ in the
3-spaceR3 containingS2(1/2).

Similarly, letH 2(−1/2) = {(x1, x2, x3) ∈ R3 ; x2
1 +x2

2 −x2
3 = −1/4, x3 ≥ 1/2} which

is the model of the real hyperbolic plane of curvature−4. The Hopf fibrationπ : H 3
1 →

H 2(−1/2) ≡ CH 1(−4) is then given by

π(z,w) = 1

2
(2zw̄, |z|2 + |w|2) , (z,w) ∈ H 3

1 ⊂ C2
1 .(2.17)

Notice that (2.17) is well-defined, since|2zw̄|2 − (|z|2 + |w|2)2 = −(|z|2 − |w|2)2 = −1.
For each Legendre curveα = α(t) in H 3

1 , the projectionη = π ◦ α is a curve in
H 2(−1/2). Conversely, each curveη in H 2(−1/2) gives rise to a horizontal lift̃η in H 3

1 via
π that is unique up to a factoreiθ2, θ2 ∈ R. Each horizontal liftη̃ is a Legendre curve inH 3

1 .
In the same way asγ , if α is a unit speed Legendre curve inH 3

1 , then the projectionη is
also a unit speed curve inH 2(−1/2) with the same curvature function. It follows from (2.17)
that

|α1|2 = −1

2
+ η3 , 〈α′

1, Jα1〉 = (η × η′)3 .(2.18)



570 I. CASTRO AND B.-Y. CHEN

Taking the above considerations into account,our construction of the Lagrangian confor-
mal surfaces in Proposition 2.1 can also be obtained by using a unit speed curveξ in S2(1/2)
and a unit speed curveη in H 2(−1/2) as follows:

φ(t, s) = (η̃1(t)ξ̃1(s), η̃2(t)ξ̃2(s)) .(2.19)

Notice that if we choose different horizontal lifts, sayξ̂ and η̂ of ξ and η, then we
haveξ̂ = eiθ1ξ̃ and η̂ = eiθ2η̃ for someθ1, θ2 ∈ R. Hence, the corresponding Lagrangian
conformal immersion

ψ(t, s) = (η̂1(t)ξ̂1(s), η̂2(t)ξ̂2(s))

is related with (2.19) byψ = ei(θ1+θ2)φ. Therefore, the two Lagrangian conformal immer-
sionsφ andψ via different horizontal lifts are always congruent.

In fact, the geometry of the Lagrangian conformal immersionφ depends essentially on
the initial curvesξ andη. For example, it follows from (2.16) and (2.18) that the induced
metric ofφ is given by〈 , 〉 = (η3(t)+ ξ3(s))(dt

2 + ds2) and the intrinsic tensorC satisfies
Ctts = (ξ × ξ ′)3, Ctss = (η × η′)3, . . . , etc. These show that the third coordinates of the
position ofξ andη in R3 are relevant in the geometry of our construction. More precisely,
any rotation around thex3-axis ofR3 acting on the generating curvesξ andη gives rise to a
congruent Lagrangian immersion, since we have

(eiϕ1(ξ1 + iξ2); ξ3) = π(eiϕ1 ξ̃1, ξ̃2)(2.20)

and

(eiϕ2(η1 + iη2); η3) = π(eiϕ2η̃1, η̃2) .(2.21)

As an illustration, the totally geodesic Lagrangian planes can be obtained by taking any
meridian inS2(1/2) passing through the north and south poles and any meridian passing
through the vertex(0,0,1/2) inH 2(−1/2). Therefore, up to congruence, the totally geodesic
Lagrangian planes can be given byφ(t, s) = (coss sinht, sins cosht).

3. Additive formula of Lagrangian angle map. For a unit speed Legendre curve
γ = (γ1, γ2) in S3, we define theLegendre angle θγ of γ by

eiθγ = detC(γ, γ
′) = γ1γ

′
2 − γ ′

1γ2 .(3.1)

For instance, the Legendre angle ofγ (s) = (coss, sins) is 0 (mod 2π).

