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Abstract. We treat equivariant completions of toric contraction morphisms as an ap-
plication of the toric Mori theory. For this purpose, we generalize the toric Mori theory for
non-Q-factorial toric varieties. So, our theory seems to be quite different from Reid’s original
combinatorial toric Mori theory. We also explain various examples of Qeactorial con-
tractions, which imply that th€-factoriality plays an important role in the Minimal Model
Program. Thus, this paper completes the foundation of the toric Mori theory and shows us a
new aspect of the Minimal Model Program.

1. Introduction. In[FS1], we gave a simple and non-combinatorial proof to the toric
Mori theory. As mentioned in [FS1], our method cannot recover combinatorial aspects of [R].
One of the main purposes of this paper is to understand the local behavior of the toric contrac-
tion morphisms, which was described in [R, (2.5) Corollary] when the varietie3-&aetorial
andcomplete. It is obvious that the non-complete fans are much harder to treat than the com-
plete ones. So, we avoid manipulating and subdividing non-complete fans. Our strategy is to
compactify the toric contraction morphisms equivariantly and apply Reid’s result.

Let f : X — Y be aprojective toric morphism. We would like to compaciffy X — Y
equivariantly, that is,

f:

C >
¥
< C =i

f: X —

3

whereX (resp.Y) is an equivariant completion &f (resp.Y). More precisely, we would like
to compactify f equivariantly without losing the following properties:
(i) projectivity of the morphism,

(i) Q-factoriality of the source space,

(iii) the relative Picard number is one,
and so on. Note that we do not assuphé¢o be birational. The main results are Theorems
2.11 and 2.12, where we compactify equivariantly by using the toric Mori theory. The
statements are too long to mention here. EBtbeorems guarantee that we can always com-
pactify toric contraction morphisms equivariantly preserving nice properties. However, our
proof does not show us how to compactjfyeven if it is given concretely. As a corollary, we
obtain a description of the toric contraction morphisms when the source spacgéaaterial
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and the relative Picard numbers are one (Theorem 3.2). As mentioned above, it seems to be
difficult to obtain a local description of the toric contraction morphism without reducing it to
the complete case. This is why we treat the equivariant completions of the toric contraction
morphisms.

To carry out our program, we generalize the toric Mori theorynfar-complete andnon-
Q-factorial varieties. It is also the main theme of this paper. We do not need the toric Mori
theory for nonQ-factorial varieties to construct an equivariant completionfof X — Y
whenX is Q-factorial. However, it is natural and interesting to consider the toric Mori theory
for non-Q-factorial varieties. Withou@Q-factoriality, various new phenomena occur even in
the three-dimensional Minimal Model Program (see Section 4 and [FS3]). We believe that
this generalized version of the toric Mori thry is not reachable by Reid’s combinatorial
technique since non-complete and non-simplicial fans are very difficult to manipulate. So, it
seems to be reasonable to regard our toric Mori theory to be different from Reid’s combinato-
rial one. The coverage of our theory is much wider than Reid’s.

Note that the Minimal Model Program for ndp-factorial varieties may be useful in the
study of higher dimensional log flips (see [F3, Section 4]). This paper will open the door to
the nonQ-factorial world.

This paper mainly treats the conceptual aspects of the toric Mori theory. The appen-
dix [FS3] (see also [FS2]), where we construct an example of global toric 3-dimensional
flops, will supplement this paper from the coiméttorial viewpoint. Recently, Hiroshi Sato
described the combinatorial aspects of the toric contraction morphismsJftattorial toric
varieties by usingxtremal primitive relations and Theorem 2.11. For the details, see [S]. It
will help us to understand Theorem 3.2 below.

We summarize the contents of this paper: &ttton 2, we prove the existence of equi-
variant completions of toric contraction morphisms in various settings. For this purpose, we
generalize the toric Mori theory for no@-factorial toric varieties. Section 3 deals with appli-
cations of the equivariant completions obtained in Section 2. The final theorem in Section 3 is
a slight generalization of the main theorem of [F2]. In Section 4, we will treat various exam-
ples of nonQ-factorial toric contraction morphisms. They imply that it is difficult to describe
the local behavior of the (toric) contraction morphisms without@rfactoriality assumption.

This section is independent of the other sections and seems to be valuable for those studying
the Minimal Model Program.

The author would like to thank Professors Janos Kollar, Masanori Ishida for comments,
and Florin Ambro for pointing out a mistake. He also likes to thank Dr. Hiroshi Sato for
constructing a beautiful example and pointing out some mistakes. Thanks are due to the
Institute for Advanced Study for hospitalitfHe was partially supported by a grant from
the National Science Foundation: DMS-0111298. Finally, the author thanks the referee and
Professor Kenji Matsuki, whose comments helped him to correct errors.

NOTATION. We often use the notation and the results in [FS1]. We will work over an
algebraically closed field throughout this paper.
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(i) Letv; e N~ Z"forl <i < k. Then the symbolv1, vo, ..., v;) denotes the
coneR>ov1 + Rsov2 + - - - + R>ouvx in Nr ~ R", whereR-¢ is the set of non-negative real
numbers.

