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SYMMETRY IN THE FUNCTIONAL EQUATION
OF A LOCAL ZETA DISTRIBUTION
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Abstract. We examine the structure of the coefficient matrix in the functional equation
of the zeta distribution of a self-adjoint prehomogeneous vector space over a non-Archimedean
local field. Under a restrictive assumption on the generic stabilizers, we show that this matrix
is block upper-triangular with almost symmetric blocks; this generalizes a result of Datskovsky
and Wright for the space of binary cubic forms.

We call a matrixA almost symmetric if there is a non-singular diagonal matrixD such
thatDA is symmetric. In the situations that concern us here,A is a matrix of rational functions
and we require the entries inD to be constant. Datskovsky and Wright [2] showed that the
Γ -matrix in the functional equation for the zeta distributions on the space of binary cubic
forms over a local field is almost symmetric. Later Datskovsky [1] wrote out theΓ -matrix for
the space of binary quadratic forms over a field of odd residual characteristic explicitly (an
earlier computation of Sato [15] gave the matrix in an elegant form) and thus revealed that,
while it is not almost symmetric, it does have a block upper-triangular structure with almost
symmetric blocks. (Care is required in interpreting Datskovsky’s expression, since he uses
the transpose of the standardΓ -matrix.)

Our purpose here is to understand these facts in a unified way and to generalize them.
Although our generalization hasstrong hypotheses, it does apply to several interesting spaces
for which theΓ -matrix is as yet unknown. The additional information it provides might prove
helpful in determining theΓ -matrices for these spaces. The origin of the symmetry in the
functional equation is the assumed self-adjointness of the underlying space. The true scope
of this passage from self-adjointness to symmetry is presently hard to judge because the list
of knownΓ -matrices for self-adjoint spaces with morethan one orbit is rather short. Further
computations of explicit examples in order to gain insight into this and other open questions
about theΓ -matrix would be very welcome. It is possible that the phenomenon discussed
here is widespread or even completely general, but, if so, a less naive method of proof will
have to be found.
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Let F be a non-Archimedean local field of characteristic zero with finite residue class
field of cardinalityq. Denote by| · | the normalized absolute value onF . Let V be a finite-
dimensionalF -vector space. Forg ∈ GL(V ) andΛ ⊂ V a lattice, define

m(g;Λ) = sup
ξ∈Λ,ξ∗∈Λ∗

(|ξ∗(gξ)|) ,

whereΛ∗ ⊂ V ∗ is the dual lattice. We havem(g;Λ) > 0 andm(u1gu2;Λ) = m(g;Λ) for
all u1, u2 ∈ Aut(Λ); in particular,g �→ m(g;Λ) is continuous. Note that ifξ1, . . . , ξn is a
basis forΛ andξ∗

1 , . . . , ξ
∗
n is the dual basis, then

m(g;Λ) = max
1≤i,j≤n

(|ξ∗
i (gξj )|) .

If φ andψ are real-valued functions on a setS, then we shall say thatφ andψ areof the
same order if there are positive constantsc1 andc2 such thatc1φ(x) ≤ ψ(x) ≤ c2φ(x) for
all x ∈ S.

LEMMA 1. Let Λ1,Λ2 and Λ be lattices in V , g1, g2 ∈ GL(V ) and U1, U2 ⊂ GL(V )
be compact subgroups of GL(V ). Then the following hold.

(1) We have

m(g−1
2 ;Λ)−1m(g1;Λ) ≤ m(g1g2;Λ) ≤ m(g1;Λ)m(g2;Λ) .

(2) The functions g �→ m(g;Λ1) and g �→ m(g;Λ2) are of the same order.
(3) The functions g �→ m(g;Λ) and

g �→ sup
u1∈U1,u2∈U2

m(u1gu2;Λ)

are of the same order.

PROOF. Clear. �

For a latticeΛ ⊂ V andg ∈ GL(V ) we define

b(g;Λ) = max{logq(m(g;Λ)), logq(m(g
−1;Λ))} .

It follows from (1) of Lemma 1 that

b(g1g2;Λ) ≤ b(g1;Λ)+ b(g2;Λ)
for all g1, g2 ∈ GL(V ).

LEMMA 2. Let Λ be a lattice in V and X1 ≤ X2 real numbers. Then the set

{g ∈ GL(V ) | qX1 ≤ m(g;Λ) ≤ qX2}
is compact.

PROOF. Choose a basis forΛ, give GL(V ) the corresponding integral structure and let
K = GL(V )(O). Let A be the diagonal torus with respect to the chosen basis. The claim
follows from the Cartan decomposition GL(V ) = KAK and (3) of Lemma 1. �
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Now let G ⊂ GL(V ) be a closed subgroup of GL(V ). (Here, and in the following
discussion, topological notions are relative to the classical topology on GL(V ).) For a lattice
Λ in V and a real numberX ≥ 1 define

G[X;Λ] = {g ∈ G | q−X ≤ m(g;Λ) ≤ qX} .
By Lemma 2, this is a compact subset ofG.

