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Abstract. We generalize and complete some of Maxim’s recent results on Alexander
invariants of a polynomial transversal to the hyperplane at infinity. Roughly speaking, and
surprisingly, such a polynomial behaves, both topologically and algebraically (e.g., in terms of
the variation of MHS on the cohomology of its smooth fibers), like a homogeneous polynomial.

1. Introduction and the main results. In the last twenty years there has been an
ever increasing interest in the topology and geometry of polynomial functions with a certain
good behavior at infinity, see for instance [2, 13, 26, 27, 29, 30, 34]. In particular, the point
of view of constructible sheaves was useful, see [6]. An interesting problem in this area is
to understand the Alexander invariants of the complements to affine hypersurfaces defined
by such polynomial functions. Various approaches, some algebro-geometric, using the super-
abundances of linear systems associated with sanigigls (cf. Remark 5.3 in the last section),
and others, more topological, using the monodromy representation were proposed (see for in-
stance [18, 19, 17, 9, 28]). Recently, Maxim [23] has considered a similar interplay but in a
more general framework, which includes hygmafaces with no restrictions on singularities
and a new and very natural condition of good behavior at infinity, that we describe now.

Let X be a reduced hypersurface in the complex affine s@acé with n > 1, given by
an equationf = 0. We say that the polynomial functigh : C**1 — C (or the affine hy-
persurfaceX) is co-transversal if the closurg of X in the corresponding complex projective
spacePt1 is transversal in the stratified sense to the hyperplane at infihity P7+1\ C"+1,
Consider the affine complememty = C"*1\ X, and denote by, its infinite cyclic cover-
ing corresponding to the kernel of the homomorphism

feimi(Mx) - m1(C) =2Z

induced byf and sending a class of a loop into its linking number with

Then, for any positive integét, the homology groug (M$,, K), regarded as a module
over the principal ideal domaing = K[z, t~11with K = Qor K = C, is called thek-
th Alexander module of the hypersurfa&e see [18, 9]. When this module is torsion, we
denote byAk(r) the corresponding-th Alexander polynomial o (i.e., the Ax-order of
Hi(MS, K)).

With this notation, one of the main results in [23] can be stated as follows.
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THEOREM 1.1. Assumethat f : C"t1 — Cisoo-transversal. Then, for k < n+1,the
Alexander modules Hy (M5, K) of the hypersurface X are torsion semisimple A x-modules
which are annihilated by ¢ — 1.

SinceM§, is an(n+1)-dimensional CW complex, one h&& (M5, K) = Ofork > n+1,
while H,11(M$, K) is free. In this sense, the above result is optimal. To get a flavor of the
second main result in [23] describing the relationship between the orders of the Alexander
modules and the singularities &f see Proposition 3.3 below.

Now we describe the more general setting of our paperiet= WyuU---U W, be a
hypersurface arrangement® for N > 1. Letd; denote the degree oF; and letg; = O be
a reduced defining equation fW]( in PV, Let Z c PN be a smooth complete intersection of
dimensiom +1 > 1 whichis not contained i#’, and letW; = W.nZfor j =0,...,m be
the corresponding hypersurface4nconsidered as subscheme defined by the principal ideal
generated by;. LetW = WoU- - -UW,, denote the corresponding hypersurface arrangement
in Z. We assume troughout in this paper that the following hold.

(H1) All the hypersurface$V; are distinct, reduced and irreducible; moreoWiéy is
smooth.

(H2) The hypersurfac®/ is transverse in the stratified senséte= W1 U --- U W,

i.e., if S is a Whitney regular stratification 6f, thenWy is transverse to any stratushe S.

The complementy = Z \ Wy is a smooth affine variety. We consider the hypersurface
X =UNVinU andits complemen?y = U\ X. Note thatMy = My, whereMy = Z\W.

We use both notations, each one being relatetiégoint of view (affine or projective) that
we wish to emphasize.

Recall that the construction of the Alexamaeodules and polynomials was generalized
in an obvious way in [9] to the case whé&it! is replaced by a smooth affine varidty The
first result is new even in the special situation considered in [23].

THEOREM 1.2. Assume that do dividesthesum 37, d;, say ddo = 37_; d;. Then
one has the following.
(i) Thefunction f : U — C given by

91(x) - - - gm (x)

Je= go(x)4

is a well-defined regular function on U whose generic fiber F' is connected.

(i) Therestriction f* : My — C* of f outside the zero fiber X hasonly isolated sin-
gularities. The affine variety U has the homotopy type of a space obtained from X by adding
anumber u of n-cells, i being equal to the sum of the Milnor numbers of the singularities of
I

Note that we need the connectednesg psince this is one of the general assumptions
made in [9]. The second claim shows that a mapping transversal at infinity behavesiige an
tame polynomial, see [7] for the definition and the propertie®gftame polynomials. These
two classes of mappings are, however, distinct, e.g., the defining equation of an essential
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affine hyperplane arrangement is alwayg-tame, but the transversality at infinity may well
fail for it.

