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SYMMETRY IN THE FUNCTIONAL EQUATION
OF A LOCAL ZETA DISTRIBUTION
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Abstract. We examine the structure of the coefficient matrix in the functional equation
of the zeta distribution of a self-adjoint prehomogeneous vector space over a non-Archimedean
local field. Under a restrictive assumption on the generic stabilizers, we show that this matrix
is block upper-triangular with almost symmetric blocks; this generalizes a result of Datskovsky
and Wright for the space of binary cubic forms.

We call a matrixA almost symmetric if there is a non-singular diagonal matrX such
thatD A is symmetric. In the situations that concern us hdris,a matrix of rational functions
and we require the entries ib to be constant. Datskovsky and Wright [2] showed that the
I'-matrix in the functional equation for the zeta distributions on the space of binary cubic
forms over a local field is almost symmetric. Later Datskovsky [1] wrote ouf #meatrix for
the space of binary quadratic forms over a field of odd residual characteristic explicitly (an
earlier computation of Sato [15] gave the matrix in an elegant form) and thus revealed that,
while it is not almost symmetric, it does have a block upper-triangular structure with almost
symmetric blocks. (Care is required in interpreting Datskovsky’s expression, since he uses
the transpose of the standardmatrix.)

Our purpose here is to understand these facts in a unified way and to generalize them.
Although our generalization hasrong hypotheses, it does apply to several interesting spaces
for which thel"-matrix is as yet unknown. The additional information it provides might prove
helpful in determining thd"-matrices for these spaces. The origin of the symmetry in the
functional equation is the assumed self-adfjoess of the underlying space. The true scope
of this passage from self-adjointness to symmetry is presently hard to judge because the list
of known I"-matrices for self-adjoint spaces with mdhan one orbit is rather short. Further
computations of explicit examples in order to gain insight into this and other open questions
about thel"-matrix would be very welcome. It is possible that the phenomenon discussed
here is widespread or even completely general, but, if so, a less naive method of proof will
have to be found.
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Let F be a non-Archimedean local field of characteristic zero with finite residue class
field of cardinalityg. Denote by - | the normalized absolute value éh Let V be a finite-
dimensionalF-vector space. Fay € GL(V) andA C V a lattice, define

m(g; A) = sup ([€"(g&)]).
E€A E*eA*
whereA* C V*is the dual lattice. We hava(g; A) > 0 andm(u1guz; A) = m(g; A) for
all ug, up € Aut(A); in particular,g — m(g; A) is continuous. Note that §1,...,£, is a
basis forA andé;, ..., &, is the dual basis, then

m(g; A) = lg,l?i(n(lé,-*(géj)l) :

If ¢ andyr are real-valued functions on a sgtthen we shall say that and+ areof the
same order if there are positive constantés andcz such that1¢(x) < ¥(x) < c2¢(x) for
alx e S.

LEMMA 1. Let A1, Ao and A belatticesin 'V, g1, g € GL(V) and U1, U2 C GL(V)
be compact subgroups of GL(V'). Then the following hold.
(1) Wehave

m(gy Y A" tm(gr; A) < m(grga; A) < m(gr; Aym(ga; A).

(2) Thefunctions g — m(g; A1) and g — m(g; A2) are of the same order.
(3) Thefunctions g — m(g; A) and

g sup  m(uigup; A)
u1€lUq,upels

are of the same order.

PrROOF. Clear. |

For a latticeA c V andg € GL(V) we define

b(g: A) = maxlog, (m(g; A)),log, (m(g~": A))}.
It follows from (1) of Lemma 1 that
b(g1g2; A) < b(g1; A) + b(g2; A)

forall g1, go € GL(V).

LEMMA 2. Let A bealatticein V and X1 < X2 real numbers. Then the set

{g € GL(V) | ¢** = m(g: A) < ¢*?)

is compact.