LEMMA 3. For all g ∈ G we have

G[X − b(g;Λ);Λ] ⊂ gG[X;Λ] ⊂ G[X + b(g;Λ);Λ] .
PROOF. This follows at once from the definitions and (1) of Lemma 1. �

We call a subgroupH of G a TC-group (short for torus-compact-group) ifH has com-
muting subgroupsA andU such thatA is anF -split torus,U is compact andAU has finite
index inH . A TC-group is automatically closed and unimodular. IfH is a TC-group, then we
write r(H) for the rank of any torusA as in the definition. This number is independent of the
choice ofA. The class of TC-groups includes all algebraicF -subgroups ofG whose identity
component is a (not necessarily split) torus, as well as all compact subgroups ofG.

PROPOSITION 4. Let H ⊂ G be a TC-group and ν a non-zero Haar measure on H .
Let Λ be a lattice in V and g ∈ G. Then there are non-zero constants c(H, ν) and C such
that

|ν(gG[X;Λ] ∩H)− c(H, ν)Xr(H)| ≤ C[1 + |b(g;Λ)|]r(H)Xr(H)−1 .

The constant c(H, ν) depends only on the indicated data. The constant C depends only onH ,
ν andΛ.

PROOF. If H0 ⊂ H is a subgroup of finite index inH , then

ν(gG[X;Λ] ∩H) =
∑

h∈H/H0

ν(h−1gG[X;Λ] ∩H0) .

Now

|b(g;Λ)| − |b(h;Λ)| ≤ |b(h−1g;Λ)| ≤ |b(g;Λ)| + |b(h;Λ)|
and so if we can prove the claim withH0 in place ofH , then the original claim will follow.
We may thus assume thatH = AU , whereA ⊂ H is anF -split torus,U ⊂ H is compact
andA andU commute.

Note the basic inequality|(X+ s)r −Xr | ≤ Xr−1(1+ |s|)r , valid forX ≥ 1, r a natural
number, and alls. Suppose thatΛ0 is a lattice inV . It follows from (2) of Lemma 1 that there
is a constants, depending only onΛ andΛ0, such that

G[X − s;Λ0] ⊂ G[X;Λ] ⊂ G[X + s;Λ0] .
Thus if we could verify the claim forΛ0, then the claim forΛwould follow by using the basic
inequality. It therefore suffices to use any convenient choice ofΛ. By appealing to Lemma 3
and using the same argument, it also suffices to verify the claim wheng is the identity.
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We may decomposeV into the direct sum of the eigenspaces associated with various
characters ofA. Each of these eigenspaces is stable underU and hence we may find aU -stable
lattice in each eigenspace. The direct sum,Λ0, of these lattices is a lattice inV . It is stable
underU and there is a basis ofΛ0 on whichA acts diagonally. The mapA×U → H given by
multiplication has fibers of constant finite volume and hence there are Haar measuresνA and
νU onA andU , respectively, such thatνU (U) = 1 and (in the obvious sense)ν = νA ⊗ νU .
Note also thatm(au;Λ0) = m(a;Λ0) for all a ∈ A andu ∈ U . We are thus reduced to
verifying that there is a constantc > 0 such thatνA(A[X;Λ0]) = cXr(H) +O(Xr(H)−1).

Let r = r(H) be the rank ofA, fix a basise1, . . . , en for Λ0 on whichA acts diagonally
and letχ1, . . . , χn be the characters ofA such thataei = χi(a)ei for eachi. We are seeking
to show that theνA-volume of the set

A[X;Λ0] = {a ∈ A | q−X ≤ |χi(a)| ≤ qX for all i}
has the required form as a function ofX. Choose coordinatesa1, . . . , ar onA and write

χi(a) =
r∏
j=1

a
dij
j

for 1 ≤ i ≤ n. Note that, by construction,a ∈ A is the identity if and only ifχi(a) = 1 for
1 ≤ i ≤ n. It follows that the right kernel of the matrix[dij ] is {0}, and so the matrix[dij ] is
of rankr. The volume ofA[X;Λ0] is proportional, by a constant depending only onνA, to
the number ofZr -points in the set

B[X] = {
z ∈ Rr

∣∣ −X ≤
r∑
j=1

dij zj ≤ X for all i
}
.

The setB[1] is a bounded convex subset ofRr with non-empty interior and boundary con-
tained in a union of proper affine subspaces. It is well-known that the number ofZr -points in
B[X] = XB[1] is then vol(B[1])Xr +O(Xr−1) with vol(B[1]) > 0, as required. �

The significance of the class of TC-groups is that, whenH is such a group, the leading
term in the asymptotics ofν(gG[X;Λ] ∩ H) asX → ∞ is independent ofg. This property
does not extend to more general subgroups. Indeed, ifH is GL(2) embedded in the upper left
hand corner ofG = GL(3),Λ is the standard lattice inF 3,� ∈ F is a uniformizer and

gm =

 1 0 0

0 1 0
�−m 0 1




form > 0, then there is a constantC > 0, depending only onq andν, such that

ν(gmG[X;Λ] ∩H) ∼ Cq−mXq2X .