The next result says roughly that an-transversal polynomial behaves as a homoge-
neous polynomial up-to (co)homology of degree- 1. In these degrees, the determination
of the Alexander polynomial oX in U is reduced to the simpler problem of computing a
monodromy operator.

COROLLARY 1.3. With the assumption in Theorem 1.2, the following hold.
() Let::C* — Chbetheinclusion. Then, R°f.Qy = Qc and, for each0 < k < n,
thereisa Q-local system £, on C* such that

R*£.Qu = uLly .

In particular, for each 0 < k < n, the monodromy operators of f at the origin Té‘ and at
infinity ng acting on H*(F, Q) coincide, and the above local system £y is precisely the local
system corresponding to this automorphism of HX(F, Q).

(i) Thereisa natural morphism H*(M¢,, Q) — H¥(F, Q) which is an isomorphism
for k < n and a monomorphismfor & = n, and which is compatible with the obvious actions.
In particular, the associated characteristic polynomial

detrld — 75) = detzld — TX)

coincides to the k-th Alexander polynomial Ax(X)(z) of X in U for k < n, and A, (X)(t)
dividesthe G.C.D(detzId — T%)), detzld — Ty)).

The next result can be regarded as beinglanto some results in [3], [20] and [11].
Indeed, in all these results, control over the singularitie’ aflong just one of its irreducible
components (in our case alofig) implies that certain local systems on the complendépt
are non-resonant. See [6, p. 218] for a discussion in the case of hyperplane arrangements.

THEOREM 1.4. Let g = go---gm = O be the equation of the hypersurface arrange-
ment W in Z and let F(g) be the corresponding global Milnor fiber given by ¢ = 1in the
coneCZ over Z. Then

H/(F(9),Q = H/(Mw, Q)
for all j < n 4 1. In other words, the action of the monodromy on H/ (F(g), Q) istrivial for
al j <n+ 1

The main result of the present paper is thiofeing extension of Maxim’s result stated
in 1.1 to our more general setting described above.

THEOREM 1.5. Assumethat do dividesthesum 37, d;, say ddo = Y d;. Then
the following hold.

(i) The Alexander modules Hy (M5, Q) of the hypersurface X in U are torsion semi-
simple Aq-modules which are annihilated by 1 — 1 for k < n + 1.

(i) Fork < n+1,the Alexander module H* (M, Q) of the hypersurface X in U hasa
canonical mixed Hodge structure, compatible with the action of A, i.e., the multiplication by
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t: HY(M$, Q) — H¥(M¢, Q) isa MHSisomorphism. Moreover, there is an epimorphism
of MHS p¥ : H¥(M{,Q) — H*(M$, Q), where M¢ is the d-cyclic covering of Mx and
pa Mg — M§’( istheinduced infinite cyclic covering.

Dually, fork < n + 1, the Alexander modulél, (M$,, Q) of the hypersurfac« in U
has a canonical mixed Hodge structure, which is compatible with the natural embedding of
H;(M¢, Q) as a subspace in the homology(M¢, Q).

The proof of the second claim in the above theorem, given in the last section, yields also
the following consequence, stating that our regular funcfidsehaves like a homogeneous
polynomial.

COROLLARY 1.6. Wth the above assumptions, the MHS on the cohomology
H*(Fy, Q) of a smooth fiber F; of f is independent of s for k < n. In this range, the
isomorphism HX(M$, Q) — H*(F;, Q) given by Corollary 1.3 (ii) is an isomorphism of
MHS.

MHS on Alexander invariants have already been considered in the case of hypersurfaces
with isolated singularities in [19] (the case of plane curves is considered also in [17]). The
above relation of this MHS to the one on the cohomology gradpéF;, Q) is new. Notice
that Corollary 1 in [17], combined with the main result in [8] and Theorem 2.10 (ii) in [9],
yields the following.

COROLLARY 1.7. Let f: C?> — C bea polynomial function such that X = f~1(0)
isreduced and connected. Then the action of 1 on H1(M$,, Q) is semisimple.

No example seems to be known where the actiaroofsomeH (M¢,, Q) is not semisim-
ple. On the other hand, it is easy to find examples, everyfoiIC> — C, where the mon-
odromy at infinity operatof* is not semisimple, see Example 5.1 below.

Note that, although in some important cases (see for instance [18]) the Hurewicz theorem
gives the identificationH,,(M$,Z2) = m,(Myx), the existence of a mixed Hodge structure
on the latter cannot be deduced for example from [25], since in [25] is considered only the
situation when the action of the fundamental group on the homotopy groups is nilpotent,
which in general is not the case fay,(Mx) and of courseMy is not quasi-projective in
general.

The proofs we propose below use various techniques. Theorem 2.2 in Section 2 is the
main topological result and is established via non-proper Morse theory as developed by Hamm
[16] and Dimca-Papadima [10]. The first prodf{a special case of) the first claim in Theorem
1.5in Section 4 is based on a version of Lefschetz hyperplane section theorem due to Goreski-
MacPherson and based on stratified Morse theory.

The proofs in Section 3 are based on Theorem 4.2 in [9] (which relates Alexander mod-
ules to the cohomology of a class of rank one local systems on the compléferdand on
a general idea of getting vanishing results via perverse sheaves (based on Artin’s vanishing
Theorem) introduced in [3] and developped in [6, Chapter 6].