(i) A toric morphism f : X — Y means an equivariant morphisfnbetween toric
varietiesX andY.

2. Equivariant completions of toric contraction morphisms. Let us start with the
following preliminary proposition. Its proof is a warm-up of our toric Mori theory [FS1].

PROPOSITION 2.1. Let f : X — Y be a projective toric morphism and ¥ an equi-
variant completion of Y. Then there exists an equivariant completionof f : X — Y;
f: X - Y
U U
f: X - 7Y,
where
() X isan equivariant completion of X, and
(i) f isaprojectivetoric morphism.
Furthermore,
(1) if X is Q-factorial (see [FS1, Definition 2.3], then we can make X to be Q-
factorial, and
(2) if X hasonly (Q-factorial) terminal (resp. canonical) singularities (see [R, (1.11)
Definition] or [FS1, Definition 2.9}, then we can make X to have only (Q-factorial) terminal
(resp. canonical) singularities.

PROOF. By Sumihiro’s equivariant embedding theorem, there exists an equivariant
completionX1 of X. Let X, be the graph of the rational map : X; --» Y. Then, we
obtain

fo: X2 — Y
U U
f: X - Y.

Let D be an f-ample Cartier divisor onX and D, the closure ofD on X»2. By Corol-

lary 5.8 in [FS1],D,,-0(f2)+Ox,(mD>) is a finitely generated;-algebra. We puk :=

Proj; @,,-0(f2)«Ox,(mDy). Then, f : X — ¥ has the required properties (i) and (i)
since D2 is fo-ample overy. WhenX is Q-factorial, we replac&X by its small projective
Q-factorialization (see [F2, Corollary 5.9]). So, (1) holds. For (2), we apply Proposition 2.3
below. O

The following is the blow-up whose exceptional divisor is the prescribed one.

LEMMA 2.2. Letg: Z — X bea projective birational toric morphism. Let E be an
irreducible g-exceptional divisor on Z. e put

h: X' :=Projy EB 3:0z(—=mE) > X

m>0
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and let E’ bethestrict transformof E on X’. Then —E’ ish-ample. So, X'\ E' >~ X \ h(E’).
Furthermore, if X is Q-Gorenstein, that is, Ky is Q-Cartier, then

Ky =h*Kx +aE/',

wherea = a(E’, X, 0) € Qisthediscrepancy of E’ with respect to (X, 0) (cf. [KM, Definition
2.5]and [FS1, Definition 2.9).

Sketch of the proof. Run the MMP (see [FS1, 3.1] or 2.9 below) ovémith respect to
—E. In the notation of 2.9 belowX’ is the(— E)-canonical model ovex. O

PROPOSITION 2.3. Let X be a toric variety and X an equivariant completion of X.
Assumethat X hasonlyterminal (resp. canonical) singularities. Then there exists a projective
toric morphism ¢ : Z — X such that Z hasonly terminal (resp. canonical) singularities and
g isisomorphic over X. Moreover, if X is Q-factorial, then we can make Z to be Q-factorial.

PROOF. Leth:V — X be a projective toric resolution. We put Z := Projz ,,-¢
h.Oy(mKy) — X. ThenZ has only canonical singularities akd; is g-ample. We note that
g is isomorphic ovelX. So, thisZ is a required one whek has only canonical singularities.
Thus, we may assume th&thas only terminal singularitie§ince the number of the divisors
that are exceptional over and whose discrepancies are zero is finite, we can rAakehave
only terminal singuldties by applying Lemma 2.2 finitely many times.

Furthermore, ifX is Q-factorial, then we can make to beQ-factorial by [F2, Corollary
5.9]. a

The next proposition is useful when we treat M@+actorial toric varieties.

PROPOSITION 2.4. Let X be atoric variety and D a Weil divisor on X. Then there
exists a small projective toric morphismg : Z — X such that the strict transform Dz of D
on Z is Q-Cartier.

Furthermore, let U be the Zariski open set of X on which D is Q-Cartier. Then we can
construct g : Z — X sothat Dy is g-ampleand ¢ isisomorphic over U.

PROOF. By Corollary 5.8in [FS1](P,,.o Ox (mD) is afinitely generatedx -algebra.
We putg : Z := Projy @,,-0Ox(mD) — X. Thisg : Z — X has the required property.
See, for example, [KM, Lemma 6.2] or [ 4.2 Proposition]. a

COROLLARY 2.5. Let X beatoric variety. We assume that X is Q-Gorenstein, that
is, Ky is Q-Cartier. Then there exists an equivariant completion X of X such that X is Q-
Gorenstein.

PROOF. Let X’ be an equivariant completion of. We putX := Projy, D=0
Oy (mKy). This X has the required property by Proposition 2.4. O

The following theorem is a generalization of the elementary transformations. We need it
for the MMP in 2.9 below.
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THEOREM 2.6 (cf. [FS1, Theorem 4.8]).Let ¢ : X — W be a projective birational

toric morphismand D a Q-Cartier Wil divisor on X such that —D is p-ample. e put
o Xt .= Projy, @go*(?x(mD) —- W
m>0

and let D be the strict transform of Dy on X+, where Dy := ¢, D. Then o™ is a small
projective toric morphism such that D™ isa ¢ -ample Q-Cartier Weil divisor on X ™.