In order to proceed further, we position ourselves between the settings of Igusa [4] and
Sato [15], the two main authorities for the functional equation of the zeta distribution of a
prehomogeneous vector space over a non-Archimedean local field.



SYMMETRY IN THE FUNCTIONAL EQUATION 497

We use bold letters for varieties defined overF (which may be identified with their sets
of F̄ -points if desired) and the corresponding non-bold letters for their sets ofF -points. Let
(G, ρ,V) be a prehomogeneous vector space defined overF , with singular setS. We assume
that G is connected and reductive and that the space isF -regular. LetS1, . . . ,Sn be the
irreducible components ofS overF , P1, . . . , Pn ∈ F [V] be relative invariants defining them,
andχ1, . . . , χn the corresponding rational characters ofG. These characters generate a free
abelian groupX(ρ, F ) of rankn which contains the characterχ0(g) = det(ρ(g))2. We may
thus write

χ0 =
n∏
i=1

χ
2κi
i

for some uniquely determined row vectorκ = (κ1, . . . , κn) ∈ ((1/2)Z)n. Let

P0 =
n∏
i=1

P
2κi
i ,

a non-zero relative invariant associated to the characterχ0. It is known that the locusP0 = 0
is set-theoretically equal to the singular setS (see [8], Proposition 2.26).

We assume that the prehomogeneous vector space under consideration isF -self-adjoint.
That is, there is a non-degenerateF -bilinear form 〈 · , · 〉 on V and an anti-automorphism
g �→ g ι of period two ofG overF such that〈ρ(g)x, y〉 = 〈x, ρ(g ι)y〉. We assume that〈 · , · 〉
is either alternating or symmetric and denote its sign byη; that is,〈x, y〉 = η〈y, x〉. Of course,
if V is irreducible as a representation ofG, then this assumption is automatically fulfilled, but
it need not be otherwise. We further assume thatρ(G) contains the homothetyx �→ ηx of
V . There is necessarily someJ ∈ GL(V ) such thatρ(g ι) = J tρ(g)J−1 and consequently
χ0(g ι) = χ0(g). We remark that the transpose appearing in this equation is ambiguous, as is
the mapJ , since they depend upon a choice of basis forV . Later on, when we make further
use of this equation, we shall make a convenient choice of basis. The representation ofG on
V given byg �→ ρ(g−ι) is equivalent to the contragredientρ∗. It follows from this and the
assumption that(G, ρ,V) isF -regular that the charactersχ∗

i given byχ∗
i (g) = χi(g−ι) lie in

X(ρ, F ) ([15], Lemma 1.1). Thus so too do the charactersχιi defined byg �→ χi(g ι) and we
may find a matrixU = [uij ] ∈ GL(n,Z) such that

χιi =
n∏
j=1

χ
uij
j

for 1 ≤ i ≤ n. Directly from the definition we obtainU2 = In, and from the fact thatχι0 = χ0

we obtainκU = κ .
We also assume that(G, ρ,V) satisfies Sato’s condition (A.2) ([15], p. 474). This condi-

tion states thatS decomposes into a finite number of orbits underG and that ifO is aG-orbit
in S, then there is someχ ∈ X(ρ, F ) − {1} such thatO is aG(χ)-orbit, whereG(χ) denotes
the kernel ofχ . An equivalent formulation of the second part of the assumption is that for any
x ∈ S there is someχ ∈ X(ρ, F ) − {1} such thatχ is non-trivial on the identity component
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of Gx . We require this assumption only because it iscurrently a hypothesis for the functional
equation (Proposition 5 below). If the functional equation is subsequently established under
less restrictive hypotheses, then our result will correspondingly generalize.

With these assumptions in place, we are ready to introduce the remainder of the standard
notation that we shall require below. The setV − S is the union of finitely-manyG-orbits. To
verify this well-known fact, note thatF is a non-Archimedean local field with finite residue
class field, and hence of “type (F)” in the terminology of Serre ([17], p. 143). The required
finiteness statement then follows from the theorem stated on p. 146 of [17]. We enumerate the
orbits inV − S asO1, . . . ,Ol and fix a base pointxb ∈ Ob for 1 ≤ b ≤ l. Denote byGb the
isotropy subgroup ofxb and recall thatGb is reductive.

Let N = ker(ρ). If H is any subgroup ofG that containsN , then letH̃ = H/N .
The groupG̃ may be identified with a closed subgroup of GL(V ), and we shall make this
identification below. Note that thẽG-orbits inV −S coincide with theG-orbits inV −S, and
that the charactersχ1, . . . , χn and the mapg �→ g ι pass down toG̃. We shall abuse notation
by retaining the same symbols for these objects onG̃ as we have been using onG.

