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Abstract. We generalize and complete some of Maxim’s recent results on Alexander
invariants of a polynomial transversal to the hyperplane at infinity. Roughly speaking, and
surprisingly, such a polynomial behaves, both topologically and algebraically (e.g., in terms of
the variation of MHS on the cohomology of its smooth fibers), like a homogeneous polynomial.

1. Introduction and the main results. In the last twenty years there has been an
ever increasing interest in the topology and geometry of polynomial functions with a certain
good behavior at infinity, see for instance [2, 13, 26, 27, 29, 30, 34]. In particular, the point
of view of constructible sheaves was useful, see [6]. An interesting problem in this area is
to understand the Alexander invariants of the complements to affine hypersurfaces defined
by such polynomial functions. Various approaches, some algebro-geometric, using the super-
abundances of linear systems associated with singularities (cf. Remark 5.3 in the last section),
and others, more topological, using the monodromy representation were proposed (see for in-
stance [18, 19, 17, 9, 28]). Recently, Maxim [23] has considered a similar interplay but in a
more general framework, which includes hypersurfaces with no restrictions on singularities
and a new and very natural condition of good behavior at infinity, that we describe now.

Let X be a reduced hypersurface in the complex affine spaceCn+1 with n ≥ 1, given by
an equationf = 0. We say that the polynomial functionf : Cn+1 → C (or the affine hy-
persurfaceX) is∞-transversal if the closureV of X in the corresponding complex projective
spacePn+1 is transversal in the stratified sense to the hyperplane at infinityH = Pn+1\Cn+1.
Consider the affine complementMX = Cn+1 \X, and denote byMc

X its infinite cyclic cover-
ing corresponding to the kernel of the homomorphism

f� : π1(MX)→ π1(C∗) = Z

induced byf and sending a class of a loop into its linking number withX.
Then, for any positive integerk, the homology groupHk(M

c
X,K), regarded as a module

over the principal ideal domainΛK = K[t, t−1] with K = Q or K = C, is called thek-
th Alexander module of the hypersurfaceX, see [18, 9]. When this module is torsion, we
denote by∆k(t) the correspondingk-th Alexander polynomial ofX (i.e., theΛK -order of
Hk(M

c
X,K)).

With this notation, one of the main results in [23] can be stated as follows.
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THEOREM 1.1. Assume that f : Cn+1→ C is∞-transversal. Then, for k < n+1, the
Alexander modules Hk(M

c
X,K) of the hypersurface X are torsion semisimple ΛK -modules

which are annihilated by td − 1.

SinceMc
X is an(n+1)-dimensional CW complex, one hasHk(M

c
X,K) = 0 fork > n+1,

while Hn+1(M
c
X,K) is free. In this sense, the above result is optimal. To get a flavor of the

second main result in [23] describing the relationship between the orders of the Alexander
modules and the singularities ofX, see Proposition 3.3 below.

Now we describe the more general setting of our paper. LetW ′ = W ′0 ∪ · · · ∪W ′m be a
hypersurface arrangement inPN for N > 1. Letdj denote the degree ofW ′j and letgj = 0 be

a reduced defining equation forW ′j in PN . Let Z ⊂ PN be a smooth complete intersection of
dimensionn+1 > 1 which is not contained inW ′, and letWj = W ′j ∩Z for j = 0, . . . ,m be
the corresponding hypersurface inZ considered as subscheme defined by the principal ideal
generated bygj . LetW = W0∪· · ·∪Wm denote the corresponding hypersurface arrangement
in Z. We assume troughout in this paper that the following hold.

(H1) All the hypersurfacesWj are distinct, reduced and irreducible; moreoverW0 is
smooth.

(H2) The hypersurfaceW0 is transverse in the stratified sense toV = W1 ∪ · · · ∪Wm,
i.e., if S is a Whitney regular stratification ofV , thenW0 is transverse to any stratumS ∈ S.

The complementU = Z \W0 is a smooth affine variety. We consider the hypersurface
X = U∩V in U and its complementMX = U\X. Note thatMX = MW , whereMW = Z\W .
We use both notations, each one being related tothe point of view (affine or projective) that
we wish to emphasize.

Recall that the construction of the Alexander modules and polynomials was generalized
in an obvious way in [9] to the case whenCn+1 is replaced by a smooth affine varietyU . The
first result is new even in the special situation considered in [23].

THEOREM 1.2. Assume that d0 divides the sum
∑m

j=1 dj , say dd0 = ∑m
j=1 dj . Then

one has the following.
(i) The function f : U → C given by

f (x) = g1(x) · · · gm(x)

g0(x)d

is a well-defined regular function on U whose generic fiber F is connected.
(ii) The restriction f ∗ : MX → C∗ of f outside the zero fiber X has only isolated sin-

gularities. The affine variety U has the homotopy type of a space obtained from X by adding
a number µ of n-cells, µ being equal to the sum of the Milnor numbers of the singularities of
f ∗.

Note that we need the connectedness ofF , since this is one of the general assumptions
made in [9]. The second claim shows that a mapping transversal at infinity behaves like anM0-
tame polynomial, see [7] for the definition and the properties ofM0-tame polynomials. These
two classes of mappings are, however, distinct, e.g., the defining equation of an essential



REGULAR FUNCTIONS TRANSVERSAL AT INFINITY 551

affine hyperplane arrangement is alwaysM0-tame, but the transversality at infinity may well
fail for it.

The next result says roughly that an∞-transversal polynomial behaves as a homoge-
neous polynomial up-to (co)homology of degreen − 1. In these degrees, the determination
of the Alexander polynomial ofX in U is reduced to the simpler problem of computing a
monodromy operator.

