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Abstract. Given a real fan in a real space consisting of real convex polyhedral cones,
we construct a complete real fan which contains the fan, by two completely different methods.
The first one is purely combinatorial and a proof of a related version was sketched earlier by
Ewald. The second one is based on Nagata’s method of imbedding an abstract variety into a
complete variety. For the second method, we introduce the theory of Zariski-Riemann space
of a fan.

Introduction. A fan in a real space is defined as a cell complex consisting of poly-
hedral cones with the apex at the origin. A finite fanΣ is said to be complete if the union
of cones inΣ is the whole space. The theory of toricvarieties says that, to each finite fan
consisting of rational polyhedral cones, is associated a toric variety, and the fan is complete
if and only if the toric variety is complete (see, for example, Ewald [E], Fulton [F2], Oda
[O1]). Nagata’s compactification theorem says that any algebraic variety can be embedded
in a complete algebraic variety [N1, Theorem 4.3]. This theorem was generalized for normal
algebraic varieties with algebraic group actions by Sumihiro [S1], i.e., the equivariant com-
pletion theorem. By using Sumihiro’stheorem, we can complete a rational fanΣ as follows
LetX be the toric variety associated toΣ. SinceX is a normal variety with torus action, there
exists an equivariant completion̄X. SinceX̄ is a complete toric variety, it corresponds to a
complete fanΣ̄ . ThenΣ̄ is a completion ofΣ.

Since it is a quite simple problem on convex polyhedral sets in a real space, we would
like to avoid this roundabout proof. In this paper, we give two different direct proofs which
are valid for not necessarily rational fans. The first proof given in Section 1 is purely combi-
natorial and was sketched in [E, Theorem 2.8] in the case of a rational fan.

The second one is done by using Nagata’s method applied for fans. In Nagata’s proof, the
Zariski-Riemann space, i.e., the topological space of all valuation rings of the function field
plays an important role. The Zariski-Riemann space was introduced originally by Zariski
[Z1], [Z2] for the theory of local uniformization of algebraic varieties. In Section 2, we
define the Zariski-Riemann spaces for rational fans. We discuss on blowups of not necessarily
rational fans in Section 3. Using the results of these sections, the existence of the completion
is first proved for rational fans in Section 4. In the last section, the definition of the Zariski-
Riemann spaces is generalized fork-fans for any subfieldk of R. Theorem 5.4 claims that any
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finite k-fan is embedded in a completek-fan. The theorem applied fork = R is the second
proof of the completion theorem for real fans.

1. Combinatorial proof.
NOTATION. Given a setE of vectors inRn we denote by posE the set of all linear

combinations of elements ofE with non-negative coefficients, and call it thepositive hull
of E. If E is finite, we say posE is a (real) polyhedral coneσ . The dimension dimσ of
σ is defined to be the dimension of the linear hull linσ of σ . If σ has linearly independent
generators, we call it asimplicial cone. Ifσ has rational generators, we callσ rational. By
a face ofσ we mean an intersectionσ ∩ H , whereH is a (linear) hyperplane such thatσ is
totally contained in one of the two closed half-spaces bounded byH . If {0} is a face ofσ , we
call it theapex of σ .

A collectionΣ of (real) polyhedral cones with apex{0} is said to be a (real) fan if it is
a cell complex, that is, (i) each face of a cone ofΣ is also inΣ, (ii) the intersection of two
cones ofΣ is a common face of the cones. We callΣ rational if all cones are rational. IfΣ
andΣ ′ are fans inRn andΣ ⊂ Σ ′, we sayΣ is a subfan of Σ ′. By thestar st(σ,Σ) of a
coneσ ∈ Σ in Σ we mean the set of all conesτ ∈ Σ such thatσ ⊂ τ . Thesupport |Σ| of
Σ is the union of the cones inΣ. If Σ is finite and|Σ| equalsRn, we sayΣ is complete, and
a completion of any of its subfans. If a finite fanΣ is not complete, we call the collection of
cones ofΣ which lie in the (topological) boundary of|Σ| theboundary bdΣ of Σ. Clearly,
bdΣ is again a fan. Givenε > 0, theε-neighborhood of Σ is defined as the union of all
1-cones pos{a} wherea is a unit vector representing a point of distance less thanε from |Σ|.

As a specific type of cones we consider the following. Ifρ is a 1-dimensional cone not
contained in the linear hull of a coneσ , we callσ.ρ = pos(σ ∪ρ) apyramid with apexρ over
the basisσ . Clearly, dim(σ.ρ) = 1+dimσ . A pyramid over a pyramid is said to be atwofold
pyramid or a 2-pyramid, and a pyramid over a(k − 1)-pyramid inductively ak-fold pyramid
or ak-pyramid. σ is considered a 0-fold pyramid over itself.k-fold pyramids can be written
as

σ.ρ1. · · · .ρk = σ.τ ,

where τ = ρ1. · · · .ρk is a simplicial cone. IfP is a polytope or a polyhedral set and
p1, . . . , pk are vectors (representing points) such thatσ = posP andρi = pospi, i =
1, . . . , k, thenσ.τ = pos(P.p1. · · · .pk), whereP.p1. · · · .pk is an ordinaryk-fold pyramid
(unbounded ifP is not a polytope).

1.1. Main result. All fans in this section are assumed to be finite.

THEOREM 1.1. Every real fan Σ can be completed.

In [E, Theorem 2.8], we have sketched the proof of this theorem for rational fans. In this
section, we present an explicit proof in the general case. The second proof of this theorem is
given in Section 5 (cf. Theorem 5.4).

PROOF OFTHEOREM1.1. For the purpose of our proof it is useful to show a somewhat
stronger version of Theorem 1.1:
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THEOREM 1.2. Given a fanΣ and an ε > 0, there exists a fanΣ0 and a complete fan
Σ ′ such that the following are satisfied:

(1) Σ ⊂ Σ0 ⊂ Σ ′.
(2) Σ0\Σ consists of the multifold pyramids joining the cones ofΣ to simplicial cones

in bdΣ0, and of the faces of such pyramids.
(3) If σ ∈ Σ ′ intersects the cells of Σ only in 0, then σ is a simplicial cone.
(4) |Σ| \ {0} lies in the interior of |Σ0|.
(5) |Σ0| is contained in the ε-neighborhood of Σ .

We apply induction onn. For n = 1, eitherΣ = {{0}} or Σ = {{0},pos{1}} or Σ =
{{0},pos{−1}} or Σ = {{0},pos{1},pos{−1}}, the last fan being the completion of all the
others. Ifn = 2, letS be the unit circle. We may assume{0} not to be the only cone ofΣ, any
complete fan being a completion ofΣ in this case. SoΣ splitsS into finitely many (closed)
circular arcs. LetC be one of these arcs andp, q its end points. We choose pointsp′, q ′ in the
relative interior ofC so that the distances betweenp,p′ andq, q ′, respectively, are less than
ε/2, and that the cones pos{p,p′}, pos{q, q ′} intersect only in{0}. We extendΣ by adding
pos{p,p′}, pos{p′}, pos{q, q ′}, pos{q ′}. Doing this for all arcs (and assumingε small enough
to begin with), we obtain a fanΣ0. Now S \ |Σ0| consists of finitely many arcs. If one of
the arcs has lengthπ or more, we split it into two arcs of length less thanπ . We add toΣ
the closed angular regions determined by the arcs and their boundary 1-cones and obtain a
complete fanΣ ′. It is readily verified thatΣ,Σ0 andΣ ′ satisfy (1) through (5).

Letn > 2. Again we may assume that{0} is not the only cone ofΣ. So letρ be a 1-cone
of Σ for which st(ρ,Σ) is not complete (if none of such exists,Σ is already complete). Let
H be the (affine) tangent hyperplane of the unit sphereS ata = ρ ∩ S. ThenH intersects the
cones ofΣ either not at all or in convex polytopes (if bounded) or so-called polyhedral sets
(if unbounded). In Figure 1 we illustrate the casen = 3 (heavy lines and hatched regions).
Let d be the smallest distance thata has from the cones ofΣ \ st(ρ,Σ). Clearlyd > 0. We
consider the(n − 2)-sphereSa of radius at mostd/2 and centera in H . For the moment we
regarda as the origin of the(n − 1)-spaceH . By posa let us denote the positive hull with
respect to this origin.

Σa := {posa(H ∩ σ) ; σ ∈ st(ρ,Σ)}
is then a fan inH . It represents the quotient fanΣ/ρ (up to a translation; compare Ewald [E,
p. 81, Definition 3.3]).

Now we apply the inductive assumption toΣa and obtain for anyεa > 0 fansΣa,0, Σ ′
a

satisfying (1)–(5) (with terms indexed bya, andd/2 considered as unit length). We wish to
construct an extension ofΣ by usingΣa,0, Σ ′

a. Since the latter fans collide, in general, with
cones ofΣ \ st(ρ,Σ), we first construct a map which assigns to each cone ofΣ ′

a a polytope
or polyhedral set contained in the cone:

I. Let σa ∈ Σa , henceσa = posa(H ∩ σ) for someσ ∈ st(ρ,Σ). Then we assign

σa �→ φa(σa) = H ∩ σ .



192 G. EWALD AND M. ISHIDA

FIGURE 1.

II. Let σa ∈ Σa,0 \ Σa be a multifold pyramidσa,o.ρa,1. · · · .ρa,k, whereσa,o ∈ Σa ,
σa,o = posa(H ∩ σo), andρa,i = posa{pa,i}, pa,i ∈ Sa , i = 1, . . . , k. We assign

σa �→ φa(σa) = clconv((H ∩ σo) ∪ {pa,1} ∪ · · · ∪ {pa,k}) ,
where “cl” means the “topological closure” (needed ifH ∩ σo is unbounded).

III. Let σa ∈ Σa,0 \ Σa and σa ∩ |Σa| = {a} or σa ∈ Σ ′
a \ Σa,0. Thenσa =

posa{p1, . . . , pr }, wherep1, . . . , pr are inSa and linearly independent (with respect toH as
a linear space). We set

σa �→ φa(σa) = conv{a, p1, . . . , pr } (an(r + 1)-simplex).

In Figure 1 the dotted regions illustrate theφa(σa) of type II or III.
IV. φa({a}) = {a}.
LEMMA 1.3. φa as defined by I–IV maps Σ ′

a onto a cell complex A consisting of
polytopes and polyhedral sets in H . It has the following properties:

(a) φa is bijective and preserves inclusions.
(b) posa φa(σa) = σa for all σa ∈ Σ ′

a .
(c) εa > 0 can be chosen so that for any τ ∈ Σ \ st(ρ,Σ) we have: τ ∩ |A| is empty

or contained in φa(σa) for some σa ∈ Σa .

PROOF. (a) and (b) readily follow from the definitions I–IV. In order to show (c) we
recall an elementary fact from convex polytope theory: (*) IfF,G are (closed) polytopes or
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polyhedral sets inRn such thatF ∩G is empty, thenF andG have positive distance, that is,
there exists ad > 0 such that each point ofF has at least distanced from G. Suppose (c)
is false. Then there exists aτ ∈ Σ \ st(ρ,Σ) and anx in τ ∩ |A| but not inφa(σa) for any
σa ∈ Σa . Since theφa(σa) of type III are contained in the ballBa , x cannot lie in one of such.
Sox lies in ak-fold pyramidφa(σa,0.p1. · · · .pk) overφa(σa,0), whereσa,0 ∈ Σa butx does
not lie in the basisφa(σa,0) of the pyramid.