Fix a non-zero Haar measuredy onV and define a measureλ onV − S by

dλ(y) = |P0(y)|−1/2 · dy .
This measure is̃G-invariant. SinceG̃/G̃a ≈ Oa, there is a measureµa on G̃/G̃a such that∫

G̃/G̃a

Φ(ρ(ġ)xa)dµa(ġ) =
∫
Oa

Φ(y)dλ(y)(1)

for all Φ ∈ L1(Oa). Fix a non-zero Haar measureµ on G̃. Then there is a Haar measureνa
on G̃a such that ∫

G̃

f (g)dµ(g) =
∫
G̃/G̃a

∫
G̃a

f (ġh) dνa(h)dµa(ġ)(2)

for all f ∈ L1(G̃).
Let Ω(F×) be the group of continuous homomorphisms fromF× to C×. If ω ∈

Ω(F×)n, x ∈ V andg ∈ G̃, then define

ω(P(x)) =
n∏
i=1

ωi(Pi(x))

and

ω(χ(g)) =
n∏
i=1

ωi(χi(g))

so thatω(P(ρ(g)x)) = ω(χ(g))ω(P (x)). The involutionι may be transported toΩ(F×)n
by definingωι = (ωι1, . . . , ω

ι
n), where

ωιj =
n∏
i=1

ω
uij
i .
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With these definitions we haveωι(χ(g)) = ω(χ(g ι)). We also set

ω0 = (| · |κ1, . . . , | · |κn)
and note that the equationκU = κ implies thatωι0 = ω0.

Let S(V ) be the space of Schwartz-Bruhat functions onV , letψ be a non-trivial additive
character ofF and define a Fourier transform onS(V ) by

Φ̂(y) =
∫
V

Φ(x)ψ(〈x, y〉)dx .

To the orbitOa is associated a meromorphic family of distributions given by

Za(ω,Φ) =
∫
Oa

ω(P (y))Φ(y)dλ(y)

for ω ∈ Ω(F×)n andΦ ∈ S(V ) when the integral is absolutely convergent, and by meromor-
phic continuation otherwise. Note that the integral definingZa(ω,Φ) is absolutely convergent
when re(ωj ) ≥ κj for all 1 ≤ j ≤ n.

LetΦ be the characteristic function of a compact open set andωs = (| · |s1, . . . , | · |sn).
Then it is well known thatZa(ωs,Φ) is a rational function in the variablesq−sj . This rational
function is regular at(κ1, . . . , κn) and hence also in some neighborhood of this point. The
integral definingZa(ωs,Φ) expands formally to the product of a Laurent monomial and a
Taylor series in the variablesq−sj with positive coefficients. By applying the usual “Landau
Lemma” argument to this series (see the proof of Lemma 1 on p. 314 of [13], for example),
we conclude that there are constantscj < κj , depending onΦ, such that the integral defining
Za(ωs,Φ) converges absolutely for re(sj ) > cj . The characteristic functions of compact open
sets spanS(V ), and hence we may extend this conclusion to allΦ ∈ S(V ). Anyω ∈ Ω(F×)n
is bounded componentwise by the characterωs with s = re(ω). Thus we may further extend
the conclusion to say that there arecj < κj such that the integral definingZa(ω,Φ) converges
absolutely on the set re(ωj ) > cj .

The zeta distributionsZa enjoy the following functional equation with respect to the
Fourier transform.

PROPOSITION 5. There is a matrix Γ (ω) = [Γab(ω)] of rational functions onΩ(F×)n
such that

Za(ω, Φ̂) =
l∑

b=1

Γab(ω)Zb(ω0ω
−ι, Φ)

as meromorphic functions of ω for all Φ ∈ S(V ).

PROOF. This is a special case of Sato’s Theoremk� [15], p. 477, translated into our
current setting. �

We are now ready to state our main result, which concerns the structure of theΓ -matrix.
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THEOREM 6. With the above notation and assumptions, suppose that 1 ≤ a, b ≤ l are
indices such that G̃a and G̃b are TC-groups. Let

Ca = νa(K ∩ G̃a)λ(ρ(K)xa)
c(G̃a, νa)

and similarly for Cb. Here c(G̃a, νa) is the constant from Proposition 4 and K is any suffi-
ciently small compact open subgroup of G̃, fixed throughout. Also define

ξ(ω) =
n∏
i=1

ωi(η)
deg(Pi)

for ω ∈ Ω(F×)n, where η = ±1 is the sign of the bilinear form 〈 · , · 〉. Then the following
hold.

(A) If r(G̃a) < r(G̃b), then Γba(ω) = 0 for all ω ∈ Ω(F×)n.
(B) If r(G̃a) = r(G̃b), then

CaΓba(ω) = ξ(ω)CbΓab(ω
ι)

for all ω ∈ Ω(F×)n.

PROOF. Let C ⊂ Ω(F×)n be the intersection of the domains of absolute convergence
of the integrals definingZa(ω,Φ) for 1 ≤ a ≤ l. Recall thatΩ(F×)n is the product of a
discrete group and the complex polycylinder(C/2π

√−1 log(q)Z)n. Let X ⊂ Ω(F×)n be a
connected component and choose a basepointα ∈ X such that re(α) = 0. It follows from the
remarks just before Proposition 5 thatβ = αω0 lies in the interior ofC ∩ X. Similarly, the
characterγ = αιω0 is an interior point ofC∩Xι and it follows thatβ = γ ι is an interior point
of Cι ∩ X. Thusβ is an interior point ofC ∩ Cι ∩ X. We deduce that the setC ∩ Cι ∩ X has
non-empty interior for each connected componentX ofΩ(F×)n.