LEMMA 3.1. Let γ : I1 → S3 ⊂ C2 be a unit speed curve. Then we have
(1a) If γ is a Legendre curve, then it is a solution of the second order differential

equation:
γ ′′ − ikγ γ

′ + γ = 0 ,(3.2)

where kγ is the curvature of γ in S3.
(1b) If γ satisfies (3.2), then γ is a Legendre curve if and only if 〈γ ′(0), iγ (0)〉 = 0

(0 ∈ I1).
(2) The Legendre angle θγ satisfies θ ′

γ = kγ .
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PROOF. Statement (1a) has been proved in [6]. Statement (1b) follows from the con-
stancy of the functions �→ 〈γ ′(s), iγ (s)〉 using (3.2). Finally, from (3.2) and (3.1) we find

ieiθγ θ ′
γ = (γ1γ

′
2 − γ ′

1γ2)
′

= γ1(ikγ γ
′
2 − γ2)− (ikγ γ

′
1 − γ1)γ2

= ikγ (γ1γ
′
2 − γ ′

1γ2) = ikγ e
iθγ ,

(3.3)

which implies statement (2). �

Similarly, we define theLegendre angle θα of a unit speed Legendre curveα in H 3
1 by

eiθα = detC(α, α
′) = α1α

′
2 − α′

1α2 .(3.4)

For instance, the Legendre angle ofα(t) = (sinht, cosht) is 0 (mod 2π).
We also have the following.

LEMMA 3.2. Let α : I2 → H 3
1 ⊂ C2 be a unit speed curve. Then we have

(1a) α is a solution of the second order differential equation:
α′′ − ikαα

′ − α = 0 ,(3.5)

where kα is the curvature of α in H 3
1 .

(1b) If α satisfies (3.5), then α is a Legendre curve if and only if 〈α′(0), iα(0)〉 = 0
(0 ∈ I2).

(2) The Legendre angle θα satisfies θ ′
α = kα.

PROOF. This can be done in the same way as Lemma 3.1. �

REMARK 3.3. If (γ1, γ2) is a Legendre curve inS3, (eiθγ1, γ2) and (γ1, e
iθγ2) are

also Legendre curves inS3. The same happens to a Legendre curve(α1, α2) in H 3
1 .

Using this fact, up to congruences inC2, we can restrict our attention in our construction
(2.4) of Lagrangian surfaces toconsider the initial conditions

γ (0) = (cosψ, sinψ) , γ ′(0) = eia(sinψ,− cosψ) , 0 ≤ ψ ≤ π/2, −π < a ≤ π ,(3.6)

and

α(0) = (sinhδ, coshδ) , α′(0) = eib(coshδ, sinhδ) , δ ≥ 0, −π < b ≤ π .(3.7)

We consider now the Lagrangian conformal immersionφ : I1 × I2 → C2 defined by
φ(t, s) = (α1(t)γ1(s), α2(t)γ2(s)), whereγ = (γ1, γ2) is a unit speed Legendre curve in
S3 ⊂ C2 andα = (α1, α2) is a unit speed Legendre curve inH 3

1 ⊂ C2.
The Lagrangian angle mapβφ of φ (see Section 2) can be computed by

eiβφ = detC(φ∗e1, φ∗e2) ,(3.8)

wheree1, e2 is any oriented orthonormal basis of the Lagrangian surface.
We now prove a useful interesting additive formula which relates the Lagrangian angle

map of our Lagrangian surfaces with the Legendre angle of the generating curves.
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THEOREM 3.4. Let γ be a unit speed Legendre curve in S3 and α a unit speed Le-
gendre curve inH 3

1 . Then the Lagrangian angle map βφ of the Lagrangian conformal immer-
sion φ(t, s) = (α1(t)γ1(s), α2(t)γ2(s)) and the Legendre angles θγ and θα of γ and α are
related by

βφ(t, s) = θγ (s)+ θα(t)+ π (mod 2π) .(3.9)

PROOF. From (2.2), (2.3), (3.1) and (3.4), we have

ei(θγ+θα) = (γ1γ
′
2 − γ ′

1γ2)(α1α
′
2 − α′

1α2)