Let F be the smallest face ofτ ∩ H which containsx (in its relative interior). IfF ∩
φa(σa,0) = ∅, thenF has, by (*), positive distance fromφa(σa,0), and we chooseεa to be
at most half this distance. Thenx cannot lie in the above pyramid. So letF ∩ φa(σa,0) be
nonempty. SinceF andφa(σa,0) are intersections of cones ofΣ andH , F ∩ φa(σa,0) is a
common faceG of F andφa(σa,0). Let dimG = m. ThenG, a, andx span an(m + 2)-
dimensional affine space in which the hyperplanes spanned byG, a andG, x, respectively,
have an angleα > 0 (see the illustration in Figure 1). Sincex lies in thek-fold pyramid
φa(σa,0).p

1. · · · .pk overφa(σa,0), the angleα could be made arbitrarily small by choosing
εa small enough, a contradiction toα > 0 being given. So letεa be chosen appropriately.
Since our arguments apply to finitely many faces, we may select the smallestεa among those
which occur as a common bound. This proves Lemma 1.3. �

Now we define the following mapψa onA:
I′. If σ ∈ Σ andH ∩ σ ∈ A, we assign

H ∩ σ �→ ψa(H ∩ σ) = σ .

II ′. If φa(σa) = clconv((H ∩ σo) ∪ {pa,1} ∪ · · · ∪ {pa,k}) according to II, we consider
the pointpa,i as vectorqi = a + pa,i in Rn and assign forρi = pos{qi}, i = 1, . . . , k

φa(σa) �→ ψa(φa(σa)) = σo.ρ1. · · · .ρk .
III ′. If φa(σa) = conv{a, p1, . . . , pr } according to III, we consider again the pointspi

as vectorsqi = a + pi in Rn and assign forρi = pos{qi}, i = 1, . . . , r (andρ = posa)

φa(σa) �→ ψa(φa(σa)) = ρ.ρ1. · · · .ρr .
IV ′.

{a} �→ ψ({a}) = ρ .

LEMMA 1.4. If we add to Σ all cones ψa(φa(σa)) and their faces for σa ∈ Σ ′
a \Σa,

then we obtain a set Σ(1) which is a fan, provided εa is chosen small enough.

PROOF. By construction,ψa clearly is bijective. We must show that for sufficiently
smallεa two conesτ, τ ′ of Σ(1) intersect in a common face ofτ, τ ′ which belongs toΣ(1).
SinceΣ ⊂ Σ(1), this is true ifτ, τ ′ both lie inΣ. Let τ ∈ Σ, τ ′ = σo.ρ1. · · · .ρk of type II′.
If σo ∩ H is bounded, we haveτ ′ = pos((σo ∩ H) ∪ {q1, . . . , qk}), and by Lemma 1.3, (c)
τ ′ ∩ |Σ| = σo for sufficiently smallεa, soτ ∩ τ ′ = τ ∩ σo is a common face ofτ andτ ′.

If σo ∩ H is unbounded, we consider an affine hyperplaneH ′ which does not contain
0 such thatσo ∩ H ′ is nonempty and bounded (H ′ exists since 0 is the apex ofσo). For
sufficiently smallεa the conesρ1, . . . , ρk intersectH ′ in pointsq ′

1, . . . , q
′
k, respectively, so
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thatτ ′ = pos((σo ∩ H ′) ∪ {q ′
1, . . . , q

′
k}). We may again apply the arguments of Lemma 1.3,

(c) so as to obtainτ ′ ∩ |Σ| = σo for sufficiently smallεa.
For all the other choices ofτ, τ ′ analogous arguments apply. Since only finitely many

restrictions are imposed onεa, Lemma 1.4 follows. �

Now we apply toΣ(1) the same procedure of extension as we applied toΣ, choosing as
ρ a 1-coneρ1 of the “old” fanΣ (if there is aρ1 other thanρ for whichΣ/ρ1 is incomplete).
We denote the new fan byΣ(2). Continuing in this way, we find after a finite numberi of
steps a fanΣ(i) =: Σ0 such thatΣ0/ρj is complete for all 1-conesρj = ρ1, . . . , ρi . We
assert:

LEMMA 1.5. Given ε > 0,Σ0 can be chosen so that (2), (4)and (5) in Theorem 1.2
are satisfied for Σ0 instead ofΣ0.

PROOF. First we show that (2) in Theorem 1.2 holds forΣ(1) instead ofΣ0. In fact,
by the definition ofφa the pointspa,1, . . . , pa,k in II and the pointsp1, . . . , pr in III lie
on the boundary of|A| (A as in Lemma 1.3). Hence, by the definition ofψa , we see that
ρa,1, . . . , ρa,k (see II′) andρ1, . . . , ρr (see III′) lie in bdΣ(1). So if σ is an element ofΣ(1),
we findσ = σ0 · τ0, whereσ0 ∈ Σ andτ0 either equal someρ1. · · · .ρk (if σ0 is different from
ρ1) or someρ1. · · · .ρr (if σ0 = ρ1). In both casesτ0 is a simplicial cone in bdΣ(1).

According to the construction ofΣ(2) we see, analogously, that forσ ∈ Σ(2) \Σ(1) we
haveσ = σ1.τ1, whereσ1 ∈ Σ(1) andτ1 is a simplicial cone in bdΣ(2). Since eitherσ1 ∈ Σ
or σ1 = σ0.τ0 for σ0 ∈ Σ andτ0 is a simplicial cone in bdΣ(1), we obtainσ = σ0.τ0.τ1.
According to Lemma 1.4 applied toΣ(1), Σ(2) instead ofΣ, Σ(1), respectively, the choice
of a sufficiently smallεa,1 (instead ofεa) guarantees thatτ0 ∈ bdΣ(2). Therefore,τ0.τ1 ∈
bdΣ(2) so that (2) holds forΣ,Σ(2) instead ofΣ,Σ0, respectively. Continuing in this way
we find that (2) is also satisfied if we replaceΣ(2) successively byΣ(3), . . . ,Σ(i) = Σ0. Let
herebyεa,2, . . . , εa,i replaceεa,1.

(4) is readily implied by the construction ofΣ0. In order to obtain (5) we choose
εa,1, . . . , εa,i all to be smaller than the givenε > 0. Sincepa,1, . . . , pa,k in II, p1, . . . , pr in
III, and their analogs in the constructions ofΣ(2), . . . ,Σ(i) all lie in theε-neighborhood of
Σ, the same is true forτ0, τ1 and their analogs inΣ(2), . . . ,Σ(i) = Σ0. This implies (5) for
Σ0. �

If |Σ0| is contained in a (linear closed) half-space, we add toΣ0 an n-dimensional
simplicial coneσ and its faces so thatσ ∩|Σ0| = {0} and pos(σ ∪|Σ0|) = Rn. The extended
fan we denote again byΣ0.

In order to constructΣ0 andΣ ′ we consider the setP = cl(Rn \ |Σ0|). P and |Σ0|
have a common boundary which carries a subfanΣ00 of Σ0 and is a unionF1 ∪ · · · ∪ Fm of
(n− 1)-dimensional cones ofΣ00. Let

Hi := lin Fi , i = 1, . . . ,m

be the linear hyperplanes spanned byFi , and letH+
i , H−

i be the closed half-spaces bounded
byHi .
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LEMMA 1.6. Σ0 can be mapped isomorphically onto a fan in such a way that |Σ|
remains pointwise fixed, and that all Hi are different. We denote the new fan again by Σ0.

PROOF. Each cone inΣ0 \Σ is either a multifold pyramid with basis inΣ and apex-1-
cones not inΣ or a simplicial cone with generating 1-cones not inΣ. Replacing the 1-cones
by 1-cones in sufficiently small neighborhoods does not change the structure ofΣ0 and leaves
Σ unchanged. The new 1-cones may be chosen so that no two of the hyperplanesH1, . . . , Hm

coincide. This proves Lemma 1.6. �

H1, . . . , Hm split Rn into a systemM of polyhedraln-cones with apex 0, each of which
is an intersection of half-spacesH+

i ,H−
i .

LEMMA 1.7. If σ ∈ M, then σ is either totally contained in P or in |Σ0|.
PROOF. Supposeσ contains a pointx ∈ intP and a pointy ∈ int |Σ0|. Then we

assert: The line segment[x, y] intersects at least oneFi , i = 1, . . . ,m. Indeed, this follows
from a generalized version of the Jordan Curve Theorem; but we can see it directly:[x, y]
intersects finitely manyn-cones ofΣ0. Among these the one closest tox contains the point
z ∈ [x, y] ∩ |Σ0| closest tox on its boundary. Since the boundary of|Σ0| is covered by
F1, . . . , Fm, z lies on one of theFi . ThenHi separatesx andy, a contradiction. �

By Lemma 1.7,P is the union of the cones of a subsetM0 ⊂ M. Although Rn is
covered byΣ0 andM0, the union ofΣ0, M0 and the faces of the cones ofM0 do not, in
general, provide a fan, since the common boundary of|Σ0| andP is covered differently by
cones ofΣ0 and faces of cones ofM0. However, Lemma 1.6 and Lemma 1.7 imply:

LEMMA 1.8. If a face µ of a cone ofM0 is contained in |Σ0|, it is contained in an Fi ,
i ∈ {1, . . . ,m}.

So eachFi is the union of the(n − 1)-faces of cones ofM0. This remains true if we
refineM0 as follows.

LEMMA 1.9. The fanΣ(M0) consisting ofM0 and the faces ofM0 may be turned into
a simplicial fan Σ1 having the same 1-cones as Σ(M0) by splitting the cones of Σ(M0).

PROOF. This follows from a combinatorial theorem (see [E, III, Theorem 2.6]). �

Now we adjustΣ0 toΣ as follows. Each coneσ ∈ Σ0 \ Σ which is not contained in
the boundary of|Σ(M0)| is ak-fold pyramidτ.ρ1. · · · .ρk = τ.τ ′, whereτ ′ = ρ1. · · · .ρk is a
simplicial cone and the basisτ lies inΣ0. In Σ1, τ ′ is split into simplicial conesτ1, . . . , τs ,
henceσ is split into simplicial conesτ.τ1, . . . , τ.τs . This turnsΣ0 into a fanΣ0.

LEMMA 1.10. Lemma 1.5 is true for Σ0 instead of Σ0.

PROOF. This readily follows from|Σ0| = |Σ0| and the construction ofΣ0. �

The fanΣ0∪M0 is complete; we denote it byΣ ′. SoΣ0,Σ ′ satisfy all the properties (1)
through (5) and the proof of Theorem 1.2, hence also the proof of Theorem 1.1, is completed.
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2. The Zariski-Riemann space of a rational fan. Let r ≥ 0 be an integer, andN a
freeZ-module of rankr. NR := N ⊗Z R is anr-dimensional real space with the latticeN .
We consider cones and fans inNR from this section on. Namely, a subsetC ⊂ NR := N ⊗ R
is said to be aconvex polyhedral cone if there exists a finite subset{y1, . . . , ys} ⊂ NR with

C = pos{y1, . . . , ys} = R0y1 + · · · + R0ys ,

whereR0 is the set of nonnegative real numbers. The coneC is said to berational if we can
choosey1, . . . , ys in N , andstrongly convex if C ∩ (−C) = {0}.

Let M := HomZ(N,Z) andMR := M ⊗ R. There exists a natural perfect pairing
〈 , 〉 : MR ×NR → R. A subsetC′ ⊂ C is a face and writtenC′ ≺ C if there existsx ∈ MR

with C ⊂ (x ≥ 0) andC′ = C ∩ (x = 0), where we denote(x ≥ 0) = {y ∈ NR ; 〈x, y〉 ≥ 0}
and(x = 0) = {y ∈ NR ; 〈x, y〉 = 0}.

From this section on, we prefer to use lettersX,Y, . . . for fans rather than Greek capitals.
Recall that a nonempty setX of strongly convex rational polyhedral cones is said to be afan
if

(i) σ ∈ X andη ≺ σ imply η ∈ X, and
(ii) if σ, τ ∈ X, thenσ ∩ τ is a common face ofσ andτ .