Let U bethe Zariski open set of W over which ¢ isisomorphic. Then, sois¢™ over U.

The commutative diagram

X - XT

N 4
w

is called the elementary transformation (with respect® if ¢ : X — W issmall (cf. [FS1,
Theorem 4.8J.

PROOF. We puty’ : X' := Projy P,,-o Ow(mDw) — W and letD’ be the strict
transform of Dy on X’ as in Proposition 2.4. Then, by the negativity lemma (see Lemma 2.7
below), 9, Ox (mD") ~ ¢,Ox(mD) for everym > 0. We note thap’ is small. Thus, we
obtain

X = Projy, @ Ow (mDy)

m=>0

~ Projy (P ¢.Ox (mD')

m>0
~ Projy, P ¢Ox(mD) = X+
m=>0
So,¢T andD™ have the required properties. Note that tkiis is the D-canonical model over
W in the notation of 2.9 below. See also Example 4.3. O

Let us recall the following well-known negativity lemma ([FS1, Lemma 4.10]), which
we already used in the proof of Theorem 2.6. The proof can be found in [KM, Lemma 3.38].

LEMMA 2.7 (the Negativity Lemma). We consider a commutative diagram

V4
4 N
u --» Vv
N v
w

and Q-Cartier divisors D and D’ on U and V, respectively, where

Q) f:U— Wandg:V — W areproper birational morphisms between normal
varieties,

(2) fiD = gD,

(3) —Dis f-ampleand D’ is g-ample,
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4 m:Z—->U,v:Z — V arecommon resolutions.
Then uw*D = v*D’' + E, where E is an effective Q-divisor and is exceptional over W. More-
over, if f or g isnon-trivial, then E # 0.

REMARK 2.8. InTheorem 2.6, let us further assume tkidg¢ Q-factorial ando (X/ W)
= 1. If ¢ contracts a divisor, theW is Q-factorial. In particular,Dy is Q-Cartier. So,
T : XT — W is an isomorphism. I is small, thenX* is Q-factorial ando(X*/W) = 1.
For the nonQ-factorial case, see the examples in Section 4.

The following Minimal Model Program (MMP, for short) for toric varieties is a slight
generalization of the MMP explained in [FS1, 3.1]. This MMP works without the
Q-factoriality assumption. See also Remark 2.10 below.

2.9 (Minimal Model Program for Toric Varieties). We start with a projective toric mor-
phism f : X — Y and aQ-Cartier divisorD on X. Let/ be a positive integer such thiad
is a Weil divisor. We puXg := X andDg := D. The aim is to set up a recursive procedure
which creates intermediatg : X; — Y andD; on X;. After finitely many steps, we obtain
a finial objectsf : X — Y andD. Assume that we already constructgd X; — Y andD;
with the following properties:

(i) fiis projective,

(i) D;is aQ-Cartier divisor on;.

If D; is fi-nef, then we sekX := X; andD := D;. Assume thaD; is not f;-nef. Then
we can take an extremal ra&of NE(X;/Y) such thatR - D; < 0. Thus we have a contraction
morphismgg : X; — W; overY. If dim W; < dimX;, then we seX := X; andD := D;
and stop the process. ¢fz is birational, then we put

Xit1 := Projy, @ or+Ox, (mlD;)

m>0
and letD; 1 be the strict transform gfr.D; on X; 1 (see Theorem 2.6). By counting the
number of the torus invariant irreducible divisors, we may assumeghatX; — W; is small
or dimW; < dimX; after finitely many steps. By Theorem 4.9 (Termination of Elementary
Transformations) in [FS1], there are no infinite sequences of the elementary transformations
with respect taD; (cf. Theorem 2.6). Therefore, thisqmess always terminates and we obtain
f : X — Y andD. We note that the relative Picard number may increase in the process
(see Example 4.2 below). Whenis f-nef, X is called aD-minimal model over Y. We call
this process-)Minimal Model Programover Y, whereD is the divisor used in the process.
When we apply the Minimal Model Program (MMP, for short), we say that, for example, we
run the MMP over Y with respect to the divisor D. If X is a D-minimal model overy, then
we put

x":= Projy @ £.05(miD).

m=>0
Itis not difficult to see thatk™ =~ Proj, 9,,.¢ f+Ox (miD). We call X" the D-canonical
model over Y. We note that there exists a toric morphi&m— XT overY which corresponds
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to f* fuO05 (kD) — Oz (kD) — 0, wherek is a sufficiently large and divisible integer (see
[FS1, Proposition 4.1]).

REMARK 2.10. (i) WhenX is Q-factorial, this process coincides with the one ex-
plained in [FS1, 3.1]. See Remark 2.8.

(i) If X has only terminal (resganonical) singularities ant = Kx, then so doe¥;
for everyi. Itis an easy consequence of the negativity lemma (see Lemma 2.7).

