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LAGRANGIAN SURFACESIN COMPLEX EUCLIDEAN PLANE
VIA SPHERICAL AND HYPERBOLIC CURVES
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Abstract. We present a method to construct a large family of Lagrangian surfaces in
complex Euclidean plané2 by using Legendre curves in the 3-sphere and in the anti de Sitter
3-space or, equivalently, by using spherical and hyperbolic curves, respectively. Among this
family, we characterize minimal, constant mean curvature, Hamiltonian-minimal and Will-
more surfaces in terms of simple properties of the curvature of the generating curves. As
applications, we provide explicitly conformal parametrizations of known and new examples of
minimal, constant mean curvature, Hamiltonian-minimal and Willmore surfac€2.in

1. Introduction. Animmersiong : M" — M" of ann-manifold M" into a Kaehler
n-manifold M” is called alLagrangian immersion if the complex structure/ of M" inter-
changes each tangent spac@®f with its corresponding normal space. Lagrangian subman-
ifolds appear naturally in several contexts of mathematical physics. A very important prob-
lem in this setting is to find nontrivial examples of Lagrangian submanifolds with some given
geometric properties. In this line, we find many papers (see the survey article [5]) where the
different authors investigate intrinsic and extrinsic geometric properties related mainly with
the intrinsic curvatures and the mean cuavatvector of the submanifolds, respectively.

An important problem in the theory of Lagrangian surfaces is to find non-trivial exam-
ples with some given special geometric properties. For instance, a method was given in [8] to
construct an important family of special Lagrangian submanifold¥'inith large symmetric
groups. Also, a spinor-like representation formula for Lagrangian surfac€$ ishich pa-
rameterizes immersions through two complex functiBnsF, and a real one (the Lagrangian
angle) was introduced in [1]. This formula is useful to construct examples of Lagrangian sur-
faces inC2.

In this article, we present a simple specific new method to construct Lagrangian surfaces
in complex Euclidean plan€? with nice properties that only involves two Legendre curves;
one in the 3-spher&? and the other in the anti De Sitter 3-spd¢§.

Recall that a regular curvg : I — S3 (resp.a : I, — Hf) is called alLegendre
curveif (y'(s), iy(s)) = 0 (resp.{«’(r), ia(z)) = 0) holds identically. For each such pair of
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Legendre curvegy, o), we consider the map:
(1.2) ¢ I xIp— C>’=CxC; (t,5)— (a1(t)y1(s), a2(t)y2(s)) .

In Section 2, we show that the mapdefined by (1.1) is a Lagrangian immersion. We
also study geometric properties of such Lagrangian surfaces. In particular, we investigate the
close relationship of such a Lagrangian surface with the curve in the 2-sgfhenel the curve
in the hyperbolic 2-planél 2 given by the projections af andw via their corresponding Hopf
fibrations.

In Section 3 we prove an useful “additiverfoula” (see Theorem 1) involving the La-
grangian angle map @f and the Legendre angles pfand« for the Lagrangian immersions.

As a consequence, we establish a simple relationship (see Corollary 1) between the mean
curvature vector op and the curvature functions gfande.

The last section provides several nice apgtions of the results obtained in Section 3.
First we characterize the minimal Lagrangisurfaces obtained by our construction in terms
of geodesics irs® and Hf. In such a way we are able to provide explicit expressions of the
minimal Lagrangian conformal immersionsdif in terms of some elementary functions. We
also determine Lagrangian surfaces constdibteour method with constant mean curvature
and, in particular, with parallel mean curvature vector. This enables us to obtain interesting
new examples of Lagrangian tori & with constant mean curvature. Next we characterize
Hamiltonian-minimal Lagrangian surfaces ang the family of Lagrangian surfaces using
our construction with Legendre curves such that their curvature functions (in terms of the
arclength parameter) are linear. As a by-produet,are able to establish the explicit expres-
sions of some new Hamiltonian-minimal Lagrangian conformal immersio6% in terms of
elementary functions as well. Finally, we apply our construction method to provide new ex-
amples of Willmore Lagrangian surfacesGf. Our result states that the Lagrangian surfaces
constructed by the paily, @) of Legendre curves are Willmore surfaces if and only #nd
a are elastic curves ifi® and H3, respectively.

2. A new construction method of Lagrangian surfaces. Inthe complex Euclidean
planeC? we consider the bilinear Hermitian product defined by

(z, w) = 101 + 222, <z, w € C2.

