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Abstract. Given areal fan in a real space consisting of real convex polyhedral cones,
we construct a complete real fan which contains the fan, by two completely different methods.
The first one is purely combinatorial and a proof of a related version was sketched earlier by
Ewald. The second one is based on Nagata’'s method of imbedding an abstract variety into a
complete variety. For the second method, we introduce the theory of Zariski-Riemann space
of a fan.

Introduction. A fan in a real space is defined as a cell complex consisting of poly-
hedral cones with the apex at the origin. A finite fanis said to be complete if the union
of cones inX is the whole space. The theory of torarieties says that, to each finite fan
consisting of rational polyhedral cones, is associated a toric variety, and the fan is complete
if and only if the toric variety is complete (see, for example, Ewald [E], Fulton [F2], Oda
[O1]). Nagata’s compactification theorem says that any algebraic variety can be embedded
in a complete algebraic variety [N1, Theorem 4.3]. This theorem was generalized for normal
algebraic varieties with algebraic group actions by Sumihiro [S1], i.e., the equivariant com-
pletion theorem. By using Sumihiroteeorem, we can complete a rational f8nas follows
Let X be the toric variety associated ¥ SinceX is a normal variety with torus action, there
exists an equivariant completiot. SinceX is a complete toric variety, it corresponds to a
complete fan. ThenX is a completion ofs.

Since it is a quite simple problem on convex polyhedral sets in a real space, we would
like to avoid this roundabout proof. In this paper, we give two different direct proofs which
are valid for not necessarily rational fans. The first proof given in Section 1 is purely combi-
natorial and was sketched in [E, Theorem 2.8] in the case of a rational fan.

The second one is done by using Nagata's method applied for fans. In Nagata’s proof, the
Zariski-Riemann space, i.e., the topologicahsp of all valuation rings of the function field
plays an important role. The Zariski-Riemann space was introduced originally by Zariski
[Z21], [22] for the theory of local uniformization of algebraic varieties. In Section 2, we
define the Zariski-Riemann spaces for ratidaas. We discuss on blowups of not necessarily
rational fans in Section 3. Using the results of these sections, the existence of the completion
is first proved for rational fans in Section 4. In the last section, the definition of the Zariski-
Riemann spaces is generalizedkefians for any subfielét of R. Theorem 5.4 claims that any
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finite k-fan is embedded in a compléetefan. The theorem applied fd&r = R is the second
proof of the completion theorem for real fans.

1. Combinatorial proof.

NOTATION. Given a setE of vectors inR" we denote by pog the set of all linear
combinations of elements df with non-negative coefficients, and call it tpesitive hull
of E. If E is finite, we say pog is a (real) polyhedral cone. The dimension dirr of
o is defined to be the dimension of the linear hulldirof o. If o has linearly independent
generators, we call it amplicial cone. Ifo has rational generators, we callrational. By
a face ofc we mean an intersectiann H, whereH is a (linear) hyperplane such thatis
totally contained in one of the two closed half-spaces bounded .y {0} is a face ofr, we
call it theapex of o.

A collection X' of (real) polyhedral cones with apg®} is said to be a (real) fan if it is
a cell complex, that is, (i) each face of a cone3dis also inX, (ii) the intersection of two
cones ofX' is a common face of the cones. We callrational if all cones are rational. I1&
and X’ are fans inR" and ¥ C X', we sayX is asubfan of X’. By thestar st(o, X) of a
coneo € X in X we mean the set of all conese X such thatr C r. Thesupport | X| of
X is the union of the cones i®. If X' is finite and| ¥'| equalsR", we sayX is complete, and
a completion of any of its subfans. If a finite fanis not complete, we call the collection of
cones ofX which lie in the (topological) boundary ¢0%°| theboundary bd ¥ of X. Clearly,
bd XY is again a fan. Givem > 0, thee-neighborhood of X is defined as the union of all
1-cones pofg:} wherea is a unit vector representing a point of distance less thiaom | X|.

As a specific type of cones we consider the followingp i a 1-dimensional cone not
contained in the linear hull of a cowe we callo.p = pogo U p) apyramid with apexp over
the basisr. Clearly, dimo.p) = 14 dimo. A pyramid over a pyramid is said to bewofold
pyramid or a 2pyramid, and a pyramid over & — 1)-pyramid inductively &-fold pyramid
or ak-pyramid. o is considered a 0-fold pyramid over itself-fold pyramids can be written
as

0.p1.°+* Pk =O0.T,
wheret = p1.--- .0 is a simplicial cone. IfP is a polytope or a polyhedral set and
pl, ..., p* are vectors (representing points) such that posP andp; = posp’, i =

1,...,k, theno.t = pogP.pt..-. .pk), whereP.pl.... p¥is an ordinaryk-fold pyramid
(unbounded ifP is not a polytope).
1.1. Mainresult. Allfans in this section are assumed to be finite.

THEOREM 1.1. Everyreal fan X' can be completed.

In [E, Theorem 2.8], we have sketched the proof of this theorem for rational fans. In this
section, we present an explicit proof in the general case. The second proof of this theorem is
given in Section 5 (cf. Theorem 5.4).

PrROOF OFTHEOREM1.1. Forthe purpose of our proofitis useful to show a somewhat
stronger version of Theorem 1.1.:
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THEOREM 1.2. Givenafan X andane > 0, thereexistsafan Xy and a complete fan
X" such that the following are satisfied:

(1) XcXpcCx.

(2) X0\ X consistsof the multifold pyramidsjoining the cones of X' to simplicial cones
in bd Xg, and of the faces of such pyramids.

(3) Ifo € X intersectsthe cellsof X onlyin 0, then o isa simplicial cone.

(4) |2\ {0} liesintheinterior of | Xp|.

(5) |Xol| iscontained in the e-neighborhood of X.

We apply induction om. Forn = 1, eitherX = {{0}} or ¥ = {{0}, poq1}} or ¥ =
{{0}, pog—1}} or ¥ = {{0}, poq1}, po§—1}}, the last fan being the completion of all the
others. Ifn = 2, letS be the unit circle. We may assur{@ not to be the only cone of, any
complete fan being a completion &f in this case. S& splits S into finitely many (closed)
circular arcs. LeC be one of these arcs apdg its end points. We choose poin§ ¢’ in the
relative interior ofC so that the distances betwegnp’ andq, ¢’, respectively, are less than
£/2, and that the cones pjgs p’}, podq, ¢’} intersect only in{0}. We extendX by adding
pogp, p'}, podp’}, podq, q¢’}, podq’}. Doing this for all arcs (and assumiagmall enough
to begin with), we obtain a fa’g. Now S \ | Xp| consists of finitely many arcs. If one of
the arcs has length or more, we split it into two arcs of length less than We add toX
the closed angular regions determined by the arcs and their boundary 1-cones and obtain a
complete fanX’. It is readily verified that>, Xy and X’ satisfy (1) through (5).

Letn > 2. Again we may assume th@} is not the only cone of'. So letp be a 1-cone
of X for which s{(p, %) is not complete (if none of such exists, is already complete). Let
H be the (affine) tangent hyperplane of the unit sptsea¢a = p N S. ThenH intersects the
cones ofX either not at all or in convex polytopes (if bounded) or so-called polyhedral sets
(if unbounded). In Figure 1 we illustrate the case= 3 (heavy lines and hatched regions).
Letd be the smallest distance thahas from the cones of \ st(p, X). Clearlyd > 0. We
consider then — 2)-sphereS, of radius at mos#//2 and center in H. For the moment we
regarda as the origin of then — 1)-spaceH. By pos, let us denote the positive hull with
respect to this origin.

Yy :={pos,(HNo) ;o €st(p, X)}

is then a fan inH . It represents the quotient fax/ p (up to a translation; compare Ewald [E,
p. 81, Definition 3.3]).

Now we apply the inductive assumption X and obtain for any, > 0 fansX, o, X/
satisfying (1)—(5) (with terms indexed hy andd /2 considered as unit length). We wish to
construct an extension & by usingX, o, /. Since the latter fans collide, in general, with
cones ofX \ st(p, X), we first construct a map which assigns to each cong/ad polytope
or polyhedral set contained in the cone:

I. Leto, € X,, hences, = pos,(H No) for somes € st(p, X'). Then we assign

Og = ¢q(o,) =HNo.
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FIGURE 1.

II. Leto, € X,0\ X, be amultifold pyramitb, ».04.1. - - - .pak, Whereo, , € Xy,
04,0 = POS,(H No,), andp,,;i = POS{pa.i}s Pai € Su,i =1,..., k. We assign

04 > Pu(0q) = clcon((H No,) U {Pa, i} U---U{paxk}),

where “cl” means the “topolgical closure” (needed iff N o, is unbounded).

. Leto, € Ys0\ 2y ando, N |%y| = {a} oro, € X\ Xy0. Theno, =
po%{pl, ...,p "}, wherepl, ..., p" areinS, and linearly independent (with respectfibas
a linear space). We set

04 > Pa(0q) = cona, p*, ..., p"} (an(r + 1)-simplex).

In Figure 1 the dotted regions illustrate thg(o,) of type Il or Ill.
V. ¢a({a}) = {a}.

LEmMmMA 1.3. ¢, as defined by I-IV maps X/ onto a cell complex A consisting of
polytopes and polyhedral setsin H. It hasthe following properties:

(8) ¢, isbijective and preservesinclusions.

(b) pos, ¢u(o,) =0, foralo, € 2.

(c) e, > 0can bechosen sothat for any t € X' \ st(p, X) we have: T N |A] is empty
or contained in ¢, (o,,) for someo, € X,.