REGULAR FUNCTIONS TRANSVERSAL AT INFINITY 553

Finally, the proofs in the last section use the existence of a Leray spectral sequence of a
regular mapping in the category of mixed Hodge structures (MHS for short) for which we refer
to Saito [31], [32] and [33]. To show the independence of the MHS on the Alexander module
H*(M¢, Q) on the choice of a generic fiber gf, we use a result by Steenbrink-Zucker on
the MHS on the subspace of invariant cocycles, see [35].

2. Topology of regular functionstransversal at infinity. The following easy remark
is used repeatedly in the sequel. The proof is left to the reader.

LEmmMA 2.1. If the hypersurface V in Z hasa singular locus of positive dimension,
i.e., dimVsing > 0, and Wo istransversal to V, then

dim Vsing = dim(Vsing N WO) +1.
In particular, the singular locus Vsing cannot be contained in Wo.

Now we start to prove Theorem 1.2. In order to establish the first claim, note that the
closureF of F is a general member of the pencil

() - g (x) — tgo(x)? =0

of hypersurfaces i. As such, it is smooth outside the base locus given by

g1(x) -+ g (x) = go(x) =0.

If d = 1, then forr large the above equation gives a smooth hypersurfacg timus a smooth
complete intersection iRV of dimensior: > 0, and hence an irreducible variety.

Ford > 2, a closer look shows that a singular point is located either at a point where
at least two of the polynomialg; for 1 < j < n vanish, or at a singular point in one of the
hypersurfaced; for 1 < j < n. It follows essentially by Lemma 2.1 that codiing(F)) >
3, and hencé is irreducible in this case as well. This implies tifats connected.

The second claim is more involved. Fix a Whitney regular stratificafidor the pair
(Z, V) such that¥y is transverse t&. LetS’ be the induced Whitney regular stratification of
CZ, the cone oveZ, whose strata are either the origin, or the pull-back of strata wfider
the projectionp : CZ \ {0} — Z. Then the functiorh = g1 --- g, : CZ — Cis stratified by
the stratificationsS’ on CZ and7 = {C*, {0}} onC, i.e.,h maps submersively strata &f
onto strata of7. Using Theorem 4.2.1 in [1], it follows that the stratificatiShsatisfies the
Thom condition(ay,).

Let Fp = {x € CZ; go(x) = 1} be the global Milnor fiber ofiy regarded as a function
germ on the isolated complete intersection singuldfty, 0). SinceWy is smooth, it follows
thatC Wy is also an isolated complete intersection singularity and hépéas the homotopy
type of a bouquet ofn + 1)-dimensional spheres. Lét(h, go) be the closure of the set of
pointsx € (CZ \ CV) such that the differentialé,» andd, go are linearly dependant. Here
and in the sequel we regafdand gp as regular functions on the cod¥Z, in particular we
have Kewd,h c T,CZ foranyx € CZ \ {0}. ThenI"(h, go) is thepolar curve of the pair of
functions(#, go). To proceed, we need the following key technical result.
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THEOREM 2.2. With the notation above, the following hold.
(i) dimI(h, go) <1
(i) Theset X1 of the singularities of the restriction of the polynomial 4 to Fo \ CV is
finite.
(i) Foranyr e S%, the unit circlein C, consider the pencil of intersections (Zs.t)seC
given by
Zsi =CZN{go=s}N{h=t}.

Then it contains finitely many singular members, and each of them has only isolated singu-
larities. Any intersection Zo ; is smooth.

(iv) Fp hasthe homotopy type of a space obtained from Fp N CV by adding (n + 1)-
cells. More precisely, for each critical value b € h(X1) and each small closed disc Dy
centered at b, the tube 2 ~1(D}) has the homotopy type of a space obtained from 2 ~1(c) for
¢ € 9Dy by adding a number w;, of (n + 1)-cells, u, being equal to the sum of the Milnor
numbers of the singularities of 2 =1(b).

PrROOF. Note first thatl"(h, gp) is C*-invariant. Hence, if dini"(k, go) < 1, then
I’ (h, go) may be the empty set, the origin or a finite set of line€A passing through the
origin.

Assume that contrary to (i) one has dings, go) > 1. Thenits image it¥ has a positive
dimension and hence there exist a cuéven Z along which the differentialg, 2 andd, go
are linearly dependant. Letbe a point in the non-empty intersectiGm V. It follows that
the lineL, in CN+1 associated t is contained inC Z and thatk vanishes along this line.
The chain rule implies thajfp has a zero derivative along,, and henceyp | L, is constant.
Sincego is a homogeneous polynomial and the lingpasses through the origin, this constant
is zero, i.e.go vanishes alongd. ,. Thereforep € Wo N V. If p is a smooth point iV, then
this contradicts already the transversality h V. If not, let S € S be the stratum containing
p. Wo th S implies that dimS > 0. Letg € L, be any nonzero vector, and lgtr) be an
analytic curve such that(0) = g andy (t) € I'(h, go) \ CV for0 < |t| < €. Thenfort # 0,
h(y (1)) # 0 and hence Kef, )i = Kerd,, )go. Passing to the limit for — 0, we get

T =limKerd,h = limKerd, ;g0 = T,(CWo) .
On the other hand, the Thom conditia,) implies that
T >T,S =T,(CS),

which yields7,Wo D TS, in contradiction toWp M S. The above argument shows that
dimI"(h, go) < 1 and hence completes the proof of (i).