Let X ⊂ Ω(F×)n be a connected component andΛ a lattice inV . We noted above that
there is an elementJ ∈ GL(V ) such thatρ(g ι) = J tρ(g)J−1. Observe thatΛ′ = J (Λ) is also
a lattice inV and thatm(g ι;Λ′) = m(g;Λ) for all g ∈ G̃, provided that we choose to interpret
the transpose with respect to a basis forΛ, as we may. It follows from this observation that
G̃[X;Λ]ι = G̃[X;Λ′] for all X ≥ 1.

The groupG̃ has a neighborhood base at the identity consisting of compact open sub-
groups and the mapg �→ g ι is continuous. As a consequence of these facts we may find a
compact open subgroupK of G̃ so small that the following conditions hold:

(a) ρ(k)Λ = Λ andρ(k)Λ′ = Λ′ for all k ∈ K,
(b) ρ(kι)Λ = Λ andρ(kι)Λ′ = Λ′ for all k ∈ K,
(c) ω(χ(k)) = 1 andω(χ(kι)) = 1 for all k ∈ K andω ∈ X.
Suppose now that 1≤ a, b ≤ l are indices such that̃Ga andG̃b are TC-groups. Let

AX,Λ be the characteristic function of the setG̃[X;Λ]. Fix a pointω in the setC ∩ Cι ∩ X

and, forX ≥ 1 andε > 0, consider the integral

I (X, ε) =
∫
G̃, |χ0(g)|≥ε

ω(χ(g))AX,Λ(g)ψ(〈xa, ρ(g)xb〉)dµ(g) .
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In this integral we make the change of variableg �→ kιg, use the defining property ofι,
integrate the result overK, and use Fubini’s Theorem to obtain

I (X, ε) = µ(K)−1
∫

|χ0(g)|≥ε
ω(χ(g))AX,Λ(g)

∫
K

ψ(〈ρ(k)xa, ρ(g)xb〉)dµ(k)dµ(g) .
LetΦa ∈ S(V ) be the characteristic function of the compact open setρ(K)xa ⊂ V . By using
(2), we obtain, for anyy ∈ V ,∫

K

ψ(〈ρ(k)xa, y〉)dµ(k) = νa(K ∩ G̃a)
∫
KG̃a/G̃a

ψ(〈ρ(ġ)xa, y〉)dµa(ġ) .
Applying (1) to this expression, we find that it is equal to

νa(K ∩ G̃a)
∫
ρ(K)xa

ψ(〈x, y〉)dλ(x)

= νa(K ∩ G̃a)|P0(xa)|−1/2
∫
ρ(K)xa

ψ(〈x, y〉)dx

= νa(K ∩ G̃a)|P0(xa)|−1/2Φ̂a(y).

Consequently,

I (X, ε) = Da

∫
|χ0(g)|≥ε

ω(χ(g))AX,Λ(g)Φ̂a(ρ(g)xb)dµ(g) ,

where

Da = µ(K)−1νa(K ∩ G̃a)|P0(xa)|−1/2 .

Now observe thatχi is trivial on G̃b for 1 ≤ i ≤ n. In light of this, we can apply (2) to the
last expression forI (X, ε) to conclude that

I (X, ε) = Da

∫
G̃/G̃b, |χ0(ġ)|≥ε

ω(χ(ġ))Φ̂a(ρ(ġ)xb)νb(ġ−1G̃[X;Λ] ∩ G̃b)dµb(ġ) .
Let us define a functionBX,Λ,b onOb by setting

BX,Λ,b(y) = νb(g−1G̃[X;Λ] ∩ G̃b)
for anyg ∈ G̃ such thaty = ρ(g)xb. This is well defined because of the left invariance of the
Haar measureνb. By applying (1) to the previous expression forI (X, ε), we arrive at

I (X, ε) = Daω(P(xb))
−1

∫
Ob, |P0(y)|≥ε|P0(xb)|

ω(P(y))Φ̂a(y)BX,Λ,b(y)dλ(y) .

The support ofΦ̂a is a compact subset ofV . The set{y ∈ V | |P0(y)| ≥ ε|P0(xb)|} is closed
in V and contained inV − S, andOb is closed inV − S. It follows that the set

Y = {y ∈ supp(Φ̂a) ∩Ob | |P0(y)| ≥ ε|P0(xb)|}
is compact. We may thus find a compact setR ⊂ G̃ such thatY ⊂ ρ(R)xb. From this and
Proposition 4 we draw two conclusions. First, the family of functions

{X−r(G̃b)BX,Λ,b | X ≥ 1}
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is uniformly bounded onY and, secondly,

lim
X→∞X−r(G̃b)BX,Λ,b(y) = c(G̃b, νb)

for all y ∈ Y . By the choice ofω, the integral obtained from the last expression forI (X, ε) by
removing the factorBX,Λ,b(y) from the integrand and takingε = 0 is absolutely convergent.
By the Dominated Convergence Theorem, it follows that

lim
X→∞X

−r(G̃b)I (X, ε)

= c(G̃b, νb)Daω(P (xb))
−1

∫
Ob, |P0(y)|≥ε|P0(xb)|

ω(P(y))Φ̂a(y)dλ(y)

and hence

lim
ε→0

lim
X→∞X

−r(G̃b)I (X, ε) = c(G̃b, νb)Daω(P (xb))
−1Zb(ω, Φ̂a) .