The condition (ii) can be replaced by the following“separability condition”(ii’) (cf. [F2, 1.2,
(12)]).

(ii ′) For σ, τ ∈ X, there existsx ∈ MR with σ ⊂ (x ≥ 0), τ ⊂ (x ≤ 0) and
σ ∩ (x = 0) = τ ∩ (x = 0).
The setF(π) of all faces of a strongly convex rational polyhedral coneπ is a fan with the
unique maximal elementπ . Such a fan is called anaffine fan.

For eachσ ∈ X, the dual coneσ∨ ⊂ MR is defined by

σ∨ := {x ∈ MR ; 〈x, u〉 ≥ 0 for anyu ∈ σ } .

This is anr-dimensional polyhedral cone. SinceM ∩ σ∨ is a finitely generated additive
semigroup (cf. [O1, Prop.1.1]), the semigroup ringC[M ∩ σ∨] over the complex number
field is an affine ring and the quotient field is equal to that of the group ringC[M]. The
toric varietyXC associated to a fanX is defined to be the union of the affine toric varieties
SpecC[M ∩ σ∨] for σ ∈ X. The function field ofXC is the quotient field ofC[M], and the
algebraic torusTN := SpecC[M] acts onXC. The toric varietyXC is of finite type, i.e., it is
an algebraic variety if and only if the fanX is finite.

The topology of a fanX is defined as follows. A subsetU ⊂ X is defined to be open if
σ ∈ U andη ≺ σ imply η ∈ U . Namely,U is open if and only if it is empty or a subfan ofX.
For each pointx ∈ XC, we defineφ(x) to be the minimalσ ∈ X with x ∈ SpecC[M ∩ σ∨].
Then the mapφ : XC → X is continuous.

A collection of convex polyhedral cones not necessarily rational is called areal fan if
it satisfies (i) and (ii). Usual fans which define toric varieties are sometimes calledrational
fans.
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The support|X| of a fanX is defined to be
⋃
σ∈X σ , andX is said to becomplete if it is

finite and|X| = NR. For a rational finite fanX, the toric varietyXC is complete if and only
if X is complete. IfX is a subfan of a complete rational fanX̄, thenXC is an open subvariety
of X̄C, i.e.,X̄C is a completion ofXC.

A subringR of a fieldK is said to be avaluation ring if it satisfies the condition:

1/x ∈ R for any x ∈ K \ R .

In particular,R = K is a valuation ring.
Let (R,m) and(R′,m′) be not necessarily Noetherian local rings with a common quo-

tient fieldK. We sayR′ dominates R and writeR ≤ R′ if R ⊂ R′ andm = m′ ∩ R.
It is known that, for any local ring(R,m) with the quotient ringK, there exists a val-

uation ring(R′,m′) which dominates(R,m). When(R,m) is a local ring of an algebraic
variety,R′ can be regarded as the limit of a transfinite sequence of blowups ofR.

Let X be an algebraic variety over a fieldk, i.e., a reduced and irreducible separated
scheme of finite type overk, andK the function field. We say a valuation ringR of K
dominates a pointx of the schemeX if it dominates the local ringOx . We denote by ZR(X)
the set of all valuation rings ofK which dominates a point ofX (cf. [ZS, Chap. VI, §17]).
ZR(X) is called the Zariski-Riemann space ofX. We denote by ZR(K) the set of all valuation
rings ofK which contains the base fieldk.

The following theorem is known as the valuative criterion of properness of varieties (cf.
[H, Thm. 4.7]).

THEOREM 2.1. An algebraic variety X with the function field K is complete if and
only if ZR(X) = ZR(K).

For an algebraic varietyX, the topology of ZR(X) is defined as follows (cf. [N1, §1]).
For a proper birational morphismX′ → X and a closed subsetY ′ ⊂ X′, letF be the set of all
valuation rings in ZR(X) which dominate points ofY ′. We define the set of all suchF as a
basis of the closed sets of ZR(X). This topology is equal to the topology defined by the open
basis consisting of the followingE(B)’s. Let B be an integral domain of finite type overk
with the quotient fieldK, andE(B) the set of all valuation rings in ZR(X) which containB.

The following theorem was used in Nagata’s compactification theorem.

THEOREM 2.2 ([ZS, Thm. 40], [N1, Prop. 1.1]). The space ZR(X) is quasi-compact
for any algebraic variety X.

We define the Zariski-Riemann space for a rational fan. In this case, we replace the field
K by the dual moduleM � Zr of N .

A relation≤ onM is said to be anadditive preorder if it satisfies the following condi-
tions:

(1) For anyx, y ∈ M, eitherx ≤ y or y ≤ x is satisfied.
(2) x ≤ y andy ≤ z imply x ≤ z.
(3) If x ≤ y, thenx + z ≤ y + z for everyz ∈ M.
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Note that we do not assume the anti-symmetry:x ≤ y andy ≤ x imply x = y. It is easy
to see thatx ≤ y andx ′ ≤ y ′ imply x + x ′ ≤ y + y ′, and 0≤ nx for an integern > 0 implies
0 ≤ x.

DEFINITION 2.3. We definethe Zariski-Riemann space ZR(M) to be the set of all
additive preorders ofM.

We are going to define the topology of ZR(M). Each elementv of ZR(M) is denoted by
≤v when it is used as a relational operator. We denotex =v y if x ≤v y andy ≤v x, while
x <v y if x ≤v y and noty ≤v x. L(v) := {x ∈ M ; 0 ≤v x} is a substitute for the valuation
ring in our case. We see easily thatL(v) is a subsemigroup satisfying−x ∈ L(v) for all
x ∈ M \ L(v). We defineL0(v) := {x ∈ M ; x =v 0}, which is equal to theZ-submodule
L(v) ∩ (−L(v)) of M. M/L0(v) is equal to the quotient ofM by the equivalence relation
x =v y, and is a freeZ-module.

We denote byη(M) the trivial preorder ofM, i.e.,L0(η(M)) = M.

φM : ZR(M) \ {η(M)} → (NR \ {0})/R+
is defined as follows. Forv ∈ ZR(M) \ {η(M)}, letCv be the convex closure ofL(v) in MR.
Then the closurēCv is a closed half space (cf. Lemma 5.1). Hence there existsx ∈ NR \ {0}
with C̄v = (x ≥ 0). We defineφM(v) to be the image ofx in (NR \ {0})/R+.

We setSN := (NR \ {0})/R+. Then ZR(M) has a recursive structure as follows. For
eachx ∈ NR \ {0}, let x̄ be its image inSN . LetM(x)R be the largest rational subspace of
MR contained in(x = 0), and letM(x) := M(x)R ∩ M. Thenφ−1

M (x̄) is identified with
ZR(M(x)) by identifying eachv ∈ φ−1

M (x̄) with its restriction toM(x).
LetC be a rational polyhedral cone inNR which is not necessarily strongly convex. Then

there exists a finite subset{x1, . . . , xs} ⊂ M with

C = (x1 ≥ 0) ∩ · · · ∩ (xs ≥ 0)

(cf. [O1, Thm. A.2]). We define a subset‖C‖ of ZR(M) by

‖C‖ := {v ∈ ZR(M) ; 0 ≤v xi, i = 1, . . . , s}
= {v ∈ ZR(M) ; M ∩ C∨ ⊂ L(v)} .

For any rational polyhedral conesC1, C2, we see easily thatM∩C∨
1 ,M∩C∨

2 ⊂ L(v) implies
M ∩ (C∨

1 +C∨
2 ) ⊂ L(v). SinceC∨

1 +C∨
2 = (C1 ∩C2)

∨, we have‖C1‖∩‖C2‖ = ‖C1 ∩C2‖.
We take the set of all such‖C‖’s as the open basis of ZR(M). Since the set of all finite
subsets ofM is countable, the topology of ZR(M) defined by this open basis satisfies the
second countability axiom.

Let ZR0(M) be the set of the elements in ZR(M)which have the anti-symmetry property,
i.e., the set of additive orders ofM. If we identifyM with the set of monomials of a Laurent
polynomial ring, ZR0(M) is equal to the space introduced by Kuroda [K] (see also [S3]).
Kuroda [K] introduced this space in order to prove the infinity of the SAGBI bases of some
invariant rings.

We omit the proof of the following proposition which we do not use in this paper.
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PROPOSITION 2.4. ZR0(M) is closed in ZR(M) and the induced topology of ZR0(M)

is equal to that of Kuroda.

The Zariski-Riemann space ZR(X) of a fanX is defined by

ZR(X) :=
⋃

σ∈∆
‖σ‖ .

THEOREM 2.5. The Zariski-Riemann space ZR(M) is quasi-compact. ZR(X) is quasi-
compact for any finite fan X of MR. Here “quasi-compact” means “compact but not neces-
sarily Hausdorff”.

PROOF. We follow the method of Zariski-Samuel [ZS, Thm. 40]. For everym ∈ M\{0},
we setŜ0

m := {−1,0,1}. For v ∈ ZR(M) andm ∈ M, we definev(m) ∈ Ŝ0
m to be−1 if

m <v 0, 0 ifm =v 0 and 1 if 0<v m. Sincev ∈ ZR(M) is determined by the set ofm’s with
0 ≤v m, we regardv as the map fromM to {−1,0,1}, and we get an embedding

ZR(M) ⊂
∏

m∈M\{0}
Ŝ0
m .

The weak topology of̂S0
m is defined by setting{∅, {0}, {0,1}, {−1,0,1}} as the set of open

subsets. Since the set of finite intersections of{v ; v(m) = 0,1} is an open basis of ZR(M),
the topology of ZR(M) is equal to the relative topology of the product topology of

∏
m∈M Ŝ0

m.
Now we introduce the discrete topology onŜ0

m. Then the product space is compact by Ty-
chonoff’s theorem. ZR(M) is a closed subset of the compact product space. Actually, it is
defined by the equalities

v(m) = −1 or v(m′) = −1 or v(m+m′) = 0, 1 ,(1)

v(m) = 0, 1 or v(−m) = 1(2)

and

v(m) = 0, −1 or v(−m) = −1(3)

for allm,m′ ∈ M. Hence ZR(M) is compact in the strong topology, hence so is it in the weak
topology.

In order to show the compactness of ZR(X) for a finite fanX, it suffices to show that of
each‖σ‖. We can show the compactness of‖σ‖ by taking a generator{x1, . . . , xs} ⊂ M of
the coneσ∨ and adding the equalities

v(xi) = 0, 1 (i = 1, . . . , s)

to those of (1), (2) and (3). �

Let v be an element of ZR(M). We will expressv by a sequence of elements inNR.
We setv0 := v andM0(v) := M. If v0 �= η(M0(v)), then letM1(v) be the intersection
M ∩ (x0 = 0) ⊂ MR for x0 := φM(v0), andv1 the restriction ofv0 toM1(v). Inductively,
if vi−1 �= η(Mi−1(v)), we defineMi(v) to be the intersectionMi−1(v) ∩ (xi−1 = 0) ⊂
Mi−1(v)R for xi−1 := φMi−1(v)(vi−1), andvi the restriction ofvi−1 toMi(v). Since the rank
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ofM is r, there exists a nonnegative integers ≤ r with vs = η(Ms(v)). We calls the rank of
v and denote it by rank(v). The rank ofη(M) is defined to be 0. This is an analog of the rank
defined for a valuation ring.

Note that the preorderv is recovered from the integers and the sequence(x0, . . . , xs−1).
Actually, if we take a representativeyi ∈ NR of xi for eachi, thenm ∈ L(v) if and only if
either there exists 0≤ j ≤ s − 1 such that〈m, yk〉 = 0 for 0 ≤ k < j and〈m, yj 〉 > 0, or
〈m, yk〉 = 0 for all 0 ≤ k ≤ s−1. This is also equivalent to the condition〈m,∑s−1

i=0 ε
iyi〉 ≥ 0

for a sufficiently small positive real numberε. Since we often use this sequence(y0, . . . , ys−1)

of points inNR, we call it adefining sequence of v. By construction,y0, . . . , yj−1 are 0 on
Mj(v)R andyj is not identically 0 on this linear subspace. Since{Mj(v)R} is a shrinking
sequence of vector spaces,{y0, . . . , ys−1} is linearly independent.