The following Theorems 2.11 and 2.12 are the main results in this paper. We divide
them since Theorem 2.11 is sufficient for various applications and the proof of Theorem 2.12
is complicated.

THEOREM 2.11 (Equivariant completions of toric contraction morphismd)et f
X — Y be a projective toric morphism. Let ¢ := ¢r : X — W be the contraction mor-
phismover Y with respect to an extremal ray R of NE(X/Y). Then there exists an equivariant
completion of ¢ : X — W asfollows;

¥

7

M C b
2
=TCc=

(/3N
where
() X and W are equivariant completions of X and W, and

(i) ¢ isa projective toric morphism with the relative Picard number p(X/W) = 1.
Furthermore,

(1) if X isQ-factorial, then we can make X to be Q-factorial, and

(2) if X hasonly (Q-factorial) terminal (resp. canonical) singularities and — Ky is
p-ample, then we can make X to have only (Q-factorial) terminal (resp. canonical) singular-
ities.

Let Y be an equivariant completion of Y. Then we can construct ¢ with the following
property:

(i) W — Y isanequivariant completion of W — Y suchthat W — Y is projective.

PROOF. Let W’ be an equivariant completion & . If Y is given, then we can také”’
to be projective oveY by Proposition 2.1. Lep’ : X’ — W’ be an equivariant completion of
¢ : X — W. By Proposition 2.1, we may assume thats projective. We may further assume
thatX’ is Q-factorial (respX’ has only Q-factorial) terminal or canonical singularities) when
X is Q-factorial (respX has only Q-factorial) terminal or canonical singularities). LBtbe
a Q-Cartier divisor onX such that-D is g-ample. Take &-Cartier divisorD’ on X’ such
thatD’|x = D. We note that we can always take sughby Proposition 2.4 if we modify’
suitably. We putD’ = Ky in the case (2). Run the MMP (as explained in 2.9) d¥éwith
respect toD’. If an extremal rayR does not contain the numerical equivalence class of the
curves contracted by : X — W, then the contraction with respect ®occurs outsidex.
So, we obtain

X/ = X(/) —-=> X;I. - X,Z —e> e —— X]/( =: X
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over W’ and a contractiogp : X — W such thato(X/W) = 1 and¢ contracts the curves in
the fibers ofp. Itis easy to see thgt: X — W has the required properties. See also Remarks
2.8 and 2.10. m]

THEOREM 2.12. W use the same notation as in Theorem 2.11. e can generalize
Theorem 2.11(2) as follows:

(2)) if X hasonly (Q-factorial) terminal (resp. canonical) singularitiesand —Kx is ¢-
nef, then we can make X to have only (Q-factorial) terminal (resp. canonical) singularities.

PROOF. By Theorem 2.11 (2), we may assume thak x is not p-ample, or equiva-
lently, Ky is g-numerically trivial. As in the proof of Theorem 2.11, we run the MMP over
W’ with respect taD’ = K. In this case, we obtain

X' =Xg--»X] - X5 -+ -5 X} = X

over W', andX is a D’-minimal model ove¥’, that is,K ; is nef overW’. Itis easy to see
that each step occurs outsifie Note thatk ; is not ample ovelV’ sinceK x is g-numerically
trivial.

Let B be the complement of the big tours dhregarded as a reduced divisor. Then it is
well-known thatKx + B ~ 0. So, B is ¢-numerically trivial. Therefore, it is not difficult
to see that there exists an effective torus-invariant Cartier divison X such that-FE is ¢-
ample. LetF be the closure of on X. By modifying X birationally outsideX (if necessary),
we may assume thdt is Q-Cartier (see Proposition 2.4). Run the MMP oVérwith respect
to F. For each step, we chooseatrivial extremal rayR, thatis,K - R = 0, wherekK is the
canonical divisor. Then we obtain a sequence

over W' and a contractio@ : X — W such thatp contracts the curves in the fibers of
¢. We note tha( X, ¢ F) has only terminal singularities for & ¢ « 1 (resp.X has only
canonical singularities) wheX’ has only terminal (resp. canigal) singularities. So, the pair
(X, eF), whereF is the strict transform of’, has only terminal singularities for8 ¢ « 1
(resp.X has only canonical singularities) by )k Lemma 3.38]. We note that each step of
the above MMP does not contract any components eince it occurs outsid®. Therefore,

@ : X — W has the desired properties. ]

REMARK 2.13. The assumptions dfiy in Theorems 2.11 and 2.12 are useful when
we construct global (toric) examplestips andflops.

The following is a question of J. Kollar.

QUESTION 2.14. Letf : X — Y be a projective equivariamorphism between toric
varieties with connected fibers. Assume théX/Y) = k > 2. Is it possible to compactify
equivariantly preserving = k?

3. Applications of equivariant completions. In this section, we treat some applica-
tions of Theorem 2.11 and related topics.
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3.1. The nexttheorem is a direct consequence of Theorem 2.11 and Reid’s description
of the toric contraction morphisms. Theorem 3.2 was obtained by Reid whisicompl ete.
For the details, see, for instance, [M, Corollary 14-2-2], where Matsuki corrected minor errors
in [R]. See [M, Remark 14-2-3]. Remark 3.3 below is a supplement to [M, Corollary 14-2-2].
For the combinatorial aspects of this theorem, see [S].