To prove (ii), just note thadl, i | T, Fo = O for some poinyy € Fo \ CV impliesg €
I’ (h, go). Since any line through the origin intersedis in at mostdp points, the claim (ii)
follows.

The last claim of (iii) is clear by homogeneity. The rest is based on the fact that any line
through the origin intersecis= ¢ in finitely many points.
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To prove (iv) we use the same approach as in the proof of Theorem 3 in [10], based on
Proposition 11 in loc. cit. Namely, we start by setting= Fp and f1 = h and construct
inductively the other polynomialg, ..., fx+1 to be generic homogeneous polynomials of
degreedp as in [10, p. 485] (where generic linear forms are used for the same purpose). For
more details on the non-proper Morse theory used here we refer to Hamm [16]. a

We continue now the proof of the second claim in Theorem 1.2. There is a cyclic covering
Fo — U of orderdg which restrict to a similar covering

p:Fo\CV —>U\X

satisfying f = h o p. Using this and the claim (ii) above, we see that the restrictibn
U\ X — C*of f has only isolated singularities. L& be the cyclic group of ordedo.
ThenG acts onFp as the monodromy group of the functigg i.e., the group spanned by the
monodromy homeomorphismi— « - x with x = exp(27 /—1/dp). Sincedp|d, the function
h is G-invariant. Note that the above constructionfgffrom FoNCV by adding(n + 1)-cells
was done in &G-equivariant way. This implies by passing to tGequotients the last claim
in Theorem 1.2. Alternatively, one can embédnto an affine spac€™, using the Veronese
mapping of degredp, and then use in this new affine setting Proposition 11 in [10]. This
completes the proof of Theorem 1.2.

Note also that we hav&l*(U, Q) = H¥(Fp, Q)¢ = 0 fork < n + 1. In particular,
H*(X,Q) = Ofork < n, i.e., X is rationally a bouquet of-spheres. In factfo N CV can be
shown to be (homotopically) a bouquetrspheres and = Fop N CV/G.

PROOF OFCOROLLARY 1.3. The first claim follows from Proposition 6.3.6 and Ex-
ercise 4.2.13 in [6] in conjunction to Theorem 2.10 v in [9]. Indeed, to get the vanishing of
(R* £,Cy)o one has just to write the exact sequence of the tripleTo, F) and to use the
fact thatH*(U,C) = O fork < n + 1 as seen above. For the second claim, one has to use
Theorem 2.10 i and Proposition 2.18 in [9]. Indeed,febe a large disc if€ containing all
the critical values off : U — C inside. ThenC* is obtained fromt = C\ D by filling
in small discsD;, around each critical value # 0 of f. In the same wayMy is obtained
from E1 = f~1(E) by filling in the corresponding tube, = f~1(D,). It follows from
Theorem 2.2 (iv) that the inclusioA; — My is ann-equivalence. Now the total space of
restriction of the cyclic covering/y, — My to the subspacé&; is homotopy equivalent to
the generic fiber of f, in such a way that the action otorresponds to the monodromy at
infinity. In this way we get am-equivalenceF — M, inducing the isomorphisms (resp. the
monomorphism) announced in Corollary 1.3 (ii).

To get the similar statement for the monodromy oper@goive have to buildC* from a
small punctured disD; centered at the origin by filling in small diséy, around each critical
valueb # 0 of f. The rest of the above argument applies word for word.

The pull-back undep of the infinite cyclic coveringl — My is just the infinite
cyclic covering(Fp \ CV)¢ — Fp\ CV, and we get an induced cyclic coverip§ : (Fp \

CV)¢ — My of orderdp. Moreover, the action of the deck transformation graupf this
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covering commutes to the action of the infinite cyclic gradjand hence we get the following
isomorphism (resp. projection, embedding)aj-modules

(2.1) H"(M$, Q) = Hi(Fo\ CV)*, Q)6 < Hi((Fo\ CV), Q)
and
(2.2) HY(M$, Q) = H*((Fo \ CV)*, Q)¢ — H*(Fo\ CV)“, Q).

3. Perverse sheaf approach. In this section we prove the following weaker version
of Theorem 1.5, which is used in the pfaf Theorem 1.5, see Subsection 4.2.

PROPOSITION 3.1. Assume that do divides the sum } 7", d;, say ddo = 3_"_, d;.
Then the Alexander modules Hy (M¢,, C) of the hypersurface X are torsion for k < n + 1.
Moreover, let A € C* be such that A¢ 1. Then 1 isnot a root of the Alexander polynomials
Ar(t) fork <n+ 1.

The proof of this proposition we give below is close in spirit to the proofs in [23], and
yields with obvious minor changes (left to the reader) a proof for our Theorem 1.4.