= γ1γ
′
2α1α

′
2 − γ ′

1γ2α1α
′
2 − γ1γ

′
2α

′
1α2 + γ ′

1γ2α
′
1α2

= γ1γ
′
2|α1|2α

′
1

ᾱ2
+ γ ′

2

γ̄1
|γ2|2|α1|2α

′
1

ᾱ2
− γ1γ

′
2α

′
1α2 − γ ′

2

γ̄1
|γ2|2α′

1α2

= α′
1γ

′
2

ᾱ2γ̄1
(|γ1|2|α1|2 + |γ2|2|α1|2 − |γ1|2|α2|2 − |γ2|2|α2|2)

= −α
′
1γ

′
2

ᾱ2γ̄1
.

(3.10)

On the other hand, from (2.2), (2.3) and (3.8) we find

(|α1|2 + |γ1|2)eiβφ = α′
1α2γ1γ

′
2 − α1α

′
2γ

′
1γ2

= α′
1α2γ1γ

′
2 + α1

α′
1ᾱ1

ᾱ2

γ ′
2γ̄2

γ̄1
γ2

= α′
1γ

′
2

ᾱ2γ̄1
(|α2|2|γ1|2 + |α1|2|γ2|2)

= α′
1γ

′
2

ᾱ2γ̄1
((1 + |α1|2)|γ1|2 + |α1|2(1 − |γ1|2))

= α′
1γ

′
2

ᾱ2γ̄1
(|α1|2 + |γ1|2) ,

(3.11)

which implies that

eiβφ = α′
1γ

′
2

ᾱ2γ̄1
.(3.12)

Combining (3.10) and (3.12) yields (3.9). �

COROLLARY 3.5. Let γ be a unit speed Legendre curve in S3 and α be a unit speed
Legendre curve in H 3

1 . Consider the Lagrangian conformal immersion φ : I1 × I2 → C2

defined by φ(t, s) = (α1(t)γ1(s), α2(t)γ2(s)). Then the mean curvature vector field of φ is
given by

H = e−2u

2
(kαJφt + kγ Jφs) ,(3.13)

where e2u = |γ1|2 + |α1|2 and kα and kγ are the curvature functions of α and γ , respectively.



LAGRANGIAN SURFACES IN COMPLEX EUCLIDEAN PLANE 573

PROOF. According to (2.1), we have to compute the gradient of the Lagrangian angle
βφ. If e1 := e−u∂t ande2 := e−u∂s , it is clear thate1(βφ) = e−ukα ande2(βφ) = e−ukγ and
so (3.13) follows immediately. �

4. Applications. In this section we are devoted to study several families of
Lagrangian surfaces of our construction; those characterized by different geometric properties
related with the behaviour of the mean curvature vector.

4.1. Minimal Lagrangian immersions. As the first consequence we can obtain from
Corollary 3.5 is the following.

THEOREM 4.1. Let γ be a unit speed Legendre curve in S3 and let α be a unit speed
Legendre curve in H 3

1 . Then the Lagrangian conformal immersion φ defined by φ(t, s) =
(α1(t)γ1(s), α2(t)γ2(s)) is minimal if and only if the Legendre curves γ and α are geodesics
in S3 and H 3

1 , respectively.

Theorem 4.1 also follows directly from Theorem 3.4 by using Lemmas 3.1(2) and 3.2(2)
and by taking into accountthat the minimality ofφ is equivalently to the constancy ofβφ .