THEOREM 3.2 (cf. [R, (2.5) Corollary]). Let f : X — Y be a projective toric mor-
phism. Assumethat X isQ-factorial. Let R beanextremal rayof NE(X/Y)andgg : X — W
the contraction morphismover Y with respect to R. Let

A — B
N n
or: X — W

be the loci on which ¢y is not an isomorphism; A and B are irreducible, ¢ 1(P)eq isa Q-
factorial projectivetoric (dim A—dim B)-fold with the Picard number onefor every point P €
B. More precisely, there exist an open covering B = | J,;; U; and a Q-factorial projective
toric variety F with the Picard number p(F) = 1 such that

(i) U;isatorusinvariant open subvariety of B for everyi,

(i) there existsa finite toric morphism U/ — U; such that

(U] xp A)Y ~U/ x F

for everyi € I, where (U] xp A)" isthe normalization of U] xp A.
We note that — K isan ample Q-Cartier divisor since p(F) = 1.

PROOF. By Theorem 2.11, we obtain an equivariant completion:

p: X —» W
U U
or: X — w.

We may assume thaf is Q-factorial, @ is projective, angh(X /W) = 1. Let
A — B
N N
p: X - W
be the loci on whiclp is not an isomorphism. Apply Reid’s description: [R, (2.5) Corollary]

to ¢. For the detailed description ¢f: X — W, see [M, Corollary 14-2-2] and Remark 3.3
below. O

In the above theorem, the assumption tiats Q-factorial plays a crucial role. See
Example 4.1 below and [FS3, Example A.1].

REMARK 3.3 (Supplements to the description of contractions of extremal rays by Mat-
suki). In this remark, we use the same notation as in [M, Chapter 14]. In [M, Corol-
lary 14-2-2], Matsuki claimed thak x U;(w)y = G x U;(w)y. In our notation in The-
orem 3.2, he claims tha// xp A ~ U/ x F. However, it is not true in general. We
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have to take the normalization of the left hand side. So, the correct statement should be
(E xF U;(w)y VEGx U;(w)y, where(E x g U;(w)y)" is the normalization off x r U;(w)y.
We note thalE x U;(w)y)U is irreducible sinceE — F has connected fibers. For the de-
tails, see [AK, Lemma 5.6]. Therefor@@l(P)red is not necessarily isomorphic 1G. Let
O(y) C F be the orbit associated to a cope Thenwgl(O(y)),ed ~ G, x O(y) and
<p,;1(0(y)),ed — O(y) is isomorphic to the second projectiah), x O(y) — O(y), where

G, is an(n — B)-dimesnionalQ-factorial projective toric variety with the Picard number
p(G,) = 1, Note thaiG,, is defined by: — g + 1 one-dimensional vectofsg1, . . ., vuy1)}

for any y. However, in generaks,, # G,, for two distinct cones, y». It is because the
lattice group that define§, depends ory. So, E — F is not necessarily a fiber bundle
but aquasi-fiber bundle in Ishida’s notation. The following example may help the reader to
understand it.

EXAMPLE 3.4 (Extremal Fano contraction). We i = Z2 andN’ = Z. We put
v1=(0,0,1), v2=(—1,0,0), v3=(1,0,-1),
vga=(0,-1,0), v5= (0,2, -1).

We consider the following fan.

_ { (v1,v2,v4), (v1,v2,vs), (v1,v3,v4), (v1,V3,Us), }
| (v2,v3,v4), (v2,v3,vs), andtheirfaces ‘
We defineX = X(A). ThenX is aQ-factorial projective toric 3-fold withp(X) = 2. Let
Nr~R3 > N§ ~ Rbe the projection to the second coordinate. Itinduces a toric morphism
f:X — PL Thenf : X — Plis an extremal contraction. We have the following properties:
(i) f~1(0) is non-reduced since; is mapped onto 2 N/,
(i) f~1(O)reqis isomorphic to a weighted projective spad, 1, 2), and
(i) g:= flx\ 10 :Y =X\ f1(0) — Z :=P"\ {0} is isomorphic to the second
projectionP? x Al — Al
We note that-Kx - C > 3 for any curveC in the fibersg : Y — Z. On the other hand,
there exists a torus invariant cur@ in the fiber f ~1(0) such that-Kx - Co = 3/2. It can
be checked by adjunction and the computations in [F2, Section 2] (cf. Theorem 3.13).

REMARK 3.5. In Theorem 3.2, lef\ be the fan such that = X(A). ThenA need
not containz-dimensional cones, where= dim X .