PROOF. Choose a basis fof, give GL(V) the corresponding integral structure and let
K = GL(V)(O). Let A be the diagonal torus with respect to the chosen basis. The claim
follows from the Cartan decomposition G¢) = K AK and (3) of Lemma 1. |
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Now let G ¢ GL(V) be a closed subgroup of GV). (Here, and in the following
discussion, topological notions are relative to the classical topology @W5)LFor a lattice
AinV and a real numbex > 1 define

GIX; Al={9€Glqg ¥ =m(g; ) =¢*}.
By Lemma 2, this is a compact subset®f
LEMmMA 3. Forall g € G we have
G[X — b(g; A); Al C gG[X; A] C G[X + b(g; A); A].
ProoF. This follows at once from the definitions and (1) of Lemma 1. O

We call a subgroug of G a TC-group (short for torus-compact-group) H has com-
muting subgroupgl andU such thatA is an F-split torus,U is compact andiU has finite
index in H. A TC-group is automatically closed and unimodularAlis a TC-group, then we
write » (H) for the rank of any torug as in the definition. This number is independent of the
choice ofA. The class of TC-groups includes all algebraisubgroups o whose identity
component is a (not necessarily split) torus, as well as all compact subgroGps of

PROPOSITION 4. Let H C G bea TC-group and v a non-zero Haar measure on H.
Let A bealatticein V and ¢ € G. Then there are non-zero constants ¢(H, v) and C such
that

W(gGIX; AIN H) — c(H,v)X" B < C[1+ |b(g; A" x" =L

The constant c(H, v) depends only on theindicated data. The constant C dependsonly on H,
vand A.

PROOF If Hy C H is a subgroup of finite index i/, then
v(gG[X; AINH) = Z v(h"1¢G[X; AN Ho).
heH/Hy
Now

Ib(g; A)| — [b(h; )| < |b(h~g; )| < |b(g; )| + b(h; A)|

and so if we can prove the claim witHg in place of H, then the original claim will follow.
We may thus assume that = AU, whereA C H is an F-split torus,U C H is compact
andA andU commute.

Note the basic inequality X +s)" — X"| < X" ~1(1+|s|)", valid for X > 1,r a natural
number, and al{. Suppose thatg is a lattice inV'. It follows from (2) of Lemma 1 that there
is a constant, depending only omt and Ap, such that

G[X —s; Agl C G[X; A] C G[X + 535 Ao] .

Thus if we could verify the claim forn g, then the claim forA would follow by using the basic
inequality. It therefore suffices to use any convenient choicé.dBy appealing to Lemma 3
and using the same argument, it also suffices to verify the claim wiethe identity.
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We may decompos¥ into the direct sum of the eigenspaces associated with various
characters ofi. Each of these eigenspaces is stable ubdand hence we may findla-stable
lattice in each eigenspace. The direct suty, of these lattices is a lattice ivi. It is stable
underU and there is a basis ofp on whichA acts diagonally. The mappx U — H given by
multiplication has fibers of constant finite volume and hence there are Haar megsared
vy on A andU, respectively, such that, (U) = 1 and (in the obvious sense)= vs ® vy.
Note also thain(au; Ag) = m(a; Ag) foralla € A andu € U. We are thus reduced to
verifying that there is a constant> 0 such thav4 (A[X; Ag]) = c X" ) 4+ o(x"(H)—1),

Letr = r(H) be the rank o4, fix a basisy, .. ., e, for Ag on whichA acts diagonally
and lety, ..., x, be the characters of such thatie; = x;(a)e; for eachi. We are seeking
to show that the 4 -volume of the set

A[X; Aol ={a e A | g% < |xi(a)| < q* foralli)

has the required form as a functionXf Choose coordinates, . . ., a, on A and write

r
— dj
xia)=[]4;
j=1

for 1 <i < n. Note that, by constructiom, € A is the identity if and only ify; (a) = 1 for
1 <i < n. Itfollows that the right kernel of the matrix/;;] is {0}, and so the matrikd;;] is
of rankr. The volume ofA[X; Ag] is proportional, by a constant depending onlywgn to
the number oZ"-points in the set

BIX]={zeR|-X <) dyjz; < Xforalli}.
j=1
The setB[1] is a bounded convex subset Rf with non-empty interior and boundary con-
tained in a union of proper affine subspaces. It is well-known that the numEérpdints in
B[X] = XB[1]is then vo[B[1]) X" + O(X"~1) with vol(B[1]) > 0, as required. O

The significance of the class of TC-groups is that, wikis such a group, the leading
term in the asymptotics of(¢G[X; A1 N H) asX — oo is independent of. This property
does not extend to more general subgroups. IndeéfljsfGL(2) embedded in the upper left
hand corner o5 = GL(3), A is the standard lattice ifi®, w € F is a uniformizer and

1 00
gn=1 0 1 0
o™ 0 1

form > 0, then there is a consta@it> 0, depending only og andv, such that
V(gnGIX; AINH) ~ Cq " Xq?X .