Whenv �= η(M), thefirst generalization v′ ∈ ZR(M) of v is defined by

x ≤v′ y ⇐⇒ x ≤v y or y − x ∈ M rank(v)−1(v) .

If rank(v) = s and(y0, . . . , ys−1) is a defining sequence ofv, then(y0, . . . , ys−2) is a defining
sequence ofv′. Hence, we getη(M) by s-times repetition of the first generalization starting
from v. For v,w ∈ ZR(M), w is said to be ageneralization of v if L(v) ⊂ L(w). This is
equivalent to the condition that we getw fromv by a finite repetition of the first generalization.

If rank(v) = s, thenMs(v) is equal to theZ-submoduleL0(v) of M. We say that an
elementv of ZR(M) dominates a coneC of NR if M ∩ C∨ ⊂ L(v) andM ∩ C∨ ∩ L0(v) =
M ∩ C⊥, whereC⊥ := {x ∈ MR ; 〈x, y〉 = 0 for all y ∈ C}. This situation is described by
the sequence(M0(v), . . . ,Ms(v)) and the defining sequence(y0, . . . , ys−1) of v as follows.
The additive preorderv dominatesC if and only if

Mi(v) ∩ C∨ ⊂ (yi ≥ 0)

for eachi = 0, . . . , s − 1, and

Ms(v) ∩ C∨ = M ∩ C⊥ .

LEMMA 2.6. Let (y0, . . . , ys−1) be a defining sequence of v ∈ ZR(M). For a pos-
itive real number ε, we set zε := ∑s−1

i=0 ε
iyi . Then the following conditions on a rational

polyhedral cone C are equivalent.
(1) v dominates C.
(2) There exists ε0 > 0 such that zε ∈ rel. intC for every 0< ε ≤ ε0.
(3) There exists a sequence {εj } of positive real numbers with limj→∞ εj = 0 and

zεj ∈ rel. intC for every j .

PROOF. We show (1)⇒ (2). We takem1, . . . ,mt ∈ M ∩ (C∨\C⊥) andmt+1, . . . ,mu∈
M ∩ C⊥ so that they generate the semigroupM ∩ C∨. SinceC⊥ is a rational subspace, it is
generated by{mt+1, . . . ,mu}. For eachmi with 1 ≤ i ≤ t , there exists 1≤ j ≤ s − 1 such
that

〈mi, y0〉 = · · · = 〈mi, yj−1〉 = 0 , 〈mi, yj 〉 > 0 .
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Hence,〈mi, zε〉 > 0 for a sufficiently smallε > 0 for i = 1, . . . , t . Since〈mi, zε〉 = 0 for
everyt + 1 ≤ i ≤ u, we haveC∨ ⊂ (zε ≥ 0) andC∨ ∩ (zε = 0) = C⊥ for suchε. Hence
zε ∈ rel. intC. (2) ⇒ (3) is obvious.

We show (3)⇒ (1). The condition impliesMi(v)R ∩ C∨ ⊂ (zεj ≥ 0) for i = 0, . . . ,

s − 1. Sincey0 = · · · = yi−1 = 0 onMi(v)R, the limit of the linear functionsε−ij zεj of

Mi(v)R is equal toyi . HenceMi(v)R ∩ C∨ ⊂ (yi ≥ 0) for everyi. This impliesM ∩ C∨ ⊂
L(v). Let ε := ε1. Then clearly,zε = 0 onMs(v)R. Hence

M ∩ C∨ ∩ L0(v) ⊂ M ∩ C∨ ∩ (zε = 0) = M ∩ C⊥ .

On the other hand,C⊥ ⊂ (zεj = 0) for j = 1, . . . , s imply thaty0, . . . , ys−1 are zero onC⊥,
and henceM ∩ C⊥ ⊂ L0(v). Hence,v dominatesC. �

The following proposition is an analog of the valuative criterion of separatedness of an
algebraic prevariety.

PROPOSITION 2.7. For a fan X of NR, an element v ∈ ZR(M) dominates at most one
cone of X. Conversely, if X is a union of affine fans and any v ∈ ZR(M) dominates at most
one cone of X, then X is a fan.

PROOF. If σ andτ are distinct cones of the fanX, then rel. intσ ∩ rel. int τ = ∅. If v
dominatesσ , then it does not dominatesτ since the condition (2) of Lemma 2.6 is satisfied
for C = σ

Now we prove the second part. It suffices to show thatσ ∩ τ is a face ofσ for any
σ, τ ∈ X. Any point y in the relative interior of the coneσ ∩ τ is contained in the relative
interior of a faceσ1 of σ and in that of a faceτ1 of τ . If we takev ∈ ZR(M) with L(v) =
M ∩ (y ≥ 0), thenv dominatesσ1 andτ1, and henceσ1 = τ1 by assumption. Byτ1 ⊂ τ , we
haveσ1 ⊂ σ ∩ τ . On the other hand, the defining elementx ∈ MR of the faceσ1 ⊂ σ defines
a face ofσ ∩ τ . This face is equal toσ ∩ τ itself, since it containsy in the relative interior.
We knowσ ∩ τ ⊂ σ1, sinceσ1 = σ ∩ (x = 0). Henceσ ∩ τ = σ1, andσ ∩ τ is a face
of σ . �

DEFINITION 2.8. We denote by dom(σ ) the set of elements of ZR(M) which domi-
nate the strongly convex rational polyhedral coneσ .

If we take a pointy in a strongly convex rational polyhedral coneσ , then the rank one
elementv ∈ ZR(M) with L(v) = M ∩ (y ≥ 0) dominatesσ . In particular, dom(σ ) is not
empty.

LEMMA 2.9. Let C be a rational polyhedral cone of NR, and v an element of ZR(M).
Then M ∩ C∨ ⊂ L(v) if and only if v dominates a face of C. In particular, if π is a strongly
convex rational polyhedral cone, then we have the equality

‖π‖ = ZR(F (π)) =
⋃

σ∈F(π)
dom(σ ) .



202 G. EWALD AND M. ISHIDA

PROOF. If v dominates a faceC1 of C, then

M ∩ C∨ ⊂ M ∩ C∨
1 ⊂ L(v) .

Conversely, supposeM ∩ C∨ ⊂ L(v). We see easily by induction thatC∨ ∩ Mi(v)R

is a face ofC∨ for i = 0, . . . , rank(v). In particular,C∨ ∩ L0(v)R is a face ofC∨. Hence
there exists a faceC1 ≺ C with C∨ ∩ L0(v)R = C∨ ∩ C⊥

1 (cf. [O1, Prop. A.6]). Since
C⊥

1 ⊂ L0(v)R andC∨
1 = C∨ + C⊥

1 by [O1, Cor. A.7], we haveM ∩ C∨
1 ⊂ L(v) and

M ∩ C∨
1 ∩ L(v) = M ∩ C⊥

1 . Hencev dominatesC1.
The equalities are now obvious. �

LEMMA 2.10. Let C be a rational polyhedral cone ofNR, and v an element of ZR(M)
which dominatesC. Ifw is a generalization of v, thenw dominates a face ofC. The dimension
of C is at least rank(v).

PROOF. We haveL(v) ⊂ L(w) sincew is a generalization ofv. SinceM ∩ C∨ ⊂
L(w), w dominates a faceC′ of C by Lemma 2.9. Let rank(v) = s and let(y0, . . . , ys−1)

be a defining sequence ofv. By Lemma 2.6,zε := ∑s−1
i=0 ε

iyi satisfieszε ∈ rel. intC for
a sufficiently smallε > 0. Sincey0, . . . , ys−1 are linearly independent,zε ’s for s distinct
ε’s are also linearly independent by Vandermonde’s equality. Hence the dimension ofC is at
leasts. �

REMARK 2.11. C is also a face of itself. Hencewmight dominatesC in Lemma 2.10.

For a fanX, we define

ZR(X)1 := {v ∈ ZR(X) ; rank(v) = 1} .
PROPOSITION 2.12. For finite fans X,Y , the following conditions are equivalent.
(1) ZR(X) ⊂ ZR(Y ).
(2) ZR(X)1 ⊂ ZR(Y )1.
(3) |X| ⊂ |Y |.
PROOF. (1) ⇒ (2) is obvious.
For (2)⇒ (3), let x ∈ σ ∈ X. Since|Y | contains 0, we assumex �= 0. Let v be the

preorder of rank one withL(v) = M ∩ (x ≥ 0). SinceM ∩ σ∨ ⊂ M ∩ (x ≥ 0), we have
v ∈ ZR(X)1. Sincev ∈ ZR(Y )1 by (2), we haveM ∩ τ∨ ⊂ L(v) = M ∩ (x ≥ 0) for a
rational coneτ ∈ Y . Thenτ∨ ⊂ (x ≥ 0) andx ∈ τ ⊂ |Y |.

We show (3)⇒ (1). Supposev ∈ ZR(X) dominatesσ ∈ X. Let rank(v) = s and
(y0, . . . , ys−1) a defining sequence ofv. Then by Lemma 2.6,zε := ∑s−1

i=0 ε
iyi ∈ rel. intσ

for sufficiently smallε > 0. Sincezε ∈ |X| ⊂ |Y | andY is finite, there existτ ∈ Y and a
convergent sequence{εj } with the limit 0 andzεj ∈ rel. int τ . Hencev ∈ domτ ⊂ ZR(Y ) by
Lemma 2.6. �

Since the proposition is also true even if we exchangeX andY , we have the following
corollary.

COROLLARY 2.13. For finite fans X,Y , the following conditions are equivalent.
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(1) ZR(X) = ZR(Y ).
(2) ZR(X)1 = ZR(Y )1.
(3) |X| = |Y |.

3. Blowups of fans. Fans in this section are not necessarily rational and cones are
finitely generated convex polyhedral cones unless otherwise mentioned.

LetD be a cone ofMR. A nonempty convex subsetP ofMR is said to beD-convex if it
has theD-ideal property, i.e., if

x ∈ P, y ∈ D ⇒ x + y ∈ P .
For a subsetS ofMR, we set

S∨ := {y ∈ NR ; 〈x, y〉 ≥ 0 for all x ∈ S} .
For the convex hull conv(S) and the convex cone Cone(S) generated byS, we see easily the
equalities

S∨ = conv(S)∨ = Cone(S)∨ .
Here Cone(S) is not necessarily finitely generated ifS is not a finite set. For subsetsS, T of
MR, clearly we have

(S ∪ T )∨ = S∨ ∩ T ∨ .
For a coneC, aC∨-convex setP generated by a finite setS is called aC∨-convex polyhedron.
WhenC is rational,P is said to berational if S consists of finite rational points.

LetC be a cone ofNR. For anr-dimensionalC∨-convex polyhedronP ,

Fan(P ) := {(P − x)∨ ; x ∈ P }
is a finite real fan with supportC. If P is rational, Fan(P ) is also a rational fan. As is well-
known, the relationship betweenP and Fan(P ) is as follows. A subsetQ ⊂ P is called a
face of P if there exist an elementu ∈ NR and a real numbera with P ⊂ (u ≥ a) and
Q = P ∩ (u = a), where(u ≥ a) = {x ∈ MR ; 〈x, u〉 ≥ a} and(u = a) = {x ∈ MR ;
〈x, u〉 = a}. Each elementx of P is contained in the relative interior of a unique face of
P , and the cone(P − x)∨ is determined by the face. By this correspondence, Fan(P ) is in
bijective correspondence with the set of faces ofP . If σ ∈ Fan(P ) corresponds to a faceQ
of P , then we have the equality dimσ + dimQ = r. If another coneτ ∈ Fan(P ) corresponds
to a faceR, thenR ⊂ Q if and only if σ ≺ τ . It follows thatσ andτ are faces of a common
ρ ∈ Fan(P ) if and only ifQ ∩ R �= ∅.