Then(, ) = R(, ) is the Euclidean metric 062 andw = —3(, ) is the Kaehler two-form
givenbyw(-, -) = (J-, -), whereJ is the complex structure ofi2.

Let¢ : M — C? be an isometric Lagrangian immersion of a surfagento C2, i.e.,
an immersion satisfyingy; = 0. We denote the Riemannian connectionsibfand C?
by V andV, respectively. We also denote lyy ) the induced metric o/. Then we have
¢*TC? = p,TM @® T+M, whereT M andT1M are the tangent and normal bundles\of
respectively. The second fundamental farns given byo (x, y) = JA,,y, whereA is the
shape operator. Thus, the (0,3)-ten§dx, v, z) = (o (x, y), Jz) is totally symmetric.

The space of oriented Lagrangian planesC can be identified with the symmetric
spacel/ (2)/S0(2), so the determinant map, det/ (2)/S0(2) — S, is well-defined. IfM
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is an orientable Lagrangian surface@® andv : M — U(2)/SO(2) is its Gauss map, then
detov : M — S can be expressed as det= ¢'#¢ for some functiorg, : M — R/2n Z.
This function gy is called theLagrangian angle map of ¢. The Lagrangian angle mafy
satisfies

(2.1) JVBs =2H,

whereH is the mean curvature gf, defined byH = (1/2)traceo.

The Lagrangian immersiog is called minimal if H = 0 identically, or equivalently,
the Lagrangian angle mafy, is constant. The minimality on the surfaces means that the
surface is a critical point of the area functional over any compactly supported variation. On
the other hand, Hamiltonian-minimal Lagigian surfaces are Lagrangian surfaces which are
critical points of the area functional with respéata special class of infinitesimal variations
preserving the Lagrangian constraint; namely, the class of compactly supported Hamiltonian
vector fields (see [13]). Such Lagrangian surfearescharacterized by the harmonicity of the
Lagrangian angle magy (cf. [9]).

Let s3 andHl3 denote the unit hypersphere ahe unit anti De Sitter space & given
respectively by

S ={zw) eC?; P+ w?=1, H={z w) eC?;|z?—|w?=-1}.

Lety := y(s) = (y1,y2) : 1 — S° be a unit speed Legendre curveSA anda =
a(t) = (a1, a2) : I — HE aunit speed Legendre curve Y. Theny ande satisfy

(2.2) P+ 122 =1, InP+IpP=1, yn+wnr=0,

2 2 2 2 - -
(2.3) jonl? — ool = =1, Jeyl? —lesl? =1, oj@1 — ahdz = 0.

PROPOSITION 2.1. Let y beaunit speed Legendre curvein $2 and o be a unit speed
Legendre curvein H13- Consider themap: ¢ : I1 x I» C R> — C? = C x C defined by

(2.4) ¢, 5) = (ar(t)ya(s), az(t)y2(s)) .
Then ¢ isa Lagrangian conformal immersion in C? such that the induced metric is given by
(2.5) () =yl + lealP)(dr® + ds?)

and theintrinsic tensor C(x, y, z) = (o (x, y), Jz) isgiven by
Cunr = (o, Ja)|y1f” + (o5, Jap)|yal,

Cis = (J/l/’ Jy),

(2.6) ,
Ciss = (o, Jou) ,
Csss = lan®(yy, 1) + a2y, Tv3)

where C;;; = C(9;, 0, 9), Crrs = C(9y, 0y, 05), ..., €tC. The J in (2.6)isthe 4+ /2-rotation
actingon C = R?.
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PrROOF. From (2.4) we get
(2.7) ¢ = (@) y1(5), ap()y2(s)) s s = (@a(t)y1(s), a2(t)y5(s)) .
Thus, by applying (2.2) and (2.3), we find
112 = | ?1yal? + o5 )2l yal?
= lo4 Pl + (leq)? = DL — [yl
=laj?+ P -1

12 2
= lap|” + Iyal”.

(2.8)

On the other hand, from the last equation of (2.3), we have

o1 |21+ |b)?) = Jaa|? |y |2
(2.9) 20 72 /2 2
= laz2a))? = |ap2(L + |1]?) .

Thus, we obtainas|? = |a,|2. Substituting this into (2.8) givels |2 = |a1|? + [y1|2. Simi-
larly, we also havég,|? = |a1]? + |y1]2. By the last equations in (2.2) and (2.3), we have
(2.10) (b1, ds) = ya@1y17] + apday2y, = 0.