COROLLARY 1.3. With the assumption in Theorem 1.2, the following hold.
(i) Let ι : C∗ → C be the inclusion. Then, R0f∗QU = QC and, for each 0 < k < n,

there is a Q-local system Lk on C∗ such that

Rkf∗QU = ι!Lk .

In particular, for each 0 < k < n, the monodromy operators of f at the origin T k
0 and at

infinity T k∞ acting on Hk(F, Q) coincide, and the above local system Lk is precisely the local
system corresponding to this automorphism of Hk(F, Q).

(ii) There is a natural morphism Hk(Mc
W , Q) → Hk(F, Q) which is an isomorphism

for k < n and a monomorphism for k = n, and which is compatible with the obvious actions.
In particular, the associated characteristic polynomial

det(tId− T k
0 ) = det(tId− T k∞)

coincides to the k-th Alexander polynomial ∆k(X)(t) of X in U for k < n, and ∆n(X)(t)

divides the G.C.D.(det(tId− T n∞), det(tId− T n
0 )).

The next result can be regarded as being similar to some results in [3], [20] and [11].
Indeed, in all these results, control over the singularities ofW along just one of its irreducible
components (in our case alongW0) implies that certain local systems on the complementMW

are non-resonant. See [6, p. 218] for a discussion in the case of hyperplane arrangements.

THEOREM 1.4. Let g = g0 · · · gm = 0 be the equation of the hypersurface arrange-
ment W in Z and let F(g) be the corresponding global Milnor fiber given by g = 1 in the
cone CZ over Z. Then

Hj(F (g), Q) = Hj(MW, Q)

for all j < n+ 1. In other words, the action of the monodromy on Hj(F (g), Q) is trivial for
all j < n+ 1.

The main result of the present paper is the following extension of Maxim’s result stated
in 1.1 to our more general setting described above.

THEOREM 1.5. Assume that d0 divides the sum
∑m

j=1 dj , say dd0 = ∑m
j=1 dj . Then

the following hold.
(i) The Alexander modules Hk(M

c
X, Q) of the hypersurface X in U are torsion semi-

simple ΛQ-modules which are annihilated by td − 1 for k < n+ 1.
(ii) For k < n+1, the Alexander module Hk(Mc

X, Q) of the hypersurface X in U has a
canonical mixed Hodge structure, compatible with the action of ΛQ, i.e., the multiplication by
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t : Hk(Mc
X, Q) → Hk(Mc

X, Q) is a MHS isomorphism. Moreover, there is an epimorphism
of MHS p∗d : Hk(Md

X, Q) → Hk(Mc
X, Q), where Md

X is the d-cyclic covering of MX and
pd :Mc

X → Md
X is the induced infinite cyclic covering.

Dually, for k < n + 1, the Alexander moduleHk(M
c
X, Q) of the hypersurfaceX in U

has a canonical mixed Hodge structure, which is compatible with the natural embedding of
Hk(M

c
X, Q) as a subspace in the homologyHk(M

d
X, Q).

The proof of the second claim in the above theorem, given in the last section, yields also
the following consequence, stating that our regular functionf behaves like a homogeneous
polynomial.

COROLLARY 1.6. With the above assumptions, the MHS on the cohomology
Hk(Fs, Q) of a smooth fiber Fs of f is independent of s for k < n. In this range, the
isomorphism Hk(Mc

X, Q) → Hk(Fs, Q) given by Corollary 1.3 (ii) is an isomorphism of
MHS.

MHS on Alexander invariants have already been considered in the case of hypersurfaces
with isolated singularities in [19] (the case of plane curves is considered also in [17]). The
above relation of this MHS to the one on the cohomology groupsHk(Fs, Q) is new. Notice
that Corollary 1 in [17], combined with the main result in [8] and Theorem 2.10 (ii) in [9],
yields the following.

COROLLARY 1.7. Let f : C2 → C be a polynomial function such that X = f−1(0)

is reduced and connected. Then the action of t on H1(M
c
X, Q) is semisimple.

No example seems to be known where the action oft on someHk(M
c
X, Q) is not semisim-

ple. On the other hand, it is easy to find examples, even forf : C2 → C, where the mon-
odromy at infinity operatorT∞1 is not semisimple, see Example 5.1 below.

Note that, although in some important cases (see for instance [18]) the Hurewicz theorem
gives the identificationHn(M

c
X, Z) = πn(MX), the existence of a mixed Hodge structure

on the latter cannot be deduced for example from [25], since in [25] is considered only the
situation when the action of the fundamental group on the homotopy groups is nilpotent,
which in general is not the case forπn(MX) and of courseMc

X is not quasi-projective in
general.

The proofs we propose below use various techniques. Theorem 2.2 in Section 2 is the
main topological result and is established via non-proper Morse theory as developed by Hamm
[16] and Dimca-Papadima [10]. The first proof of (a special case of) the first claim in Theorem
1.5 in Section 4 is based on a version of Lefschetz hyperplane section theorem due to Goreski-
MacPherson and based on stratified Morse theory.

The proofs in Section 3 are based on Theorem 4.2 in [9] (which relates Alexander mod-
ules to the cohomology of a class of rank one local systems on the complementMW ) and on
a general idea of getting vanishing results via perverse sheaves (based on Artin’s vanishing
Theorem) introduced in [3] and developped in [6, Chapter 6].
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Finally, the proofs in the last section use the existence of a Leray spectral sequence of a
regular mapping in the category of mixed Hodge structures (MHS for short) for which we refer
to Saito [31], [32] and [33]. To show the independence of the MHS on the Alexander module
Hk(Mc

X, Q) on the choice of a generic fiber off , we use a result by Steenbrink-Zucker on
the MHS on the subspace of invariant cocycles, see [35].

