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A NOTE ON VON NEUMANN RHO-INVARIANT OF
SURFACE BUNDLESOVER THE CIRCLE
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Abstract. In this short note, we give a formula for the von Neumann rho-invariant of
surface bundles over the circ#&. As a corollary, we describe a relation among the von Neu-
mann rho-invariant, the first Morita-Mumfordass and the Rochlin invariant in a framework
of the bounded cohomology.

1. Introduction. Let M be an oriented closed Riemannian 3-manifold. Then we can
define they-invariantn (M) of the signature operator. If we are given a surjective homomor-
phism fromz1 M to a discrete groug™, we have al"-coveringM — M and we can lift
the metric and the signature operatorMo In this situation, the von Neumanpinvariant
n® (M) is defined forM. Cheeger and Gromov showed in [3] that the differente — 5
is independent of a Riemannian metric. This topological invanigft— 7 is called thevon
Neumann rho-invariant and is denoted by (M).

Recently, an approximation theorem of thénvariants is shown by Vaillant [11] and
Lick-Schick [7]. To be more precise, for a sequence of normal subgBupsy > o> - - -
such thall" : I] < oo and(, Ik = {e}, andI"/ Ik-coveringsM* = M /I, — M, it holds
that

1@ () = lim RIUDN
k—oo [I" 2 T%]
Applying this formula to surface bundles over the cirgle we can describe the von Neumann
rho-invariant by virtue of Meyer’s ghature cocycle [8] (see Proposition 2.1).

Let ¥y be an oriented closed surface of gegusy > 2) and M, its mapping class
group. Namely, M, is the group of all isotopy classes of orientation preserving diffeomor-
phisms ofX,. Then thefirst Morita-Mumford classe; € HZ(Mg, Z) (see [10Q]) is defined to
be the Gysin image (integration along the fiber) of the square of the Euler class of the central
extension

0—Z—> My1— My,— 1.

Here M, 1 is the mapping class group &, relative to an embedded dige ¢ X, and
M, . denotes the one relative to a base peirg D. It is also known thae; is a bounded
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cohomology class. For a technicahison (see Section 3), we consideon M, . rather than
onM,.

In general, the pull back af; via a holonomy homomorphisnf : 7151 — My ofa
X,4-bundle overs? is automatically vaishing, becaus&?(S1, Z) is trivial. However, Kitano
showed in [6] thate1/48 makes sense as a bounded cohomology clasfg,z'(rSl, Z) and
furthermore it is essentially given by the Rochlin invariantif the image off is contained
in the Torelli subgrougZ, . = Ker{M, . — Sp(2g, Z)}. Combining our formula fop®
with a result of Kitano, we have the following result on the level 2 subgrétp .(2) =
KeriMyg . — Sp2g,2/2)} D Iy«

THEOREM 1.1. Let f : Z — M, «(2) be aholonomy homomorphism. Then the first
Morita-Mumford class f*e1/48 € H?(Z, Z) isrepresented by uuf —p@ f/16 € HX(Z, R/Z).

REMARK 1.2. Itis known that#?(Z,Z2) = H}X(Z,R/Z) = HY(Z,R/Z) = R/Z. See
[4], [6] for the proof.

As was mentioned in [6f1/48 andu depend on a fixed spin structure on the fiBgr. In
principle, our theorem implies that the difference between the first Morita-Mumford class and
the Rochlin invariant does not depend on a spin structure, and it is given by the von Neumann
rho-invariant. In particular, we see from Corollary 2.4 that vanishing of the von Neumann
rho-invariant gives a description of the first Morita-Mumford class via the Rochlin invariant
on the Torelli grouZy .

The final version of this note was written while the author was visiting the Ludwig-
Maximilians-Universitat in Minchen. He would like to express his sincere thanks for their
hospitality.

2. A formulaof p@. In this section, we give a formula for the von Neumann rho-
invariantp® of surface bundles ovef!. As for the precise definition, see Cheeger-Gromov
[3]. We remark that it does not depend on a Riemannian metric on the manifold.

Let M, be the mapping torug’y x R/(x,1) ~ (¢(x),t + 1) corresponding to a ho-
lonomyp € M,y .. LetZ — M, — M, be theZ-covering associated to the surjective
homomorphisnp : m1M, — 1St = Z,

PrROPOSITION 2.1. Thevon Neumann rho-invariant of 1\71(/, is given by

k-1
_ 1 .
@M, =— lim =) signe, ¢'),
P (My) k%ok;_l gnle, ¢)

where signis Meyer’s signature 2-cocycle [8] of the mapping class group M ..

PROOF. SetM} = M,/k!Z. Itis easy to see tha/k! — M} — M, is theZ/k!-
covering associated to a homomorphigm: m1M, — Z/k!. We then apply an approxima-
tion theorem of thej-invariants, due to Vaillant [11] and Lick-Schick [7], to the sequence
Zw>2Z>3Z>---. It follows that
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n(My)
k!

p @ (My) = 1@ (My) = n(My) = lim — (M)

. 1
= lemoo {En(ka!) — U(Mw)} .