On the other hand, Proposition 5 gives

Zb(ω, Φ̂a) =
l∑

c=1

Γbc(ω)Zc(ω0ω
−ι, Φa)

= ωι(P (xa))
−1vol(ρ(K)xa)Γba(ω) ,

where vol denotes the volume with respect to the chosen Haar measure onV . In deriving the
last equality we used the fact thatω0(P (x)) = |P0(x)|1/2. Combining these two evaluations,
and using the fact that|P0(xa)|−1/2vol(ρ(K)xa) = λ(ρ(K)xa), we obtain

lim
ε→0

lim
X→∞X

−r(G̃b)I (X, ε)

= µ(K)−1c(G̃b, νb)νa(K ∩ G̃a)λ(ρ(K)xa)ω(P (xb))−1ωι(P (xa))
−1Γba(ω).

We have assumed that there is somez ∈ G̃ such thatρ(z)x = ηx for all x ∈ V . A
calculation shows thatω(χ(z)) = ξ(ω). In the original integral definingI (X, ε) we make the
change of variableg �→ zg, use the identityη〈xa, ρ(g)xb〉 = 〈xb, ρ(g ι)xa〉, and then make
the change of variableg �→ g ι. At the end of this process, we obtain

I (X, ε) = ξ(ω)

∫
|χ0(g)|≥ε

ωι(χ(g))AX,Λ′(g)ψ(〈xb, ρ(g)xa〉)dµ(g) .

This integral has the same form as the original one, but witha andb interchanged andωι in
place ofω. Thus

lim
ε→0

lim
X→∞X

−r(G̃a)I (X, ε)

= ξ(ω)µ(K)−1c(G̃a, νa)νb(K ∩ G̃b)λ(ρ(K)xb)ωι(P (xa))−1ω(P(xb))
−1Γab(ω

ι).

If r = r(G̃a) = r(G̃b), then equating these two evaluations of

lim
ε→0

lim
X→∞X−r I (X, ε)
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gives the formula stated in part (B). Ifr(G̃a) < r(G̃b), then the existence of the limit
limX→∞X−r(G̃a)I (X, ε) forces the limit limX→∞X−r(G̃b)I (X, ε) to be 0 and soΓba(ω) =
0, as required for part (A). Initially, these conclusions hold for allω in C ∩ Cι ∩ X. How-
ever, we have seen that this set has non-empty interior andΓab(ω

ι) andΓba(ω) are rational
functions onΩ(F×)n. Thus the conclusions hold for allω ∈ X and, sinceX was an arbitrary
connected component ofΩ(F×)n, it follows that they are true generally. �

If (G, ρ,V) satisfies all the above assumptions and, in addition,G̃a is a TC-group for all
1 ≤ a ≤ l, then it is a consequence of Theorem 6 that the matrixΓ is block upper-triangular
provided that we arrange the orbits in such a way thatr(G̃a) is non-decreasing witha. If we
restrict ourselves to charactersω such thatωι = ω, then the diagonal blocks will be almost
symmetric (ifξ(ω) = 1) or almost antisymmetric (ifξ(ω) = −1).

Before we discuss some examples, we would like to raise the following question.

QUESTION. Let (G, ρ,V) be a prehomogeneous vector space satisfying the above con-
ditions. Is there a way to attach to each 1≤ a ≤ l an elementr(G̃a) of some totally ordered
set and a constantCa in such a way thatr(G̃a) < r(G̃b) implies thatΓba(ω) = 0 and
r(G̃a) = r(G̃b) implies thatCaΓba(ω) = ξ(ω)CbΓab(ω

ι)?

The reason for allowingr(G̃a) to lie in a totally ordered set, rather than justN, is that an
appropriate generalization of Proposition 4 is likely to invoke functions such asqr1XXr2 that
depend on more than one parameter. The order on the set of parameters would then express
the relative asymptotic magnitude of the corresponding functions.

We now discuss two examples to illustrate that, despite the strong restriction that the
isotropy subgroups of generic points be TC-groups, Theorem 6 does give non-trivial informa-
tion about theΓ -matrix of a number of interesting spaces. As concerns general notation, Affn

denotes affinen-space regarded as a representation of GL(n) in the natural way,e1, . . . , en

is the distinguished basis of Affn, ∨2 denotes the symmetric square,∧2 denotes the exterior
square,V ′ = V − S, andε is the fully alternating tensor defined by

εi1...in =



1 if i1, . . . , in is an even rearrangement of 1, . . . , n,

−1 if i1, . . . , in is an odd rearrangement of 1, . . . , n.