2. Topology of regular functions transversal at infinity. The following easy remark
is used repeatedly in the sequel. The proof is left to the reader.

LEMMA 2.1. If the hypersurface V in Z has a singular locus of positive dimension,
i.e., dimVsing > 0, and W0 is transversal to V , then

dimVsing= dim(Vsing∩W0)+ 1 .

In particular, the singular locus Vsing cannot be contained in W0.

Now we start to prove Theorem 1.2. In order to establish the first claim, note that the
closureF̄ of F is a general member of the pencil

g1(x) · · · gm(x)− tg0(x)d = 0

of hypersurfaces inZ. As such, it is smooth outside the base locus given by

g1(x) · · · gm(x) = g0(x) = 0 .

If d = 1, then fort large the above equation gives a smooth hypersurface onZ, thus a smooth
complete intersection inPN of dimensionn > 0, and hence an irreducible variety.

For d > 2, a closer look shows that a singular point is located either at a point where
at least two of the polynomialsgj for 1 ≤ j ≤ n vanish, or at a singular point in one of the
hypersurfacesWj for 1≤ j ≤ n. It follows essentially by Lemma 2.1 that codim(Sing(F̄ )) ≥
3, and hencēF is irreducible in this case as well. This implies thatF is connected.

The second claim is more involved. Fix a Whitney regular stratificationS for the pair
(Z, V ) such thatW0 is transverse toS. LetS ′ be the induced Whitney regular stratification of
CZ, the cone overZ, whose strata are either the origin, or the pull-back of strata ofS under
the projectionp : CZ \ {0} → Z. Then the functionh = g1 · · · gm : CZ→ C is stratified by
the stratificationsS ′ on CZ andT = {C∗, {0}} on C, i.e.,h maps submersively strata ofS ′
onto strata ofT . Using Theorem 4.2.1 in [1], it follows that the stratificationS ′ satisfies the
Thom condition(ah).

Let F0 = {x ∈ CZ ; g0(x) = 1} be the global Milnor fiber ofg0 regarded as a function
germ on the isolated complete intersection singularity(CZ, 0). SinceW0 is smooth, it follows
thatCW0 is also an isolated complete intersection singularity and henceF0 has the homotopy
type of a bouquet of(n + 1)-dimensional spheres. LetΓ (h, g0) be the closure of the set of
pointsx ∈ (CZ \ CV ) such that the differentialsdxh anddxg0 are linearly dependant. Here
and in the sequel we regardh andg0 as regular functions on the coneCZ, in particular we
have Kerdxh ⊂ TxCZ for anyx ∈ CZ \ {0}. ThenΓ (h, g0) is thepolar curve of the pair of
functions(h, g0). To proceed, we need the following key technical result.
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THEOREM 2.2. With the notation above, the following hold.
(i) dim Γ (h, g0) ≤ 1.
(ii) The set Σ1 of the singularities of the restriction of the polynomial h to F0 \ CV is

finite.
(iii) For any t ∈ S1, the unit circle in C, consider the pencil of intersections (Zs,t )s∈C

given by

Zs,t = CZ ∩ {g0 = s} ∩ {h = t} .
Then it contains finitely many singular members, and each of them has only isolated singu-
larities. Any intersection Z0,t is smooth.

(iv) F0 has the homotopy type of a space obtained from F0 ∩ CV by adding (n + 1)-
cells. More precisely, for each critical value b ∈ h(Σ1) and each small closed disc Db

centered at b, the tube h−1(Db) has the homotopy type of a space obtained from h−1(c) for
c ∈ ∂Db by adding a number µb of (n + 1)-cells, µb being equal to the sum of the Milnor
numbers of the singularities of h−1(b).

PROOF. Note first thatΓ (h, g0) is C∗-invariant. Hence, if dimΓ (h, g0) ≤ 1, then
Γ (h, g0) may be the empty set, the origin or a finite set of lines inCZ passing through the
origin.

Assume that contrary to (i) one has dimΓ (h, g0) > 1. Then its image inZ has a positive
dimension and hence there exist a curveC on Z along which the differentialsdxh anddxg0

are linearly dependant. Letp be a point in the non-empty intersectionC ∩ V . It follows that
the lineLp in CN+1 associated top is contained inCZ and thath vanishes along this line.
The chain rule implies thatg0 has a zero derivative alongLp, and henceg0 |Lp is constant.
Sinceg0 is a homogeneous polynomial and the lineLp passes through the origin, this constant
is zero, i.e.,g0 vanishes alongLp. Thereforep ∈ W0 ∩ V . If p is a smooth point inV , then
this contradicts already the transversalityW0 � V . If not, letS ∈ S be the stratum containing
p. W0 � S implies that dimS > 0. Let q ∈ Lp be any nonzero vector, and letγ (t) be an
analytic curve such thatγ (0) = q andγ (t) ∈ Γ (h, g0) \CV for 0 < |t| < ε. Then fort �= 0,
h(γ (t)) �= 0 and hence Kerdγ (t)h = Kerdγ (t)g0. Passing to the limit fort → 0, we get

T = lim Ker dγ (t)h = lim Ker dγ (t)g0 = Tq(CW0) .

On the other hand, the Thom condition(ah) implies that

T ⊃ TqS′ = Tq(CS) ,

which yieldsTpW0 ⊃ TpS, in contradiction toW0 � S. The above argument shows that
dimΓ (h, g0) ≤ 1 and hence completes the proof of (i).