According to Theorem 4.2 in [9], to prove Proposition 3.1, it is enough to prove the
following

PROPOSITION 3.2. Let A € C* be such that AY # 1, where d is the quotient of
Z;'?:ldj by do . If £, denotesthe corresponding local systemon My, then H,(Mw, L) =0
forallg #n+ 1

PrROOF. First we recall the construction of the rank one local sysfemAny such local
system onMy is given by a homomorphism fromy (M) to C*. To define our local system,
consider the composition

(M) — m(My,) — Hi(My,) =Z"Y/(do, ..., dn) — C¥,

where the first morphism is induced by the inclusion, the second is the passage to the abelian-
ization and the third one is given by sending the classes. ., e, corresponding to the
canonical basis a1 to A=?, A, ..., A, respectively. For the isomorphism in the middle,
see for instance [5, p. 102].

It is of course enough to show the vanishing in cohomology, H& (M , £,) = 0 for
allg #n+ 1. Leti : My — U andj : U — Z be the two inclusions. Then one clearly
hasz,[n + 1] € Per\My), the abelian category @-perverse sheaves on the variétyy,
see for details [6]. It follows that = Ri,.(L,[n + 1]) € PerU), since the inclusion is a
quasi-finite affine morphism. See [6, p. 214] for a similar argument.

Our vanishing result will follow from a study of the natural morphism

RjiF — Rj.F.
Extend it to a distinguished triangle
RjF — RjyF — G — .
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Using the long exact sequence of hypercohomology coming from the above triangle, we see
exactly as on [6, p. 214] that all we have to show is tHAtZ, G) = 0 for all k < 0. This
vanishing obviously holds if we show th@t= 0.

This in turn is equivalent to the vanishing of all the local cohomology groupgjof-,
namelyH™(M,, L,) = 0 for allm € Z and for all pointst € Wo. HereM, = My N B, for
B, a small open ball at in Z and L, is the restriction of the local systeg), to M,.

The key observation is that, as already stated above, the action of an oriented elementary
loop about the hypersurfad&, in the local system£, and., corresponds to multiplication
byv=21"¢#1.

There are two cases to be considered.

Case 1. Ifx € Wp\ V, thenM, is homotopy equivalent t&* and the corresponding
local systemZ, on C* is defined by multiplication by. Hence the claimed vanishings are
obvious.

Case 2. If x € Wp N V, then due to the local product structure of stratified sets cut
by a transversal), is homotopy equivalent to a produgB’ \ (V N B’)) x C*, with B’ a
small open ball centered atin W, and the corresponding local system is an external tensor
product, the second factor being exacfly. The claimed vanishings follow then from the
Kinneth Theorem, see [6, 4.3.14]. a

A minor variation of this proof gives also Theorem 1.4. Indeed/let ZT:O d; and
let « be aD-root of unity,a # 1. All we have to show is thal#?(Mw, L,) = 0 for all
q # n + 1, see for instance [6, 6.4.6].
The action of an oriented elementary loop about the hypersuwade the local systems
L, and in its restriction€, as above corresponds to multiplicationdy# 1. Therefore the
above proof works word for word.
One has also the following result, in which the bounds are weaker than those in Maxim’s

Theorem 4.2 in [23].

PROPOSITION 3.3. Assume that do divides the sum »°""_, d;, say ddo = _7_;d;.
Let » € C* be such that AY = 1 and let o be a non negative integer. Assume that 2 is not
aroot of the g-th local Alexander polynomial A, (¢), of the hypersurface singularity (V, x)
foranyg < n+ 1— o and any point x € W1, where W1 is an irreducible component of W
different from Wo. Then A isnot a root of the global Alexander polynomials A, () associated
toXforanyg <n+1-o.

To prove this result, we start by the following general remark.

REMARK 3.4. If S is ans-dimensional stratum in a Whitney stratification fsuch
thatx € S andWjy is transversal td/ at x, then, due to the local product structure, théh
reduced local Alexander polynomial, (¢), is the same as that of the hypersurface singularity
V N T obtained by cutting the gerrfV, x) by an(n + 1 — s)-dimensional transversal.

It follows that these reduced local Alexander polynomials(r), are all trivial except for
g < n —s. Itis a standard fact that, in the local situation of a hypersurface singularity, the
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Alexander polynomials can be defined either from the link or as the characteristic polynomials
of the corresponding the monodromy operators. Indeed, the local Milnor fiber is homotopy
equivalent to the corresponding infinite cyclic covering.

Leti : My — Z\ Wrandj : Z\ W1 — Z be the two inclusions. Then one has
Ly[n + 1] € PerMMwy) and hencer = Ri.(L,[n + 1]) € Per\Z \ W1), exactly as above.
Extend now the natural morphisRy,F — Rj.F to a distinguished triangle

RjiF — Rj:F — G.

Applying Theorem 6.4.13 in [6] to this situation, and recalling the above use of Theorem 4.2
in [9], all we have to check is th&i " (M, L,) = 0 for all pointsx € Wy andm <n+1—o.
Forx € Wy \ Wo, this claim is clear by the assumptions made. The case wheii'; N Wp
can be treated exactly as above, using the product structure, and the fact that the monodromy
of (W1, x) is essentially the same as that(®; N Wp, x), see our remark above.