PrROOF. (a) and (b) readily follow from the definitions I-IV. In order to show (c) we
recall an elementary fact from oeex polytope theory: (*) IfF, G are (closed) polytopes or
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polyhedral sets ifR" such thatF' N G is empty, thenF andG have positive distance, that is,
there exists @ > 0 such that each point df has at least distaneéfrom G. Suppose (c)
is false. Then there existstac X' \ st(p, ) and anx in T N |A| but not in¢,(a,) for any
o, € X,. Since thep, (o,) of type Ill are contained in the ball,, x cannot lie in one of such.
Sox lies in ak-fold pyramidg, (o4.0.pt. - - - . p*) overg,(o4.0), whereo, o € X, butx does
not lie in the basi®, (0,.0) of the pyramid.

Let F be the smallest face af N H which containsc (in its relative interior). IfF N
¢a(0qa,0) = ¥, thenF has, by (*), positive distance fro, (c4,0), and we choose, to be
at most half this distance. Thencannot lie in the above pyramid. So IBtN ¢, (0, .0) be
nonempty. Sincé and¢,(o,,0) are intersections of cones &f andH, F N ¢,(0,4.0) iS @
common faceG of F and¢,(o,.0). Let dimG = m. ThenG, a, andx span an(m + 2)-
dimensional affine space in which the hyperplanes spanne&d, layand G, x, respectively,
have an anglee > O (see the illustration in Figure 1). Sineelies in thek-fold pyramid
$a(04.0).pL. - - - .p* overg,(o4.0), the anglex could be made arbitrarily small by choosing
&4 sSmall enough, a contradiction to > 0 being given. So let, be chosen appropriately.
Since our arguments apply to finitely many faces, we may select the smgalksiong those
which occur as a common bound. This proves Lemma 1.3. i

Now we define the following mag, on A:
I Ifo e ¥andH No € A, we assign

HNow— Yy,(HNo) =0 .

. If ¢a(0q) = clcon((H No,) U {paa} U---U{psx}) according to Il, we consider
the pointp,; as vectoly; = a + p,,; in R* and assign fop; = podg;},i =1,...,k

Ga(0a) = Ya(Pa(0a)) = 00.01.- - Pk .

M. If ¢a(0,) = conMa, pt, ..., p"} according to I, we consider again the poimpfs
as vectorg)’ = a + p' in R" and assign fop’ = podq‘},i =1,...,r (andp = posa)

$a(0a) > Ya(pa(0a)) = p.pt--- 0"
\VAS
{a} = v({ah) =p.

LEMMA 1.4. Ifweaddto X all cones v, (¢q(0,)) and their facesfor o, € X/ \ Xy,
then we obtain a set ¥ which isa fan, provided ¢, is chosen small enough.

PrROOF. By construction,y, clearly is bijective. We must show that for sufficiently
smalle, two conest, v’ of ¥ intersect in a common face of t which belongs tar®.
Sincer ¢ XD thisis trueifr, ¢’ both lieinX. Lett € X, v/ = 0,.p1.--- .px Of type II'.

If o, N H is bounded, we have’ = po(c, N H) U {q1, ..., qx}), and by Lemma 1.3, (c)
' N|¥| = o, for sufficiently smalls,, sor Nt/ = t N o, is a common face of andz’.

If o, N H is unbounded, we consider an affine hyperplafevhich does not contain
0 such thats, N H' is nonempty and bounded( exists since 0 is the apex of). For
sufficiently smalle, the conesos, ..., px intersectd’ in pointsg;, ..., ¢;, respectively, so
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thatt” = pos(o, N H') U{q}, ..., q;}). We may again apply the arguments of Lemma 1.3,
(c) so as to obtain’ N | X| = o, for sufficiently smalle,.

For all the other choices af, T’ analogous arguments apply. Since only finitely many
restrictions are imposed ap, Lemma 1.4 follows. O

Now we apply tox'® the same procedure of extension as we applied tohoosing as
p a 1-conep; of the “old” fan X' (if there is ap; other tharnp for which X'/ p1 is incomplete).
We denote the new fan b ®. Continuing in this way, we find after a finite numheof
steps a fany @ =: 0 such thatx%/p; is complete for all 1-coneg; = p1, ..., pi. We
assert:

LEMMA 1.5. Givene > 0, X° can be chosen so that (2), (4)and (5) in Theorem 1.2
are satisfied for X0 instead of Xy.

PROOF. First we show that (2) in Theorem 1.2 holds BfY instead ofx°. In fact,
by the definition ofgp, the pointsp, 1, ..., pax in Il and the pointsps, ..., p, in lll lie
on the boundary ofA| (A as in Lemma 1.3). Hence, by the definitionaf, we see that
Pals---pak (€1 Andpt, ..., p" (seelll) liein bd X, Soifo is an element oD,
we findo = o9 - 70, Whereog € X andrg either equal somg;. - - - .o (if op is different from
p1) or somept. ... .p" (if oo = p1). In both casesy is a simplicial cone in b&™@,

According to the construction of @ we see, analogously, that fere @ \ @ we
haves = o1.71, whereoy € ¥ andry is a simplicial cone in b& @, Since eithep; € X
or o1 = 090.70 for og € ¥ andrg is a simplicial cone in b&®, we obtaine = 09.79.71.
According to Lemma 1.4 applied t8, ¥ @ instead ofx, ¥, respectively, the choice
of a sufficiently smalk, 1 (instead ofs,) guarantees thaty € bd 2@, Therefore,rp.7; €
bd ¥@ so that (2) holds fo, £ @ instead ofY, Xy, respectively. Continuing in this way
we find that (2) is also satisfied if we replagé? successively by®, ... 2@ = 50 Let
herebye, 2, ..., e4.; replaces, 1.

(4) is readily implied by the construction of. In order to obtain (5) we choose
€a.1,---,&q. all to be smaller than the given> 0. Sincep, 1, ..., pax inll, pt ... p in
l1l, and their analogs in the constructions Bf2, ..., @ all lie in the e-neighborhood of
¥, the same is true for, 71 and their analogs i@, ..., ¥ = x0. This implies (5) for
>0, ]

If |29 is contained in a (linear closed) half-space, we add-fban n-dimensional
simplicial cones and its faces so thatN | X°| = {0} and pogo U|X°|) = R". The extended
fan we denote again hy°.

In order to construcEy and X’ we consider the seb = cl(R" \ |X?)). P and|X?|
have a common boundary which carries a sub#¥ of 0 and is a uniorF, U - - - U F,, of
(n — 1)-dimensional cones af%. Let

Hi:=IlnF;,, i=1....,m

be the linear hyperplanes spannedfyand IetHf, H; be the closed half-spaces bounded
by H;.
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LEMMA 1.6. X© can be mapped isomorphically onto a fan in such a way that | X|
remains pointwise fixed, and that all H; are different. We denote the new fan again by X°.

PROOF. Each cone inz?\ ¥ is either a multifold pyramid with basis i& and apex-1-
cones not inX or a simplicial cone with generating 1-cones nogin Replacing the 1-cones
by 1-cones in sufficiently small neighborhoods does not change the structtifesofd leaves
X unchanged. The new 1-cones may be chosen so that no two of the hyperplanes H,,
coincide. This proves Lemma 1.6. O

Hi, ..., H, splitR" into a systemM of polyhedralz-cones with apex 0, each of which
is an intersection of half-spacék™, H,”.

LEMMA 1.7. Ifo € M, theno iseither totally containedin P or in | X©|.

PROOF. Supposes contains a poink € int P and a pointy € int|X°. Then we
assert: The line segmefx, y] intersects at least ong, i = 1, ..., m. Indeed, this follows
from a generalized version of the Jordan Curve Theorem; but we can see it difectiy:
intersects finitely many-cones of£°. Among these the one closestiaontains the point
z € [x,y]1 N X9 closest tox on its boundary. Since the boundary|af? is covered by
F1, ..., Fy, z lies on one of the;. ThenH; separates andy, a contradiction. O

By Lemma 1.7,P is the union of the cones of a subs@h c M. AlthoughR" is
covered byx® and Mo, the union of£9, Mgy and the faces of the cones tfy do not, in
general, provide a fan, since the common boundary3 and P is covered differently by
cones ofx? and faces of cones dfly. However, Lemma 1.6 and Lemma 1.7 imply:

LEMMA 1.8. Ifafaceu of aconeof Mg iscontainedin|X?|,itiscontained inan F;,
ie{l,...,m}.

So eachF; is the union of then — 1)-faces of cones oM. This remains true if we
refine My as follows.

LEMMA 1.9. Thefan X (Mp) consisting of My and the faces of Mg may beturned into
asimplicial fan X1 having the same 1-cones as X' (Mp) by splitting the cones of X' (Mp).

PrRooOF This follows from a combinatorial theorem (see [E, Ill, Theorem 2.6]). O

Now we adjustz® to ¥ as follows. Each cone € X%\ X which is not contained in
the boundary of X (Mp)| is ak-fold pyramidz.py.--- .or = 7.7/, Wwheret’ = p1.--- .o is a
simplicial cone and the basislies in £°. In Xy, ¢/ is split into simplicial conesy, . .., 1,
hences is split into simplicial cones.t1, . . ., t.7,. This turnsX? into a fan Xo.

LEMMA 1.10. Lemma1.5istruefor Xg instead of X°.
PrROOF. This readily follows from X°| = | £o| and the construction ofy. O

The fanXoU My is complete; we denote it b¥’. So Xy, X’ satisfy all the properties (1)
through (5) and the proof of Theorem 1.2, hence also the proof of Theorem 1.1, is completed.
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2. TheZariski-Riemann space of arational fan. Letr > 0 be an integer, ani¥ a
free Z-module of rank-. Ng := N ®z R is anr-dimensional real space with the lattide
We consider cones and fanshik from this section on. Namely, a subgetc Ng .= N ® R
is said to be @onvex polyhedral cone if there exists a finite subséts, ..., ys} € Nr with

C =pogy1,...,ys} = Royi+--- + Roys,

whereRy is the set of nonnegative real numbers. The ofrig said to beational if we can
chooseys, ..., ys in N, andstrongly convex if C N (—C) = {0}.