To prove (ii), just note thatdqh | TqF0 = 0 for some pointq ∈ F0 \ CV implies q ∈
Γ (h, g0). Since any line through the origin intersectsF0 in at mostd0 points, the claim (ii)
follows.

The last claim of (iii) is clear by homogeneity. The rest is based on the fact that any line
through the origin intersectsg = t in finitely many points.
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To prove (iv) we use the same approach as in the proof of Theorem 3 in [10], based on
Proposition 11 in loc. cit. Namely, we start by settingA = F0 andf1 = h and construct
inductively the other polynomialsf2, . . . , fN+1 to be generic homogeneous polynomials of
degreed0 as in [10, p. 485] (where generic linear forms are used for the same purpose). For
more details on the non-proper Morse theory used here we refer to Hamm [16]. �

We continue now the proof of the second claim in Theorem 1.2. There is a cyclic covering
F0→ U of orderd0 which restrict to a similar covering

p : F0 \ CV → U \X

satisfyingf = h ◦ p. Using this and the claim (ii) above, we see that the restrictionf ∗ :
U \ X → C∗ of f has only isolated singularities. LetG be the cyclic group of orderd0.
ThenG acts onF0 as the monodromy group of the functiong0, i.e., the group spanned by the
monodromy homeomorphismx �→ κ · x with κ = exp(2π

√−1/d0). Sinced0|d, the function
h is G-invariant. Note that the above construction ofF0 from F0∩CV by adding(n+1)-cells
was done in aG-equivariant way. This implies by passing to theG-quotients the last claim
in Theorem 1.2. Alternatively, one can embedU into an affine spaceCM , using the Veronese
mapping of degreed0, and then use in this new affine setting Proposition 11 in [10]. This
completes the proof of Theorem 1.2.

Note also that we havẽHk(U, Q) = H̃ k(F0, Q)G = 0 for k < n + 1. In particular,
H̃ k(X, Q) = 0 for k < n, i.e.,X is rationally a bouquet ofn-spheres. In fact,F0∩CV can be
shown to be (homotopically) a bouquet ofn-spheres andX = F0 ∩ CV/G.

PROOF OFCOROLLARY 1.3. The first claim follows from Proposition 6.3.6 and Ex-
ercise 4.2.13 in [6] in conjunction to Theorem 2.10 v in [9]. Indeed, to get the vanishing of
(Rkf∗CU)0 one has just to write the exact sequence of the triple(U, T0, F ) and to use the
fact thatH̃ k(U, C) = 0 for k < n + 1 as seen above. For the second claim, one has to use
Theorem 2.10 i and Proposition 2.18 in [9]. Indeed, letD be a large disc inC containing all
the critical values off : U → C inside. ThenC∗ is obtained fromE = C \ D by filling
in small discsDb around each critical valueb �= 0 of f . In the same way,MX is obtained
from E1 = f−1(E) by filling in the corresponding tubesTb = f−1(Db). It follows from
Theorem 2.2 (iv) that the inclusionE1 → MX is ann-equivalence. Now the total space of
restriction of the cyclic coveringMc

X → MX to the subspaceE1 is homotopy equivalent to
the generic fiberF of f , in such a way that the action oft corresponds to the monodromy at
infinity. In this way we get ann-equivalenceF → Mc

X, inducing the isomorphisms (resp. the
monomorphism) announced in Corollary 1.3 (ii).

To get the similar statement for the monodromy operatorT0, we have to buildC∗ from a
small punctured discD∗0 centered at the origin by filling in small discsDb around each critical
valueb �= 0 of f . The rest of the above argument applies word for word.

The pull-back underp of the infinite cyclic coveringMc
X → MX is just the infinite

cyclic covering(F0 \ CV )c → F0 \ CV , and we get an induced cyclic coveringpc : (F0 \
CV )c → Mc

X of orderd0. Moreover, the action of the deck transformation groupG of this
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covering commutes to the action of the infinite cyclic groupZ, and hence we get the following
isomorphism (resp. projection, embedding) ofΛQ-modules

Hk(Mc
X, Q) = Hk((F0 \ CV )c, Q)G← Hk((F0 \ CV )c, Q)(2.1)

and

Hk(Mc
X, Q) = Hk((F0 \ CV )c, Q)G→ Hk((F0 \ CV )c, Q) .(2.2)

3. Perverse sheaf approach. In this section we prove the following weaker version
of Theorem 1.5, which is used in the proof of Theorem 1.5, see Subsection 4.2.

PROPOSITION 3.1. Assume that d0 divides the sum
∑m

j=1 dj , say dd0 = ∑m
j=1 dj .

Then the Alexander modules Hk(M
c
X, C) of the hypersurface X are torsion for k < n + 1.

Moreover, let λ ∈ C∗ be such that λd �= 1. Then λ is not a root of the Alexander polynomials
∆k(t) for k < n+ 1.

The proof of this proposition we give below is close in spirit to the proofs in [23], and
yields with obvious minor changes (left to the reader) a proof for our Theorem 1.4.

According to Theorem 4.2 in [9], to prove Proposition 3.1, it is enough to prove the
following

PROPOSITION 3.2. Let λ ∈ C∗ be such that λd �= 1, where d is the quotient of
∑m

j=1 dj by d0 . If Lλ denotes the corresponding local system on MW , then Hq(MW ,Lλ) = 0
for all q �= n+ 1.