This completes the proof of Proposition 3.3.

REMARK 3.5. Here is an alternative explanation for some of the bounds given in
Theorem 4.2 in [23]. Assume thatis a root of the Alexander polynomial;(¢) for some
i < n+ 1. Then it follows from Proposition 3.3 that there exist a paine W1 and an
integer/ < i such thati is a root of the local Alexander polynomial;(t),. If x € S,
with S a stratum of dimensiom, then by Remark 3.4, we have< n — s. This provides
half of the bounds in Theorem 4.2 in [23]. The other half comes from the following re-
mark. Since\ is a root of the Alexander polynomial; (1), it follows that H: (M, L) # O.
This implies via an obvious exact sequence tHat"~(Wy1, G) # 0. Using the standard
spectral sequence to compute this hyperocoblogy group, we get that some of the groups
HP(Wy, Hi="~1=PG) are non zero. This can hold only jf < 2dim(SuppH~"~177G).
SinceH!~"~1=rG, = HI=P(M,, L,), this yields the inequality = i — [ < 25 in Theorem
4.21in [23].

REMARK 3.6. Leti e C* be such that? = 1, whered, the quotient oiZ’;?:l d; by
do, is assumed to be an integer. L&t denotes the corresponding local system\éi. The
fact that the associated monodromy about the diviBgis trivial can be restated as follows.
Let £ be the rank one local system ofiy = Z \ V associated ta. Letj : My — My be
the inclusion. Then

L, =i

Let moreovelL! denote the restriction t6} to the smooth divisoWy \ (V N Wp). Then we
have the following Gysin-type long exact sequence

o= HY(My, L)) — HY(Mw, L£3) — HI7Y(Wo \ (V N Wo), LY)
— H Y (My, L) — -

exactly asin [6, p. 222].
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Since the cohomology groupgg*(My, £;) and H*(Wp \ (V N Wo), L) are usually
simpler to compute thal *(Myw, L£,.), this exact sequence can give valuable information on
the latter cohomology groups.

4. Semisiplicity results. In this section we prove the first claim in our main result
Theorem 1.5.

4.1. First proof (the casWy = H is the hyperplane at infinity iR”*1). Leti/ be a
sufficiently small tubular neighborhood of the hyperplaheat infinity. We claim the follow-
ing:

(i) mU\HUNVNOU))) — 7;(My) isanisomorphismforki <n — 1.

@iy 7, U\NHUWVNU))) — m,(Myx) is surjective

First notice that, as a consequence of transversality ahd H, we have ars*-fibration
U\NHUV NU)) - H\ (HNV).Indeed, iff (xo, ..., xn+1) = 0is an equation o¥ and
xo = O is the equation fof, then the pencil f (xo, . .., xy+1) + f (0, x1, .. ., x,+1) defines
a deformation o to the cone oveV N H. SinceV is transversal td, this pencil contains
an isotopy o€/ N V into the intersection df with the cone.

Let Y denote the above cone Rt overV N H. The obviousC*-bundleP”*+1\ (Y U
H) — H \ (H N V) is homotopy equivalent to the abogé-bundlel/ \ (H U (V NU)) —
H\ (HNV). We can apply to boty andP"+1\ (Y U H) the Lefschetz hyperplane section
theorem for stratified spaces (cf. [15, Them 4.3]), using a generic hyperplafé. Thus for
i <n — 1 we obtain the isomorphisms:

mi(Mx) = m;(Mx N H') = 7;(P" 1\ (Y UH)) N H') = 7;(P"*1\ (Y U H))

(the middle isomorphism takes place since, fbrnear H, both spaces are isotopic). This
yields (i).

To see (ii), let us apply Lefschetz hyperplane section theorem to a hyperglabe-
longing tol{/. We obtain the surjectivity of the map given by the following composition:

mi(H'\ (VUH)) = 7i(U\ (H UV NU))) — mi(Mx).

Hence the right map is surjective as well.

The relations (i) and (ii) yield thaMx has the homotopy type of a complex obtained
fromU \ (H U (V NU)) by adding cells having the dimension greater than or equaktd..
Hence the same is true for the infinite cyclic covers defined as in Section M foand
U\ (H U (VNU)), respectively. Denoting b/ \ (H U (V NU)))¢ the infinite cyclic cover
of the latter, we obtain that