Let M := Homz(N,Z) and MR := M ® R. There exists a natural perfect pairing
(,): Mr x NrR — R. AsubsetC’ c C is aface and writtenC’ < C if there existst € Mr
with C C (x > 0) andC’ = C N (x = 0), where we denotéx > 0) = {y € Nr; {x,y) > 0}
and(x = 0) = {y € Nr; (x,y) =0}.

From this section on, we prefer to use lett®s, . . . for fans rather than Greek capitals.
Recall that a nonempty sét of strongly convex rational polyhedral cones is said to ffiena
if

(i) o eXandn<oimplyne X, and

(i) if 0,7 € X, theno Nt is a common face of andr.

The condition (ii) can be replaced by the followitggparability condition(ii’) (cf. [F2, 1.2,
12))).

(i) Foro,r € X, there existsx € Mg witho C (x > 0), T C (x < 0) and
cNx=0=tN(x=0).

The setF (i) of all faces of a strongly conwerational polyhedral cone is a fan with the
unique maximal element. Such a fan is called aaffine fan.

For eachr € X, the dual cone¥ C Mg is defined by

oV :={xeMR; (x,u) >0foranyu e o} .

This is anr-dimensional polyhedral cone. Sindé¢ N oV is a finitely generated additive
semigroup (cf. [O1, Prop.1.1]), the semigroup ri@gV N o] over the complex number
field is an affine ring and the quotient field is equal to that of the group @ng]. The
toric variety X¢ associated to a faX is defined to be the union of the affine toric varieties
SpedC[M No Y] for o € X. The function field ofX¢ is the quotient field oC[M], and the
algebraic torugy := SpedC[M] acts onX¢. The toric varietyX¢ is of finite type, i.e., itis
an algebraic variety if and only if the faxi is finite.

The topology of a farX is defined as follows. A subsét C X is defined to be open if
o € Uandn < o imply n € U. Namely,U is open if and only if it is empty or a subfan &f.
For each poink € X¢, we definep (x) to be the minimab € X with x € SpedC[M No V].
Then the map : Xc — X is continuous.

A collection of convex polyhedral cones not necessarily rational is calledldan if
it satisfies (i) and (ii). Usual fans which define toric varieties are sometimes caliedal
fans.
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The supportX| of a fanX is defined to b¢ J .y o, andX is said to becomplete if it is
finite and|X| = Ng. For a rational finite farX, the toric varietyXc is complete if and only
if X is complete. IfX is a subfan of a complete rational f&h thenX ¢ is an open subvariety
of Xc, i.e., Xc is a completion ofXc.

A subringR of a field K is said to be aaluation ring if it satisfies the condition:

1/x e R foranyxe K\R.

In particular,R = K is a valuation ring.

Let (R, m) and(R’, m’) be not necessarily Noetherian local rings with a common quo-
tient field K. We sayR’ dominates R and writeR < R’ if R C R’ andm =m’' N R.

It is known that, for any local ringR, m) with the quotient ringk, there exists a val-
uation ring(R’, m’) which dominategR, m). When (R, m) is a local ring of an algebraic
variety, R’ can be regarded as the limit of a transfinite sequence of blowuRs of

Let X be an algebraic variety over a field i.e., a reduced and irreducible separated
scheme of finite type ovet, and K the function field. We say a valuation ring of K
dominates a pointx of the scheme if it dominates the local ring,.. We denote by ZRX)
the set of all valuation rings ok which dominates a point oX (cf. [ZS, Chap. VI, §17]).
ZR(X) is called the Zariski-Riemann spaceXof We denote by ZRK) the set of all valuation
rings of K which contains the base fiekd

The following theorem is known as the valuative criterion of properness of varieties (cf.
[H, Thm. 4.7]).

THEOREM 2.1. An algebraic variety X with the function field K is complete if and
only if ZR(X) = ZR(K).

For an algebraic variety, the topology of ZRX) is defined as follows (cf. [N1, 8§1]).
For a proper birational morphis&’ — X and a closed subs&t c X', let F be the set of all
valuation rings in ZRX) which dominate points of’. We define the set of all such as a
basis of the closed sets of ZR). This topology is equal to the topology defined by the open
basis consisting of the following (B)’s. Let B be an integral domain of finite type over
with the quotient fieldk', andE (B) the set of all valuation rings in Z&') which containB.

The following theorem was used in Nagata’s compactification theorem.

THEOREM 2.2 ([ZS, Thm. 40], [N1, Prop. 1.1]). The space ZR(X) is quasi-compact
for any algebraic variety X.

We define the Zariski-Riemann space for aaaal fan. In this case, we replace the field
K by the dual modul@/ >~ Z" of N.

A relation < on M is said to be amdditive preorder if it satisfies the following condi-
tions:

(1) Foranyx,y € M, eitherx < y ory < x is satisfied.

(2) x <yandy <zimplyx <z.

(3) Ifx <y,thenx +z <y+zforeveryz e M.
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Note that we do not assume the anti-symmetry: y andy < x imply x = y. Itis easy
to seethak < y andx’ <y’ imply x +x’ < y +y’, and 0< nx for an integen > 0 implies
0 <x.

DEFINITION 2.3. We definghe Zariski-Riemann space ZR(M) to be the set of all
additive preorders aof/.

We are going to define the topology of Z®). Each element of ZR(M) is denoted by
<, When it is used as a relational operator. We denote, y if x <, y andy <, x, while
x <y yifx <y yandnoty <, x. L(v) :={x € M ; 0 <, x} is a substitute for the valuation
ring in our case. We see easily thatv) is a subsemigroup satisfyingx € L(v) for all
x € M\ L(v). We defineL%v) := {x € M ; x =, 0}, which is equal to th&-submodule
L(v) N (—L(v)) of M. M/L%u) is equal to the quotient af/ by the equivalence relation
x =, y, and is a fre&-module.

We denote by;(M) the trivial preorder of\/, i.e., Lo(n(M)) = M.

¢u  ZR(M) \ {n(M)} — (Nr\ {0} /Ry

is defined as follows. Far € ZR(M) \ {n(M)}, let C, be the convex closure df(v) in MR.
Then the closur€, is a closed half space (cf. Lemma 5.1). Hence there existsVg \ {0}
with C, = (x > 0). We definepy, (v) to be the image of in (Nr \ {0})/R..

We setSy := (Nr \ {0})/R+. Then ZRM) has a recursive structure as follows. For
eachx € NRr\ {0}, letx be its image inSy. Let M (x)r be the largest rational subspace of
Mg contained in(x = 0), and letM(x) := M(x)r N M. Then¢;41(i) is identified with
ZR(M (x)) by identifying eachy € ¢;41()E) with its restriction toM (x).

Let C be a rational polyhedral cone i¥ir which is not necessarily strongly convex. Then
there exists a finite subsgty, ..., x;} C M with

C=(x1=20N---N(x =0
(cf. [O1, Thm. A.2]). We define a subsgf' || of ZR(M) by
IC|| :={veZRWM); 0<,x;,i=1,...,s}
={veZRWM); MNCY C L(v)}.

For any rational polyhedral con€y, C», we see easily tha N Cy’, MNC; C L(v) implies
MN(Cy +Cy) C L(v). SinceCy +C5 = (C1NC2)", we have|C1]|N[|C2] = [[C1N Call.
We take the set of all suchC|’s as the open basis of ZR/). Since the set of all finite
subsets ofM is countable, the topology of ZR/) defined by this open basis satisfies the
second countability axiom.

Let ZRy(M) be the set of the elements in Z®) which have the anti-symmetry property,
i.e., the set of additive orders &1. If we identify M with the set of monomials of a Laurent
polynomial ring, ZR(M) is equal to the space introduced by Kuroda [K] (see also [S3]).
Kuroda [K] introduced this space in order to prove the infinity of the SAGBI bases of some
invariant rings.

We omit the proof of the following proposition which we do not use in this paper.
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PROPOSITION 2.4. ZRy(M) isclosedin ZR(M) and theinduced topology of ZRo(M)
isequal to that of Kuroda.

The Zariski-Riemann space £R) of a fanX is defined by
ZR(X) := U loll.

oeA
THEOREM 2.5. TheZariski-Riemann space ZR(M)is quasi-compact. ZR(X) isquasi-
compact for any finite fan X of Mr. Here “ quasi-compact” means “ compact but not neces-
sarily Hausdorff” .

PrROOF. We follow the method of Zariski-Samuel [ZS, Thm. 40]. For evarg M\ {0},
we set8% := {—1,0,1}. Forv € ZR(M) andm € M, we definev(m) € 59 to be—1 if
m <, 0,0ifm =, 0and 1 if 0<, m. Sincev € ZR(M) is determined by the set of's with
0 <, m, we regard as the map frond/ to {—1, 0, 1}, and we get an embedding

ZRM)c [ S5
meM\ (0}

The weak topology oﬁ,% is defined by settingy, {0}, {0, 1}, {—1, 0, 1}} as the set of open
subsets. Since the set of finite intersectiongvof v(m) = 0, 1} is an open basis of ZR1),
the topology of ZRM) is equal to the relative topology of the product topology pf ., S,%.
Now we introduce the discrete topology éﬁ. Then the product space is compact by Ty-
chonoff’s theorem. ZRW) is a closed subset of the compact product space. Actually, it is
defined by the equalities

(1) vim)=—-1 or vimh)=-1 or vim+m) =0, 1,
(2) vim)=0,1 or v(-m)=1

and

3) vim)=0, -1 or v(—m)=-1

forallm, m’ € M. Hence ZRM) is compact in the strong topology, hence so is it in the weak
topology.