In order to proceed further, we position ourselves between the settings of Igusa [4] and
Sato [15], the two main authorities for the functional equation of the zeta distribution of a
prehomogeneous vector space over a non-Archimedean local field.
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We use bold letters for varieties defined o¥efwhich may be identified with their sets
of F-points if desired) and the corresponding non-bold letters for their seffspafints. Let
(G, p, V) be a prehomogeneous vector space defined Byeiith singular set. We assume
that G is connected and reductive and that the spacE-regular. LetSy,..., S, be the
irreducible components &overF, P1, ..., P, € F[V] be relative invariants defining them,
andyai, ..., x, the corresponding rational character€®fThese characters generate a free
abelian groupX (p, F) of rankn which contains the charactgp(g) = det(p(¢))2. We may
thus write

n
X0 = l_[X,' '
i=1

for some uniquely determined row vectoe= (1, ..., k,) € ((1/2)2)". Let

n
Py = l—[ PiZKi ,
i=1

a non-zero relative invariant associated to the charagtelt is known that the locu®, = 0
is set-theoretically equal to the singular Sésee [8], Proposition 2.26).

We assume that the prehomogeneous vector space under consideratiselfisadjoint.
That is, there is a non-degenerdtebilinear form (-, -) onV and an anti-automorphism
g — ¢* of period two ofG over F such thafp(¢)x, y) = (x, p(¢")y). We assume thdt, -)
is either alternating or symmetric and denote its signjthat is,(x, y) = n{y, x). Of course,
if V is irreducible as a representation@fthen this assumption is automatically fulfilled, but
it need not be otherwise. We further assume #@f) contains the homothety — nx of
V. There is necessarily some e GL(V) such thato(¢') = J'p(g)J ! and consequently
x0(g") = xo(g). We remark that the transpose appearing in this equation is ambiguous, as is
the mapJ, since they depend upon a choice of basisifolLater on, when we make further
use of this equation, we shall make a convenient choice of basis. The represent&ion of
V given byg — p(¢g™") is equivalent to the contragrediepit. It follows from this and the
assumption thatG, p, V) is F-regular that the charactegg given by x;*(9) = x;(¢™*) liein
X(p, F) ([15], Lemma 1.1). Thus so too do the charactgrslefined byg — x;(g) and we
may find a matrixV = [u;;] € GL(n, Z) such that

n
.
i=T1x"
j=1

for 1 < i < n. Directly from the definition we obtaitr? = I, and from the fact thaty = xo
we obtainkU = «.

We also assume thé, p, V) satisfies Sato’s condition (A.2) ([15], p. 474). This condi-
tion states tha decomposes into a finite number of orbits un@eand that ifO is a G-orbit
in S, then there is somg € X (p, F) — {1} such thatO is aG“-orbit, whereG*) denotes
the kernel ofy. An equivalent formulation of the second part of the assumption is that for any
x € Sthereis someg € X(p, F) — {1} such thaty is non-trivial on the identity component
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of Gy. We require this assumption only because tusrently a hypothesis for the functional
equation (Proposition 5 below). If the functional equation is subsequently established under
less restrictive hypotheses, then our result will correspondingly generalize.

With these assumptions in place, we are ready to introduce the remainder of the standard
notation that we shall require below. The et S is the union of finitely-manys-orbits. To
verify this well-known fact, note thak is a non-Archimedean local field with finite residue
class field, and hence of “type (F)” in the terminology of Serre ([17], p. 143). The required
finiteness statement then follows from the theorem stated on p. 146 of [17]. We enumerate the
orbitsinV — S asO041, ..., O; and fix a base point, € O, for 1 < b < [. Denote byG, the
isotropy subgroup af;, and recall thaG,, is reductive.

Let N = ker(p). If H is any subgroup of; that containsV, then letH = H/N.
The groupG may be identified with a closed subgroup of G1), and we shall make this
identification below. Note that th@-orbits inV — S coincide with theG-orbits inV — S, and
that the characterg,, . .., x, and the mag — ¢' pass down ta. We shall abuse notation
by retaining the same symbols for these object&as we have been using 6h

Fix a non-zero Haar measufe on V and define a measukeonV — S by

dr(y) = |Po(y)|"Y2 . dy.