Thus, by taking the imaginary part in (2.10), we see that a Lagrangian immersion whose
induced metric viap is given by (2.5).
It follows from (2.2) and (2.4) that
(@11, ¢s) = (@] y1. a3 v2), (a1yy1. @2y3))
= afa1y1y; + asa2y2v,
= y171(af a1 — a5y a2)

= —y171,

(2.11)

where we have applied the identity;@; — o5a2 = —1 deduced from the last equation of
(2.3). Similarly, we also have

(2.12) (Bre, 1) = o{ @ Iy1l® + ahaslyal?.

By taking the imaginary parts in (2.11) and (2.12), we obtain the first two equations of (2.6).
Similarly, we also have the last two equations of (2.6). |
In the same spirit as the proof of (2.6), we find by taking the real parts that
(Va, 01, ) = (o, @) Inl® + (@5, ap)lyal?,
(Va, 31, 8s) = —(Va, 05, &) = —(v1, v1)»
(2.13) 9, 0t 9, t /Vl V.
(Vg, 05, 05) = —(Vi, 05, 0) = (g, 1),
(

Va, 05, 0s) = la1|2(v], v1) + la22(vs, v3) -
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Sinceg is a conformal Lagrangian immersion, thaplacian of the Lagrangian surface with
the induced metric (2.5) is given by

92 92
2.14 A=e 2 — + ),
(2.14) ¢ (3t2+8s2)

wheree? = |y1]2 + |1 %

Via the Hopf fibration, Legendre curves $ and #; are projected into curves i§? and
H?, respectively. Hence, it is interesting testribe the geometry of the Lagrangian surfaces
obtained in Proposition 2.1 by using the geometry of the curveé ind H2. We study this
as follows:

Let $2(1/2) := {(x1,x2,x3) € R®;x? + x5 + x2 = 1/4} which is the 2-sphere with
radius %2 in R3. The Hopf fibrationr : §° — $%(1/2) = C P1(4) is given by

1
(2.15) 7(z, w) = (22, lzI? = |w®), (z,w)eS3cC?.

Notice that (2.15) is well-defined, sing2zw|? + (|z|% — |w|?)? = (|z|? + |w|?)? = 1.

For each Legendre curye= y(s) in 3, the projectiort = oy is a curve ins?(1/2).
Conversely, each curvein $2(1/2) gives rise to a horizontal liff in $° via = which is
unique up to a factar'?, 61 € R. Notice that each horizontal lift af is a Legendre curve in
s3.

Since the Hopf fibratiorr is a Riemannian submersion, each unit speed Legendre curve
y in $3is projected to a unit speed cur§én $2(1/2) with the same curvature function. From
(2.15), it is not difficult to see that

1
(2.16) Iyil® = Sté Iy = x 83,

wherex denotes the cross productR? and(¢ x &')3 is the third coordinate of x &’ in the
3-spacek?® containings?(1/2).

Similarly, let H2(—1/2) = {(x1, x2, x3) € R3; x?+x3—x2 = —1/4, x3 > 1/2} which
is the model of the real hyperbolic plane of curvaturé. The Hopf fibrationr : Hf’ —
H?(—1/2) = CH(—4) is then given by

1
(2.17) 7 (2, w) = 522, 12+ [wl), (2, w) € HY € CF.

Notice that (2.17) is well-defined, sing2zw|? — (|z|° + |w|?)? = —(|z|? — |w|?)? = —1.

For each Legendre curve = «(r) in Hf, the projectionn = 7 o « iS @ curve in
H?(—1/2). Conversely, each curvgin H2(—1/2) gives rise to a horizontal liff in H3 via
7 that is unique up to a factef?2, 6, € R. Each horizontal liftj is a Legendre curve iﬂl?’.

In the same way ag, if « is a unit speed Legendre curver, then the projection is
also a unit speed curve ifi%(—1,/2) with the same curvature function. It follows from (2.17)
that

1
(2.18) s |? = —5+m. (o), Jag) = (n x )3
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Taking the above considerations into accoont,construction of the Lagrangian confor-
mal surfaces in Proposition 2.1 can also be obtained by using a unit speed durs#&(1,/2)
and a unit speed curvein H2(—1/2) as follows:

(2.19) B(t,5) = (1 ()EL(s), F2(t)E2(s)) .