We define Fan(P ) similarly forP of dimension less thanr. In this case, Fan(P ) consists
of cones which are not strongly convex. The support of Fan(P ) is alsoC.

In caseC = NR, P is a convex polytope. If dimP = r, then Fan(P ) is a complete
fan. We call Fan(P ) the projective (real) fan defined byP (cf. [OP, p. 383, Remark]). It is
common to call it apolytopal fan, but we adopt this terminology instead for the convenience
to translate Nagata’s proof. IfP is rational, then Fan(P ) defines a projective toric variety.
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Letπ be a strongly convex rational polyhedral cone. ThenM ∩π∨ is a finitely generated
semigroup with the unit 0. If a subsetS of m0 + M ∩ π∨ for somem0 ∈ M satisfies the
“semigroup ideal” condition

m ∈ S, m′ ∈ M ∩ π∨ ⇒ m+m′ ∈ S ,(4)

then there exist a finite number elementsm1, . . . ,ms ∈ S with

S =
s⋃

i=1

(mi +M ∩ π∨) .(5)

This fact is checked as follows. For an arbitrary fieldk, we consider the semigroup ring

k[M ∩ π∨] :=
⊕

m∈M∩π∨
ke(m) .

Then the vector subspaceI generated by{e(m−m0) ; m ∈ S} is an ideal. Sincek[M ∩ π∨]
is Noetherian, we can find afinite set of generators{e(m1 − m0), . . . , e(ms − m0)} of the
ideal. Thenm1, . . . ,ms satisfies the condition.

The convex hull of the aboveS is theπ∨-convex set generated bym1, . . . ,ms ∈ S.
3.1. The blowup of a fan at a closed subset. Letπ be a strongly convex rational

polyhedral cone. For a closed proper subsetY of the rational affine fanF(π), the blowup
BlMY (F (π)) of F(π) alongY is defined by using the latticeM as follows.

We setS(π) := M ∩ π∨, andS(π; σ) := M ∩ π∨ ∩ σ⊥ for eachσ ∈ F(π). The set
P(π, Y ) is defined to be the convex hull of

S = S(π) \
⋃

σ∈Y
S(π; σ) .

S is nonempty, since the zero cone0 = {0} is not inY , andP(π, Y ) is aπ∨-convex poly-
hedron, sinceS satisfies (4). Then BlMY (F (π)) := Fan(P (π, Y )) is a finite fan with support
π .

The morphism of toric varieties

BlMY (F (π))C → F(π)C

corresponding to this subdivision is equal to the normalization of the blowup ofF(π)C along
the reduced closed subvarietyYC.

LetX,Y be rational fans ofNR. If eachσ ∈ X is contained in someρ in Y , there exists
a birational morphismXC → YC of the toric varieties. Then we say that the fanX dominates
Y and write asf : X → Y . Thisf also represents the map which sends eachσ ∈ X to the
minimal cone inY which containsσ .

For aπ∨-convex polyhedronP generated by a finite subset ofMQ, Fan(P ) is a subdi-
vision of F(π), and the corresponding morphism of toric varieties is the natural morphism
ProjB → SpecC[M ∩ π∨] defined for the graded ring

B :=
∞⊕

n=0

[M ∩ nP ]C ,
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where, for a subsetF ofM, we denote byFC the vector subspace
⊕

m∈F Ce(m) of C[M]. We
understand 0P = π∨.

3.2. General blowups of fans. LetX be a fan. We consider a setI = {Iσ ; σ ∈ X} of
subsets ofMR such that eachIσ is σ∨-convex and the equalityIσ = Iτ + σ∨ holds for any
σ, τ ∈ X with the relationσ ≺ τ . Then

FanX(I) :=
⋃

σ∈X
Fan(Iσ )

is a subdivision of the fanX. If everything is rational, this subdivision corresponds to the
normalization of the blowup of a toric variety along a fractional ideal. Hence we use similar
terminology for fans. Namely, we callI = {Iσ ; σ ∈ X} a polyhedral fractional ideal of
X, and FanX(I) theblowup of X alongI . We callI a polyhedral ideal if Iσ ⊂ σ∨ for every
σ ∈ X. For a polyhedral idealI , we define thesupport of I by {σ ∈ X ; Iσ �= σ∨}. We say
thatI is unitary at σ if Iσ = σ∨. Namely,I is unitary on the open subsetX \ Y if Y is the
support ofI .

3.3. The composite of blowups.

THEOREM 3.1. Let X be a finite fan and I = {Iσ ; σ ∈ X} a polyhedral fractional
ideal. We set X′ := FanX(I). Let I ′ = {I ′

ρ ; ρ ∈ X′} be a polyhedral fractional ideal of X′.
For a positive real number a, we define an ideal J = {Jσ ; σ ∈ X} of X by

Jσ =
⋂

ρ∈X′
ρ⊂σ

(aIσ + I ′
ρ)

for σ ∈ X. Then, there exists a positive real number a0 such that we have the equality
FanX(J ) = FanX′(I ′) for any a ≥ a0. In particular, the fan FanX(J ) does not depend on the
choice of a ≥ a0. If I and I ′ are polyhedral ideals, then so is J .

First, we prove the following lemma.

LEMMA 3.2. Let C be a polyhedral cone of NR, and P ⊂ MR an r-dimensional C∨-
convex polyhedron. We denote by XP := Fan(P ) the fan defined by P . Let K = (Kσ ) be a
polyhedral fractional ideal of XP . We define a C∨-convex set Q by

Q =
⋂

σ∈XP
(aP +Kσ )

for a positive real number a. Then there exists a positive real number a1 such that the fan
XQ := Fan(Q) is equal to FanXP (K) for any a ≥ a1. In particular, the fan XQ does not
depend on the choice of a ≥ a1.

PROOF. For eachσ ∈ XP , we take an elementyσ ∈ P with σ = (P − yσ )
∨. Since

a(P − yσ ) ⊂ σ∨ andKσ = Kσ + σ∨, we have

aP +Kσ = ayσ + a(P − yσ )+Kσ = ayσ +Kσ

for eachσ . This implies that the support of the fan Fan(aP +Kσ) is σ , and the support of the
fanXQ defined by the intersectionQ of these convex sets isC, i.e., the support of the fanXP .
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The support of FanXP (K) is alsoC, since it is a subdivision ofXP . Hence, for the equality
XQ = FanXP (K), it suffices to show that everyη ∈ FanXP (K) is a member ofXQ.

For eachη, there existσ ∈ XP andz ∈ Kσ with η = (Kσ − z)∨. Let τ be an arbitrary
element ofXP . Then the conesσ andτ are separated byyτ−yσ . Actually,σ ⊂ (yτ−yσ ≥ 0),
sinceyτ − yσ ∈ P − yσ , while τ ⊂ (yτ − yσ ≤ 0), sinceyσ − yτ ∈ P − yτ . We also have
the equalityσ ∩ (yτ − yσ = 0) = τ ∩ (yτ − yσ = 0), since the restrictions of(P − yσ )

∨
and(P − yτ )

∨ to (yτ − yσ = 0) are equal. HenceR0(yτ − yσ ) +Kτ = Kρ for ρ = τ ∩ σ .
SinceKσ ⊂ Kρ , the convex seta(yτ − yσ ) +Kτ contains a neighborhoodU of z in Kσ for
sufficiently largea. Thenayσ + z is an element ofayτ +Kτ , and

((ayτ +Kτ )− (ayσ + z))∨ ⊂ (U − z)∨ = (Kσ − z)∨ = η .(6)

If we take the real numbera sufficiently large for allτ ∈ XP , thenayσ + z is in Q. Since
(Q − (ayσ + z))∨ is equal to the sum of the first terms of (6) for allτ ∈ XP , it is equal toη
for sucha. Henceη is inXQ.

Since FanXP (K) is a finite fan, everyη ∈ FanXP (K) is in XQ for sufficiently large
a ≥ 0. �

PROOF OF THEOREM 3.1. FanX(J ) and FanX′(I ′) are subdivisions ofX by defini-
tions. We apply Lemma 3.2 toP = Iσ andK, which is defined to be the restriction ofJ to
{ρ ∈ X′ ; ρ ⊂ σ }. Then we know that FanX(J ) and FanX′(I ′) are equal on the coneσ for
sufficiently largea ≥ 0. SinceX is finite, there existsa0 ≥ 0 such that FanX(J ) = FanX′(I ′)
for everya ≥ a0.

The last assertion of the theorem is clear from the first part.
3.4. Sums and intersections of ideals. LetI = {Iσ ; σ ∈ X} andJ = {Jσ ; σ ∈ X}

be polyhedral fractional ideals ofX. The sumI + J of these ideals is defined to be{Iσ + Jσ ;
σ ∈ X}. This is an analog of the product of fractional ideals of an integral scheme. Since
Iσ ∩ Jσ is aσ∨-convex polyhedron,I ∩ J := {Iσ ∩ Jσ ; σ ∈ X} is also a fractional ideal of
X.

For finite fansX,X′, we define thejoin by

J (X,X′) := {σ ∩ τ ; σ ∈ X, τ ∈ X′} .
ThenJ (X,X′) is also a finite fan, and dominates bothX andX′. If a fanY dominates bothX
andX′, then the joinJ (X,X′) is also dominated byY . The equality

ZR(J (X,X′)) = ZR(X) ∩ ZR(X′)

is checked easily.

PROPOSITION 3.3. For polyhedral fractional ideals I, J of X, we have the equality

FanX(I + J ) = J (FanX(I),FanX(J )) .

PROOF. Since both fans are subdivisions ofX, it suffices to show that they define the
same subdivision on eachσ ∈ X. We setP = Iσ andQ = Jσ . For ρ ∈ FanX(I + J )
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contained inσ , there existsz ∈ P +Q with ρ = (P +Q− z)∨. Forx ∈ P andy ∈ Q with
z = x + y, we have the equalities

(P +Q− z)∨ = ((P − x)+ (Q− y))∨ = (P − x)∨ ∩ (Q− y)∨ .

Henceρ ∈ J (FanX(I),FanX(J )). By the same equalities, we know that each element of
J (FanX(I),FanX(J )) is a member of FanX(I + J ). �

For a polyhedral fractional idealI , the polyhedral fractional idealI−1 is defined by

I−1
σ := {x ∈ MR ; Iσ + x ⊂ σ∨} .

Then I + I−1 is a polyhedral ideal ofX, sinceIσ + I−1
σ ⊂ σ∨ for every σ . The fan

FanX(I + I−1) is a subdivision of FanX(I) by Proposition 3.3.
3.5. The maximal extension of an ideal. LetX be a fan, andU a subfan ofX. For a

polyhedral idealI of U , there exists the largest polyhedral idealI ′ of X with I ′|U = I . It is
obtained by setting

I ′
σ := σ∨ ∩

⋂

η∈F(σ)∩U
Iη

for eachσ ∈ X.
3.6. The primary decomposition. Letσ be an element of a fanX. A polyhedral ideal

I of the affine fanF(σ) is said to beprimary if σ∨ \ Iσ is nonempty andσ⊥-bounded,
where we say that a subsetS ⊂ MR is σ⊥-bounded if S = S + σ⊥ and if the image ofS
in MR/σ

⊥ is bounded. In this case, the equalityIη = η∨ holds for anyη ∈ F(σ) \ {σ }.
Conversely,I is primary if it satisfies this condition. The idealI is primary if and only if,
for anym ∈ M ∩ (σ∨ \ σ⊥), there exists a positive integerc with cm ∈ Iσ . The maximal
extension of a primary polyhedral idealI toX is called theprimary polyhedral ideal of X at
σ . If we denote also byI the the extended ideal,Iρ is unitary unlessσ ≺ ρ. Namely, the
support of the primary ideal is contained in the closure of{σ } in X.