EXAMPLE 1. Let(G, V ) be

(GL(3)× GL(3)× GL(2),Aff 3 ⊗ Aff 3 ⊗ Aff 2) .

This is essentially (12) on the Sato-Kimura list [16] of regular reduced irreducible prehomo-
geneous vector spaces. It is discussed from an arithmetical point of view in [18]. The orbits
over an algebraically closed field of characteristic zero are enumerated in Table 1 of [11].
From this data it is a routine, though tedious, exercise to verify that this space satisfies condi-
tion (A.2). We identify the space with the space of pairs[M1,M2] of 3-by-3 matrices under
the action ofG given by

(g1, g2, h)[M1,M2] = [g1M1g t2, g1M2g t2]ht .
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The bilinear form

〈[M1,M2], [M ′
1,M

′
2]〉 = tr(M1M

′
1 +M2M

′
2)

is non-degenerate and symmetric. It satisfies the identity

〈(g1, g2, h)x, y〉 = 〈x, (g t2, g t1, ht )y〉
and so we set(g1, g2, h)

ι = (g t2, g
t
1, h

t ). There is a single relative invariantP of degree 12,
associated to the characterχ(g1, g2, h) = det(g1)

4 det(g2)
4 det(h)6. TheGF -orbits inV ′

F are
in one-to-one correspondence with separable cubicF -algebras [18] and the isotropy group of
a point in an orbit is isomorphic to GL(1) times the multiplicative group of the corresponding
algebra. LetRa denote the cubicF -algebra corresponding to the orbit ofxa. We have

r(G̃a) =




1 if Ra is a field,

2 if Ra ∼= F ⊕ E with E a field,

3 if Ra ∼= F ⊕ F ⊕ F .

Let us organize the orbits in a list so thatr(G̃a) increases along thelist. Theorem 6 then
implies that theΓ -matrix of (G, V ) takes the form

Γ =

∆1 ∗ ∗

0 ∆2 ∗
0 0 γ


 .

Here∆1 is an almost symmetric matrix of size equal to the number of cubic extensions ofF ,
∆2 is an almost symmetric matrix of size equal to the number of quadratic extensions ofF ,
andγ is a single rational function corresponding to the unique orbit withr(G̃a) = 3.

EXAMPLE 2. Let(G, V ) be

(GL(5)× GL(3),∧2Aff 5 ⊗ Aff 3 ⊕ Aff 3) .

This space is essentially (7) in the classification of regular 2-simple prehomogeneous vector
spaces of type I [9]. The orbits of the space(GL(5) × GL(3),∧2Aff 5 ⊗ Aff 3) over an alge-
braically closed field of characteristic zero, together with the isotropy algebra of a particular
point in each orbit, are enumerated at length in Section 11 of [7]. This data, together with the
remarks on the space(G, V ) to be found in the proof of Theorem 4.30 of [10], allow one to
confirm that(G, V ) has finitely-many orbits, and that the second part of condition (A.2) is
also satisfied. For this purpose, the alternate formulation of the second part of the condition
is the more convenient one.

There is much less information about the arithmetic properties of(G, V ) available in
the literature than was the case with Example 1 and so we shall sketch the relevant details.
We may identifyV with the space of 4-tuples[M1,M2,M3, y], where theMi are 5-by-5
alternating matrices andy is a 3-by-1 matrix. The action ofG on this model of the space is
given by

(g, h)[M1,M2,M3, y] = [(gM1g t , gM2g t , gM3g t )ht , hy] .



SYMMETRY IN THE FUNCTIONAL EQUATION 505

Define a bilinear form onV by

〈[M1,M2,M3, y], [M ′
1,M

′
2,M

′
3, y

′]〉 = tr(M1M
′
1 +M2M

′
2 +M3M

′
3)+ yty ′ .

It is easy to verify that this form is symmetric and non-degenerate and that it satisfies
〈(g, h)x, y〉 = 〈x, (g, h)ιy〉 with (g, h)ι = (g t , ht ). Note that(G, V ) has an obviousZ-
structure, to which we shall refer below.

LetEij be the 5-by-5 alternating matrix with 1 in the(i, j)-entry,−1 in the(j, i)-entry
and 0 elsewhere. The point

w = [E12 + E34, E23 + E45, E13 + E25, e2]
is generic. The identity component of its stabilizer is the image of the 1-parameter subgroup

α(t) = (diag(1, t−1, t, t−2, t2) ,diag(t,1, t−1))

and the component group of the stabilizer is generated by the class of

τ =







i 0 0 0 0
0 0 i 0 0
0 i 0 0 0
0 0 0 0 i

0 0 0 i 0


 ,


 0 0 −1

0 1 0
−1 0 0





 ,

wherei ∈ F̄ satisfiesi2 = −1. It easily follows thatG◦
w

∼= GL(1) andGw/G◦
w

∼= µ4 as
group schemes overF , whereµ4 denotes the group scheme of fourth roots of unity. Now
H 1(G) = {1}, whereH 1 denotes the Galois cohomology set with respect toF , and it fol-
lows from a basic theorem of Igusa [5] thatGF \V ′