Notice that if we choose different horizontal lifts, sgyand# of & andn, then we
haveé = ¢'%1€ and# = ¢'%27 for somefy, 62 € R. Hence, the corresponding Lagrangian
conformal immersion

Y (t,5) = (M0Ei(s), A200E(s))
is related with (2.19) by = /@192 ¢ Therefore, the two Lagrangian conformal immer-
sions¢ andy via different horizontal lifts are always congruent.

In fact, the geometry of the Lagrangian conformal immergiahepends essentially on
the initial curvest andn. For example, it follows from (2.16) and (2.18) that the induced
metric of ¢ is given by( , ) = (n3(¢) + £3(s))(dt? + ds?) and the intrinsic tensaf satisfies
Cis = (§ x N3, Crs5s = (n x )3, ..., etc. These show that the third coordinates of the
position of¢ andn in R® are relevant in the geometry of our construction. More precisely,
any rotation around thes-axis of R® acting on the generating curvésandy gives rise to a
congruent Lagrangian immersion, since we have

(2.20) (e'L(E1 + i&); &3) = m(e'¥1Eq, &)
and
(2.21) (€'2(n1 + in2); n3) = w(e'¥?71, 7i2) .

As an illustration, the totally geodesic Lagrangian planes can be obtained by taking any
meridian in $%(1/2) passing through the north and south poles and any meridian passing
through the vertex0, 0, 1/2) in H%(—1/2). Therefore, up to congruence, the totally geodesic
Lagrangian planes can be givend, s) = (coss sinht, sins coshy).

3. Additive formula of Lagrangian angle map. For a unit speed Legendre curve
¥ = (y1, y2) in $3, we define thd.egendre angleo, of y by

(3.1) ¢ =detc(y.y") = y1vs — viv2.
For instance, the Legendre angleyaf) = (coss, sins) is 0 (mod 2Zr).

LEMMA 3.1. Lety :I; — S° c C?bea unit speed curve. Then we have

(1a) If y is a Legendre curve, then it is a solution of the second order differential
equation:
(3.2) y' —ikyy'+y =0,
where k,, isthe curvature of y in $3.

(1b) If y satisfies (3.2),then y is a Legendre curve if and only if (y'(0),iy(0)) = 0
Oe ).

(2) Thelegendreangled), satisfieso), = k.
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PROOF Statement (1a) has been proved in [6]. Statement (1b) follows from the con-
stancy of the function — (y/(s), iy (s)) using (3.2). Finally, from (3.2) and (3.1) we find

i), = (n1y5 — viv2)’
(3.3) = y1(iky vy — v2) — (ikyy] — v v2
= ik, (y1vs — v1v2) = ikye'® |
which implies statement (2). O
Similarly, we define thé.egendre angle 6, of a unit speed Legendre curgdn Hf’ by
(3.4) % = detc(a, o) = a0 — agaz.

For instance, the Legendre anglexdf) = (sinhz, coshr) is 0 (mod Zr).
We also have the following.

LEMMA 3.2. Leta: I — Hf C C? beaunit speed curve. Then we have
(1a) « isasolution of the second order differential equation:

(3.5) o —ikead —a =0,

where k, isthe curvature of  in H2.

(1b) If a satisfies (3.5), then « is a Legendre curve if and only if («’(0), ia(0)) = 0
O e D).

(2) ThelLegendre angled, satisfies6,, = k.

PrROOF. This can be done in the same way as Lemma 3.1. O

REMARK 3.3. If (y1, 10) is a Legendre curve is3, (¢!y1, y2) and (y1, €?y») are
also Legendre curves i?. The same happens to a Legendre cuae o) in H13.

Using this fact, up to congruences(f, we can restrict our attention in our construction
(2.4) of Lagrangian surfaces tmnsider thenitial conditions

(3.6) ¥(0) = (cosy, siny) , ¥'(0) = ¢'*(siny, —cosy), O<y <7/2, - <a<m,
and
(3.7) a(0) = (sinhs, coshs) , &’ (0) = ¢!’(coshs, sinhs), § >0, -7 <b <.
We consider now the Lagrangian conformal immersjon I1 x I, — C? defined by
o(t,s) = (ar(t)yr(s), a2(t)y2(s)), wherey = (y1, y2) is a unit speed Legendre curve in

§% ¢ €? anda = (a1, a2) is a unit speed Legendre curvelif ¢ C2.
The Lagrangian angle mafy, of ¢ (see Section 2) can be computed by

(3.8) P = detc(guer, pue) ,

wheree1, ez is any oriented orthonormal basis of the Lagrangian surface.
We now prove a useful interesting additive formula which relates the Lagrangian angle
map of our Lagrangian surfaces with the Legendre angle of the generating curves.
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THEOREM 3.4. Let y be a unit speed Legendre curve in S and « a unit speed Le-
gendrecurvein H13- Then the Lagrangian angle map g, of the Lagrangian conformal immer-
son ¢(t,s) = (ar(®)y1(s), a2(t)y2(s)) and the Legendre angles 6, and 6, of y and « are
related by

(3.9 Bp(t,s) =6,(s) +0,(t) +7 (mod 2r).