PROPOSITION 3.4. Let I be a polyhedral ideal of X with support Y . Then there exists
a set {Iσ ; σ ∈ X} of polyhedral ideals ofX, such that each Iσ is unitary on X or primary at
σ and

I =
⋂

σ∈X
Iσ =

⋂

σ∈Y
Iσ .(7)

Here the right-hand side is essentially a finite intersection for each ρ ∈ X even if X is not
finite.

PROOF. Proposition 3.4 is equivalent to the assertion that there exists{Pσ ; σ ∈ X}
such thatσ∨ \ Pσ is σ⊥-bounded for everyσ and

Iρ =
⋂

σ∈F(ρ)
Pσ
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for everyρ ∈ X. The construction ofPσ is done inductively from low dimensional cones. We
setPσ = σ∨ for σ outsideY . Assume thatPη is determined for everyη in F(σ) \ {σ }. Then

Iσ \
⋂

η∈F(σ)\{σ }
Pη

is σ⊥-bounded. LetQ1, . . . ,Qs be theσ⊥-bounded faces of codimension one ofIσ . We take
y1, . . . , ys ∈ NR andc1, . . . , cs ∈ R with

Iσ ⊂ (yi ≥ ci) , Qi = Iσ ∩ (yi = ci) , i = 1, . . . , s .

Then we havey1, . . . , ys ∈ rel. int σ . Hence

Pσ := σ∨ ∩
s⋂

i=1

(yi ≥ ci)

satisfies the condition. SinceIσ is trivial for σ ∈ X \ Y , we get the last equality of (7).
The last assertion follows from the fact thatIσρ = ρ∨ for σ �∈ F(ρ), �

3.7. Local blowups. LetI be a polyhedral ideal of a fanX, andU an open subset of
X. For the supportY of I , we have a primary decomposition

I =
⋂

σ∈Y
Iσ ,

by Proposition 3.4. If we set
I ′ =

⋂

σ∈Y∩U
Iσ ,

thenI ′ andI are equal onU . On the other hand, ifρ ∈ X is not contained in the closure
of Y ∩ U , thenI ′

ρ = ρ∨. Hence the blowup FanX(I ′) is equal to FanX(I) onU and toX

on X \ Y ∩ U . This localization of the blowup is not possible in general for a polyhedral
fractional ideal.

3.8. Some lemmas. LetQ ⊂ MR be a rational convex polytope, i.e., a convex closure
of a finite set of rational points. Then, for any polyhedral coneσ , I (Q)σ := Q + σ∨ is a
σ∨-convex subset.

Let X be a fan. ThenI (Q,X) := {I (Q)σ ; σ ∈ X} is a polyhedral fractional ideal.
Hence FanX(I (Q,X)) is a subdivision ofX. If Q is r-dimensional, then Fan(Q) is projective
and FanX(I (Q,X)) is the joinJ (Fan(Q),X) of Fan(Q) andX. In particular, FanX(I (Q,X))
dominates the projective fan Fan(Q).

For the polyhedral idealI (Q,X)+I (Q,X)−1 ofX, the fan FanX(I (Q,X)+I (Q,X)−1)

is a subdivision of FanX(I (Q,X)). In particular, it dominates bothX and Fan(Q). Since
(I (Q,X) + I (Q,X)−1)γ = γ ∨ for γ with dimγ ≤ 1, the support of this ideal consists of
cones of dimension at least two. Ifσ is contained in bothX and Fan(P ), then the polyhedral
idealsI (Q,X) andI (Q,X)−1 are unitary atσ . Hence the blowup

FanX(I (Q,X) + I (Q,X)−1) → X(8)

does not subdivide the coneσ . Since this is a blowup along a polyhedral ideal, local blowups
are possible for any subfan ofX.
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LEMMA 3.5. Suppose that v ∈ ZR(M) dominates τ and the first generalization w of
v dominates σ . We define

P := conv{m ∈ M ∩ τ∨ ; m0 ≤v m}
for an element m0 ∈ M ∩ (τ∨ ∩ σ⊥). Then P defines a primary polyhedral ideal of F(τ).

PROOF. Clearly,P is aτ∨-convex subset ofτ∨. It suffices to show that, for any element
m ∈ M ∩ (τ∨ \ τ⊥), cm is in P for a sufficiently large integerc.

If m ∈ M ∩ (τ∨ \ σ⊥), thenm0 <w m, sincem0 ∈ M ∩ σ⊥. Hencem0 ≤v m and
m ∈ P .

Supposem ∈ M ∩ τ∨ ∩ (σ⊥ \ τ⊥). Sincev dominatesτ , M ∩ τ∨ \ τ⊥ is a subset of
L(v) \ L0(v). Hence 0<v m. Let s be the rank ofv, and(y0, . . . , ys−1) a defining sequence
of it. Then linear functionsy0, . . . , ys−2 are zero onM ∩ σ⊥, and

x1 ≤v x2 ⇔ 〈x1, ys−1〉 ≤ 〈x2, ys−1〉
for x1, x2 ∈ M ∩ σ⊥. We have〈m, ys−1〉 > 0, sincem ∈ M ∩ σ⊥ and 0<v m. Hence we
have〈m0, ys−1〉 ≤ 〈cm, ys−1〉 for sufficiently largec. Thenm0 ≤v cm andcm ∈ P . �

LEMMA 3.6. Let X be a fan and U an open subset of it. Let Y1, Y2 be closed subsets
of U with Y1 ∩ Y2 = ∅. For a polyhedral ideal I of X with the support Y := Ȳ1 ∩ Ȳ2, let X′
be the blowup of X at I . Then, if we regard U an open subset of X′, then the closures of Y1

and Y2 in X′ are disjoint.

PROOF. SinceY does not intersectU , this blowup leavesU unchanged. It suffices to
show thatσ ∈ Y1 andτ ∈ Y2 cannot be faces of a common element ofX′. SinceX is covered
by affine fans, we may assume thatX = F(π) and thatσ andτ are faces ofπ . Sinceσ and
τ are outsideY , Iπ ∩ σ⊥ andIπ ∩ τ⊥ are nonempty. Letρ ∈ F(π) be the minimal face
of π which containsσ andτ . ThenIπ does not intersectπ∨ ∩ ρ⊥, sinceρ ∈ Y . Since the
intersection ofπ∨ ∩ σ⊥ andπ∨ ∩ τ⊥ is π∨ ∩ ρ⊥, we have

(Iπ ∩ σ⊥) ∩ (Iπ ∩ τ⊥) = ∅ .
Hence there is no cone inX′ = Fan(Iπ ) which contains bothσ andτ . �

4. Completions of fans. In this section, we assume that fans are rational, and we
prove the following theorem. A similar theorem for not necessarily rational fans will be
proved in the next section as the second proof of Theorem 1.1.

THEOREM 4.1. Let X be a finite (rational) fan. Then there exists a complete fan X′
such that X is a subfan of X′.

Any affine fan has a completion by the following lemma.

LEMMA 4.2. For a rational polyhedral cone σ , there exists a projective fan X which
contains σ as an element.
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PROOF. First, we consider the caseσ = 0. Let {m1, . . . ,mr } and {n1, . . . , nr } be
mutually dual basis ofM andN . We setn0 := −(n1 + · · · + nr). The fanΠr is defined to
be the set of cones generated by proper subsets of{n0, n1, . . . , nr }. This is equal to the fan
Fan(P ) for the convex closureP of {0,m1, . . . ,mr }. This is a complete fan and of course
contains0. The associated toric variety of this fan is ther-dimensional projective space (cf.
[O1, p. 96]).

In case dimσ = r, we taken ∈ N ∩ int σ and set

Y := F(σ) ∪ {η + R0(−n) ; η ∈ F(σ) \ {σ }} .
ThenY is equal to the projective fan Fan(P ) for ther-dimensional convex polytopeP = {x ∈
σ∨ ; 〈x, n〉 ≤ 1}, andσ ∈ Y .

In the general case, lets = dimσ . We take a decompositionN = N ′ ⊕ N ′′ such thatσ
is a maximal dimensional cone inN ′

R. Then the product fan of a complete fan ofN ′
R which

containsσ andΠr−s of N ′′
R for a basis satisfies the condition. �

THEOREM 4.3. The following conditions on a fan X are equivalent.
(1) X is complete, i.e.,X is finite and |X| = NR.
(2) The equality ZR(X) = ZR(M) holds.
(3) The equality

⋃
σ∈X domσ = ZR(M) holds.

PROOF. (2) and (3) are equivalent since ZR(X) = ⋃
σ∈X domσ by Lemma 2.9.

Suppose (2) holds. Since{‖σ‖ ; σ ∈ X} is an open covering of ZR(M), there exists
a finite subfanX′ ⊂ X with

⋃
σ∈X′ ‖σ‖ = ZR(M) by Theorem 2.5. Since dom(σ )’s are

nonempty and disjoint forσ ∈ X, we haveX′ = X. HenceX is finite. Take an arbitrary
elementy ∈ NR and considerv ∈ ZR(M)1 with L(v) = M ∩ (y ≥ 0). By assumption and
Lemma 2.9, there exists a coneσ ∈ X with M ∩ σ∨ ⊂ L(v) ⊂ (y ≥ 0). Theny ∈ σ ⊂ |X|.
Hence|X| = NR andX is complete.

Suppose (1) holds and take an arbitrary elementv ∈ ZR(M). Let s be the rank ofv and
(y0, . . . , ys−1) a defining sequence ofv. Since|X| = NR, zε := ∑s−1

i=0 ε
iyi is contained in

the relative interior of a cone ofX for everyε > 0. SinceX is a finite fan, there existτ ∈ X
and a sequence{εj } of positive real numbers with the limit 0 such that allzεj ’s are contained
in rel. int τ . Thenv ∈ domτ by Lemma 2.6. This implies (3). �

For finite fansX,X′, we denote byX ∩X′ the set of cones contained in bothX andX′.
Clearly,X ∩X′ is a subfan of bothX andX′. We set

DX,X′ := {σ ∈ X ; there existsτ ∈ X′ such thatσ ⊂ τ } .
This is the maximal subfan ofX which dominatesX′. Clearly, we have

DX,X′ ∩DX′,X = X ∩X′ .

The fan

J (X,X′) := {σ ∩ τ ; σ ∈ X, τ ∈ X′}
defined in Section 3 is finite and dominatesX andX′.
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We sayX′ to bequasi-dominant overX if J (X,X′) is a subfan ofX′. ThenJ (X,X′) =
DX′,X. If ZR(X) ⊂ ZR(X′) andX′ is quasi-dominant overX, thenJ (X,X′) is a subfan of
X′ and is a subdivision ofX. In particular, if a complete fanX∗ is quasi-dominant overX,
then a subfan ofX∗ is a subdivision ofX.

More generally, we define the joinJ (X1, . . . , Xs) for a finite number of finite fans
X1, . . . , Xs (s ≥ 1). Namely, we inductively defineJ (X1) := X1 and

J (X1, . . . , Xi) = J (J (X1, . . . , Xi−1),Xi)

for i = 2, . . . , s. It is easy to see thatJ (X1, . . . , Xs) is independent of the order ofX1, . . . , Xs .
As we mentioned in Section 3,J (X, Y ) is equal to Fan(P + Q) if X = Fan(P ) and

Y = Fan(Q) for convex polyhedraP andQ.
The following theorem is “Chow’s lemma” for a fan.

THEOREM 4.4. For a finite fan X, there exists a projective fan X∗ such that a subfan
X′ of X∗ is a subdivision of X, i.e.,X∗ is quasi-dominant over X.