This measure i§-invariant. Sinc&G /G, ~ O, there is a measure, on G/G, such that

1) /G ¢(p(f'})xa)dua(£})=/ @ (y)dr(y)

a a

forall ® € L1(0,). Fix a non-zero Haar measugeon G. Then there is a Haar measure
on G, such that

(2) / f(9du(g) =/~ | f(gh)dva(h)dpa(g)
G G/Ga VGa
forall f € L1(G).
Let 2(F*) be the group of continuous homomorphisms frani to C*. If w €
Q(F*)", x € V andg € G, then define

o(P(x) = [ [wi(Pi(x)
i=1
and
o(x () =[] @i Gi(9))
i=1

so thatw (P (p(g9)x)) = w(x(g9))w(P(x)). The involution: may be transported t& (F*)"
by defininge' = (o, ..., ®},), where

n
. Uij
oy =[]o".
i=1
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With these definitions we have (x (¢9)) = w(x(¢")). We also set
wo = (| : IKlvc"sl ° IK”)

and note that the equatia/ = « implies thatw, = wo.
Let8(V) be the space of Schwartz-Bruhat functionsiariet ¢ be a non-trivial additive
character off and define a Fourier transform 8aV) by

d(y) = fv D (xX) Y ((x, y))dx .

To the orbitO, is associated a meromorphic family of distributions given by
Zow.9) = [ 0PONOOIE)
Oq

forw € 2(F*)" and® € $(V) when the integral is absolutely convergent, and by meromor-
phic continuation otherwise. Note that the integral defiriggy, @) is absolutely convergent
whenréw;) > «; foralll < j <n.

Let @ be the characteristic function of a compact open setand (| - |1, ..., | - |*).
Then itis well known tha¥, (ws, @) is a rational function in the variables */. This rational
function is regular at«y, ..., k,) and hence also in some neighborhood of this point. The
integral definingZ, (ws, ®) expands formally to the product of a Laurent monomial and a
Taylor series in the variables ™/ with positive coefficients. By applying the usual “Landau
Lemma” argument to this series (see the proof of Lemma 1 on p. 314 of [13], for example),
we conclude that there are constants< «;, depending o, such that the integral defining
Z,(ws, @) converges absolutely for@g) > c;. The characteristic functions of compact open
sets spag(V), and hence we may extend this conclusion t@alt S(V). Anyw € 2 (F*)"
is bounded componentwise by the charaetewith s = re(w). Thus we may further extend
the conclusion to say that there afe< «; such that the integral definirigy, (w, ) converges
absolutely on the set(®@;) > c;.

The zeta distribution®,, enjoy the following functional equation with respect to the
Fourier transform.

ProPOSITION 5. Thereisamatrix I" (w) = [I,5(w)] of rational functionson 2 (F*)"
such that

1
Za(w, D) = Tup(@) Zy(wow ™, D)
b=1

as meromor phic functions of w for all @ € S(V).

PROOF. This is a special case of Sato’s Theorgpn[15], p. 477, translated into our
current setting. O

We are now ready to state our main result, which concerns the structure [Gfritnegrix.
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THEOREM 6. Wth the above notation and assumptions, supposethatl < a,b <l are
indices such that G, and G, are TC-groups. Let
va(K N Ga)A(p(K)xa)
C(Gav Va)
and similarly for Cp. Here c(Gg, vg) is the constant from Proposition 4 and K is any suffi-
ciently small compact open subgroup of G, fixed throughout. Also define

E() = [ [
i=1
for w € 2(F*)", where n = £1 isthe sign of the bilinear form (-, -). Then the following
hold.
(A) 1fr(Gy) < r(Gyp), then I, (w) = Ofor all w € 2(F*)".
(B) 1fr(G,) =r(Gp), then

Calpa(@) = E(@)CpTup(w')

a =

for all w € 2(F*)".