In order to show the compactness of @R for a finite fanX, it suffices to show that of
each|lo|. We can show the compactness|ef|| by taking a generatdry, ..., xs} € M of
the cones ¥ and adding the equalities

v(x;))=0,1 (=1...,5)
to those of (1), (2) and (3). O
Let v be an element of ZR/). We will expressv by a sequence of elements Ng.
We setvg := v andMO(v) := M. If vg # n(MOv)), then letM1(v) be the intersection
M N (xo = 0) C MR for xo := ¢y (vo), andv; the restriction ofvg to M1(v). Inductively,
if vi_1 # n(M~1(v)), we defineM(v) to be the intersectiod’~1(v) N (x;_1 = 0) C
M =L for x;_1 := d i1y (vi-1), andv; the restriction ofy; 1 to M’ (v). Since the rank
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of M isr, there exists a nonnegative integex r with vy = n(M*(v)). We calls the rank of
v and denote it by ranke). The rank ofy(M) is defined to be 0. This is an analog of the rank
defined for a valuation ring.

Note that the preorderis recovered from the integerand the sequenday, . . ., x;—1).
Actually, if we take a representatiye € Ng of x; for eachi, thenm € L(v) if and only if
either there exists & j < s — 1 such thatm, y,) = 0for0 <k < j and(m, y;) > 0, or
(m, yx) =0forall0< k < s—1. Thisis also equivalent to the conditi¢n, Zf;& elyi) >0
for a sufficiently small positive real numberSince we often use this sequerigg, . . ., ys—1)

of points in Nr, we call it adefining sequence of v. By constructionyy, ..., y;—1 are 0 on
M/ (v)r andy; is not identically O on this linear subspace. Sifgé’(v)r} is a shrinking
sequence of vector spacésy, ..., ys—1} is linearly independent.

Whenv # (M), thefirst generalization v’ € ZR(M) of v is defined by
XSy y & xSy or y—xe My,

If rank(v) = s and(yo, ..., ys—1) is a defining sequence ofthen(yy, . . ., y;_2) is a defining
sequence of’. Hence, we get(M) by s-times repetition of the first generalization starting
from v. Forv, w € ZR(M), w is said to be aeneralization of v if L(v) C L(w). This is
equivalent to the condition that we getfrom v by a finite repetition of the first generalization.
If rank(v) = s, thenM*(v) is equal to theZ-submoduleL®(v) of M. We say that an
element of ZR(M) dominatesa coneC of Ng if M N CY ¢ L(v) andM NnCY N L%v) =
M N CE, whereCt := {x € Mg ; (x,y) = Oforall y € C}. This situation is described by
the sequenceM®(v), ..., M*(v)) and the defining sequencey, . . ., y,_1) of v as follows.
The additive preordey dominatesC if and only if

Mi@w)yncY c (y; = 0)
foreachi =0,...,s — 1, and
M*(wyNCY=MnNC*.

LEMMA 2.6. Let (yo,...,ys—1) be a defining sequence of v € ZR(M). For a pos-
itive real number ¢, we set z, = Zf;& e'y;. Then the following conditions on a rational
polyhedral cone C are equivalent.

(1) v dominatesC.

(2) Thereexistseg > Osuchthat z, € rel.int C for every 0 < ¢ < ¢o.

(3) There exists a sequence {¢;} of positive real numbers with lim;_, . ¢; = 0 and
z¢; € rel.intC for every j.

PROOF. We show (1)= (2). We takeny, ..., m; € MN(CYV\Ch)andm 41, ..., my €
M N C* so that they generate the semigradpn CV. SinceC+ is a rational subspace, it is

generated bym, 1, ..., m,}. For eachm; with 1 <i <1, there exists kx j < s — 1 such
that

(mi,yo) =---=(my,yj—1) =0, (m;,y;) >0.
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Hence,(m;, z¢) > 0O for a sufficiently smalk > 0 fori = 1,...,z. Since{m;, z.) = 0 for
everyr +1 <i < u, we haveCV C (z, > 0) andCV N (z, = 0) = C* for suche. Hence
ze € rel.intC. (2) = (3) is obvious.

We show (3)= (1). The condition implies/’ (v)r N CV C (ze; = 0)fori =0,...,
s —1. Sinceyg = --- = y;_1 = 0 on M!(v)R, the limit of the linear functions;izgj of
M (v)r is equal toy;. HenceM! (v)r N CY C (y; > 0) for everyi. This impliesM N CY C
L(v). Lete := ¢1. Then clearlyz. = 0 onM*(v)r. Hence

MncYNL’w)ycMnNC'N(z=0=MnCt.

On the other hand;* C (z¢; = 0) for j = 1,..., s imply thatyo, ..., y,—1 are zero orC*,
and hence/ N C+ c L%w). Hencep dominate<. O

The following proposition is an analog of the valuative criterion of separatedness of an
algebraic prevariety.

ProPOSITION 2.7. For afan X of Ng, an element v € ZR(M) dominates at most one
cone of X. Conversely, if X isa union of affine fans and any v € ZR(M) dominates at most
one cone of X, then X isafan.

PrROOF. If o andt are distinct cones of the faXi, then relinto Nrel.intt = @. If v
dominatess, then it does not dominatessince the condition (2) of Lemma 2.6 is satisfied
forC =0

Now we prove the second part. It suffices to show that ¢ is a face ofs for any
0,7t € X. Any pointy in the relative interior of the cone N t is contained in the relative
interior of a faces; of o and in that of a face; of . If we takev € ZR(M) with L(v) =
M N (y > 0), thenv dominatesr; andzy, and hence; = t1 by assumption. By C 7, we
haveo; C o N . On the other hand, the defining elemerd Mg of the faceo; C o defines
a face ofo N r. This face is equal te- N 7 itself, since it containy in the relative interior.
We knowo Nt C o1, sinceoy = o N (x = 0). Hences Nt = o1, ando N 7 is a face
ofo. O

DEFINITION 2.8. We denote by doa) the set of elements of ZR/) which domi-
nate the strongly convex rational polyhedral cene

If we take a pointy in a strongly convex rational polyhedral cosethen the rank one
elementv € ZR(M) with L(v) = M N (y > 0) dominatess. In particular, don) is not
empty.

LEMMA 2.9. Let C bearational polyhedral coneof Nr, and v an element of ZR(M).
Then M N CY c L(v) if and only if v dominates a face of C. In particular, if 7 isa strongly
convex rational polyhedral cone, then we have the equality

7l = ZR(F(x) = | J domo).

oeF ()
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ProOF. If v dominates a fac€; of C, then
MNCYcMNnC{ C L.

Conversely, suppost& N CY C L(v). We see easily by induction that” N M’ (v)r
is a face ofCY fori = 0, ..., rankv). In particular,C¥ N L%uv)R is a face ofCV. Hence
there exists a fac€1 < C with ¥ N LO°(v)r = CV N Cf (cf. [O1, Prop. A.6]). Since
Ci ¢ L°(wr andCy = CY + C{ by [O1, Cor. A.7], we have N Cy C L(v) and
M NCyNL()=MnCj. Hencev dominate<s.

The equalities are now obvious. m]

LEMMA 2.10. Let C bearational polyhedral cone of Ng, and v an element of ZR(M)
which dominates C. If w isa generalization of v, then w dominatesaface of C. Thedimension
of C isat least rank(v).

PROOF. We haveL (v) C L(w) sincew is a generalization ob. SinceM N CY C
L(w), w dominates a fac€’ of C by Lemma 2.9. Let ranl) = s and let(yo, ..., ys—1)
be a defining sequence of By Lemma 2.6z, := f;é ¢'y; satisfiesz, € rel.intC for
a sufficiently smalle > 0. Sinceyy, ..., y,—1 are linearly independent,’s for s distinct
¢’s are also linearly independent by Vandermonde’s equality. Hence the dimengibis at
leasts. m]

REMARK 2.11. Cisalso aface of itself. Henae might dominate€” in Lemma 2.10.
For a fanX, we define
ZR(X)! == {v € ZR(X) ; rank(v) = 1} .

PROPOSITION 2.12. For finitefans X, Y, the following conditions are equivalent.
(1) ZR(X) C ZR(Y).

(2) ZRX)! c ZR()L.

(3) IX|clY].

PROOF. (1) = (2) is obvious.

For (2)= (3), letx € o € X. Since|Y| contains 0, we assume # 0. Letv be the
preorder of rank one witli.(v) = M N (x > 0). SinceM No¥ C M N (x > 0), we have
v € ZR(X)L. Sincev € ZR(Y)! by (2), we haveM N t¥ C L(v) = M N (x > 0) for a
rational coner € Y. ThentY C (x > 0)andx e T C |Y].

We show (3)= (1). Suppose € ZR(X) dominatess € X. Let rankv) = s and
(yo, - - ., ys—1) a defining sequence of Then by Lemma 2.6, := f;é ely; e relinto
for sufficiently smalle > 0. Sincez. € |X| C |Y| andY is finite, there exist € Y and a
convergent sequenge; } with the limit 0 andz,; € rel.intz. Hencev € domz C ZR(Y) by
Lemma 2.6. O

Since the proposition is also true even if we exchakgandY, we have the following
corollary.

COROLLARY 2.13. For finitefans X, Y, the following conditions are equivalent.
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(1) ZR(X) = ZR(Y).
(2) ZRX)!=ZR()L
Q) [XI=1Y].

3. Blowups of fans. Fans in this section are not necessarily rational and cones are
finitely generated convex polyhedral cones unless otherwise mentioned.

Let D be a cone ofMi. A nonempty convex subsé@t of Mg is said to beD-convex if it
has theD-ideal property, i.e., if

xeP, yeD=x+yeP.
For a subses§ of Mg, we set
SY :={yeNr; (x,y)>0forallx € S}.

For the convex hull cori§) and the convex cone Coff® generated bys, we see easily the
equalities
SY = conus)Y = CongS)" .