Using the statements (1) of Lemmas 3.1 and 3.2, the unit speed Legendre curves that
are geodesic ofS3 andH 3

1 can be written asγ (s) = coss γ (0) + sins γ ′(0) andα(t) =
cosht α(0) + sinht α′(0). After choosing the initial conditions given in (3.6) and (3.7), we
arrive at the explicit expressions of the minimal Lagrangian surfaces inC2 that can be con-
structed by our method taking

γ (s) = (cψ coss + eiasψ sins, sψ coss − eiacψ sins) ,(4.1)

wherecψ := cosψ andsψ := sinψ, and

α(t) = (shδ cosht + eibchδ sinht, chδ cosht + eibshδ sinht) ,(4.2)

whereshδ := sinhδ andchδ := coshδ.
The Legendre geodesics (4.1) project by the Hopf fibration in the great circles ofS2(1/2)

contained in the planescax2 = sa(s2ψx3 − c2ψx1). The Legendre geodesics (4.2) project by
the Hopf fibration in the geodesics ofH 2(−1/2) contained in the planescbx2 = sb(ch2δx1 −
sh2δx3). So, if (a,ψ) ∈ {(0,0), (0, π/2), (π,0), (π, π/2)} and (b, δ) ∈ {(0,0), (π,0)},
we arrive at totally geodesic Lagrangian planes.

Topologically all these surfaces areR × S1 and it is possible to prove that they corre-
spond, after changing suitably the complex structure inC2 (cf. [7]), to the family of complex
surfaces inC2 with finite total curvature−4π (including the Lagrangian catenoid of [3]) given
by Hoffman and Osserman in Proposition 6.6, case 2, of [10].

In conclusion, if we choose great circles inS2(1/2) and geodesics inH 2(−1/2), our
construction provides us examples of minimal Lagrangian surfaces inC2.

4.2. Lagrangian surfaces with constant mean curvature. The easiest (non minimal)
examples of Lagrangian surfaces with constant mean curvature, i.e.,|H | ≡ ρ > 0, are those
with parallel mean curvature vector.
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THEOREM 4.2. Let γ be a unit speed Legendre curve in S3 and let α be a unit speed
Legendre curve in H 3

1 . Then the Lagrangian conformal immersion φ defined by φ(t, s) =
(α1(t)γ1(s), α2(t)γ2(s)) has parallel (non null ) mean curvature vector if and only if the Le-
gendre curves γ and α in S3 and H 3

1 respectively, satisfy that |γ1| and |α1| are constant.

PROOF. Using Corollary 3.5, it is easy to check thatJH = −(e−2u/2)(kα∂t + kγ ∂s) is
a parallel vector field if and only if

k′
α − utkα + uskγ = 0 , utkγ + uskα = 0 , k′

γ − uskγ + utkα = 0 ,(4.3)

wheree2u = |γ1|2+|α1|2. From the first and third equation of (4.3) we deduce thatk′
α+k′

γ = 0
and sokα(t) = at + b andkγ (s) = −as + c, with a, b, c ∈ R. We distinguish three cases:
We first suppose thatus = 0. It is equivalent to|γ1| is constant. Using (4.3) and thatφ is non
minimal, we obtain thatut = 0 what means that|α1| is constant. Ifut = 0, we make a similar
reasoning. Finally, ifut �= 0 andus �= 0, from the second equation of (4.3), there exists
c1 ∈ R∗ such thatkγ = −c1us andkα = c1ut . Sous = (as − c)/c1 andut = (at + b)/c1.
Putting this in (4.3), we arrive ata = b = c = 0, which is a contradiction. �

If we call a small circleξ in S2(1/2) (resp. inH 2(−1/2)) horizontal when it is orthog-
onal to thex3-coordinate, then we can easily show that a unit speed Legendre curveγ in S3

is a horizontal lift of a horizontal circle inS2(1/2) if and only if |γ1| is a nonzero constant.
Moreover, such Legendre curves can be parametrized by

γ (s) = (cosψ ei tanψ s, sinψ e−i cotψ s) , ψ ∈ (0, π/2) ,(4.4)

whereπ/2 − 2ψ is the latitude of the parallelπ ◦ γ .
Similarly, a unit speed Legendre curveα in H 3

1 is a horizontal lift of a horizontal circle
in H 2(−1/2) if and only if |α1| is a nonzero constant. Moreover, such Legendre curves can
be parametrized by

α(t) = (sinhδ ei cothδ t , coshδ ei tanhδ t ) , δ > 0 .(4.5)

In conclusion, using both Legendre curves given in (4.4) and in (4.5) in our construction
we obtain conformal parametrizations of the examples of Lagrangian surfaces with parallel
mean curvature vector inC2. They correspond to flat toriS1 × S1 in the 3-sphere of radius√

sin2ψ + sinh2 δ.