(4.1 Hi(U\UN(VUH)), Q) — Hi(My, Q)

is surjection fori = n and the isomorphism far < n. Since the maps above are induced by
an embedding map, they are isomorphisms or surjectiorsgefmodules.
As it was mentioned above, sinééis transversal td4, the spacé/ \ (U N (V U H))
is homotopy equivalent to the complement in the affine space to the cone over the projective
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hypersurfacé/ N H. On the other hand, the complementdfit! to the cone ovel N H is
homotopy equivalent to the complementto) $2*+1 in §2'+1, wheres?*+1 is a sphere about

the vertex of the cone. The latter, by Milnor’s theorem [24], is fibered over the circle. Hence
the fiber of this fibration, as the Milnor fiber of any hypersurface singularity, is homotopy
equivalent to the infinite cyclic cover 6" +1\ v N §2*+1 ~ Cc"*+1\ v, Asin Section 1, this
cyclic cover is the one corresponding to the kernel of the homomorphism of the fundamental
group given by the linking number. In particular, since a Milnor fiber is a finite CW-complex,
H;(U\ UN(VUH)), Q) is afinitely generate@-module and hence a torsiotp-module.
Moreover, the homology of the Milnor fiber of a cone and hefgé/ \ (U N (V U H))¢, C)

is annihilated by¢ — 1, since the monodromy of(0, x1, ..., x,+1) = 1 is given by mul-
tiplication of coordinates by a root of unity of degrdeand hence has the order equal to
d. Therefore it follows from the surjectivity of (4.1) that the same is trueH¢(Ms,). In
particular,H; (M) is semisimple.

4.2. Second proof (the general case). Using Equation 2.1 and Proposition 3.1, it suf-
fices to show that the Alexander invariatit = H ((Fp\ CV)¢, Q) of the hypersurfacé = 0
in the affine varietyFy is a torsion semisimplelo-module killed bys¢ — 1 for some integer
e. Indeed, once we know thatis semisimple onH(M¢,, Q), Proposition 3.1 implies that
4 =1.

The fact thatAy is torsion follows from Theorem 2.10 v in [9] and the claim (iv) in
Theorem 2.2. Moreover, Theorem 2.10 ii in [9] gives for< n, an epimorphism ofig-
modules

4.2) Hi(F1,Q) — Ag,

whereF; is the generic fiber ok : Fp — C and: acts onHy (F1, Q) via the monodromy at
infinity. By definition, the monodromy at infinity o : Fop — C is the monodromy of the
fibration over the circlé}e, centered at the origin and of radis>> 0, given by

(xeCZ; fox) =1, |h(x)| =R} — Sp., x> h(x).
Using a rescaling, this is the same as the fibration
(4.3) (xeCZ; fox)=¢, |[h(x)|=1} — s, x> hx),
where O< ¢ << 1.
Let R1 >> 0 be such that
(xeCZ; |x| <Ri, |h(x)| =1 —> St, x— h(x)

is a proper model of the Milnor fibration é¢f : CZ — C. This implies that all the fibers
{h = 1} fort € ST are transversal to the link = CZ N S,zi,]l"“.

A similar argument, involving the Milnor fibration @f : CWy — C shows that all the
fibers{h = 1} fort € ST are transversal to the linkg = CWp N Sf{l‘“rl. Using the usual
Sl-actions on these two links, we see that transversality for all figees ¢} forr € S1is
the same as transversality for = 1}. But saying thafs = 1} is transversal tX is the
same as saying thaly 1 h K. By the compactness &, there is & > 0 such thatZ; 1 h K
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for |s| < 8. Using the aboves!-actions on links, this implies thad; 1 h K for |s| < § and
te St

Chooses small enough such that the open di3g centered at the origin and of radifis
is disjoint from the finite set of circleg(I" (h, go) N h~1(S1)). Using the relative Ehresmann
Fibration Theorem, see for instance [5, p. 15], we see that the map

{x€CZ: |x] < R1 fox) <8, |h(x)| =1} > Ds x ST, x> (go(x), h(x))
is a locally trivial fibration. It follows that the two fibrations
(x eCZ; |x| <R1, folx)=68/2, lh(x)|=1} » S*, x> h(x)

and

{xeCZ; |x| < R1, folx) =0, |h(x)|=1} —> st, x— h(x)
are fiber equivalent. In particular, they have the same monodromy operators. The first of these
two fibration is clearly equivalent to the monodromy at infinity fibration 4.3. The homogeneity
of the second of these two fibrations implies that its monodromy operator hasecrdétl.
This completes the proof of the semisimplicity claim in the general case.

5. Mixed Hodge structures on Alexander invariants. This proof involves several
mappings and the reader may find useful to draw them all in a diagram.

Since the mapping : Mx — C* has a monodromy of ordef (at least in dimensions
k < n, see Corollary 1.3 and Theorem 1.5 (i)), it is natural to consider the base change
¢ : C* — C* given bys > s9. Let f1 : M4 — C* be the pull-back off : Mx — C* under
¢, and letp; : Mg’( — My be the induced mapping, which is clearly a cydifold covering.

It follows that the infinite cyclic covering. : M§ — My factors throughv¢, i.e., there is
an infinite cyclic coveringpy : M5 — M§’( corresponding to the subgrowd) in (r), such
thatgy o ps = pe. SinceM% = M /(t?), it follows thatr induces an automorphisnof M¢

of orderd.

Let F; = fl_l(s) be a generic fiber ofi, with |s|] >> 0. Theng¢1 induces a regular
homeomorphismf, — F = f~1(s%). Leti : F — Mx andiy : F1 — M% be the
two inclusions. Note the has a liftingi. : F — MY, which is exactly the:-equivalence
mentionned in the proof of the Corollary 1.3, commuting at the cohomology level with the
actions oft andT. Moreover,i has a liftingiy; = pg o i. such that = ¢1 0 i4.