PrOOF. From (2.2), (2.3), (3.1) and (3.4), we have

e Ot — (1] — ylyo)(eray — ajar2)

= Y1/,0105 — Y1Y20105 — Vlyéa’laz + y1yoaiaz

/
V
= V1V2/|0l1|2_1 2y|? |a1|2— — y1vhehas — _2|yz|2a’1az
(3.10) 02 N a2 Y1

¥
1 2(|7/1| leal? + [y22lenl® = |yal?laal® — [y2l?le2l?)
@1Y3
azyL
On the other hand, from (2.2), (2.3) and (3.8) we find

(leal® + [y1®)e = ajaoy1yy — arahyyy2
051 V V2
= alazylyz + o1 % 2_
o2 V1

!,

_%r 2,12 2.2
(3.11) = —&2171(|012| [yal® + laa|®ly2l®)

a/ J/l
= #((H 1?1112 + lea]?(1 — |y1l%)

V
_ 9 2(|a| +1111?),
azy

which implies that

(3.12) eifo = 2172
o2y1
Combining (3.10) and (3.12) yields (3.9). O

COROLLARY 3.5. Let y bea unit speed Legendre curve in S° and « be a unit speed
Legendre curve in HZ. Consider the Lagrangian conformal immersion ¢ : Iy x Io — C?
defined by ¢ (7, s) = (a1(t)y1(s), a2(t)y2(s)). Then the mean curvature vector field of ¢ is
given by

equ

(3.13) H = (ko JPr + ky Js) ,

where e? = |y1|2 + |a1)? and ko, and k, arethe curvature functions of « and y, respectively.
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PrROOF According to (2.1), we have to compute the gradient of the Lagrangian angle
By If e1 := e7"0; andep := e ™0y, itis clear thak1(Bs) = e "ky andez(By) = e "k, and
so (3.13) follows immediately. |

4. Applications. In this section we are devoted to study several families of
Lagrangian surfaces of our construction; thoseatirized by different geometric properties
related with the behaviour of the mean curvature vector.

4.1. Minimal Lagrangian immersions. As the first consequence we can obtain from
Corollary 3.5 is the following.

THEOREM 4.1. Let y bea unit speed Legendre curve in $° and let o be a unit speed
Legendre curve in Hf. Then the Lagrangian conformal immersion ¢ defined by ¢ (¢, s) =
(a1(®)y1(s), a2(t)y2(s)) isminimal if and only if the Legendre curves y and « are geodesics
in $% and H3, respectively.

Theorem 4.1 also follows directly from Theorem 3.4 by using Lemmas 3.1(2) and 3.2(2)
and by taking into accourihat the minimality ofp is equivalently to the constancy 6.

Using the statements (1) of Lemmas 3.-d&h2, the unit speed Legendre curves that
are geodesic 0§2 and Hf can be written ag (s) = coss y(0) + sins y’(0) anda(r) =
coshr «(0) + sinhr ’(0). After choosing the initial conditions given in (3.6) and (3.7), we
arrive at the explicit expressions of the minimal Lagrangian surfac€¥ ithat can be con-
structed by our method taking

4.1) y(s) = (cy COSs + eiasw sins, sy COSs — eiacw sins) ,
wherecy, := cosyr andsy, := siny, and
(4.2) a(t) = (shs cosht + e chg sinht, chs coshr + e!’shg sinht)

wheresh;s := sinhs andchg := coshs.

The Legendre geodesics (4.1) project by the Hopf fibration in the great circ$2$lof)
contained in the planasx, = s (s2yx3 — c2yx1). The Legendre geodesics (4.2) project by
the Hopf fibration in the geodesics f2(—1/2) contained in the planegx, = s, (chasx1 —
shosxgz). So, if (a,¥) € {(0,0), (0,7/2), (w,0), (m,7/2)} and (b,8) € {(0,0), (=, 0)},
we arrive at totally geodesic Lagrangian planes.