THEOREM 4.3. Let γ be a unit speed Legendre curve in S3 and let α be a unit speed
Legendre curve in H 3

1 . Then the Lagrangian conformal immersion φ defined by φ(t, s) =
(α1(t)γ1(s), α2(t)γ2(s)) has constant mean curvature |H | ≡ ρ > 0 if and only if the Legendre
curves γ and α in S3 andH 3

1 , respectively, satisfy that k2
γ = 4ρ2|γ1|2−λ and k2

α = 4ρ2|α1|2+
λ with λ ∈ R.

PROOF. Using Corollary 3.5, we have that 4ρ2(|γ1|2 + |α1|2) = k2
α + k2

γ . Sinceγ
depends ons andα depends ont, we obtain the result. �

Now we see how the condition onγ andα in Theorem 4.3 determine both curves. Let
definer(s) := |γ1(s)|. Using the Legendre character ofγ and that it is parametrized by
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arclength and satisfies (3.2), it is not difficult to get thatγ can be expressed in terms ofr in
the following way:

γ (s) =
(
r(s) exp

(
i

∫ s

0

√
1 − r2 − r ′2

r
ds

)
,
√

1 − r(s)2 exp

(
i

∫ s

0

r
√

1 − r2 − r ′2
r2 − 1

ds

))
.

(4.6)

We observe that whenr(s) = coss, we get the geodesicγ (s) = (coss, sins), and if we take
r constant, sayr ≡ cosψ, we arrive at the expression of (4.4). We can also compute the
curvature ofγ in terms ofr = r(s) obtaining

r ′′ − 1 − r2 − r ′2

r
+ r + kγ

√
1 − r2 − r ′2= 0 .(4.7)

If we use a similar argument, a unit speed Legendre curve inH 3
1 can be written in terms

of r(t) = |α1(t)| as

α(t) =
(
r(t) exp

(
i

∫ t

0

√
1 + r2 − r ′2

r
dt

)
,
√

1 + r(t)2 exp

(
i

∫ t

0

r
√

1 + r2 − r ′2
1 + r2

dt

))
.

(4.8)

We note thatr(t) = sinht give us the geodesicα(t) = (sinht, cosht) and thatr(t) ≡ sinhδ
leads to (4.5). Moreover, the curvature ofα is given by

r ′′ − 1 + r2 − r ′2

r
− r + kα

√
1 + r2 − r ′2= 0 .(4.9)

We study the case of Theorem 4.3. Ifkγ (s)2 = 4ρ2r(s)2−λ andkα(t)2 = 4ρ2r(t)2 +λ,
we are able to obtain first integrals of the differential equations (4.7) and (4.9):

(4ρ2r2 − λ)3/2

12ρ2 + µ1 = r

√
1 − r2 − r ′2 , r = r(s) ,(4.10)

and

(4ρ2r2 + λ)3/2

12ρ2
+ µ2 = r

√
1 + r2 − r ′2 , r = r(t) ,(4.11)

whereλ,µ1, µ2 are arbitrary constants.
This shows that the family of Lagrangian surfaces with constant mean curvatureρ > 0

in our construction with Legendre curves is quite big. In general, the solutions of (4.10) and
(4.11) are not easy to control, appearing hyperelliptic functions in most cases. We finish this
section considering the following illustrative situation.