PROOF. LetC C £2(F*)" be the intersection of the domains of absolute convergence
of the integrals defining, (w, ®) for 1 < a < [. Recall that2(F*)" is the product of a
discrete group and the complex polycylind€/2r /—1log(¢)2)". LetX C Q2(F*)" be a
connected component and choose a basepoinfl such that réx) = 0. It follows from the
remarks just before Proposition 5 th&t= awg lies in the interior of© N X. Similarly, the
charactety = o‘wo is an interior point of2 N X* and it follows thai8 = y* is an interior point
of ¢ N X. Thusp is an interior point ofc N ¢* N X. We deduce that the s€tn €' N X has
non-empty interior for each connected comporiémt 2 (F*)".

LetX c £2(F*)" be a connected component and lattice inV. We noted above that
thereis an element € GL(V) such thap(g') = J'o(g)J 1. Observe that\’ = J(A) is also
alattice inv and thain(¢'; A’) = m(g; A)forall g € G, provided that we choose to interpret
the transpose with respect to a basis fgras we may. It follows from this observation that
G[X; Al = G[X; A') forall X > 1.

The groupG has a neighborhood base at the identity consisting of compact open sub-
groups and the map — ¢' is continuous. As a consequence of these facts we may find a
compact open subgroup of G so small that the following conditions hold:

@) pk)A=Aandpk)A’ = A’ forallk € K,

(b) p(k"YA = Aandpk‘)A’ = A’ forallk € K,

() w(x(k)) =1landw(x (k")) =1lforallk € K andw € X.

Suppose now that k a,b < [ are indices such thak, andG,, are TC-groups. Let
Ax. 4 be the characteristic function of the @IX; A]. Fix a pointw inthe setc N NX
and, forX > 1 ande > 0, consider the integral

(X, e) = / 0O Ax. @DV (k. p(@)xp)di(g)
G, |xo(g9)|>¢
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In this integral we make the change of variable—~ k'g, use the defining property of
integrate the result ovek, and use Fubini’'s Theorem to obtain

I(X,e) = M(K)_lf w(x(g))Ax,A(g)/K1//((p(k)xa,p(g)Xb))du(k)du(g)-

[xo(9)1=¢
Letd, € S(V) be the characteristic function of the compact opemsé&t)x, C V. By using
(2), we obtain, forany € V,

/ (oK) xa, A k) =va(KNGo) | w(p(9)Xas y)d1a() -
K KGa/Ga
Applying (1) to this expression, we find that it is equal to
va(K N Gy) ¥ ((x, y))d(x)
p(K)xq
=va(K N 6'a)|Po(xa)|—1/2/ ¥ ((x, y))dx
p(K)xq
= v (K N G o) Po(xa)| 2@, ().
Consequently,
I(X,8) = Dy / 0 (x(9)Ax, 4(9)Pa(0(9)xp)d () ,
[xo(g)|=¢
where

Dy = n(K) " a (K N Ga)| Po(xa)|~Y2.

Now observe thay; is trivial on G, for 1 < i < n. In light of this, we can apply (2) to the
last expression fof (X, ¢) to conclude that

I(X.&) = D, f ) (X () Ba(0(@)x5)5 (5T GIX; A1N Gp)dpin(§) -
G/Gp, Ix0(g)|=¢

Let us define a functioBx_4_ 5 on Oy, by setting
Bx.ab(y) = vs (9 *G[X; A1N Gyp)

foranyg € G such thaty = p(g)x,. This is well defined because of the left invariance of the
Haar measure,. By applying (1) to the previous expression fatX, ¢), we arrive at

[(X,€) = Dao(P(xp)) " f @ (P(3)Pa(y)Bx.4.5(»)dA(y) .
Oy, | Po(y)|=€| Po(xp)|
The support ofb, is a compact subset &f. The setly € V | | Po(y)| > €| Po(xp)|} is closed
in V and contained itv — S, andOy, is closed inV — S. It follows that the set
Y = {y € supf®a) N Oy | |Po(y)| = £| Po(xp)}
is compact. We may thus find a compact et G such thatY c p(R)x,. From this and
Proposition 4 we draw two conclusions. First, the family of functions

(XTCIBy b X > 1)
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is uniformly bounded ory and, secondly,
lim X"V By 4 v(y) = c(Gp, vp)
X—00 S
forall y € Y. By the choice ofv, the integral obtained from the last expression/fex, ¢) by
removing the factoBx 4 ,(y) from the integrand and taking= 0 is absolutely convergent.
By the Dominated Convergence Theorem, it follows that

lim x"©CY (X, &)
X—>o0

— (G, vp) D> (P(xp)) / 0(P()Ba(MdAL)
Op, | Po(y)|=¢€| Po(xp)|

and hence

lim lim XG0 (X, &) = c(Gp, vp) Daw(P(xp)) "L Zp(, Do) .