Topologically all these surfaces afex ST and it is possible to prove that they corre-
spond, after changing suitably the complex structur€3r(cf. [7]), to the family of complex
surfaces irC? with finite total curvature-4x (including the Lagrangian catenoid of [3]) given
by Hoffman and Osserman in Proposition 6.6, case 2, of [10].

In conclusion, if we choose great circles $8(1/2) and geodesics i/%(—1/2), our
construction provides us examples of minimal Lagrangian surfac€$.in

4.2. Lagrangian surfaces with constant mean curvature. The easiest (non minimal)
examples of Lagrangian surfaces with constant mean curvaturéHles p > 0, are those
with parallel mean curvature vector.
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THEOREM 4.2. Let y be a unit speed Legendre curvein $2 and let o be a unit speed
Legendre curve in H13. Then the Lagrangian conformal immersion ¢ defined by ¢ (z,s) =
(a1(t)y1(s), a2(t)y2(s)) has parallel (non null ) mean curvature vector if and only if the Le-
gendre curves y and « in $2 and Hl?’ respectively, satisfy that |y1| and |a1| are constant.

PROOF. Using Corollary 3.5, it is easy to check theH = —(e=24/2) (ke d; + k, d5) is
a parallel vector field if and only if

(4.3) kl, — utky + usky =0, urk, +usky =0, k;, —usky, +uiky =0,

wheree?" = |y1[?+|a1|2. From the first and third equation of (4.3) we deduce t)atk/, = 0
and soky(t) = at + b andk, (s) = —as + ¢, with a, b, ¢ € R. We distinguish three cases:
We first suppose that; = 0. It is equivalent tdy; | is constant. Using (4.3) and thatis non
minimal, we obtain tha#, = 0 what means thad; | is constant. Ii;; = 0, we make a similar
reasoning. Finally, iz, # 0 anduy, # 0, from the second equation of (4.3), there exists
c1 € R* such that, = —cius; andky, = ciu;. Souy = (as — c¢)/c1 andu; = (at + b)/c1.
Putting this in (4.3), we arrive at = b = ¢ = 0, which is a contradiction. |

If we call a small circles in $2(1/2) (resp. inH2(—1/2)) horizontal when it is orthog-
onal to thexz-coordinate, then we can easily show that a unit speed Legendre jeunvs3
is a horizontal lift of a horizontal circle i52(1/2) if and only if |y1| is a nonzero constant.
Moreover, such Legendre curves can be parametrized by

(4.4) y(s) = (cosy &' BYS siny eIy |y € (0, 7/2),

wherer /2 — 2 is the latitude of the parallet o y .

Similarly, a unit speed Legendre curxen H13 is a horizontal lift of a horizontal circle
in H2(—1/2) if and only if || is a nonzero constant. Moreover, such Legendre curves can
be parametrized by

(4.5) a(t) = (sinhs e M1 coghs @M1y 5 - 0.

In conclusion, using both Legendre curves given in (4.4) and in (4.5) in our construction
we obtain conformal parametrizations of the examples of Lagrangian surfaces with parallel
mean curvature vector i62. They correspond to flat tofi x ST in the 3-sphere of radius

J/Sir? ¢ + sink? 8.

THEOREM 4.3. Let y bea unit speed Legendre curve in $2 and let « be a unit speed
Legendre curve in H13. Then the Lagrangian conformal immersion ¢ defined by ¢ (z,s) =
(a1(t)y1(s), a2(t)y2(s)) hasconstant mean curvature | H| = p > Oif and onlyif the Legendre
curvesy anda in S®and H3, respectively, satisfy that k2 = 4p2|y1|2—2 andk2 = 4p?|a1|*+
AwithA € R.

PROOF. Using Corollary 3.5, we have thapé(|y1|? + |e1]|?) = k2 + k2. Sincey
depends on anda depends om, we obtain the result. m|

Now we see how the condition gnand« in Theorem 4.3 determine both curves. Let
definer(s) := |y1(s)|. Using the Legendre character pfand that it is parametrized by
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arclength and satisfies (3.2), it is not difficult to get thatan be expressed in termssoin
the following way:

(4.6)
s/ _,,2_,./2 S/ _,.2_,./2
y(s) = (r(s) exp(i/ %ds),\/l—r(s)zexp(i/ 1271510).
0 0 re —

We observe that when(s) = coss, we get the geodesig(s) = (coss, sins), and if we take
r constant, say = cosy, we arrive at the expression of (4.4). We can also compute the
curvature ofy in terms ofr = r(s) obtaining
1—,2_ 2
(4.7) P T etk 1-r2— =0,
r

If we use a similar argument, a unit speed Legendre cur\ieﬁnan be written in terms

of r(t) = |a1(z)| as

(4.8)
/2 /2
alt) = (r(t) exp(i /(: —””’rz_’dz>,\/1+r(r)2exp<i /(: r—d;__’_riz_rdt>>.