Particular case: Letλ = µ1 = µ2 = 0. Up to dilations, we can supposeρ = 3/2. Then
equations (4.10) and (4.11) reduce tor ′2 + r2 + r4 = 1 andr ′2 − r2 + r4 = 1, respectively.
After solving the differential equationr ′2 + r2 + r4 = 1, we know that, up to translations on
s, its solution is given by

r(s) =
√√

5 − 1

2
cn(

4√
5s, k), k =

√
5 − √

5

10
,(4.12)
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where cn is a Jacobi elliptic function usually known as the cosine amplitude andk is its
modulus (cf., for instance, [12]). Hence, using standard formulae on elliptic functions and a
straightforward long computation, (4.6) and (4.12) imply that, up to rotations,γ is given by

γ (s) = (dn(
4√

5s, k)+ i k sn(
4√

5s, k))

(√√
5−1
2 cn(

4√
5s, k),

√
1 + (1/2)(1− √

5)cn2(
4√

5s, k)
2dn(

4√
5s, k)−

√
5 + 2

√
5i sn(

4√
5s, k)√

4dn2(
4√

5s, k)+ (5 + 2
√

5)sn2(
4√

5s, k)

)
,

(4.13)

where dn and sn are the Jacobi elliptic function known as the delta amplitude and the sine
amplitude with modulusk.

Similarly, up to translations int, the solution ofr ′2 − r2 + r4 = 1 is given by

r(t) =
√√

5+1
2 cn(

4√
5t, k̂), k̂ =

√
(5 + √

5)/10.(4.14)

Thus, in an analogous way, it follows from (4.8), (4.14) and a long computation that, up
to rotations,α is given by

α(t) = (dn(
4√

5t, k̂)+ i k̂ sn(
4√

5t, k̂))

(√√
5+1
2 cn(

4√
5t, k̂),

√
1 + (1/2)(1 + √

5)cn2(
4√

5t, k̂)
2dn(

4√
5t, k̂)−

√
5 − 2

√
5i sn(

4√
5t, k̂)√

4dn2(
4√

5t, k̂)+ (5 − 2
√

5)sn2(
4√

5t, k̂)

)
.

(4.15)

We remark that both Legendre curvesγ andα given in (4.13) and (4.15) are periodic on
account of the periodicity of the elliptic functions cn, sn and dn. So they provide an interesting
example of a Lagrangian torus with constantmean curvature in complex Euclidean plane.

4.3. New examples of Hamiltonian-minimal Lagrangian surfaces. By applying The-
orem 3.4, we have the following

THEOREM 4.4. Let γ and α be unit speed Legendre curves in S3 and H 3
1 , respec-

tively. Then the Lagrangian conformal immersion φ(t, s) = (α1(t)γ1(s), α2(t)γ2(s)) is
Hamiltonian-minimal if and only if the curvature functions kα and kγ of α and γ are given by
kα(t) = at + b and kγ (s) = −as + c with a, b, c ∈ R.

PROOF. It is known that the Lagrangian surfaceφ is Hamiltonian-minimal if and only
if the Lagrangian angle mapβφ is harmonic, i.e.,
βφ = 0 (see Section 2). Thus, Theorem
3.4 implies thatφ is Hamiltonian-minimal if and only if we haveθ ′′

γ + θ ′′
α = 0. Therefore,

by Lemmas 3.1 and 3.2, we know thatφ is Hamiltonian-minimal if and only if the curvature
functionkα andkγ of α andγ satisfyk′

α + k′
γ = 0. We put thenk′

α = a = −kγ and the proof
is finished. �

We distingish two essential cases in this family:

Case (i): a = 0, i.e.,kα andkγ are constant.
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From Lemma 3.1 (1) we know that unit speed Legendre curves inS3 with constant cur-
vaturekγ ≡ c can be parametrized by

γ (s) = ei(c+
√
c2+4)s/2A1 + ei(c−

√
c2+4)s/2B1

for suitableA1, B1 ∈ C2 that can be expressed in terms on the initial conditions given in (3.6).
Similarly, from Lemma 3.2 (1) we also know that unit speed Legendre curves inH 3

1 with
constant curvaturekα ≡ b can be parametrized by

(1) If |b| > 2,

α(t) = eibt/2(ei
√
b2−4 t/2A2 + e−i

√
b2−4 t/2B2) ;

(2) if |b| < 2,

α(t) = eibt/2(e

√
4−b2 t/2A2 + e−

√
4−b2 t/2B2) ;

(3) if b = 2,

α(t) = etA2 + tetB2 ;
(4) if b = −2,

α(t) = e−tA2 + te−tB2 ,

for suitableA2, B2 ∈ C2 that can be expressed in terms on the initial conditions given in (3.7).