Here ConéS) is not necessarily finitely generatedsifis not a finite set. For subsefs T of
MR, clearly we have

SuT)Y =8"nNnT".
For a cone’, aCV-convex sefP generated by a finite sétis called aC" -convex polyhedron.

When( is rational,P is said to beational if S consists of finite rational points.
Let C be a cone ofVg. For anr-dimensionalC"-convex polyhedrorP,

FanP) := {(P —x)¥ ; x € P}

is a finite real fan with suppoi®. If P is rational, FagP) is also a rational fan. As is well-
known, the relationship betwedh and FariP) is as follows. A subsep c P is called a
face of P if there exist an element € Nr and a real numbet with P C (v > a) and
O=PNu=a),where(u > a) ={x € Mg ; {(x,u) > atand(u = a) = {x € MR ;
(x,u) = a}. Each element of P is contained in the relative interior of a unique face of
P, and the conéP — x)V is determined by the face. By this correspondence( Fais in
bijective correspondence with the set of facesofif o € Fan P) corresponds to a fac@

of P, then we have the equality disn+ dim Q = r. If another cone € Fan(P) corresponds
to a facer, thenR c Q ifand only ifo < 7. It follows thato andzt are faces of a common
p € Fan(P) ifand only if Q N R # @.

We define Fa@P) similarly for P of dimension less than In this case, FaiP) consists
of cones which are not strongly convex. The support of(Paris alsoC.

In caseC = Ng, P is a convex polytope. If din® = r, then FaP) is a complete
fan. We call FanP) the projective (real) fan defined by (cf. [OP, p. 383, Remark]). It is
common to call it goolytopal fan, but we adopt this terminology instead for the convenience
to translate Nagata’s proof. K is rational, then Fa(P) defines a projective toric variety.
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Letn be a strongly convex rational polyhedral cone. TRén =" is a finitely generated
semigroup with the unit 0. If a subsStof mg + M N 7Y for somemy € M satisfies the
“semigroup ideal” condition

(4) meS, meMnnY =m+meS,

then there exist a finite number elements . . ., m; € S with

(5) S=Jmi+MnxY).
i=1
This fact is checked as folles. For an arbitrary field, we consider the semigroup ring

KMNxVl:= P kem).
meMnNrY
Then the vector subspaéegenerated bye(m — mo) ; m € S} is anideal. Sincé[M N V]
is Noetherian, we can find fnite set of generatorge(m1 — mo), ..., €ms; — mo)} of the
ideal. Thenny, ..., my satisfies the condition.

The convex hull of the abovg is thewr V-convex set generated by, ..., m; € S.

3.1. The blowup of a fan at a closed subset. kebe a strongly convex rational
polyhedral cone. For a closed proper sulisaif the rational affine farf (), the blowup
Blfy(F(n)) of F () alongY is defined by using the lattic® as follows.

We setS(n) := M NxVY, andS(w: o) := M NnY Not for eacho € F(rr). The set
P(m,Y) is defined to be the convex hull of

S=8m\ | JS:io0).
oeY
S is nonempty, since the zero cofle= {0} is notinY, and P(x, Y) is ax¥-convex poly-
hedron, sinces satisfies (4). Then %(F(n)) := Fan(P(x, Y)) is a finite fan with support
TT.
The morphism of toric varieties

BIY (F(n))c — F(m)c

corresponding to this subdivision is equal to the normalization of the blowifgofc along
the reduced closed subvaridty.

Let X, Y be rational fans oNgr. If eacho € X is contained in somg in Y, there exists
a birational morphisnk ¢ — Y¢ of the toric varieties. Then we say that the férdominates
Y and write asf : X — Y. This f also represents the map which sends eaeh X to the
minimal cone inY which contains .

For ax¥-convex polyhedrorP generated by a finite subset &g, Fan(P) is a subdi-
vision of F (i), and the corresponding morphism of toric varieties is the natural morphism
ProjB — SpedC[M N V] defined for the graded ring

o
B := @[M NnPlc,

n=0
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where, for a subsdt of M, we denote by the vector subspac®
understand @ = V.

3.2. General blowups of fans. L&tbe a fan. We consider a set= {I, ; o € X} of
subsets of\fr such that eacli, is o V-convex and the equalit}, = I; + o holds for any
o, T € X with the relationo < 7. Then

Fany (1) := U Fan(l,)
oeX
is a subdivision of the farX. If everything is rational, this subdivision corresponds to the
normalization of the blowup of a toric variety along a fractional ideal. Hence we use similar
terminology for fans. Namely, we call = {I, ; o € X} apolyhedral fractional ideal of
X, and Fag (1) theblowup of X alongl. We calll apolyhedral ideal if I, C o for every
o € X. For a polyhedral ideal, we define thesupport of I by {o € X ; I, # o”}. We say
that/ is unitary ato if I, = o¥. Namely,I is unitary on the open subsgt\ Y if Y is the
support off.
3.3. The composite of blowups.

Ce(m) of C[M]. We

meF

THEOREM 3.1. Let X beafinitefanand I = {I, ; o € X} a polyhedral fractional
ideal. We set X’ := Fany (/). Let I’ = {I[’) ; p € X'} bea polyhedral fractional ideal of X’.
For a positive real number a, we defineanideal J = {J, ; o € X} of X by

I = () (aly + 1))

peXx’
pCo

for o € X. Then, there exists a positive real number ao such that we have the equality
Fany (J) = Fany:(I’) for any a > agp. In particular, the fan Fany (J) does not depend on the
choiceof @ > ap. If I and I’ are polyhedral ideals, then sois J.

First, we prove the following lemma.

LEMMA 3.2. Let C bea polyhedral cone of Ng, and P C Mg an r-dimensional C"-
convex polyhedron. We denote by X p := Fan(P) the fan defined by P. Let K = (K, ) bea
polyhedral fractional ideal of X p. e definea C-convex set Q by

0= () @P+Ks)
oceXp

for a positive real number a. Then there exists a positive real number a; such that the fan
X := FanQ) isequal to Fany,(K) for any a > a;. In particular, the fan X does not
depend on the choice of ¢ > aj.

PrROOF. For eachr € Xp, we take an element, € P witho = (P — y,)”. Since
a(P —y,) Co¥andK, = K, + o, we have

aP+Ks; =ays +a(P —ys) + Ky =ays + Ko

for eacho. This implies that the support of the fan Fa® + K, ) is o, and the support of the
fan X ¢ defined by the intersectiof of these convex sets G, i.e., the support of the faki p.
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The support of Fap, (K) is alsoC, since it is a subdivision ok p. Hence, for the equality
X o = Fary, (K), it suffices to show that every e Fany, (K) is a member o .

For eachy, there exisb € Xp andz € K, with n = (K, — z)V. Lett be an arbitrary
elementofX p. Thenthe cones andr are separated by, —y,. Actually,c C (y;—y, > 0),

sincey; — y, € P — ys, Whilet C (y; — y, < 0), sincey, — y; € P — y;. We also have
the equalityoc N (y; — y» = 0) = T N (y; — y» = 0), since the restrictions P — y,)"
and(P — y;)¥ to (y; — y» = 0) are equal. HencBo(y: — y») + K = K, forp =t No.
SinceK, C K,, the convex set(y; — y,) + K; contains a neighborhodd of z in K, for

sufficiently largez. Thenay, + z is an element ofy, + K., and
(6) ((aYr+Kr)_(aYG+Z))V C (U_Z)V = (K, _Z)V =n.

If we take the real number sulfficiently large for allr € Xp, thenay, + z is in Q. Since
(Q — (ays + 2))V is equal to the sum of the first terms of (6) for alk X p, it is equal ton
for sucha. Hencen isin Xo.

Since Far,(K) is a finite fan, everyy € Fany,(K) is in X for sufficiently large
a>0. O

PROOF OFTHEOREM 3.1. Farx(J) and Far/(I’) are subdivisions o by defini-
tions. We apply Lemma 3.2 t8 = I, and K, which is defined to be the restriction éfto
{p € X' ; p C o}. Then we know that Fgn(J) and Far(I’) are equal on the cone for
sufficiently largez > 0. SinceX is finite, there existag > 0 such that Fap(J) = Fany/ (1)
for everya > ao.

The last assertion of the theorem is clear from the first part.

3.4. Sums and intersections of ideals. Let {I, ; 0 € X}andJ ={J, ; 0 € X}
be polyhedral fractional ideals &f. The sum/ + J of these ideals is defined to b& + J; ;
o € X}. This is an analog of the product of fractional ideals of an integral scheme. Since
I, N J, is ac¥-convex polyhedron] N J := {I, N J, ; o € X} is also a fractional ideal of
X.

For finite fansX, X', we define thgoin by

JX,X)={ocNt;0eX,teX}.

ThenJ (X, X’) is also a finite fan, and dominates bdfrandX’. If a fanY dominates botx
andX’, then the join/ (X, X’) is also dominated by . The equality

ZR(J(X, X)) = ZR(X) N ZR(X")
is checked easily.

ProPOSITION 3.3. For polyhedral fractional ideals 7, J of X, we have the equality

Fany (I + J) = J(Fanx (1), Fany (J)) .

PROOF. Since both fans are subdivisions ¥f it suffices to show that they define the
same subdivision on each € X. We setP = I, andQ = J,. Forp € Fany(I + J)
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contained inv, there existg € P + Q with p = (P + Q — 7). Forx € P andy € Q with
z = x + y, we have the equalities

P+0-2"=((P-0)+(Q-y)'=P-x)"NQ-y".

Hencep € J(Fang(l), Fany(J)). By the same equalities, we know that each element of
J(Fang (1), Fany (J)) is a member of Fap(I + J). O

For a polyhedral fractional idedl the polyhedral fractional idedl ! is defined by
Ll'=(xeMg; I, +xCa"}.

Then! + I~ is a polyhedral ideal ofx, sincel, + I;l C oV for everyo. The fan
Fary (I + I~1) is a subdivision of Fag(/) by Proposition 3.3.