We note that (+) = sinhz give us the geodesie() = (sinhz, costr) and that-(r) = sinhé
leads to (4.5). Moreover, the curvaturecofs given by
2

1+r2 -4

(4.9) r’ —r 4 kY142 —r%=0.

We study the case of Theorem 4.3k/}f(s)? = 4p?r (s)% — 1 andke (1) = 4p%r (1) + A,
we are able to obtain first integrals of the differential equations (4.7) and (4.9):

4 2 2_)\‘ 3/2
(410) %4—“1:" /1_’,2_’,/2’ r:r(s)’

12p
and
45202 4 3)3/2
(4.11) %ﬂu:rm, r=r@),

wherei, u1, n2 are arbitrary constants.

This shows that the family of Lagrangian surfaces with constant mean curyatur@
in our construction with Legendre curves is quite big. In general, the solutions of (4.10) and
(4.11) are not easy to control, appearing hyperelliptic functions in most cases. We finish this
section considering the following illustrative situation.

Particular case: Let= u1 = up = 0. Upto dilations, we can suppoge= 3/2. Then
equations (4.10) and (4.11) reducetd+ r2 + r4 = 1 andr’? — r2 + 4 = 1, respectively.
After solving the differential equatiori® + 2 + »4 = 1, we know that, up to translations on
s, its solution is given by

(4.12) r(s) = ﬁz_lcn(«“/és,k), k:,/S_lafS,
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where cn is a Jacobi elliptic function usually known as the cosine amplitudé amndts
modulus (cf., for instance, [12]). Hence, using standard formulae on elliptic functions and a
straightforward long computation, (4.6) and (4.12) imply that, up to rotatmsgiven by

y(s) = (dAn(v/5s, k) + i k sn(v/Bs, k))(,/ VB on(Bs, k),

2dn(/Bs, k) — v/5 + 24/5i sn(/5s, k) )
\/ 4drA(v/5s, k) + (54 2+/5)srA(v/5s, k)

where dn and sn are the Jacobi elliptic function known as the delta amplitude and the sine
amplitude with modulug.
Similarly, up to translations in, the solution of?—r2+r4=1is given by

(4.14) r(t) = B en(VBr, k), k=/(5++5)/10.

Thus, in an analogous way, it follows from (4.8), (4.14) and a long computation that, up
to rotationsg is given by

alt) = (dn(V5t, k) + i k sn(v/5t, k) <\/ Yilen(V5r, k),

2dn(v/5t, k) — v/5 — 24/5i sn(</5t, k) )
JadrR (B, by + 5 — 2055, b

We remark that both Legendre curyesanda given in (4.13) and (4.15) are periodic on
account of the periodicity of the elliptic functions cn, sn and dn. So they provide an interesting
example of a Lagrangian torus with constargan curvature in complex Euclidean plane.

(4.13)
\/1 1 (1/2)(1 — V/B)crR(v/5s, k)

(4.15)

\/1 + (1/2)(1+ VB)ere(V5t, k)

4.3. New examples of Hamiltonian-minimal Lagrangian surfaces. By applying The-
orem 3.4, we have the following

THEOREM 4.4. Let y and « be unit speed Legendre curves in $° and H13, respec-
tively. Then the Lagrangian conformal immersion ¢(t,s) = (a1()yi(s), a2(t)y2(s)) is
Hamiltonian-minimal if and only if the curvature functionsk, and &, of o« and y are given by
ko(t) = at + b andky, (s) = —as + cwitha, b, c € R.