e—>0X—>o0
On the other hand, Proposition 5 gives

1
Zp(@, Ba) = Y The(@) Ze(wow ™, o)
c=1
= o' (P(xa))"VOl(p (K)xa) Tpa() ,

where vol denotes the volume with respect to the chosen Haar measurdmueriving the
last equality we used the fact thag(P (x)) = | Po(x)|¥2. Combining these two evaluations,
and using the fact thaPo(x,)|~Y2vol(p(K)x4) = A(p(K)x,), We obtain

lim lim x"C» (X, ¢)

e—>0X—00

= 1(K)"Xe(Gp, vp)va(K N G M0 (K)xa)w (P (xp)) "t (P (x4)) L Mo (w).

We have assumed that there is some G such thatp(z)x = nx forallx € V. A
calculation shows that (x (z)) = &(w). In the original integral defining (X, ¢) we make the
change of variable — zg, use the identity; (x4, p(9)xp) = (x5, p(¢")x4), and then make
the change of variable — ¢*. At the end of this process, we obtain

I(X,e) = §(w) oo o' (X (N Ax, 4PV (xp, p(@)xa))d(g) .
xo(g)l=z¢

This integral has the same form as the original one, but wigimdb interchanged and* in
place ofw. Thus

lim lim XG0 r(X, e)

e—>0X—00

= E(@)(K) " Le(Ga, va)vp (K N Gp)A(p(K)xp) o' (P(x4)) "t (P (xp)) " Tap(@).
If r = r(Gq) = r(Gy), then equating these two evaluations of

lim lim X7"I(X,¢)

e—>0X—o00
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gives the formula stated in part (B). H(G,) < r(Gj), then the existence of the limit
liMx_ oo X "G [(X, ) forces the limit limy_ oo X "I (X, ¢) to be 0 and s} (w) =
0, as required for part (A). Initially, these conclusions hold forealh € N € N X. How-
ever, we have seen that this set has non-empty interiod gn@*) and I';, (w) are rational
functions ons2 (F*)". Thus the conclusions hold for all € X and, sincéX was an arbitrary
connected component &f (F*)", it follows that they are true generally. O

If (G, p, V) satisfies all the above assumptions and, in additiynis a TC-group for all
1 <a <, thenitis a consequence of Theorem 6 that the médtrix block upper-triangular
provided that we arrange the orbits in such a way iét,) is non-decreasing with. If we
restrict ourselves to characterssuch thatw' = w, then the diagonal blocks will be almost
symmetric (if (w) = 1) or almost antisymmetric (f(w) = —1).

Before we discuss some examples, we would like to raise the following question.

QUESTION. Let(G, p, V) be aprehomogeneous vector space satisfying the above con-
ditions. Is there a way to attach to eackd: < I an element(G,) of some totally ordered
set and a constan, in such a way that(G,) < r(Gp) implies that/},(w) = 0 and
r(Gq) = r(Gp) implies thatC, Iy (@) = £(w)Cp Ty (w')?

The reason for allowing(G,) to lie in a totally ordered set, rather than jitis that an
appropriate generalization of Proposition 4 is likely to invoke functions sugfitdst’2 that
depend on more than one parameter. The order on the set of parameters would then express
the relative asymptotic magnitude of the corresponding functions.

We now discuss two examples to illustrate that, despite the strong restriction that the
isotropy subgroups of generic points be TC-groups, Theorem 6 does give non-trivial informa-
tion about thel"-matrix of a number of interesting spacés concerns general notation, Aff
denotes affine-space regarded as a representation ofrplin the natural wayes, ..., e,
is the distinguished basis of Aff\2 denotes the symmetric square’. denotes the exterior
squareV’ =V — S, ande is the fully alternating tensor defined by

1 if i1,...,i, i1Sanevenrearrangement af.1.,n,
-1 if i1,...,i,Iis an odd rearrangement of.1., n.

EXAMPLE 1. Let(G, V) be

eil---in —

(GL(3) x GL(3) x GL(2), Aff3 ® Aff3 ® Aff2).