PROOF. First we recall the construction of the rank one local systemLλ. Any such local
system onMW is given by a homomorphism fromπ1(MW) to C∗. To define our local system,
consider the composition

π1(MW )→ π1(M
′
W )→ H1(M

′
W ) = Zm+1/(d0, . . . , dm)→ C∗,

where the first morphism is induced by the inclusion, the second is the passage to the abelian-
ization and the third one is given by sending the classese0, . . . , em corresponding to the
canonical basis ofZm+1 to λ−d , λ, . . . , λ, respectively. For the isomorphism in the middle,
see for instance [5, p. 102].

It is of course enough to show the vanishing in cohomology, i.e.,Hq(MW,Lλ) = 0 for
all q �= n + 1. Let i : MW → U andj : U → Z be the two inclusions. Then one clearly
hasLλ[n + 1] ∈ Perv(MW ), the abelian category ofC-perverse sheaves on the varietyMW ,
see for details [6]. It follows thatF = Ri∗(Lλ[n + 1]) ∈ Perv(U), since the inclusioni is a
quasi-finite affine morphism. See [6, p. 214] for a similar argument.

Our vanishing result will follow from a study of the natural morphism

Rj!F → Rj∗F .

Extend it to a distinguished triangle

Rj!F → Rj∗F → G → .
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Using the long exact sequence of hypercohomology coming from the above triangle, we see
exactly as on [6, p. 214] that all we have to show is thatHk(Z,G) = 0 for all k < 0. This
vanishing obviously holds if we show thatG = 0.

This in turn is equivalent to the vanishing of all the local cohomology groups ofRj∗F ,
namelyHm(Mx,Lx) = 0 for all m ∈ Z and for all pointsx ∈ W0. HereMx = MW ∩ Bx for
Bx a small open ball atx in Z andLx is the restriction of the local systemLλ to Mx .

The key observation is that, as already stated above, the action of an oriented elementary
loop about the hypersurfaceW0 in the local systemsLλ andLx corresponds to multiplication
by ν = λ−d �= 1.

There are two cases to be considered.
Case 1. If x ∈ W0 \ V , thenMx is homotopy equivalent toC∗ and the corresponding

local systemLν on C∗ is defined by multiplication byν. Hence the claimed vanishings are
obvious.

Case 2. If x ∈ W0 ∩ V , then due to the local product structure of stratified sets cut
by a transversal,Mx is homotopy equivalent to a product(B ′ \ (V ∩ B ′)) × C∗, with B ′ a
small open ball centered atx in W0, and the corresponding local system is an external tensor
product, the second factor being exactlyLν . The claimed vanishings follow then from the
Künneth Theorem, see [6, 4.3.14]. �

A minor variation of this proof gives also Theorem 1.4. Indeed, letD = ∑m
j=0 dj and

let α be aD-root of unity, α �= 1. All we have to show is thatHq(MW ,Lα) = 0 for all
q �= n+ 1, see for instance [6, 6.4.6].

The action of an oriented elementary loop about the hypersurfaceW0 in the local systems
Lα and in its restrictionsLx as above corresponds to multiplication byα �= 1. Therefore the
above proof works word for word.

One has also the following result, in which the bounds are weaker than those in Maxim’s
Theorem 4.2 in [23].

PROPOSITION 3.3. Assume that d0 divides the sum
∑m

j=1 dj , say dd0 = ∑m
j=1 dj .

Let λ ∈ C∗ be such that λd = 1 and let σ be a non negative integer. Assume that λ is not
a root of the q-th local Alexander polynomial ∆q(t)x of the hypersurface singularity (V , x)

for any q < n + 1− σ and any point x ∈ W1, where W1 is an irreducible component of W

different from W0. Then λ is not a root of the global Alexander polynomials ∆q(t) associated
to X for any q < n+ 1− σ .

To prove this result, we start by the following general remark.

REMARK 3.4. If S is ans-dimensional stratum in a Whitney stratification ofV such
thatx ∈ S andW0 is transversal toV at x, then, due to the local product structure, theq-th
reduced local Alexander polynomial∆q(t)x is the same as that of the hypersurface singularity
V ∩ T obtained by cutting the germ(V , x) by an (n + 1 − s)-dimensional transversalT .
It follows that these reduced local Alexander polynomials∆q(t)x are all trivial except for
q ≤ n − s. It is a standard fact that, in the local situation of a hypersurface singularity, the
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Alexander polynomials can be defined either from the link or as the characteristic polynomials
of the corresponding the monodromy operators. Indeed, the local Milnor fiber is homotopy
equivalent to the corresponding infinite cyclic covering.

Let i : MW → Z \ W1 andj : Z \ W1 → Z be the two inclusions. Then one has
Lλ[n + 1] ∈ Perv(MW) and henceF = Ri∗(Lλ[n + 1]) ∈ Perv(Z \W1), exactly as above.
Extend now the natural morphismRj!F → Rj∗F to a distinguished triangle

Rj!F → Rj∗F → G .

Applying Theorem 6.4.13 in [6] to this situation, and recalling the above use of Theorem 4.2
in [9], all we have to check is thatHm(Mx,Lx ) = 0 for all pointsx ∈ W1 andm < n+1−σ .
Forx ∈ W1 \W0, this claim is clear by the assumptions made. The case whenx ∈ W1 ∩W0

can be treated exactly as above, using the product structure, and the fact that the monodromy
of (W1, x) is essentially the same as that of(W1 ∩W0, x), see our remark above.

This completes the proof of Proposition 3.3.