3.5. The maximal extension of an ideal. L¢tbe a fan, and/ a subfan ofX. For a
polyhedral ideal of U, there exists the largest polyhedral idé€abf X with I'|{U = I. ltis
obtained by setting

neF(o)NU

for eacho € X.

3.6. The primary decomposition. Letbe an element of a fak. A polyhedral ideal
I of the affine fanF (o) is said to beprimary if ¢v \ I, is nonempty and *-bounded,
where we say that a subsgtc Mg is o--bounded if S = S + o and if the image of
in Mg/o" is bounded. In this case, the equallty = »" holds for anyn € F(o) \ {o}.
Conversely,l is primary if it satisfies this condition. The ide&lis primary if and only if,
foranym € M N (¢ \ o), there exists a positive integewith cm € I,. The maximal
extension of a primary polyhedral ide&to X is called theprimary polyhedral ideal of X at
o. If we denote also by the the extended ideal, is unitary unlesgr < p. Namely, the
support of the primary ideal is contained in the closurédfin X.

ProPOSITION 3.4. Let I beapolyhedral ideal of X with support Y. Then there exists
aset {1 ; o € X} of polyhedral ideals of X, such that each /¢ isunitary on X or primary at
o and

() I=()1r=()1.
oeX oeY

Here the right-hand side is essentially a finite intersection for each p € X even if X is not
finite.

PROOF Proposition 3.4 is equivalent to the assertion that there ejsts o € X}
such thatV \ P, is o--bounded for every and

L= () P

oeF(p)
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for everyp € X. The construction of, is done inductively from low dimensional cones. We
setP, = o for o outsideY. Assume thap, is determined for every in F(o) \ {o}. Then

L\ () P

neF(o)\{o}
iso+-bounded. LeDy, ..., O, be theoL-bounded faces of codimension onelpf We take
¥1,...,¥s € Nrandcy, ..., c; € Rwith
I, C(yizc), Qi=lLNQi=c), i=1...,5s.
Then we haveny, ..., ys € rel.into. Hence

s
Py :=0'N ﬂ(yi > )
i=1
satisfies the condition. Sindé€ is trivial for o € X \ Y, we get the last equality of (7).
The last assertion follows from the fact thigt = pY foro ¢ F(p), ]
3.7. Local blowups. Lel be a polyhedral ideal of a faki, andU an open subset of
X. For the support of 1, we have a primary decomposition

Izﬂl",

oeY

r'= () 17,
oeYNU
then!’ and! are equal orU. On the other hand, ib € X is not contained in the closure
ofYNnU, thenlé = p". Hence the blowup Fan(/’) is equal to Fap(/) on U and toX
on X \ Y NU. This localization of the blowup is not possible in general for a polyhedral
fractional ideal.

3.8. Somelemmas. L& C Mg be arational convex polytope, i.e., a convex closure
of a finite set of rational points. Then, for any polyhedral cend (Q), := Q +c¢" is a
o ¥-convex subset.

Let X be a fan. Then (Q, X) := {I(Q), ; 0 € X} is a polyhedral fractional ideal.
Hence Fagp (1 (Q, X)) is a subdivision ofX. If Q isr-dimensional, then F&®) is projective
and Far (1(Q, X)) is the joinJ (FanQ), X) of Fan(Q) andX. In particular, Fag (I (Q, X))
dominates the projective fan Fan).

For the polyhedral idedl(Q, X)+1(Q, X)~1 of X, the fan Fag (1(Q, X)+1(Q, X)™1)
is a subdivision of Fan(/(Q, X)). In particular, it dominates boty and FarQ). Since
I(0,X)+1(0, X)*l)), = y" for y with dimy < 1, the support of this ideal consists of
cones of dimension at least two.dfis contained in bottX and FariP), then the polyhedral
ideals/ (Q, X) and/(Q, X)~! are unitary at. Hence the blowup

) Farx (1(Q, X) +1(Q, X)™1) — X

does not subdivide the come Since this is a blowup along a polyhedral ideal, local blowups
are possible for any subfan &f.

by Proposition 3.4. If we set
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LEMMA 3.5. Supposethat v € ZR(M) dominates T and the first generalization w of
v dominates o. We define

P:=conim e MNt" ; mg <, m}

for an element mg € M N (¥ No1). Then P defines a primary polyhedral ideal of F (7).

PrRoOOF. Clearly,P isat"-convex subset of”. It suffices to show that, for any element
me MnN (Y \th), cmisin P for a sufficiently large integer.

Ifm e Mn Y\ ob), thenmg <, m, sincemg € M Not. Hencemg <, m and
m € P.

Supposen € M NtV N (o \ 1). Sincev dominatesr, M N ¥ \ v is a subset of
L(v) \ L%Qv). Hence O<, m. Lets be the rank ob, and(yo, . .., ys—1) a defining sequence
of it. Then linear functionsoy, . .., ys_» are zero oM N o+, and

X1 <y X2 & (x1,y5-1) < (x2, ys—1)

for x1,xp € M Not. We have(m, ys_1) > 0, sincem € M No* and 0<, m. Hence we
have(mog, y;—1) < (cm, y;_1) for sufficiently largec. Thenmg <, cm andem € P. O

LEMMA 3.6. Let X beafanand U an open subset of it. Let Y1, Y> be closed subsets
of U with Y1 N Y, = @. For a polyhedral ideal I of X with the support ¥ := Y1 N Y, let X’
be the blowup of X at 7. Then, if we regard U an open subset of X', then the closures of Y1
and Y» in X’ aredisjoint.

PROOF. SinceY does not intersed, this blowup leaved/ unchanged. It suffices to
show thatr € Y1 andt € Y» cannot be faces of a common elemenkdéf SinceX is covered
by affine fans, we may assume thét= F () and thato andr are faces ofr. Sinces and
T are outsideY, I, N ot andl, Nt are nonempty. Lep € F(xr) be the minimal face
of 7 which containss andt. ThenI, does not intersect” N pL, sincep € Y. Since the
intersection oftY NoL andzY Nt isxV N pt, we have

(I; NeH) N NtH) =0.
Hence there is no cone XV = Fan/;) which contains botla andz. O

4. Completions of fans. In this section, we assume that fans are rational, and we
prove the following theorem. A similar theorem for not necessarily rational fans will be
proved in the next section as the second proof of Theorem 1.1.

THEOREM 4.1. Let X be a finite (rational) fan. Then there exists a complete fan X’
such that X isa subfan of X’.

Any affine fan has a completion by the following lemma.

LEMMA 4.2. For arational polyhedral cone o, there exists a projective fan X which
contains o as an el ement.
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ProOOF. First, we consider the case = 0. Let {m1,...,m,} and{n1,...,n,} be
mutually dual basis oM andN. We setng := —(n1 + - - - + n,). The fanII, is defined to
be the set of cones generated by proper subsetsofi, ..., n,}. This is equal to the fan
Fan(P) for the convex closuré of {0, m1,...,m,}. This is a complete fan and of course
contains0. The associated toric variety of this fan is thelimensional projective space (cf.
[O1, p. 96)).

In case dinv = r, we taken € N Ninto and set
Y :=F(@)U{n+Ro(—n);ne Flo)\{o}}.

ThenY is equal to the projective fan FaR) for ther-dimensional convex polytope = {x €
oV {x,n) <1},ando €Y.

In the general case, let= dimo. We take a decompositiad = N’ @ N” such thab
is a maximal dimensional cone ;. Then the product fan of a complete fan/g§ which
containso and T, of Ny for a basis satisfies the condition. O

THEOREM 4.3. Thefollowing conditions on a fan X are equivalent.
(1) X iscomplete, i.e, X isfiniteand | X| = NRg.

(2) Theeguality ZR(X) = ZR(M) holds.

(3) Theequality | J, .y dome = ZR(M) holds.

PrROOF. (2) and (3) are equivalent since ZR) = | J, .y domo by Lemma 2.9.

Suppose (2) holds. Sindéio|| ; o € X} is an open covering of ZR/), there exists
a finite subfanX’ c X with (J, .y lloll = ZR(M) by Theorem 2.5. Since dam)’s are
nonempty and disjoint fos € X, we haveX’ = X. HenceX is finite. Take an arbitrary
elementy € Ng and consider € ZR(M)! with L(v) = M N (y > 0). By assumption and
Lemma 2.9, there exists a cosiec X with M No¥ C L(v) C (y > 0). Theny € o C |X].
Hence|X| = Ngr andX is complete.

Suppose (1) holds and take an arbitrary elemeatZR(M). Lets be the rank ob and
(yo, - - ., ys—1) a defining sequence of Since|X| = Ng, zc = Zf;é ely; is contained in
the relative interior of a cone df for everye > 0. SinceX is a finite fan, there exist € X
and a sequende ;} of positive real numbers with the limit 0 such thatal)’s are contained
inrel.intz. Thenv € domz by Lemma 2.6. This implies (3). |

For finite fansX, X', we denote byX N X’ the set of cones contained in bathand X’.
Clearly, X N X' is a subfan of bottX andX’. We set

Dy x :={o € X ; there exists € X’ suchthat C t}.
This is the maximal subfan of which dominatest’. Clearly, we have
Dx x N Dy x = Xnx'.

The fan
JX,X)={ocNt;0eX,1eX}
defined in Section 3 is finite and dominatésnd X’.
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We sayX’ to bequasi-dominant overX if J(X, X’) is a subfan ofX’. ThenJ (X, X’) =
Dy x. If ZR(X) C ZR(X’) and X’ is quasi-dominant oveX, thenJ (X, X’) is a subfan of
X’ and is a subdivision oX. In particular, if a complete fai* is quasi-dominant ovex,
then a subfan ok* is a subdivision ofx.