PROOF. Let {σ1, . . . , σs} be the set of maximal elements ofX. By Lemma 4.2, there ex-
ists a projective fanXi which containsσi as an element for eachi. ThenX∗ := J (X1, . . . , Xs)

is a projective fan. Clearly, eachσi is a union of cones inX∗. Hence the setX′ ⊂ X∗ of cones
contained in one ofσi ’s is a subdivision ofX. �

THEOREM 4.5. Let X1,X2 be finite fans and v an element of ZR(X1) ∩ ZR(X2).
Then there exists a fan Xv with the following properties: (1) Xv is the blowup at a poly-
hedral ideal I of X1. (2) The ideal I of (1) is unitary at DX1,X2 and hence DX1,X2 ⊂ Xv . (3)
If v dominates τv ∈ Xv and τ2 ∈ X2, then τv ⊂ τ2.

PROOF. We prove the theorem by induction on the rank ofv. If v = η(M), thenv
dominates0 andXv := X1 satisfies the condition.

Assume that the rank is at least one. Letτ1 ∈ X1 andτ2 ∈ X2 be the cones dominated
by v. If τ1 ⊂ τ2, thenXv := X1 is enough. Hence we assume thatτ1 is not contained inτ2.
In particular,τ1 �∈ DX1,X2.

Letw be the first generalization ofv. By Lemma 2.10,w dominates a faceσ1 of τ1 and
a faceσ2 of τ2. Since rank(w) = rank(v) − 1, we can apply the induction assumption forw.
Hence, by replacingX1 byXw, we may assumeσ1 ⊂ σ2. Here, recall that the composite of
blowups is a blowup by Theorem 3.1. Assume that the semigroupM ∩ τ∨

2 is generated by
m1, . . . ,ms . Sinceσ1 ⊂ σ2 ⊂ τ2, we have

M ∩ τ∨
2 ⊂ M ∩ σ∨

2 ⊂ M ∩ σ∨
1 .

Hence, there existsm0 ∈ M ∩ rel. int(τ∨
1 ∩ σ⊥

1 ) with

m1, . . . ,ms ∈ −m0 +M ∩ τ∨
1

[O1, Prop. 1.3].
Let s be the rank ofv and(y0, . . . , ys−1) a defining sequence ofv. ThenP := conv{m ∈

M ∩ τ∨
1 ; m0 ≤v m} defines a primary polyhedral ideal ofF(τ1) by Lemma 3.5. LetI (P ) be
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the resulting primary polyhedral ideal ofX1, andXv the blowup ofX1 atI (P ). SinceI (P ) is
unitary at cones which do not containτ1, it is unitary onDX1,X2 andDX1,X2 ⊂ Xv is satisfied.
Sincem1, . . . ,ms ∈ L(v) andm1 + m0, . . . ,ms + m0 ∈ M ∩ τ∨

1 , we havem1, . . . ,ms ∈
R(P − m0). The coneR(P − m0)

∨ of Xv is contained in the coneτ2, since{m1, . . . ,ms}
generatesτ∨

2 . SinceM ∩ R(P − m0) ⊂ L(v), v dominates a faceτv of R(P − m0)
∨ by

Lemma 2.9. Clearly,τv ∈ Xv andτv ⊂ τ2. �

THEOREM 4.6. Let X,X′ be finite fans. Then there exists a fan X∗ with the following
properties: (1)X∗ is a blowup of X along a polyhedral ideal I . (2) I is unitary onDX,X′ and
DX,X′ ⊂ X∗. (3)X∗ is quasi-dominant over X′.

PROOF. For each elementv ∈ ZR(J (X,X′)), Theorem 4.5 says that there exists a
blowupXv of X at a polyhedral ideal which is unitary onDX,X′ and the coneσv ∈ Xv

dominated byv is contained in someτ ∈ X′. Since‖σv‖ is an open neighborhood ofv, there
existv1, . . . , vs ∈ ZR(J (X,X′)) with

ZR(J (X,X′)) =
s⋃

i=1

‖σvi‖

by the compactness of ZR(J (X,X′)). We setX∗ := J (Xv1, . . . , Xvs ). ThenX∗ is a blowup
of X at a polyhedral ideal which is unitary onDX,X′ by Theorems 3.1 and 4.5. Ifv ∈
ZR(J (X,X′)) dominatesσ ∈ X∗, thenσ is contained in someσvi and hence in someτ ∈ X′.
HenceX∗ is quasi-dominant overX′. �

THEOREM 4.7. Let X be a finite fan and v an element of ZR(M). Then there exists
a finite fan X′ which contains X and satisfies v ∈ ZR(X′). Furthermore, we can take X′ so
that X′ \X is contained in a projective fan.

PROOF. We prove the first assertion of the theorem by induction on the rank ofv.
If v ∈ ZR(X), thenX′ := X is enough. Hence we assumev �∈ ZR(X). In particular, the

rank is at least one. Letw be the first generalization ofv. By the induction assumption, there
exists a finite fanX′′ which containsX and containsw in its Zariski-Riemann space. Hence
by replacingX byX′′, we may assumew ∈ ZR(X). Thenw dominates a coneσ ∈ X.

LetX∗ be a projective fan which containsσ . By using Theorem 4.6, we replaceX∗ by
its blowup so thatX∗ is quasi-dominant overX. SinceX∗ is complete, a subfanX1 ⊂ X∗ is
a subdivision ofX. LetZ∗ := X1 \ (X ∩ X∗), and letZ∗ be its closure inX∗. SinceX∗ is
complete,v dominates a coneρ of X∗.

(1) First, we consider the caseρ �∈ Z∗. In this case, it suffices to show thatX′ :=
X ∪ (X∗ \ Z∗) is a fan. SinceX∗ \ Z∗ is a fan, it suffices to show that it satisfies the last
condition of Proposition 2.7. Assume thatu ∈ ZR(M) dominatesτ ∈ X andη ∈ X∗ \ Z∗.
Then,η ∈ X1 sinceu ∈ ZR(X) = ZR(X1). Sinceη �∈ Z∗ ⊂ Z∗, we haveη ∈ X ∩X∗. Since
X is a fan,η is equal toτ .

(2) Now, assumeρ ∈ Z∗. ρ ∈ X∗ \ X1 by the assumptionv �∈ ZR(X). Since the
generalizationw of v dominatesσ , we know thatσ is a face ofρ. We take an element
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m0 ∈ M ∩ rel. int(ρ∨ ∩ σ⊥), and set

P := conv{m ∈ M ∩ ρ∨ ; m0 ≤v m} .

ThenP defines a polyhedral ideal ofX∗ primary atρ. LetX∗∗ be the blowup ofX∗ along this
ideal. Note that this blowup does not change any cones which do not containρ. In particular,
X is invariant by the blowup. SinceM ∩ R(P −m0) ⊂ L(v) andR(P −m0)

∨ is an element
of X∗∗, v dominates a faceτ of R(P − m0)

∨. For the closureZ∗∗ of Z∗∗ := Z∗ in X∗∗,
we will show τ �∈ Z∗∗. Suppose that a faceη of τ was contained inZ∗. Sinceη ⊂ ρ and
η, ρ ∈ X∗, η is a face ofρ. Sinceη ∈ Z∗ andσ ∈ X ∩ X∗, η is not a face ofσ . Hencem0

is not inρ∨ ∩ η⊥ by [O1, Prop. A.6]. Sinceη corresponds to the faceP ∩ η⊥ of P and since
m0 is not inP ∩ η⊥ ⊂ ρ∨ ∩ η⊥, η is not a face ofR(P − m0)

∨. Henceη is not a face of
τ contrary to the assumption. SinceX ∩ X∗ = X ∩ X∗∗, we are reduced to the case (1) by
replacingX∗ byX∗∗.

For the last assertion, we takeτ ∈ X′ which is dominated byv. If we replaceX′ by
X ∪ F(τ), thenX′ \X is contained in a projective fan which containsτ (cf. Lemma 4.2).�

THEOREM 4.8. Let X1,X2 be finite fans, and let X := X1 ∩ X2. If X1 \ X is a
subset of a projective fan X∗, then there exists a finite fan X3 which contains X and satisfies
ZR(X3) = ZR(X1) ∪ ZR(X2).

PROOF. We show later that we can replaceX1,X2,X
∗ by their subdivisions without

shrinkingX = X1 ∩X2 so that they satisfy the following conditions:
(1) X1 is quasi-dominant overX2, i.e.,U1 = J (X1,X2) is an open subset ofX1.
(2) U1 is a subdivision of an open subsetU2 ⊂ X2.
(3) LetW1 := U1 \ X andY := X \ (X ∩ X∗), and letW2 be the image ofW1 in U2.

Then the closuresW2 andY2 := Ȳ in X2 are disjoint.
(4) X∗ is quasi-dominant overX2.
By the property (4),U∗ := J (X2,X

∗) is an open subset ofX∗, and the natural map
ψ : U∗ → X2 is a subdivision. (1) and (3) implyU2 = X ∪W2 andY is closed inU2.

SinceX∗ is projective, there exists a blowup ofX2 of type (8) in Section 3.8. Namely,
there exists a polyhedral idealI of X2 such thatI is unitary onX ∩ X∗ and the blowup of
X2 alongI is a subdivision ofU∗. Let I ′ be the maximal extension of the restriction of the
ideal I to the open subsetX2 \ (Y2 ∪ W2) of X2. I ′ is unitary on the open setU2, since
U2 ⊂ (X ∩ X∗) ∪ Y2 ∪ W2. Let U∗

2 be the blowup ofX2 along I ′, andφ : U∗
2 → X2

the subdivision map. Consider the two subdivision mapsU∗
2 \ φ−1(Y2) → X2 \ Y2 and

U∗ \ ψ−1(Y2) → X2 \ Y2. Then we see that the former is a subdivision of the latter on
X2 \ (Y2 ∪W2) and, on the contrary, the latter is a subdivision of the former onU2 \Y . Hence
the restriction of the joinJ (U∗

2 , U
∗) to the open setX2\Y2 can be patched with the restriction

of U∗
2 to the open setX2 \W2, and they form a subdivisionV2 of X2. SinceU1 \ Y ⊂ X∗, we

see thatU∗ and henceV2 is equal toU1\Y overU2\Y . On the other hand, sinceX ⊂ X2\W2

andI ′ is unitary onX ⊂ U2, X is contained inV2. Hence the fanV2 overX2 is equal toU1
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overU2 = (U2 \ Y ) ∪ X, and we can patch it withX1. The resulting fanX3 satisfies the
conditions of the theorem.

Now we prove that we can subdivideX1 andX2 so that the conditions (1) and (2) are
satisfied. By Theorem 4.6, there exists a blowupX′

2 of X2 which is quasi-dominant overX1

and containsDX2,X1. Then

U2 := {σ ∈ X′
2 ; there existsτ ∈ X1 such thatσ ⊂ τ }

is an open subset ofX′
2 and is equal toJ (X1,X

′
2). Again by Theorem 4.6, there exists a

blowupX′
1 of X1 quasi-dominant overX′

2 andDX1,X
′
2

⊂ X′
1. We set

U1 := {τ ∈ X′
1 ; there existsρ ∈ X′

2 such thatτ ⊂ ρ} .
Since ZR(U1) = ZR(X1) ∩ ZR(X′

2) = ZR(U2), U1 is a subdivision ofU2. We replaceX1 by
X′

1 andX2 byX′
2. Then the newX = X1 ∩X2 contains the originalX. SinceX′

1 is a blowup
of the originalX1 along a polyhedral idealI which is unitary onX, we retain the relation
X1 \X ⊂ X∗ if we replaceX∗ by its blowup at the maximal extension ofI |(X1 ∩X∗).