REMARK 3.5. Here is an alternative explanation for some of the bounds given in
Theorem 4.2 in [23]. Assume thatλ is a root of the Alexander polynomial∆i(t) for some
i < n + 1. Then it follows from Proposition 3.3 that there exist a pointx ∈ W1 and an
integer l ≤ i such thatλ is a root of the local Alexander polynomial∆l(t)x . If x ∈ S,
with S a stratum of dimensions, then by Remark 3.4, we havel ≤ n − s. This provides
half of the bounds in Theorem 4.2 in [23]. The other half comes from the following re-
mark. Sinceλ is a root of the Alexander polynomial∆i(t), it follows thatHi(MW ,Lλ) �= 0.
This implies via an obvious exact sequence thatHi−n−1(W1,G) �= 0. Using the standard
spectral sequence to compute this hypercohomology group, we get that some of the groups
Hp(W1,Hi−n−1−pG) are non zero. This can hold only ifp ≤ 2 dim(SuppHi−n−1−pG).
SinceHi−n−1−pGx = Hi−p(Mx,Lx), this yields the inequalityp = i − l ≤ 2s in Theorem
4.2 in [23].

REMARK 3.6. Letλ ∈ C∗ be such thatλd = 1, whered, the quotient of
∑m

j=1 dj by
d0, is assumed to be an integer. LetLλ denotes the corresponding local system onMW . The
fact that the associated monodromy about the divisorW0 is trivial can be restated as follows.
Let L′λ be the rank one local system onMV = Z \ V associated toλ. Let j : MW → MV be
the inclusion. Then

Lλ = j−1L′λ .

Let moreoverL′′λ denote the restriction toL′λ to the smooth divisorW0 \ (V ∩W0). Then we
have the following Gysin-type long exact sequence

· · · → Hq(MV ,L′λ)→ Hq(MW ,Lλ)→ Hq−1(W0 \ (V ∩W0),L′′λ)
→ Hq+1(MV ,L′λ)→ · · ·

exactly as in [6, p. 222].
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Since the cohomology groupsH ∗(MV ,L′λ) andH ∗(W0 \ (V ∩ W0),L′′λ) are usually
simpler to compute thanH ∗(MW,Lλ), this exact sequence can give valuable information on
the latter cohomology groups.

4. Semisiplicity results. In this section we prove the first claim in our main result
Theorem 1.5.

4.1. First proof (the caseW0 = H is the hyperplane at infinity inPn+1). Let U be a
sufficiently small tubular neighborhood of the hyperplaneH at infinity. We claim the follow-
ing:

(i) πi(U \ (H ∪ (V ∩ U)))→ πi(MX) is an isomorphism for 1≤ i ≤ n− 1.
(ii) πn(U \ (H ∪ (V ∩ U)))→ πn(MX) is surjective.
First notice that, as a consequence of transversality ofV andH , we have anS1-fibration

U \ (H ∪ (V ∩U))→ H \ (H ∩ V ). Indeed, iff (x0, . . . , xn+1) = 0 is an equation ofV and
x0 = 0 is the equation forH , then the pencilλf (x0, . . . , xn+1)+µf (0, x1, . . . , xn+1) defines
a deformation ofV to the cone overV ∩ H . SinceV is transversal toH , this pencil contains
an isotopy ofU ∩ V into the intersection ofU with the cone.

Let Y denote the above cone inPn+1 overV ∩H . The obviousC∗-bundlePn+1 \ (Y ∪
H)→ H \ (H ∩ V ) is homotopy equivalent to the aboveS1-bundleU \ (H ∪ (V ∩ U))→
H \ (H ∩V ). We can apply to bothMX andPn+1 \ (Y ∪H) the Lefschetz hyperplane section
theorem for stratified spaces (cf. [15, Theorem 4.3]), using a generic hyperplaneH ′. Thus for
i ≤ n− 1 we obtain the isomorphisms:

πi(MX) = πi(MX ∩H ′) = πi((Pn+1 \ (Y ∪H)) ∩H ′) = πi(Pn+1 \ (Y ∪H))

(the middle isomorphism takes place since, forH ′ nearH , both spaces are isotopic). This
yields (i).

To see (ii), let us apply Lefschetz hyperplane section theorem to a hyperplaneH ′ be-
longing toU . We obtain the surjectivity of the map given by the following composition:

πi(H
′ \ (V ∪H))→ πi(U \ (H ′ ∪ (V ∩ U)))→ πi(MX) .

Hence the right map is surjective as well.
The relations (i) and (ii) yield thatMX has the homotopy type of a complex obtained

fromU \ (H ∪ (V ∩ U)) by adding cells having the dimension greater than or equal ton+ 1.
Hence the same is true for the infinite cyclic covers defined as in Section 1 forMX and
U \ (H ∪ (V ∩ U)), respectively. Denoting by(U \ (H ∪ (V ∩ U)))c the infinite cyclic cover
of the latter, we obtain that

Hi((U \ U ∩ (V ∪H))c, Q)→ Hi(M
c
X, Q)(4.1)

is surjection fori = n and the isomorphism fori < n. Since the maps above are induced by
an embedding map, they are isomorphisms or surjections ofΛQ-modules.