More generally, we define the joiri(X1, ..., X;) for a finite number of finite fans
X1,..., X5 (s > 1). Namely, we inductively defingé(X1) := X; and

J(X1,..., X)) =J(J (X1, ..., Xi—1), Xi)

fori =2,...,s. Itiseasytoseethat(Xy, ..., X;)isindependent of the order &f, ..., X;.
As we mentioned in Section J(X, Y) is equal to Fa@P + Q) if X = Fan(P) and
Y = Fan Q) for convex polyhedra and Q.
The following theorem is “Chow’s lemma” for a fan.

THEOREM 4.4. For afinitefan X, there exists a projective fan X* such that a subfan
X' of X* isasubdivision of X, i.e., X* isquasi-dominant over X.

PROOF. Let{o1,...,o,} be the set of maximal elementsX¥f By Lemma 4.2, there ex-
ists a projective faiX; which containg; as an element for eachThenX* := J (X1, ..., X5)
is a projective fan. Clearly, eaeh is a union of cones ix*. Hence the seX’ ¢ X* of cones
contained in one o;’s is a subdivision ofX. O

THEOREM 4.5. Let X1, X2 be finite fans and v an element of ZR(X1) N ZR(X2).
Then there exists a fan X, with the following properties: (1) X, is the blowup at a poly-
hedral ideal I of X1. (2) Theideal I of (1) isunitary at Dy, x, and hence Dy, x, C Xy. (3)
If v dominatest, € X, and 72 € X, thent, C .

PROOF We prove the theorem by induction on the rankvoflf v = n(M), thenv
dominate) and X, := X satisfies the condition.

Assume that the rank is at least one. kete X1 andtz € X2 be the cones dominated
by v. If 11 C 12, thenX, := X1 is enough. Hence we assume thats not contained in.
In particular,zy & Dx, x,.

Let w be the first generalization of By Lemma 2.10w dominates a face; of r; and
a faceos of 2. Since rankw) = rank(v) — 1, we can apply the induction assumption éer
Hence, by replacing1 by X,,, we may assume; C o». Here, recall that the composite of
blowups is a blowup by Theorem 3.1. Assume that the semigidup z,’ is generated by
ma, ..., ms. SinCeo1 C o2 C 12, We have

MNty CcMnNoy CMNoy .
Hence, there existag € M Nrel.int(z;’ N oi") with
mi,...,mg € —mo+ M Nty

[O1, Prop. 1.3].
Lets be therank ob and(yyp, ..., ys—1) a defining sequence of ThenP := conm €
M Nty ; mo <, m} defines a primary polyhedral ideal 6fr1) by Lemma 3.5. Lef (P) be
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the resulting primary polyhedral ideal &f, andX, the blowup ofX1 at/(P). Sincel (P) is
unitary at cones which do not contaipy it is unitary onDy, x, andDx, x, C X, is satisfied.

Sincemy, ...,ms € L(v) andmy + mo, ..., ms +mo € M N1y, we havemy, ..., m, €
R(P — mg). The coneR(P — mg)Y of X, is contained in the cone, since{ma, ..., my}
generates,’. SinceM N R(P — mp) C L(v), v dominates a face, of R(P — mo)" by
Lemma 2.9. Clearlyr, € X, andt, C 1. ]

THEOREM 4.6. Let X, X’ befinite fans. Then there exists a fan X* with the following
properties: (1) X* isa blowup of X along a polyhedral ideal /. (2) I isunitary on Dx x and
Dy x» C X*. (3) X* isquasi-dominant over X'.

PROOF. For each element € ZR(J(X, X’)), Theorem 4.5 says that there exists a
blowup X, of X at a polyhedral ideal which is unitary aby x- and the coner, € X,
dominated by is contained in some € X’. Sincel|o, || is an open neighborhood of there
existvy, ..., vy € ZR(J(X, X)) with

ZRUJ(X. X)) = lloy |
i=1

by the compactness of ZR(X, X')). We setX* := J(X,,, ..., Xy,). ThenX* is a blowup
of X at a polyhedral ideal which is unitary aBx x» by Theorems 3.1 and 4.5. if €
ZR(J (X, X")) dominatesr € X*, theno is contained in some,, and hence in some e X'.
HenceX* is quasi-dominant ovex’. ]

THEOREM 4.7. Let X be a finite fan and v an element of ZR(M). Then there exists
a finite fan X’ which contains X and satisfiesv € ZR(X’). Furthermore, we can take X’ so
that X’ \ X iscontained in a projective fan.

PROOF.  We prove the first assertion of the theorem by induction on the rank of

If v e ZR(X), thenX’ := X is enough. Hence we assume& ZR(X). In particular, the
rank is at least one. Let be the first generalization af By the induction assumption, there
exists a finite fanX” which containsX and containgw in its Zariski-Riemann space. Hence
by replacingX by X”, we may assume € ZR(X). Thenw dominates a cone € X.

Let X* be a projective fan which contaims By using Theorem 4.6, we replage by
its blowup so tha* is quasi-dominant oveX. SinceX* is complete, a subfaki; C X* is
a subdivision ofX. Let Z* := X1 \ (X N X*), and letZ* be its closure inX*. SinceX* is
completep dominates a cong of X*.

(1) First, we consider the cage ¢ Z*. In this case, it suffices to show th&t :=
X U (X*\ Z*) is a fan. SinceX* \ Z* is a fan, it suffices to show that it satisfies the last
condition of Proposition 2.7. Assume thate ZR(M) dominatesr € X andn € X* \ Z*.
Then,n € X1 sincex € ZR(X) = ZR(X1). Sincen ¢ Z* C Z*, we havey € X N X*. Since
X is a fan,n is equal tor.

(2) Now, assume € Z*. p € X*\ X1 by the assumption ¢ ZR(X). Since the
generalizationw of v dominatess, we know thato is a face ofp. We take an element
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mo € M Nrel.int(p¥ Nol), and set
P:=conm e MNp”; mg<, m}.

ThenP defines a polyhedral ideal &f* primary atp. Let X** be the blowup o * along this
ideal. Note that this blowup does not change any cones which do not centaiparticular,
X is invariant by the blowup. Sinc N R(P —mg) C L(v) andR(P — mg)" is an element
of X**, v dominates a face of R(P — mg)¥. For the closur&** of Z** := Z* in X**,
we will showt ¢ Z**. Suppose that a facgof r was contained irZ*. Sincen C p and
n,p € X*, nis aface ofp. Sincen € Z* ando € X N X*, n is not a face ob. Hencemg
is notinp" Nyt by [O1, Prop. A.6]. Since corresponds to the fade N »* of P and since
mois notin P Nnt c p¥ Nnt, nis not aface oR(P — mg)Y. Hencey is not a face of
T contrary to the assumption. Singden X* = X N X**, we are reduced to the case (1) by
replacingX* by X**.

For the last assertion, we takee X’ which is dominated by. If we replaceX’ by
X U F(7),thenX’\ X is contained in a projective fan which containgcf. Lemma 4.2). O

THEOREM 4.8. Let X1, X5 be finite fans, and let X := X1 N X2, If X1\ X isa
subset of a projective fan X*, then there exists a finite fan X3 which contains X and satisfies
ZR(X3) = ZR(X1) U ZR(X>).

PROOF We show later that we can repla&a, X», X* by their subdivisions without
shrinkingX = X1 N X5 so that they satisfy the following conditions:

(1) Xjiis quasi-dominant oveXy, i.e.,U; = J(X1, X2) is an open subset df;.

(2) U1 is asubdivision of an open subdét C Xo.

(3) LetWy:= U1\ X andY := X \ (X N X*), and letW, be the image of¥1 in U>.
Then the closure®, andY> := Y in X; are disjoint.

(4) X*is quasi-dominant oveXs.

By the property (4)U* = J(X2, X*) is an open subset of*, and the natural map
¥ U* — X is asubdivision. (1) and (3) imply/2 = X U Wo andY is closed inUs.

SinceX™ is projective, there exists a blowup &% of type (8) in Section 3.8. Namely,
there exists a polyhedral idealof X» such that/ is unitary onX N X* and the blowup of
X5 along! is a subdivision oU*. Let I’ be the maximal extension of the restriction of the
ideal I to the open subseX; \ (Y2 U W) of Xo. I’ is unitary on the open séfy, since
U C (X N X*)UY2U Wao. Let U be the blowup ofX, along/’, and¢ : U; — X»
the subdivision map. Consider the two subdivision majgs\ ¢ 1Y) - X»\ Y» and
U*\ v 1(Y2) — X5\ Y. Then we see that the former is a subdivision of the latter on
X»\ (Y2 UW>) and, on the contrary, the latter is a subdivision of the formel/pRY. Hence
the restriction of the joiy (U3, U™) to the open seX >\ Y2 can be patched with the restriction
of U5 to the open seX» \ W, and they form a subdivisio, of X5. SinceU; \ Y C X*, we
see thaU* and hencé/, is equal tal1 \ Y overU,\ Y. On the other hand, sinceé ¢ X\ W
and/’ is unitary onX C U», X is contained inV,. Hence the farV, over X, is equal toU;
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overUp; = (U2 \ Y) U X, and we can patch it witlX;. The resulting fanX3 satisfies the
conditions of the theorem.

Now we prove that we can subdividé; and X, so that the conditions (1) and (2) are
satisfied. By Theorem 4.6, there exists a blowdipof X> which is quasi-dominant ovex
and containy, x,. Then

Uz :={o € X, ; there exists € X1 such that C 7}

is an open subset of’, and is equal to/ (X1, X5). Again by Theorem 4.6, there exists a
blowup X of X; quasi-dominant ovek’, andDy, x; C X}. We set

Ui :={r € X} ; there existp € X, suchthat C p}.