REMARK 4.5. In this context, it is not difficult to check that the Hamiltonian-minimal
Lagrangian tori of [2] are constructed by using horizontal small circles inS2(1/2) (see (4.4))
with closed horizontal lift (i.e., tan2ψ is a rational number) and the projections toH 2(−1/2)
of the aboveα’s for certainb’s such that|b| > 2.

Case (ii): a �= 0, i.e.,kα andkγ are certain linear functions of the arc parameter.
In this case, after applying suitable translations, we haveκα = at andκγ = −as. Thus,

by Lemmas 3.1 and 3.2, we know that the Legendre curvesα andγ satisfy

α′′(t)− iatα′(t)− α(t) = 0, γ ′′(s)+ iasγ ′(s)+ γ (s) = 0 .(4.16)

Therefore, after solving these differential equations, we know that the unit speed Legendre
curvesα in H 3

1 with curvatureκα = at and the unit speed Legendre curvesγ in S3 with
κγ = −as can be expressed in terms of Hermite polynomials and hypergeometric functions
(see [14]) by

α(t) = HermiteH(i/a,
√
ia/2 t

)
A1 + 1F1

(
1/(2ai),1/2, ait2/2)B1 ,(4.17)

γ (s) = e−ais2/2{HermiteH(1/(ai)− 1,
√
ia/2s)A2

+ 1F1((ai − 1)/(2ai),1/2, ais2/2)B2}
(4.18)

for suitableA1, B1 ∈ C2
1 andA2, B2 ∈ C2 depending on the initial conditions given in

(3.6) and (3.7), where HermiteH is the Hermite polynomial and1F1 is the Kummer confluent
hypergeometric function.
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4.4. Willmore Lagrangian surfaces. Consider the Willmore functional

W =
∫
Σ

|H |2dA(4.19)

for a surfaceΣ in a Euclidean space.
For a unit speed Legendre curveγ in S3 and a unit speed Legendre curveα in H 3

1 , the
Willmore functional of the Lagrangian conformal immersionφ : I1 × I2 → C2; (t, s) �→
(α1(t)γ1(s), α2(t)γ2(s)) is given by

Wφ = 1

4

∫
φ(I1×I2)

|∇βφ|2dA .(4.20)

Hence, it follows from Theorem 3.4 and Lemmas 3.1 and 3.2 that the Willmore functional
associated withφ is given by

Wφ = 1

4

∫
I1×I2

(k2
α + k2

γ )dtds

= L(γ )

4

∫
I1

k2
αdt +

L(α)

4

∫
I2

k2
γ ds ,

(4.21)

whereL(γ ) andL(α) denote the length ofγ and ofα, respectively.

THEOREM 4.6. Let γ and α be unit speed Legendre curves in S3 andH 3
1 , respectively.

Then the Lagrangian conformal immersion φ(t, s) = (α1(t)γ1(s), α2(t)γ2(s)) is a critical
point of the Willmore functional Wφ (with fixed lengths L(α) and L(γ )) if and only if the
Legendre curves α and γ are elastic curves.

PROOF. From (4.21), we see that the critical points of the Willmore functionalWφ

(with fixedL1 = L(α) andL2 = L(γ )) are given by the Lagrangian conformal immersions
constructed with Legendre curvesα andγ that are critical points of the functionals

∫ L1
0 k2

αdt

and
∫ L2

0 k2
γ ds, respectively. But these are precisely free elastic curves according to [11].�

REMARK 4.7. As corollary of Theorem 4.6, using free elastica inS2(1/2) and
H 2(−1/2) our construction provides new examples of Willmore Lagrangian surfaces inC2.
In [11] we can find explicitly examples of (closed) free elastica on the sphere and in the
Poincaré disk.

A different construction of Willmore Lagrangian surfaces inC2 can be found in [4].
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