REMARK 3.6. Letf : X — Y be a projective equivariant morphism between toric
varieties. Letpg : X — W be the extremal contraction associated to an extremaRray
of NE(X/Y). Assume thaX is Q-factorial. If X is complete, then Reid obtained the com-
binatorial descriptions ofg in [R] by using the notion ofvalls. Sato generalized Reid’s
combinatorial descriptions for non-complete toric varieties in [S] by using Theorem 2.11 and
the notion ofextremal primitive relations. Examples in Section 4 and Example A.1 in [FS3]
imply that it is impossible to describe toric extremal contractions combinatorially without
Q-factoriality.
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REMARK 3.7. In[M, Chapter 14], Matsuki left the details of the verifications for the
relative case to the reader in various places. In the relative case in [M, Proposition 14-1-
2], all we need is the rigidity lemma (see, for example, [KM, Lemma 1.6]). The rest are
straightforward. In [M, Chapter 14]X (A) is always assumed to bmmplete even in the
relative setting ofp : X(A) — S(Ag). So, there are no difficulties to handle the relative
setting in [M, Chapter 14]. For theue relative setting, that isp : X(A) — S(Ag) is a
projective morphism and (A) is not necessarily complete, see [FS1].

Here is a general remark on equivariant completions of toric varieties.

REMARK 3.8. LetX be atoric variety corresponding to a fan It is well-known that
compactifyingX equivariantly is equivalent to compactifyingg We know that to compactify
A without Sumihiro’s theorem is very diffitt Recently, Ewald and Ishida independently
succeeded in compactifying (not necessarily raipfans without using Sumihiro’s theorem
(see [EI]).

3.9. In[F1, Corollary 4.6], we proved that the target space of a Mori fiber space has
at most log terminal singularities. In dimensithree, it is conjectured that the target space
has only canonical singularities (see, for imste, [P, Conjecture 0.2]). Before we explain an
example of Mori fiber spaces, let us recall the definition of the Mori fiber space.

DEFINITION 3.10 (Morifiber space). A normal projective variety having only
Q-factorial terminal singularities with a morphisén: X — Y is aMori fiber spaceif (i) @
is a morphism with connected fibers onto a normal projective vaiiety dimY < dim X,
(i) —Kx is @-ample, and (iii)p(X/Y) = 1.

The following is an example of 4-dimensional Mori fiber spaces.

ExampLE 3.11 (Morifiber space whose target space has a bad singularity).Z, ket
(¢) be the cyclic group of fourth roots of unity with = «/—1. LetP! x C® — C3 be the
second projection. We consider the following actionZgbn P! x C3 andC3:

([u:v], (x,y,2)) = ([u: —v],(¢x,8y,¢2)) ,
(x,y,2) = (&x,8y,82),

where[x : v] is the homogeneous coordinateRdf We putX := (P! x C3)/Z4 andY := C3/
Z4. Then the induced equivariant morphigin X — Y has the following properties:

(i) X hasterminal quotient singularities along the central fibef of

(i) Y hasa(l/4)(1, 1, 1) quotient singularity, which is not canonical,

(i) X andy areQ-factorial,

(iv) pX/Y)=1,and

(v) —Kx is f-ample.
By applying Theorem 2.11 (2), we obtain a toric Mori fiber spgce X — Y that is an
equivariant completion of : X — Y. Note that we can make projective by Theorem 2.11
(iii). Thus, f : X — Y is a Mori fiber space such that the target spides a singularity that
is not canonical.
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This example shows that our theorem is useful when we congfiolztl examples from
local ones. For a more combinatorial treatment, see [FS2, Example 5.1].

3.12. The final theorem is a slight generalization of [F2, Theorem 0.1].

THEOREM 3.13 (Length of an extremal ray).Let f : X — Y be a projective surjec-
tive equivariant morphism between toric varieties. Let D =}, d; D; be a Q-divisor, where
Dj isanirreducibletorusinvariant divisor and 0 < d; < 1for every j. Assumethat Ky + D
is Q-Cartier. Then, for each extremal ray R of NE(X/Y), there exists an irreducible curve C
such that [C] € R and

—(Kx+D)-C <dmX+1.
Moreover, we can choose C in such a way that
—(Kx 4+ D)-C <dimX

unless X ~ P9™X and " d; < 1. Here, we do not claimthat C isatorus invariant curve.
We note that R may contain no numerical equivalence classes of torusinvariant curves.

Sketch of the proof. If Y is a point, then this is the main theorem of [F2]. So, we may
assume that dirii > 1. Since the arguments in Step 2 in the proof of [F2, Theorem 0.1] work
with minor modifications, we may further assume tifas Q-factorial. LetR be a(Kx + D)-
negative extremal ray dfIE(X/Y). We consider the contractiapg : X — W overY with
respect toR. Let U be a quasi-projective torus invariant open subvariety¥osuch that
Xy = <p1§1(U) — U is not an isomorphism. It is not difficult to see théy is Q-factorial
andp(Xy/U) = 1 (see [FS3, Example A.1]). We note that @i ® Q — Pic(Xy) ® Q
is surjective. So, by shrinkingy, we may assume tha&f and W are quasi-projective. By
Theorem 2.11, we have an equivariant completion of ¢ : X — W, thatis,