This is essentially (12) on the Sato-Kimura list [16] of regular reduced irreducible prehomo-
geneous vector spaces. It is discussed from an arithmetical point of view in [18]. The orbits
over an algebraically closed field of charaidgc zero are enumerated in Table 1 of [11].
From this data it is a routine, though tedious, exercise to verify that this space satisfies condi-
tion (A.2). We identify the space with the space of p&ivg, M>] of 3-by-3 matrices under

the action ofG given by

(91, g2, W) [M1, M2] = [g1M15, g1M2g51h" .



504 A. KABLE

The bilinear form
([M1, M2], [My, M3]) = tr(M1M} + MaM5)
is non-degenerate and symmetric. It satisfies the identity

((g1. g2, W)x, y) = (x, (gh, 91. h")y)

and so we setg1, g2, h)' = (g5, g1, h"). There is a single relative invariait of degree 12,
associated to the charactetgy, g2, h) = det(g1)* det(g2)* det(h)®. TheG p-orbits in V. are

in one-to-one correspondence with separable cAbadgebras [18] and the isotropy group of
a point in an orbit is isomorphic to GIL) times the multiplicative group of the corresponding
algebra. LetR, denote the cubié-algebra corresponding to the orbitxf. We have

1 if R,is afield,
r(Gy) =42 if R, = F @ E with E afield,
3 f RREF®FQF.

Let us organize the orbits in a list so thaiG,) increases along thiést. Theorem 6 then
implies that thel"-matrix of (G, V) takes the form

A1 % %
=10 Ay =«
0O 0 vy

Here A1 is an almost symmetric matrix of size equal to the number of cubic extensidns of
Az is an almost symmetric matrix of size equal to the number of quadratic extensi@ns of
andy is a single rational function corresponding to the unique orbit with,) = 3.

EXAMPLE 2. Let(G,V)be
(GL(5) x GL(3), A2Aff° @ Aff3 @ Aff3).

This space is essentially (7) in the classification of regular 2-simple prehomogeneous vector
spaces of type | [9]. The orbits of the spal(5) x GL(3), A%Aff°> ® Aff3) over an alge-
braically closed field of characteristic zero, ttiger with the isotropy algebra of a particular
point in each orbit, are enumerated at length in Section 11 of [7]. This data, together with the
remarks on the spadé, V) to be found in the proof of Theorem 4.30 of [10], allow one to
confirm that(G, V) has finitely-many orbits, and that the second part of condition (A.2) is
also satisfied. For this purpose, the alternate formulation of the second part of the condition
is the more convenient one.

There is much less information about the arithmetic propertie&of) available in
the literature than was the case with Example 1 and so we shall sketch the relevant details.
We may identifyV with the space of 4-tuplegM1, M, M3, y], where theM; are 5-by-5
alternating matrices angis a 3-by-1 matrix. The action af on this model of the space is
given by

(g, h)[M1, M2, M3, y] = [(gM1g', gM2g", gM3g")h', hy].
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Define a bilinear form orv by
(IM1, M2, M3, y], [My, M3, M3, y']) = tr(MiMj + MaMy + MaM3) + y'y' .

It is easy to verify that this form is symmetric and non-degenerate and that it satisfies
((g, Mx,y) = (x,(g,h)'y) with (g, h)" = (¢', k). Note that(G, V) has an obvioug-
structure, to which we shall refer below.

Let E;; be the 5-by-5 alternating matrix with 1 in tlig j)-entry, —1 in the(j, i)-entry
and 0 elsewhere. The point

w = [E12+ E34, E23+ Es5, E13+ E2s, €2]
is generic. The identity component of its sl&er is the image of the 1-parameter subgroup
a(t) = (diagL, 11, 1,172, 1%) , diagr, 1, 17 1))

and the component group of the stabilizer is generated by the class of

i 0 0O
0O 0 OO 0 0 -1
T = 0O i O O 0}, 0 1 0 ,
0O 0 0 O -1 0 0
0O 0 0 ¢
wherei e F satisfiesi? = —1. It easily follows thatGS, = GL(1) andG,,/GS, = u4 as

group schemes ovdr, whereu, denotes the group scheme of fourth roots of unity. Now
HY(G) = {1}, whereH! denotes the Galois cohomology set with respedf t@nd it fol-
lows from a basic theorem of Igusa [5] th@i-\ V;. may be identified withH (G ). Since
HYG?) = {1}, HY(G,) may be regarded as a subsetrbf(G,,/G?,), and the fact that the
homomorphismG,, — G,,/GS, is split overF (by the map(zGS)* ~ t*) implies that
HY(G,) coincides withH(G,,/G3,). It is well-known thatH(us) = F*/(F*)* and so
G r\V} may be identified with? > /(F*)%. In order to make this identification concrete, we
now consider the basic relative invariantsiof