Now we consider the induced morphisms on the various cohomology groups. It follows
from the general spectral sequences relating the cohomolog},oand M;‘(/(td), see [36,

p. 206], thatp’ : H*(M%) — H*(M$) is surjective. It follows tha#* (M) is isomorphic
(as aQ-vector space endowed to the automorphiywia i} to the sub MHS inHk(F) given

by i;,"(H"(Mg’()). Note thati; can be realized by a regular mapping @ahpdommutes with the
actions oft and 7.

There is still one problem to solve, namely to show that this MHS is independent of
unlike the MHS H*(F, Q) which depends in general on see the example below. To do
this, note tha; o i’ (H*(M$)) = if(H*(M$)) as MH substructures itf* (F1, Q). More
precisely;} (H*(M%)) is contained in the subspace of invariant cocyéésF1, Q™ , where
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inv means invariant with respect to the monodromy of the mapgingM, — S, obtained
from f1 by deleting all the singular fibers, e.ga = C*\ C(f1), whereC( f1) is the finite set
of critical values off1. We have natural morphisms of MHS

H*ME) — HY(Mp) — HO(S2, R* 2.,.Q),

where the first is induced by the obvious inclusion and the second comes from the Leray
spectral sequence of the m#p see [31, 5.2.17-18], [32, 4.6.2] and [33]. Moreover, the last
morphism above is surjective. On the other hand, there is an isomorphisms of MHS

HO(S2, R¥ £2,..Q) — HY(F1, Q™

showing that the latter MHS is independent of see [35, Prop. 4.19]. It follows that
if(H*(M%)) has a MHS which is independent of By transport, we get a natural MHS
on H*(M¢, Q), which clearly satisfies all the claims in Theorem 1.5 (ii).

EXAMPLE 5.1. Forf :C2? — Cgiven by f(x, y) = x3 + y3 + xy, let F; denote the
fiber f~1(s). Then the MHS orH1(F;, Q) (for F; smooth) depends on Indeed, itis easy to
see that the graded piece;” H1(F;, Q) coincides as a Hodge structurefid (C,, Q), where
C; is the elliptic curve

x3+y3+xyz—sz3=0.
Moreover, it is known thatf1(Cy, Q) and H1(C,, Q) are isomorphic as Hodge structures if
and only if the elliptic curves"; andC; are isomorphic, i.e.j(s) = j(t), wherej is the
j-invariant of an elliptic curve. This proves our claim and shows that the range in Corollary
1.6 is optimal.

For f : C2 — Cgiven by f(x, y) = (x + )2 + x2y2 it is known that the monodromy
at infinity operator has a Jordan block of size 2 corresponding to the eigenvatuel, see
[14], and this should be compared to our Corollary 1.7 above.

REMARK 5.2. A “down to earth” relation between the cohomologyM§ and M¢
used above and obtained from the spectral sequence [36] can be described also using the
“Milnor’s exact sequence”, i.e., the cohomgly sequence corresponding to the sequence of
chain complexes:

0— Cu(M§) — Co(M§) — Co(ME) — 0.
This is a sequence of fré@{z, r~1]-modules with the left homomorphism given by multipli-
cation byr? — 1. The corresponding cohomology sequence is
(5.1) 0— H'(M$) > HY ML) - HY (M) — 0.

The zeros on the left and the right in (5.Ppear because of the mentioned earlier trivi-
ality of the action of¢ on cohomology. Another way to derive (5.1) is to consider the Leray
spectral sequence corresponding to the classifying Miap— BS1 = C* corresponding to
the action oft. This spectral sequence degenerates in tEpnand is equivalent to the se-
quence (5.1). A direct argument shows that the imageoincides with the kernel of the cup
productH (M%) @ H'TY(ME) — HIT2(MY) (i.e., the annihilator of#1(M¢)) which also
yields the MHS or# ! (M) as a sSubMHS o' F1(M4).
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REMARK 5.3. The above mixed Hodge structure plays a key role in the calculation of
the first non-vanishing homotopy group of the complements to a hypersuffacB” 1 with
isolated singularities (cf. [19]). More precisely, in this paper for each exp(2rk~/—1/d)

(with 0 < k < d — 1) and each poinP € V c P"*! which is singular onV the ideal
Ap . is associated (called thettae ideal of quasiadjunction). These ideals glue together into
a subsheafl, C Op.+1 Of ideals having at a singular poitthe stalk4p  andOp at any
other pointQ € P"*1\ Sing(V). It is shown in [19] that for the -eigenspace of acting on
FOH"((P"+1\ (V U H))) one has

dim FCH" (P \ (V U H))*), = dimHY(P"Y, Ac(d —n—2—k)).

The right hand side can be viewed as the diffiersbetween actual and “expected” dimensions
of the linear system of hypersurfaces of degfee n — 2 — k, whose local equations belong
to the ideals of quasiadjunction at the singular point¥ of-or the case of plane curves, see
also [12, 22].
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