p: X —- W
N N
p: X - W,
whereX and W are Q-factorial projective toric varieties and(X/W) = 1. Let D be the
closure ofD on X. Then—(K; + D) is g-ample. Thereforep is the contraction morphism
with respect to a suitableX ; + D)-negative extremal ra@ C NE(X/W) CNE(X) (see [R,
(1.5)] and [FS2, 3.8]). So, we can apply the arguments in Step 1 in the proof of [F2, Theorem
0.1]to@ : X — W. Let
A — B
N N
pr: X —> W

be the loci on whichpy is not an isomorphism. Let (resp.B) be the closure oft (resp.B)

in X (resp.W). We can calculat& ; by adjunction (cf. the computation & p in [F2, Proof

of The Theorem]). Let be a general fiber oA — B. ThenF is a Q-factorial projective
toric (dim A — dim B)-fold with the Picard number one (cf. Theorem 3.2). So, it is sufficient
to prove the following claim.
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CLAIM. Thereexistsacurve C in F such that
—(Kx+D)-C<—-K; - C=—-Kp-C<dmA—-dmB+1<dimX.

If C isin F, then the first inequality follows from the computations similar to the ones
in Step 1in [F2, Proof of The Theorem]. By adjunctidn;|r = Kr. Thus, itis obvious that
—K;-C=—Kp-CforCin F. The computaitons in [F2, Section 2] imply the existence of
ConF suchthat-Kp-C <dimF + 1. O

4. Examplesof non-Q-factorial contractions. In this section, we explain various ex-
amples of nor-factorial toric contraction morphisms. All the examples are three-
dimensional.

The first one is a beautiful example due to Sato of divisorial contractions. This im-
plies that it is difficult to describe the local behavior of divisorial contractions without the
Q-factoriality assumption even if the relative Picard number is one.

ExXAMPLE 4.1 (Sato’s nor@-factorial divisorial contraction). Lets, e, e3 form the
usual basis 023, and lete4 be given by

e1+ex=e3+teq.

We put
e5 =e1+ex=e3+eq
and
eg=¢e2+e3.
Let

Ay = {(e1, 2, e3, e4), and its facep
andY := X(Ay). We put
Ax = {{e1, e4, e5), (e1, €3, €5, €6), (€2, e4, e5, ep), and their facels.

We defineX := X(Ax). Thenf : X — Y has the following properties:
(i) X hasterminal singularities,
(i) X is notQ-factorial,
(i)  f is a projective birational equivariant morphism wihX/Y) = 1,
(v) —Kx is f-ample, and
(v) the exceptional locus contains a reducible divisor.
Figure 1 helps us to understand the above contraction morphism.
We can easily check the following properties:
(1) Xj;andX; are non-singular,
(2) ¢1 andgsy are blow-ups,
(3) ¢3 andy4 are flopping contractions, that iXx, is ¢;+1-numerically trivial for
i =23,
(4) Xz andX are notQ-factorial,
(5) Xs3andX have only terminal singularities,



316 0. FUJINO

=

X3 %

X
N /
AN

€4 y €y

FIGURE 1.

(6) p(X1/Y)=2andp(X2/X1) = p(X2/X3) = p(X3/X4) = 1.
The ampleness 6f Kx follows from the convexity of the roofs of the maximal conesig
(cf. [R, (4.3) Proposition]).
The next is an example dlips. In this example, the relative Picard number increases by
a flip.

EXAMPLE 4.2 (NonQ-factorial flip). Letes, e2, e3 form the usual basis &, and let
e4 be given by
e1+ex=e3+eq4.
We putf1 = (3,1, —2), f» = (—1, 1, 2) € Z%. We consider the following fans:

Aq = {(e1, e3, f1, f2), (€2, ea, f1, f2), and their faces,
Ap = {le1, ea, f1), (€2, €3, f2), (e1, €2, e3, e4), and their facels, and
Ac = {(e1, e2, e3, ea, f1, f2), and its face.

We putX := X(A,), X" := X(4,), andY := X(A.). Then we have a commutative
diagram:
X - Xt
N e
Y

such that

() f:X—YandfT:XT — Y are both small projective equivariant morphisms,

(i) p(X/Y)=1andp(Xt/Y) =2,
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€] €3
N f2 X+
€7 e
X
f ft

FIGURE 2.

(i) X andX™ are notQ-factorial, and

(v) —Kx is f-ample andX y~ is fT-ample.

Thus, this diagram is a so-call@ith. Figure 2 helps us to understand this example.

We note that the pointg, e3, f1, and f> are onHy = {(x, y, 2)|x + z = 1}, e2, es, f1,
and f> are onH = {(x,y,z)ly = 1}. Itis obvious thatHs = {(x,y,2)|lx + y +z = 2}
containsf1 and f2, while the pointse, e2, e3, andeg are onHy = {(x, y, 2)|x + y +z = 1}.
We note that the non-trivial lattice points in tHeed (see [R, p. 414 Definition]) ofA, are

1f+3f 1erlf and 3f+1f ez’
it Shtsf 21t 2 :

We can check the following properties:

(1) The flipping locus isP! and X has only canonical singularities (see [R, (1.11)
Definition]).