Next, we make them satisfy (3) keeping (1) and (2). SinceW1 ⊂ X1 \X ⊂ X1 ∩X∗,W1

andY are disjoint closed subsets ofU1. If V := W2 ∩ Y2 is not empty, then this is a closed
subset ofX2 contained inX2 \ U2. By Lemma 3.6, the closures ofW1 andY are disjoint in
the blowupX′

2 of X2 at V . (3) is satisfied if we replaceX2 by X′
2. Since the center of the

blowup is outsideU2, X1 is still quasi-dominant overX2.
Finally, we make (4) satisfied. By Theorem 4.6, we can makeX∗ quasi-dominant over

X2 by a blowup. Here we can take the center of the blowup outsideX1∩X∗, sincev ∈ ZR(M)
dominates no cones inX2 if it dominates a pointσ in an open subsetX1 ∩ X∗ of X∗ and
if σ∈X1 \ U1. Hence, there is no change in the relationX1 \ X ⊂ X∗. The conditions (1)
and (2) are independent ofX∗. (3) is also satisfied, since the newY is contained in the original
Y . �

PROOF OFTHEOREM 4.1. LetX be a finite fan. For anyv ∈ ZR(M), there exists a fan
Xv such thatX ⊂ Xv , v ∈ ZR(Xv) andXv\X is contained in a projective fan by Theorem 4.7.
Since ZR(M) is compact by Theorem 2.5, there exist finite elementsv1, . . . , vs ∈ ZR(M)
with

ZR(M) = ZR(Xv1) ∪ · · · ∪ ZR(Xvs ) .

By applying Theorem 4.8, we construct inductively a sequence of finite fansX1 =
Xv1,X2, . . . , Xs with

ZR(Xi) = ZR(Xv1) ∪ · · · ∪ ZR(Xvi )

andXi−1 ∩ Xvi ⊂ Xi for i = 2, . . . , s. ThenX′ := Xs is complete by Theorem 4.3 and
containsX.

5. Compactifications of real fans. In this section, we will prove the compactification
theorem for real fans. Indeed, we prove it fork-fans for an arbitrary subfieldk of R. In the
case of rational fans, we used the latticeM for blowups. However, we cannot use it in the
general case.
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Let M andN be freeZ-modules of rankr ≥ 0 as in the previous sections. We fix a
subfieldk of R. LetNk := N ⊗ k andMk := M ⊗ k. A coneσ in NR is said to be ak-cone if
it is generated by a finite subset ofNk. A real fanX is said to be ak-fan if everyσ ∈ X is a
k-cone. In particular,R-fans are real fans andQ-fans are usual fans. Although our theory does
not depend on the fieldk, it is an interesting problem to find the properties ofk-fans which
depend on the fieldk.

We setk0 := {a ∈ k ; a ≥ 0}. Let C ⊂ MR be the cone generated by a finite subset
{x1, . . . , xs} of Mk. ThenMk ∩ C = k0x1 + · · · + k0xs as easily shown by Carathéodory’s
theorem.

A preorder≤ onMk is said to bek-additive if the following conditions are satisfied.
(1) For anyx, y ∈ Mk, eitherx ≤ y or y ≤ x is satisfied.
(2) x ≤ y andy ≤ z imply x ≤ z.
(3) If x ≤ y, thenx + z ≤ y + z for everyz.
(4) If x ≤ y, thenax ≤ ay for everya ∈ k0.
We define the Zariski-Riemann space ZR(Mk) as the set of allk-additive preorders of

Mk. We define the weakest topology on ZR(Mk) such that{v ∈ ZR(Mk) ; 0 ≤v x} is open
for everyx ∈ Mk.

We defineLk(v) := {x ∈ Mk ; 0 ≤v x} andL0
k(v) := {x ∈ Mk ; 0 =v x} for

v ∈ ZR(Mk), where we writex =v y if x ≤v y andy ≤v x. If a coneC ⊂ MR is generated
by {x1, . . . , xs} ⊂ L0

k(v), then it is easy to see from the above conditions thatMk ∩ C is
contained inL0

k(v). We set‖σ‖k := {v ∈ ZR(Mk) ; Mk ∩ σ∨ ⊂ Lk(v)} for a convex
polyhedralk-coneσ . Then the set of all subsets‖σ‖k forms an open basis of the topology
of ZR(Mk). For ak-fan X, ZR(X) is defined as the the union of‖σ‖k for σ ∈ X. The
compactness of ZR(X) for a finitek-fanX is proved similarly to Theorem 2.5.

We denote byη the trivial preorder in ZR(Mk) with Lk(η) = Mk.

LEMMA 5.1. Let v be an element of ZR(Mk)\{η}. Then the closure of conv(Lk(v)) in
MR is equal to that ofLk(v), and is a closed half space, i.e., (x0 ≥ 0) for an element x0 ∈ NR .

PROOF. It suffices to show the convexity of the closureLk(v) ⊂ MR for the first part.
Let x, y be elements ofLk(v). Then there exist sequences{xi}, {yi} in Lk(v) converging tox
andy, respectively. We knowtxi + (1− t)yi ∈ Lk(v) for t ∈ k with 0 ≤ t ≤ 1 for all i. This
implies that all the segmentsxiyi are inLk(v), and the limit segmentxy is also in the closed
set. HenceLk(v) is convex and equal to the closure of conv(Lk(v)).

We haveMk ∩ (conv(Lk(v))) = Lk(v) by Carathéodory’s theorem. Sincev �= η, we
know conv(Lk(v)) �= MR by this equality. SinceLk(v) is the closure of this convex set by the
first part, it is not equal toMR. SinceLk(v)∪ (−Lk(v)) = Mk, we haveLk(v)∪ (−Lk(v)) =
MR. Hence the closed convex coneLk(v) is a closed half space. �

By this lemma, the ranks and the defining sequences are defined for elements in
ZR(Mk) as in Section 2. We say that an elementv ∈ ZR(Mk) dominates ak-coneσ if
Mk ∩ σ∨ ⊂ Lk(v) andMk ∩ σ∨ ∩ L0

k(v) = Mk ∩ σ⊥.
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Theorem 4.5 modified fork-fans is proved similarly. However, we need a modification
for the part in which we used the latticeM. It suffices to show the following lemma.

LEMMA 5.2. Assume that v ∈ ZR(Mk) dominates k-cones τ1, τ2, and the first gener-
alization w of v dominates a face σ1 of τ1 and a face σ2 of τ2. Furthermore, we assume that
σ1 is contained in σ2. Then there exists a polyhedral ideal I of F(τ1) primary at τ1 with the
following property. Let X′ be the blowup of F(τ1) along I . Then the cone τv ∈ X′ dominated
by v is contained in τ2.

PROOF. Let {x1, . . . , xt } ⊂ Mk be a set of generators ofτ∨
2 . We may assume that

x1, . . . , xl are contained inτ∨
2 \ τ⊥

2 andxl+1, . . . , xt are inτ⊥
2 . Let s be the rank ofv, and

(y0, . . . , ys−1) a defining sequence ofv. Then we have

L0
k(v) = {x ∈ Mk ; 〈x, yi〉 = 0 for i = 0, . . . , s − 1} .

Sincev dominatesτ1, τ2, the linear spacesτ⊥
1 andτ⊥

2 are contained inL0
k(v)R. HenceL0

k(v)
⊥
R

is contained inN(τ1)R := τ1 + (−τ1) andN(τ2)R := τ2 + (−τ2). We takex0 ∈ Mk ∩
rel. int(τ∨

1 ∩ σ⊥
1 ) so thatx0 + xi ∈ τ∨

1 for every 1≤ i ≤ t . This is possible by the relation

τ∨
2 ⊂ σ∨

2 ⊂ σ∨
1 = τ∨

1 + (− rel. int(τ∨
1 ∩ σ⊥

1 )) .

If we takeε > 0 sufficiently small, thenz = zε := ∑s−1
j=0 ε

jyj is contained in rel. int τ1 ∩
rel. int τ2 and 〈xi, z〉 > 0 for all 1 ≤ i ≤ l. Now we take elementsa, b of k such that
0< a < b, 〈x0, z〉 < a and〈x0 + xi, z〉 > b for i = 1, . . . , l. Sincez ∈ rel. int τ1, we see that
τ∨

1 ∩ (z ≤ b) is τ⊥
1 -bounded, where(z ≤ b) = {x ∈ MR ; 〈x, z〉 ≤ b}. We take a pointz0

in Nk ∩L0
k(v)

⊥
R sufficiently near toz ∈ L0

k(v)
⊥
R . Thenz0 is contained in rel. int τ1 ∩ rel. int τ2

and satisfies〈x0, z0〉 < a and

τ∨
1 ∩ (z ≥ b) ⊂ τ∨

1 ∩ (z0 ≥ (a + b)/2) ⊂ τ∨
1 ∩ (z > a) .

LetP be the convex hull of the union of

τ∨
1 ∩ (z0 ≥ (a + b)/2) and τ∨

1 ∩ ({x0} + L0
k(v)R) .

Note thatx0 + xi is contained in the set on the left hand side fori = 1, . . . , l and in the set on
the right hand side fori = l + 1, . . . , t . ThenP is aτ⊥

1 -convex subset contained inτ1, and
τ∨

1 \ P is τ1-bounded, since it is contained inτ∨
1 ∩ (z ≤ b). HenceP defines a polyhedral

idealI (P ) primary atτ1.
The fanX′ obtained by the blowup ofF(τ1) along this ideal containsρ := (P − x0)

∨
as an element. Thenτv ⊂ τ2 sinceP \ {x0} contains{x0 + x1, . . . , x0 + xt }, and hence
Mk ∩ ρ∨ ⊂ Lk(v). Hencev dominates a faceτv of ρ. �

In order to prove the theorem analogous to Theorem 4.7 fork-fans, it suffices to show
the following lemma.

LEMMA 5.3. Assume that v ∈ ZR(Mk) dominates a cone τ , and the first generaliza-
tion w of v dominates a face σ of τ . Then there exists a polyhedral ideal I of F(τ) primary
at τ with the following properties. For the blowup X of F(τ) along I , the cone τv ∈ X

dominated by v satisfies τv \ rel. int τ ⊂ σ .
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PROOF. Let (y0, . . . , ys−1) be a defining sequence ofv. We takeε > 0 sufficiently
small so thatz = zε is in rel. int τ . We take an arbitraryx0 ∈ Mk ∩ rel. int(τ∨ ∩ σ⊥), a ∈ k
greater than〈x0, z〉 andb ∈ k greater thana. As in the proof of Lemma 5.2, we takez0 of
Nk ∩ L0

k(v)
⊥
R sufficiently nearz so that

τ∨ ∩ (z ≥ b) ⊂ τ∨ ∩ (z0 ≥ (a + b)/2) ⊂ τ∨ ∩ (z > a) .

We consider the primary polyhedral idealI (P ) defined by the convex closureP of the union
of τ∨ ∩ (z0 ≥ (a + b)/2) andτ∨ ∩ ({x0} + τ⊥). We will show(P − x0)

∨ \ rel. int τ ⊂ σ .
Let u be a point of(P − x0)

∨ andρ the minimal face ofτ which containsu. If u �∈ rel. int τ ,
thenρ �= τ andP ∩ ρ⊥ is nonempty. Lety be an element in it. Then since〈y, u〉 = 0,
〈y − x0, u〉 ≥ 0 and〈x0, u〉 ≥ 0, we have〈x0, u〉 = 0. Hencex0 ∈ ρ⊥ and henceρ is a
face ofσ . SinceMk ∩ (P − x0) ⊂ Lk(v) by the construction ofP , v dominates a faceτv of
(P − x0)

∨. Then the conditions of the lemma is satisfied forτv. �

Now the following theorem is proved similarly to Theorem 4.1.

THEOREM 5.4. For an arbitrary finite k-fan X, there exists a complete finite k-fan X′
with X ⊂ X′.

If we setk := R, then we get the second proof of Theorem 1.1.
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