Since ZRU1) = ZR(X1) N ZR(X}) = ZR(U>), U1 is a subdivision ol/,. We replaceX; by
X’ andX> by X’,. Then the newk = X1 N X» contains the originak. SinceX/ is a blowup
of the original X1 along a polyhedral ideal which is unitary onX, we retain the relation
X1\ X c X*if we replaceX™ by its blowup at the maximal extension b X1 N X*).

Next, we make them satisfy (3) keeping (1) and (2). SWwgeC X1\ X C X1NX*, W1
andY are disjoint closed subsets &f. If V := W, N Y is not empty, then this is a closed
subset ofX» contained inX» \ U. By Lemma 3.6, the closures #f1 andY are disjoint in
the blowupX’, of X, at V. (3) is satisfied if we replac&> by X’,. Since the center of the
blowup is outsidd/,, X1 is still quasi-dominant oveXs.

Finally, we make (4) satisfied. By Theorem 4.6, we can mgkejuasi-dominant over
X2 by a blowup. Here we can take the center of the blowup ouf$ideX*, sincev € ZR(M)
dominates no cones iK; if it dominates a point in an open subseX; N X* of X* and
if o €X1 \ U1. Hence, there is no change in the relation\ X ¢ X*. The conditions (1)
and (2) are independent &f*. (3) is also satisfied, since the néws contained in the original
Y. O

PrROOF OFTHEOREM4.1. LetX be afinite fan. Forany € ZR(M), there exists a fan

X, suchthatX ¢ X,,v € ZR(X,) andX,\X is contained in a projective fan by Theorem 4.7.
Since ZRM) is compact by Theorem 2.5, there exist finite elements. ., v; € ZR(M)
with

ZR(M) = ZR(X ;) U --- UZR(Xy,) .
By applying Theorem 4.8, we construct inductively a sequence of finite fans—=
Xy, X2, ..., X With

ZR(X;) = ZR(X,,) U - - UZR(Xy,)
andX;_1NX, C X;fori =2,...,5. ThenX’ := X, is complete by Theorem 4.3 and
containsX.

5. Compactificationsof real fans. In this section, we will prove the compactification
theorem for real fans. Indeed, we prove it fefans for an arbitrary subfield of R. In the
case of rational fans, we used the lattigefor blowups. However, we cannot use it in the
general case.
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Let M and N be freeZ-modules of rank: > 0 as in the previous sections. We fix a
subfieldk of R. Let Nk := N @ k andMy := M ® k. A coneo in NR is said to be &-cone if
it is generated by a finite subset §%. A real fanX is said to be &-fan if everyo € X is a
k-cone. In particularR-fans are real fans an@fans are usual fans. Although our theory does
not depend on the fielld, it is an interesting problem to find the propertieskeffans which
depend on the fiell.

We setkp := {a € k; a = 0}. LetC C MRg be the cone generated by a finite subset
{x1,..., x5} of Mx. ThenMy N C = kox1 + - - - + Kox; as easily shown by Carathéodory’s
theorem.

A preorder< on My is said to bek-additive if the following conditions are satisfied.

(1) Foranyx,y € My, eitherx < y ory < x is satisfied.

(2) x<yandy <zimplyx <z.

(3) Ifx <y, thenx +z <y + z for everyz.

(4) If x <y, thenax < ay for everya € Ko.

We define the Zariski-Riemann space @R) as the set of alk-additive preorders of
My. We define the weakest topology on ZR) such thatfv € ZR(My) ; 0 <, x}is open
for everyx e My.

We defineLk(v) = {x € Mg ; 0 <, x} anchk’(v) = {x € M ; 0 =, x} for
v € ZR(My), where we writex =, y if x <, y andy <, x. IfaconeC C MR is generated
by {x1,...,xs} C L(k)(v), then it is easy to see from the above conditions MatN C is
contained inLE(v). We set|o|k := {v € ZR(My) ; M NoV C Lk(v)} for a convex
polyhedralk-cones. Then the set of all subsels ||x forms an open basis of the topology
of ZR(My). For ak-fan X, ZR(X) is defined as the the union @& |k for o € X. The
compactness of Z(X) for a finitek-fan X is proved similarly to Theorem 2.5.

We denote by the trivial preorder in ZRMY) with Ly (n) = M.

LEMMA 5.1. Letv beaneement of ZR(My)\ {n}. Thentheclosure of conM(Lk(v)) in
MRr isequal tothat of L (v), andisa closed half space, i.e., (xo > 0) for an element xg € Ng.

PrROOF. It suffices to show the convexity of the closutg(v) C Mg for the first part.
Letx, y be elements ofk(v). Then there exist sequendes}, {y;} in Lx(v) converging tox
andy, respectively. We know; + (1 —1)y; € Lyx(v) forr € kwith 0 < < 1 foralli. This
implies that all the segmentsy; are inLk(v), and the limit segmenty is also in the closed
set. Hencd k(v) is convex and equal to the closure of cohy(v)).

We haveMy N (conULk(v))) = Lk(v) by Carathéodory’s theorem. Sinece#£ n, we
know conLk(v)) # MR by this equality. Sincé.x(v) is the closure of this convex set by the
first part, it is not equal ta/R. SinceLy(v) U (—Lk(v)) = My, we haveLy(v) U (—Lk(v)) =
MR. Hence the closed convex cohg(v) is a closed half space. O

By this lemma, the ranks and the defining sequences are defined for elements in
ZR(My) as in Section 2. We say that an element ZR(My) dominates &-coneo if
MyNoVY C Lg(v) andMgNo¥ N LE(v) =McNot.
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Theorem 4.5 modified fdk-fans is proved similarly. However, we need a modification
for the part in which we used the lattidé. It suffices to show the following lemma.

LEMMA 5.2. Assumethat v € ZR(My) dominates k-cones 1, 72, and the first gener-
alization w of v dominates a face o1 of 1 and a face o, of 2. Furthermore, we assume that
o1 is contained in 2. Then there exists a polyhedral ideal 1 of F(z1) primary at t1 with the
following property. Let X’ be the blowup of F(z1) along 1. Then the cone r, € X’ dominated
by v iscontained in 5.

PROOF. Let {x1,...,x;} C M be a set of generators @f'. We may assume that
X1, ...,x are contained iny \ 5~ andx;41, ..., x, are ints-. Lets be the rank ob, and
(yo, - - -, ys—1) a defining sequence of Then we have

LY(v) = {x € My; (x,y;)=0 fori=0,...,5s —1}.

Sincev dominatesr, 1o, the linear spaces’ andr;- are contained i) (v)r. HenceL?(v)&
is contained iNN (t))R := 71 + (—11) andN(12)r = 172 + (—12). We takexg € My N
rel.int(z;’ N o) so thatxg + x; € 7, forevery 1< i <. This is possible by the relation

) Coy Coy =1 + (—relint(zy Noi)).

If we takee > O sufficiently small, ther = z, = Zj;(l) Sjyj is contained in relintty N

rel.intro and (x;,z) > Oforall1 < i < I. Now we take elements, b of k such that
O<a<b,(xo,z) <aand(xo+x;,z) > bfori =1, ...,1. Sincez € rel.int 71, we see that
1/ N (z < b) is t{--bounded, wheréz < b) = {x € Mg ; (x,z) < b}. We take a pointo
in N N LY(v)5 sufficiently near ta: € L2(v)&. Thenzg is contained in reiintry Nrel. int 7
and satisfie$xg, zg) < a and

W NE=b)CtyN@o=(a+b)/2) Cty N(z>a).
Let P be the convex hull of the union of
7/ N(z0 > (a+b)/2) and 7y’ N ({xo} + LR(V)R) -

Note thatxg + x; is contained in the set on the left hand sideifer 1, ..., and in the set on
the right hand side for = I + 1,...,¢. ThenP is arj--convex subset contained i, and
t;/ \ P is r1-bounded, since it is contained i N (z < b). HenceP defines a polyhedral
ideal I (P) primary atr;.

The fanX’ obtained by the blowup of (r1) along this ideal containg := (P — xg)"
as an element. Then, C 2 sinceP \ {xp} contains{xp + x1,...,xp + x;}, and hence
My N pY C Lk(v). Hencev dominates a face, of p. |

In order to prove the theorem analogous to Theorem 4.k-fans, it suffices to show
the following lemma.

LEMMA 5.3. Assumethat v € ZR(My) dominates a cone t, and the first generaliza-
tion w of v dominates a face o of t. Then there exists a polyhedral ideal I of F(z) primary
at ¢ with the following properties. For the blowup X of F(r) along I, thecone 7, € X
dominated by v satisfies 7, \ rel.intt C o.
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PROOF. Let (yo, ..., ys—1) be a defining sequence of We takes > 0 sufficiently
small so that = z, is in rel.intt. We take an arbitraryg € My Nrel.int(z¥ No1),a € k
greater thanxg, z) andb € k greater thar. As in the proof of Lemma 5.2, we takg of
Nk N L2(v)% sufficiently neat: so that

™VNE=b)Cct'Nio=>@+b)/2)ctNiz>a).

We consider the primary polyhedral idddlP) defined by the convex closur of the union
of V' N (z0 > (a + b)/2) andt¥ N ({xo} + t1). We will show(P — xg)V \ rel.intt C o.
Letu be a point of P — xg)¥ andp the minimal face of which contains:. If u ¢ rel.intzt,
thenp # v and P N pt is nonempty. Lety be an element in it. Then sinde, u) = O,
(y — xo0,u) > 0 and(xo, u) > 0, we have(xo, u) = 0. Hencexg € p and hence is a
face ofo. SinceMy N (P — xg) C Lk(v) by the construction oP, v dominates a face, of
(P — x0)Y. Then the conditions of the lemma is satisfied{fgr O

Now the following theorem is proved similarly to Theorem 4.1.

THEOREM 5.4. For an arbitrary finite k-fan X, there exists a complete finite k-fan X’
with X c X’.

If we setk := R, then we get the second proof of Theorem 1.1.
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