As it was mentioned above, sinceV is transversal toH , the spaceU \ (U ∩ (V ∪ H))

is homotopy equivalent to the complement in the affine space to the cone over the projective
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hypersurfaceV ∩ H . On the other hand, the complement inCn+1 to the cone overV ∩ H is
homotopy equivalent to the complement toV ∩S2n+1 in S2n+1, whereS2n+1 is a sphere about
the vertex of the cone. The latter, by Milnor’s theorem [24], is fibered over the circle. Hence
the fiber of this fibration, as the Milnor fiber of any hypersurface singularity, is homotopy
equivalent to the infinite cyclic cover ofS2n+1 \V ∩ S2n+1 ≈ Cn+1 \V . As in Section 1, this
cyclic cover is the one corresponding to the kernel of the homomorphism of the fundamental
group given by the linking number. In particular, since a Milnor fiber is a finite CW-complex,
Hi(U \ (U ∩ (V ∪H))c, Q) is a finitely generatedQ-module and hence a torsionΛQ-module.
Moreover, the homology of the Milnor fiber of a cone and henceHi(U \ (U ∩ (V ∪H))c, C)

is annihilated bytd − 1, since the monodromy onf (0, x1, . . . , xn+1) = 1 is given by mul-
tiplication of coordinates by a root of unity of degreed and hence has the order equal to
d. Therefore it follows from the surjectivity of (4.1) that the same is true forHi(M

c
X). In

particular,Hi(M
c
X) is semisimple.

4.2. Second proof (the general case). Using Equation 2.1 and Proposition 3.1, it suf-
fices to show that the Alexander invariantAk = Hk((F0\CV )c, Q) of the hypersurfaceh = 0
in the affine varietyF0 is a torsion semisimpleΛQ-module killed byte − 1 for some integer
e. Indeed, once we know thatt is semisimple onHk(M

c
X, Q), Proposition 3.1 implies that

td = 1.
The fact thatAk is torsion follows from Theorem 2.10 v in [9] and the claim (iv) in

Theorem 2.2. Moreover, Theorem 2.10 ii in [9] gives fork ≤ n, an epimorphism ofΛQ-
modules

Hk(F1, Q)→ Ak ,(4.2)

whereF1 is the generic fiber ofh : F0 → C andt acts onHk(F1, Q) via the monodromy at
infinity. By definition, the monodromy at infinity ofh : F0 → C is the monodromy of the
fibration over the circleS1

R , centered at the origin and of radiusR >> 0, given by

{x ∈ CZ ; f0(x) = 1, |h(x)| = R} → S1
R , x �→ h(x) .

Using a rescaling, this is the same as the fibration

{x ∈ CZ ; f0(x) = ε, |h(x)| = 1} → S1 , x �→ h(x) ,(4.3)

where 0< ε << 1.
Let R1 >> 0 be such that

{x ∈ CZ ; |x| ≤ R1, |h(x)| = 1} → S1 , x �→ h(x)

is a proper model of the Milnor fibration ofh : CZ → C. This implies that all the fibers
{h = t} for t ∈ S1 are transversal to the linkK = CZ ∩ S2N+1

R1
.

A similar argument, involving the Milnor fibration ofh : CW0 → C shows that all the
fibers{h = t} for t ∈ S1 are transversal to the linkK0 = CW0 ∩ S2N+1

R1
. Using the usual

S1-actions on these two links, we see that transversality for all fibers{h = t} for t ∈ S1 is
the same as transversality for{h = 1}. But saying that{h = 1} is transversal toK0 is the
same as saying thatZ0,1 � K. By the compactness ofK, there is aδ > 0 such thatZs,1 � K
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for |s| < δ. Using the aboveS1-actions on links, this implies thatZs,1 � K for |s| < δ and
t ∈ S1.

Chooseδ small enough such that the open discDδ centered at the origin and of radiusδ

is disjoint from the finite set of circlesg0(Γ (h, g0)∩ h−1(S1)). Using the relative Ehresmann
Fibration Theorem, see for instance [5, p. 15], we see that the map

{x ∈ CZ ; |x| ≤ R1, f0(x) < δ, |h(x)| = 1} → Dδ × S1 , x �→ (g0(x), h(x))

is a locally trivial fibration. It follows that the two fibrations

{x ∈ CZ ; |x| ≤ R1, f0(x) = δ/2, |h(x)| = 1} → S1 , x �→ h(x)

and
{x ∈ CZ ; |x| ≤ R1, f0(x) = 0, |h(x)| = 1} → S1 , x �→ h(x)

are fiber equivalent. In particular, they have the same monodromy operators. The first of these
two fibration is clearly equivalent to the monodromy at infinity fibration 4.3. The homogeneity
of the second of these two fibrations implies that its monodromy operator has ordere = dd0.
This completes the proof of the semisimplicity claim in the general case.

5. Mixed Hodge structures on Alexander invariants. This proof involves several
mappings and the reader may find useful to draw them all in a diagram.

Since the mappingf : MX → C∗ has a monodromy of orderd (at least in dimensions
k < n, see Corollary 1.3 and Theorem 1.5 (i)), it is natural to consider the base change
φ : C∗ → C∗ given bys �→ sd . Let f1 : Md

X → C∗ be the pull-back off : MX → C∗ under
φ, and letφ1 : Md

X → MX be the induced mapping, which is clearly a cyclicd-fold covering.
It follows that the infinite cyclic coveringpc : Mc

X → MX factors throughMd
X , i.e., there is

an infinite cyclic coveringpd : Mc
X → Md

X corresponding to the subgroup〈td 〉 in 〈t〉, such
thatφ1 ◦ pd = pc. SinceMd

X =Mc
X/〈td 〉, it follows thatt induces an automorphismt of Md

X

of orderd.
Let F1 = f−1

1 (s) be a generic fiber off1, with |s| >> 0. Thenφ1 induces a regular
homeomorphismF1 → F = f−1(sd ). Let i : F → MX and i1 : F1 → Md

X be the
two inclusions. Note thei has a liftingic : F → Mc

X, which is exactly then-equivalence
mentionned in the proof of the Corollary 1.3, commuting at the cohomology level with the
actions oft andT∞. Moreover,i has a liftingid = pd ◦ ic such thati = φ1 ◦ id .