PrROOF. It is known that the Lagrangian surfages Hamiltonian-minimal if and only
if the Lagrangian angle mag is harmonic, i.e. A4y = O (see Section 2). Thus, Theorem
3.4 implies thatp is Hamiltonian-minimal if and only if we have)’,’ + 60/ = 0. Therefore,
by Lemmas 3.1 and 3.2, we know thais Hamiltonian-minimal if and only if the curvature
functionk, andk, of « andy satisfyk;, + k), = 0. We put therk;, = a = —k,, and the proof
is finished. ]

We distingish two essential cases in this family:

Case(i): a =0, i.e.k, andk, are constant.
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From Lemma 3.1 (1) we know that unit speed Legendre curves inith constant cur-
vaturek, = c can be parametrized by

y(s) = ei(c+«/c2+4)s/2Al + ei(cfx/c2+4)s/ZBl

for suitableA, By € C2?thatcan be expressed in terms on the initial conditions given in (3.6).
Similarly, from Lemma 3.2 (1) we also know that unit speed Legendre cur\H§ iwith
constant curvaturk, = b can be parametrized by

Q) If|p| > 2,
a(t) = eibt/Z(ei\/b2—4t/2A2 + e—i\/b2—4t/232);
() if|b| < 2,
a(t) — eibl/Z(e\/ 4—b2[/2A2 + e—\/ 4—b21/2B2);
(3) ifb=2,
a(t) = e'Ar +te'By;
(4) ifb=-2,

a(t) = e Ay +te "By,
for suitableA,, B, € C2that can be expressed in terms on the initial conditions given in (3.7).

REMARK 4.5. Inthis context, it is not difficult to check that the Hamiltonian-minimal
Lagrangian tori of [2] are constructed by using horizontal small circlegif/2) (see (4.4))
with closed horizontal lift (i.e., tehw is a rational number) and the projectionsH8(—1/2)
of the abovex’s for certainb’s such thatp| > 2.

Case (ii): a # 0, i.e.,k, andk, are certain linear functions of the arc parameter.
In this case, after applying suitable translations, we h@ve: at andk,, = —as. Thus,
by Lemmas 3.1 and 3.2, we know that the Legendre cunvasdy satisfy

(4.16) o’ (t) —iata'(t) —a(t) =0, y"(s)+iasy’(s) +y(s) =0.

Therefore, after solving these differential equations, we know that the unit speed Legendre
curvese in H7 with curvaturex, = at and the unit speed Legendre curyesn $° with

k, = —as can be expressed in terms of Hermite polynomials and hypergeometric functions
(see [14]) by

(4.17)  «(t) = HermiteHi/a, \/ia/2t)A1+ 1F1(1/(2ai), 1/2, ait?/2) By,

y(s) = e~3S/2{HermiteH1/(ai) — 1, \/ia/25) Az

(4.18)
+ 1F1((ai — 1)/(2ai), 1/2, ais*/2) Bo}

for suitableA1, B1 € C% and Az, B, € C? depending on the initial conditions given in
(3.6) and (3.7), where HermiteH is the Hermite polynomial afRdis the Kummer confluent
hypergeometric function.



578 |. CASTRO AND B.-Y. CHEN

4.4. Willmore Lagrangian surfaces. Consider the Willmore functional
(4.19) W = / |H|%dA
X

for a surfaceX in a Euclidean space.

For a unit speed Legendre curyein $° and a unit speed Legendre curven H13, the
Willmore functional of the Lagrangian conformal immersipn: 11 x Io — C2; (¢, s)
(a1 (D)y1(s), a2(t)y2(s)) is given by

1

(4.20) Wy = _/ IVBsl%dA .
4 Jo(nxi)

Hence, it follows from Theorem 3.4 and Lemmas 3.1 and 3.2 that the Willmore functional
associated witkp is given by

1 2 2
Wy = - (ks + ky)dtds

4 I1x1>

L(y) 2 L(a) 2
4 [, T2 7

whereL(y) andL(«) denote the length gf and of«, respectively.

(4.21)

THEOREM 4.6. Lety anda beunit speed Legendrecurvesin $2 and H3, respectively.
Then the Lagrangian conformal immersion ¢ (7, s) = (a1(t)y1(s), a2(t)y2(s)) is a critical
point of the Wilimore functional W, (with fixed lengths L(«) and L(y)) if and only if the
Legendre curves o and y are elastic curves.

ProOF. From (4.21), we see that the critical points of the Willmore functioigl
(with fixed L1 = L(«) andLy = L(y)) are given by the Lagrangian conformal immersions
constructed with Legendre curvesandy that are critical points of the functionafél kgdt

and fOLZ kﬁds, respectively. But these are precisely free elastic curves according to [T1].

REMARK 4.7. As corollary of Theorem 4.6, using free elasticasif(1/2) and
H?(—1/2) our construction provides new examples of Willmore Lagrangian surfac€$.in
In [11] we can find explicitly examples of (closed) free elastica on the sphere and in the
Poincaré disk.

A different construction of Willmore Lagrangian surface<if can be found in [4].
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