SinceM u — M, is ak!-fold cyclic covering, we can directly apply our previous results to
this covering (see [9] Propositions 2.2 and 3.1). Hence we obtain

k-1
@My = lim — i
P M) = M ; @ ¢),
wherec denotes Atiyah’s 2-cocycle [1] of the mipg class group defined by the canonical
2-framing of 3-manifolds. Furthermore it is known that the cocyctmincides with—3 x

Meyer’s signature cocycle sign (see [10] for instance). Therefore we have

k!-1 k—1
_ . 1 .
@AMy =—lim = 'si H=—1lim =Y si iy, O
P (My) k_)ook!Z; an(e, ¢') k_)ookzl an(e, ¢')
1= 1=

REMARK 2.2. By definition, Meyer's cocycle is a bounded 2-cocycle, so that the
above limit exists. Moreover this defines a class function\dp .. We also remark that
the above formula holds for torus bundles (thayis; 1).

ExAmMPLE 2.3. Let us consider the genus one case. As is well-known, in this case
M1 = SL(2,Z) holds. Anelementl € SL(2, Z) is classified by its trace into the following
three cases:

(i) Elliptic case (namelyjtr A| < 2). LetA, € SL(2,Z) have the orden (n =
3,4, 6). We can take

-1 -1 0 -1 0 —
A3=<1 O), A4=<1 0) and A6=<1 1).

An easy calculation shows that sigh,, 4,) = --- = sign(A,l,A;;—Z) = —2 and
sign(A,, A7~1) = sign(A,, A") = 0 (see [8]). Hence we have

2/3, n=3,
pP(My) =11, n=4,
4/3, n=6.

It should be noted that® (M,,) = 0 for any involutiong € M, . (see [9]).
(i) Parabolic case (namelytr A| = 2). We can take

Abz(é ]i) be2).

Then we obtainn?® (M,,) = —sgn(b), where sgtb) = b/|b| if b # 0 and 0 ifb = 0.
(iif) Hyperbolic case (namelyir A| > 2). Since Meyer’s function of genus one, that
is a class functio : SL(2,Z) — (1/3)Z such thas¢ = sign, satisfies (A¥) = k¢ (A) for
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a hyperbolic element (see [8]), we have

) = . 1
(2) _ . - . 1 _ . _ = k _
P (Mp) = kll_r)noo X ;:1 SIgn(A, A) = kll_r)noo {¢(A) k¢(A )} =0.

COROLLARY 2.4. If ¢ isan element of the Torelli group Z, .., then p® (M,,) = 0.

PROOF. Meyer’s 2-cocycle sign is originally defined on the Siegel modular group
Sp2g,Z), andZ, . is the kernel of the homomorphistM, . — Sp2¢,Z), so that
sign(e, ¢') vanishes for any. ]

3. Morita-Mumford class and Rochlin invariant. In this section, we summarize a
work of Kitano [6], which gives a description of the Rochlin invariant as a secondary char-
acteristic class within a framework of the bounded cohomoldgy As for the definition of
Hy, see Gromov [5].

Let (M, @) be an oriented spin 3-manifold with a spin structurdt is a classical result
that there exists a compact oriented spin 4-maniftid 8) such thab W = M andg|y = «.
TheRochlin invariant (M, @) € Q/Z is defined by

Signw
WM, ) =29

mod Z,

where SignW denotes the signature of a 4-manifétd By Rochlin’s theoremy (M, o) does
not depend on the choice of.

Let us fix a spin structure of X, (¢ > 2). For eachy € M, .(2), there exists a spin
structurex on M, such that the restition on each fiber i&. If we require that the restriction
of & to the S-orbit of x € X, is the bounding spin structure (namely, not the Lie group spin
structure), thew is uniquely determined. This is the reason why we considgr. (2) rather
than M.

Now consider the set of paifgp, W)} , wherep € M, .(2) andW is an oriented spin
4-manifold. Of coursepW = M,, and the induced spin structure @#, is @. Two pairs
(¢, W) and (e, W) are said to be equivalent if Sigif = Sign W’. The set of equivalence
classes, which we denote bty . (2), has a group structure defined by the fiber connected
sum (see [6] for details), and there is a natural surjective homomorphism

MZ,*(Z) g Mg,*(z)
given by(¢, W) — ¢. Moreover we introduce a map: MG (2 = Q by

1 1
(o, W) = ESlgnW € EZ c Q.

PropPosITION 3.1 (Kitano [6]). Under the setting above, the following hold.

(i) The Euler class ¢, of the extension Mg)*(Z) — My «(2) is a bounded cohomol-
ogy classand is given by e;/48 on the level 2 subgroup M . (2).

(i) Let f:Z — M,g.(2) beahomomorphism. The pull back f*e, € HbZ(Z, Z)is
described by 7. f € HY(Z, R/Z), where 7o, : My «(2) — R/Z isthe reduction mod Z of
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amap
. , W)k
Too(@, W) = lim M eR.
k—o00 k
From the additivity of the signature, we obtain
k—1
(0. W) = 2o, W) + = lim =Y signip, ¢')
TOO (ps =T ¢7 16k—>00 k P g (p! (p M

Taking the reduction mod and using Proposition 2.1, we have

1 N
Too (@) = (Mg, &) — 1—6,0(2)(M¢) eR/Z

for ¢ € My +(2). Therefore Theorem 1.1 follows from Proposition 3.1 and the proof is
completed.
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