(2) The flipping curve is contained in the singular locusXof

(3) X has only one singular point, which is an ordinary double point. In particular,
X has only terminal singularities.

(4) The flipped locus i®* U P! and these twé's intersect each other at the singular
point of XT.
The ampleness 6f Kx (resp.K x+) follows from the convexity (resp. concavity) of the roofs
of the maximal cones (cf. [R, (4.3) Proposition]).

The final example is a no@-factorial divisorial contraction whose target space is not

Q-Gorenstein.

ExamMpPLE 4.3. We use the same notation as in Example 4.2. Wefput (0, 1, 1).
We note that

fomertes= Tt oS
3=e2 63—41 42~
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We consider the following fans:

= {(e1, e, f3), (e1, 3, f2, f3), (€2, ea, f2, f3), and their faces,
{{e1, e2, e3, e4), {e2, e3, f2), and their faces, and
{

Ag
A,
Ay (e1, e2, e3, eq, f2), and its facep.

We defineV := X (Ay), V' := X(A,), andW := X (Af). Then we obtain a commutative
diagram:

Vv - vt

N 4
w

such that
(i) ¢ :V — W is a projective birational equivariant morphism apdontracts a
divisor,
(i) ¢T: VT — Wis asmall projective equivariant morphism,
(i) —Kyx is¢p-ample andXy+ is ¢ -ample,
(v) p(V/W)=p(Vt/W)=1,
(v) vV andVT have only terminal singularities,
(vi) all v, v+, andW are notQ-factorial, and
(vii) W is notQ-Gorenstein.
See Figure 3.
We note that the small morphispt : V* — W is the one given in Theorem 2.6. This
operationV --» V* preserves the relative Picard number oliér Note that the number of
the torus invariant divisors decreases.

This example shows that we need to modifyto continue the MMP even if contracts
a divisor (see 2.9).

el e3
SN2
\% %
e )
@ ¢*

w

FIGURE 3.
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In Examples 4.1, 4.2, and 4.3, the varieties are not complete. To produce global exam-
ples, we just compactify them by Theorem 2.11. More concrete global examples can be found
in the appendix [FS3].

APPENDIX: AN EXAMPLE OF TORIC FLOPS
OsAMU FUJINO AND HIROSHI SATO

We construct an example of global toric 3-dimensional terminal flops that has interesting
properties. We freely use the notation and referencesquivariant completions of toric
contraction mor phisms.

ExamMPLE A.1 (Global toric 3-dimensional terminal flop). We have the following toric
flopping diagram;
X --»  X*
AN o
w
such that

(1) X, Xt andW are all projective toric 3-folds,

(2) p(X/W)=pXt/W)=1,0(X) =4 andp(W) =3,

(3) Kx (resp.K x+) is Cartier andp-numerically trivial (respg™-numerically trivial),
wherep : X — W (resp.p™ : XT — W) is a small toric morphism,

(4) X, Xt andW have only terminal singularities, and

(5) Exdg) = PP and Exgpt) = P11 PL
More precisely,

(6) Both Sing( and Sing{* are only one ordinary double point, where Skh(resp.
SingX ™) is the singular locus ok (resp.X ™). In particular,X andX™ are notQ-factorial.

(7) The flopX --+» X is the union of twosimplest flops, where the simplest flop
means the flop described in [FI, p. 49—p. 50]. It is sometimes caligdh’sflop. So, W has
three ordinary double points.

(8) Let P be the ordinary double point oK. ThenP N Exc(¢) = @. Thusg is an
isomorphism around. We putx® := X\ P andW® := W \ ¢(P). ThenX? is non-singular
andp(X9%/ w0 = 2.

(9) TheflopxX --» X factors as follows:

X -3 Z -—» Xt

N v N\ v
Vi Vo

Each step is the simplest flop. Every morphism is d¥erWe note that/;, V2 andZ are not
projective over”. However, every variety is projective ovef°.
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es N\

(] AW [59] AX

FIGURE 1.

CONSTRUCTION We fix N ~ Z3. Leteq, e2 andes be the standard basis @f. We
put
ea=e1+tex+e3=(111),
es=e3+es=(1,12)),
ee=e1+es=(2,11),
e7=ex+es=(1,2,1).

We consider the following fans:

(e1,e3,e5,e6), (e2,e3,es5), (e1, e2, eg),
Ay = (e2, eq, €7), (€2, es, e7), (e4, es, eg),
(ea, eq, €7), (ea,es,er),  (—ea, e, e2),
(—eas, e1,e3), (—eq,e2, e3), andtheirfaces
and
(e1, €2, e6,e7), (e1,e3,e5,¢e6), (e2,e3,es,e7),
Ay = (ea, es, eg), (ea, es, €7), (ea, es, e7),
(—es4,e1,e2), (—es e1,e3), (—eas, ez, e3),

and their faces

Figure 1 may help us to understand these fans. WeXput X(Ax) andW = X(Aw).
To constructX ™, Vi, Vo, andZ and check the propertig) to (9) are good exercises. The
details were carried out in [FS2]. The remcan find many other examples in [FS2].
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