F may be identified withH 1(Gw). Since
H 1(G◦

w) = {1}, H 1(Gw) may be regarded as a subset ofH 1(Gw/G
◦
w), and the fact that the

homomorphismGw → Gw/G
◦
w is split overF (by the map(τG◦

w)
k �→ τ k) implies that

H 1(Gw) coincides withH 1(Gw/G
◦
w). It is well-known thatH 1(µ4) = F×/(F×)4 and so

GF \V ′
F may be identified withF×/(F×)4. In order to make this identification concrete, we

now consider the basic relative invariants ofV .
The spaceV has two basic relative invariantsP1 andP2. The first has degree 15 and is

associated to the characterχ1(g, h) = det(g)6 det(h)5. Indeed,P1 is simply the basic relative
invariant polynomial of the space(GL(5) × GL(3),∧2Aff 5 ⊗ Aff 3). This relative invariant
was first constructed by Gyoja [3] and subsequently considered by Ochiai [14]. The second
has degree 12 and is associated with the characterχ2(g, h) = det(g)4 det(h)4. All relative
invariants of 2-simple prehomogeneous vector spaces of type I have recently been constructed
by Kogiso et al. [12]. For the reader’s convenience, we give simple uniform expressions for
both of these relative invariants, using the notation of tensor invariant theory. The construction
is based upon a relatively equivariant mapZ : V → ∨2Aff 3 of degree 5 given by

Zjk = 1

160

∑
εi3i4i5εα1β1α4β4α3εβ3α2β2α5β5xα1β1j xα2β2kxα3β3i3xα4β4i4xα5β5i5 ,

where we identify∨2Aff 3 with the space of symmetric 3-by-3 matrices. In this expression,
xαβi is the (α, β)-entry in the matrixMi , the greek indices run from 1 to 5 and the roman
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indices from 1 to 3, and the summation convention is in force. The reader may see [6] for a
more detailed discussion of this notation and its interpretation. The entries in the matrixZ are
polynomials in the variablesxαβi with integer coefficients and

Z(w) =

0 0 1

0 −1 0
1 0 0


 .

With respect toG, Z transforms via the equation

Z((g, h)x) = det(g)2 det(h)hZ(x)ht .

We may setP1(x) = det(Z(x)); thus normalized,P1 ∈ Z[V ] andP1(w) = 1. We may also
define

P2(x) = −1

2

∑
εi1i3j1εi2i4j2Z(x)i1i2Z(x)i3i4yj1yj2 ,

wherey = (y1, y2, y3)
t ; thus normalized,P2 ∈ Z[V ] andP2(w) = 1. In classical terminol-

ogy,P2(x) is simply the bordered determinant ofZ(x) andy. It is now routine to verify that
the bijection betweenGF \V ′

F andF×/(F×)4 that was derived above from Galois cohomol-
ogy is given concretely byGFx �→ P2(x)(F

×)4. We choose orbital representativesxa for
GF \V ′

F labelled by the classes inF×/(F×)4 in such a way that the class ofP2(xa) is a.
The last issue that must be considered in order to interpret the result of Theorem 6 in

this case is the determination of the invariantr(G̃a), whereGa is the stabilizer of a pointxa.
Note that the kernel of the representation in this example is{(±I5, I3)} and so it is sufficient
to determine theF -rank ofGa itself. Since GL(3) acts transitively on Aff3 − {0} overF , we
may assume that every orbital representativexa has the form[∗, e2]. The mapG◦

w → SL(3)
given by projection onto the second factor is injective and it follows that the same is true of
the mapG◦

a → SL(3) for any a. Thus it suffices to determine theF -rank of the identity
component of the isotropy group of the point[Z(xa), e2] in the space∨2Aff 3 ⊕ Aff 3 with its
natural SL(3) action. The identity component of the isotropy group of this point is easily seen
to be isomorphic to SO(Ψa), whereΨa is the binary quadratic form with matrix

Ψa =
(
Z11(xa) Z13(xa)

Z13(xa) Z33(xa)

)
.

A computation shows thatP2(xa) is precisely the discriminant ofΨa . TheF -rank of SO(Ψa)
is 1 if this discriminant is a square inF and 0 otherwise. Thus we have

r(Ga) =



1 if a ∈ (F×)2/(F×)4 ,

0 if a /∈ (F×)2/(F×)4 .

Note thatχιi = χi for i = 1,2 and soωι = ω in this case. Alsoξ(ω) = 1 for all ω
becauseη = 1. If we arrange the orbits so that those withr(Ga) = 0 precede those with
r(Ga) = 1, then Theorem 6 implies that theΓ -matrix of (G, V ) takes the form

Γ =
(
∆1 ∗
0 ∆2

)
,
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where∆1 and∆2 are almost symmetric matrices of the appropriate sizes.
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