Now we consider the induced morphisms on the various cohomology groups. It follows
from the general spectral sequences relating the cohomology ofMc

X andMc
X/〈td 〉, see [36,

p. 206], thatp∗d : Hk(Md
X)→ Hk(Mc

X) is surjective. It follows thatHk(Mc
X) is isomorphic

(as aQ-vector space endowed to the automorphismt) via i∗c to the sub MHS inHk(F ) given
by i∗d (Hk(Md

X)). Note thatid can be realized by a regular mapping andi∗d commutes with the
actions oft andT∞.

There is still one problem to solve, namely to show that this MHS is independent ofs,
unlike the MHSHk(F, Q) which depends in general ons, see the example below. To do
this, note thatφ∗1 ◦ i∗d (Hk(Md

X)) = i∗1(Hk(Md
X)) as MH substructures inHk(F1, Q). More

precisely,i∗1(Hk(Md
X)) is contained in the subspace of invariant cocyclesHk(F1, Q)inv, where



562 A. DIMCA AND A. LIBGOBER

inv means invariant with respect to the monodromy of the mappingf2 : M2 → S2 obtained
from f1 by deleting all the singular fibers, e.g.,S2 = C∗ \C(f1), whereC(f1) is the finite set
of critical values off1. We have natural morphisms of MHS

Hk(Md
X)→ Hk(M2)→ H 0(S2, R

kf2,∗Q) ,

where the first is induced by the obvious inclusion and the second comes from the Leray
spectral sequence of the mapf2, see [31, 5.2.17–18], [32, 4.6.2] and [33]. Moreover, the last
morphism above is surjective. On the other hand, there is an isomorphisms of MHS

H 0(S2, R
kf2,∗Q)→ Hk(F1, Q)inv,

showing that the latter MHS is independent ofs, see [35, Prop. 4.19]. It follows that
i∗1(Hk(Md

X)) has a MHS which is independent ofs. By transport, we get a natural MHS
onHk(Mc

X, Q), which clearly satisfies all the claims in Theorem 1.5 (ii).

EXAMPLE 5.1. Forf : C2→ C given byf (x, y) = x3+ y3+ xy, let Fs denote the
fiberf−1(s). Then the MHS onH 1(Fs, Q) (for Fs smooth) depends ons. Indeed, it is easy to
see that the graded pieceGrW

1 H 1(Fs, Q) coincides as a Hodge structure toH 1(Cs, Q), where
Cs is the elliptic curve

x3+ y3+ xyz− sz3 = 0 .

Moreover, it is known thatH 1(Cs, Q) andH 1(Ct , Q) are isomorphic as Hodge structures if
and only if the elliptic curvesCs andCt are isomorphic, i.e.,j (s) = j (t), wherej is the
j -invariant of an elliptic curve. This proves our claim and shows that the range in Corollary
1.6 is optimal.

For f : C2→ C given byf (x, y) = (x + y)3 + x2y2 it is known that the monodromy
at infinity operator has a Jordan block of size 2 corresponding to the eigenvalueλ = −1, see
[14], and this should be compared to our Corollary 1.7 above.

REMARK 5.2. A “down to earth” relation between the cohomology ofMc
X andMd

X

used above and obtained from the spectral sequence [36] can be described also using the
“Milnor’s exact sequence”, i.e., the cohomology sequence corresponding to the sequence of
chain complexes:

0→ C∗(Mc
X)→ C∗(Mc

X)→ C∗(Md
X)→ 0 .

This is a sequence of freeQ[t, t−1]-modules with the left homomorphism given by multipli-
cation bytd − 1. The corresponding cohomology sequence is

0→ Hi(Mc
X)

ι→ Hi+1(Md
X)→ Hi+1(Mc

X)→ 0 .(5.1)

The zeros on the left and the right in (5.1) appear because of the mentioned earlier trivi-
ality of the action oftd on cohomology. Another way to derive (5.1) is to consider the Leray
spectral sequence corresponding to the classifying mapMc

X → BS1 = C∗ corresponding to
the action oft. This spectral sequence degenerates in termE2 and is equivalent to the se-
quence (5.1). A direct argument shows that the image ofι coincides with the kernel of the cup
productH 1(Md

X) ⊗ Hi+1(Md
X)→ Hi+2(Md

X) (i.e., the annihilator ofH 1(Md
X)) which also

yields the MHS onHi(Mc
X) as a subMHS onHi+1(Md

X).
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REMARK 5.3. The above mixed Hodge structure plays a key role in the calculation of
the first non-vanishing homotopy group of the complements to a hypersurfaceV in Pn+1 with
isolated singularities (cf. [19]). More precisely, in this paper for eachκ = exp(2πk

√−1/d)

(with 0 ≤ k ≤ d − 1) and each pointP ∈ V ⊂ Pn+1 which is singular onV the ideal
AP,κ is associated (called therethe ideal of quasiadjunction). These ideals glue together into
a subsheafAκ ⊂ OP n+1 of ideals having at a singular pointP the stalkAP,κ andOQ at any
other pointQ ∈ Pn+1 \ Sing(V ). It is shown in [19] that for theκ-eigenspace oft acting on
F 0Hn((Pn+1 \ (V ∪H))c) one has

dimF 0Hn((Pn+1 \ (V ∪H))c)κ = dimH 1(Pn+1,Aκ (d − n− 2− k)) .

The right hand side can be viewed as the difference between actual and “expected” dimensions
of the linear system of hypersurfaces of degreed − n− 2− k, whose local equations belong
to the ideals of quasiadjunction at the singular points ofV . For the case of plane curves, see
also [12, 22].
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