The spacé/ has two basic relative invarianfy and P,. The first has degree 15 and is
associated to the character(g, 1) = det(¢)® det(h)°. Indeed,P; is simply the basic relative
invariant polynomial of the spad@&L(5) x GL(3), A2Aff®> ® Aff3). This relative invariant
was first constructed by Gyoja [3] and subsequently considered by Ochiai [14]. The second
has degree 12 and is associated with the charaeler, 7)) = det(g)*deth)*. All relative
invariants of 2-simple prehomogeneous wespaces of type | have recently been constructed
by Kogiso et al. [12]. For the reader’s convenience, we give simple uniform expressions for
both of these relative invariants, using the notation of tensor invariant theory. The construction
is based upon a relatively equivariant map V — V2Aff3 of degree 5 given by

o i3iais g1 fraaPfaos o Baa2f2osPs . . . .
Zjk = 160 E :3 € € XaypyjXaspokXasfzizXasBaisXaspsis »

where we identifyv2Aff 3 with the space of symmetric 3-by-3 matrices. In this expression,
Xapi IS the (o, B)-entry in the matrix;, the greek indices run from 1 to 5 and the roman
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indices from 1 to 3, and the summation convention is in force. The reader may see [6] for a
more detailed discussion of this notation and its interpretation. The entries in the mhatex
polynomials in the variableg,s; with integer coefficients and

0 01
Zw)y=10 -1 O
1 00

With respect taG, Z transforms via the equation
Z((g, )x) = det(g)” det)hZ(x)h' .

We may setP;(x) = detZ(x)); thus normalizedP; € Z[V] and P1(w) = 1. We may also
define

1 o
Po(x) = =5 Y G RR 7 (x) i, Z()igia Y s Vi

wherey = (y1, y2, y3)!; thus normalizedP, € Z[V] and P,(w) = 1. In classical terminol-
ogy, P2(x) is simply the bordered determinant 6fx) andy. It is now routine to verify that
the bijection betweew £\ V/, and F* /(F*)* that was derived above from Galois cohomol-
ogy is given concretely by rx — P2(x)(F*)* We choose orbital representativesfor
Gr\V; labelled by the classes ifi* /(F*)*in such a way that the class 8 (x,) is a.

The last issue that must be considered in order to interpret the result of Theorem 6 in
this case is the determination of the invariat®,), whereG, is the stabilizer of a point,.
Note that the kernel of the representation in this examp{étids, I3)} and so it is sufficient
to determine th& -rank of G, itself. Since GI(3) acts transitively on Aft — {0} over F, we
may assume that every orbital representativhas the fornix, e2]. The mapGs, — SL(3)
given by projection onto the second factor is injective and it follows that the same is true of
the mapG, — SL(3) for anya. Thus it suffices to determine thé-rank of the identity
component of the isotropy group of the pojifi(x,), e2] in the space/2Aff3 @ Aff3 with its
natural SI(3) action. The identity component of the isotropy group of this point is easily seen
to be isomorphic to S@,,), wherey, is the binary quadratic form with matrix

v — (le(xa) le(xa))
T \Z13(xa)  Zz3(xa) )’
A computation shows that(x,) is precisely the discriminant a¥,. The F-rank of SQ¥,,)
is 1 if this discriminant is a square if and 0 otherwise. Thus we have
1 if ae (F)%F4,
0 if a¢ (F¥2/(F)*.
Note thaty; = x; fori = 1,2 and sow' = w in this case. Alsd(w) = 1 for all ®

because; = 1. If we arrange the orbits so that those wittG,) = O precede those with
r(G,) = 1, then Theorem 6 implies that tlie-matrix of (G, V') takes the form

_ A1 %
F_(O Az)’

r(Gg) Zl
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whereA; andA; are almost symmetric matrices of the appropriate sizes.
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