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A CHARACTERIZATION OF COLLECTIONS OF TWO-POINT SETS
WITH THE UNIQUENESS PROPERTY
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Abstract. We give a sufficient condition for a collection of two-point sets to have the
uniqueness property for meromorphic functions.

1. Introduction. For nonconstant meromorphic (or entire) functionsf andg on C

and a discrete setS in Ĉ = C ∪ {∞} (or C), we writef ∗(S) = g∗(S) if f −1(S) = g−1(S)

and if for eachz0 ∈ f −1(S) two functionsf − f (z0) andg − g(z0) have a zero point with
the same multiplicity atz0, where a zero point off − ∞ andg − ∞ means that of 1/f and
1/g, respectively.

Let {S1, . . . , Sq } be a finite collection of pairwise disjoint discrete sets inĈ (or C). If
f ∗(Sj ) = g∗(Sj ) (1 ≤ j ≤ q) imply f = g for two nonconstant meromorphic functions
f andg (or two nonconstant entire functionsf andg) on C, then the collection is said to
have the uniqueness property for meromorphic (or entire) functions (abbreviated to UPM (or
UPE)). As examples of such collections, we know Nevanlinna’s four values theorem ([N]),
uniqueness range sets for meromorphic or entire functions ([LY], [Y2]) and so on ([S], [Y3]).
However, there is no result except [N], [T, Theorem 1.4] and [Y1] that characterizes such
collections. In this paper we give a characterization for collections of two-point sets with the
uniqueness property.

The authors would like to thank the referee for pertinent comments.

2. Combinatorial lemmas and Borel’s lemma. For a large part of this section we
proceed as in [F, §2]. LetG be a torsion-free abelian multiplicative group, and consider
a q-tuple A = (a1, a2, . . . , aq) of elementsai in G. For a subgroupÃ of G generated
by a1, a2, . . . , aq , we can take a basis{b1, . . . , bt } of Ã . Then eachai can be uniquely
represented as

ai = b1
li1b2

li2 · · · bt
lit

with suitable integersliτ .

DEFINITION 2.1. We call integersp1, p2, . . . , pt with the following property to be
generic with respect toliτ and call the integersli := ∑t

τ=1 liτ pτ representations of ai (1 ≤
i ≤ q):

if li = ±lj , then (li1, li2, . . . , lit ) = ±(lj1, lj2, . . . , lj t ) ,
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where double signs are in the same order.
For example, it is enough to takepτ = pτ−1 (1 ≤ τ ≤ t) for an integerp >

2 max{|liτ | ; 1 ≤ i ≤ q, 1 ≤ τ ≤ t}.
DEFINITION 2.2. Letq ≥ r > s ≥ 1 andA = (a1, a2, . . . , aq) a q-tuple of elements

ai in G.
(i) We call A to have theproperty (Pr,s) if any r elementsaι(1), aι(2), . . . , aι(r) in A

satisfy the condition that, for any giveni1, i2, . . . , is (1 ≤ i1 < · · · < is ≤ r), there exist
some otherj1, j2, . . . , js (1 ≤ j1 < · · · < js ≤ r, {i1, . . . , is} �= {j1, . . . , js}) satisfying

aι(i1)aι(i2) · · · aι(is) = aι(j1)aι(j2) · · · aι(js) .

(ii) We callA to have theproperty (P ∗) if each element of{∏q
j=1 aj

εj ; εj = 0, 1 (1 ≤
j ≤ q)} coinsides with another one of this set, whereaj

0 = 1 (the unit element ofG).
Let us study relations amongai for a q-tuple a = (a1, a2, . . . , aq) with the property

(Pr,s) or (P ∗). To this end, we take representationsl1, l2, . . . , lq of a1, a2, . . . , aq for suitably
chosen basis and generic integers. We arrange the order of representations to be

lj1 ≤ lj2 ≤ · · · ≤ ljq .

LEMMA 2.3 (for the proof, see [F]). If a q-tuple has the property (Pr,s), it holds that

ljs = ljs+1 = · · · = ljs+u ,

and hence

ajs = ajs+1 = · · · = ajs+u

for u := q − r + 1.

LEMMA 2.4. If a q-tuple (a1, a2, . . . , aq) has the property (P ∗), then at least one aj

is the unit element 1.

PROOF. Assume that none ofa1, a2, . . . , aq is the unit element. Thenlj �= 0, j =
1, 2, . . . , q. Let m be the integer such that

lj1 ≤ lj2 ≤ · · · ≤ ljm < 0 < ljm+1 ≤ · · · ≤ ljq .

If m = 0 or m = q, then there is no negativelj or positivelj , respectively. Consider the
case ofm > 0. Thenlj1 + lj2 + · · · + ljm is the minimum partial sum of representations
and there is no other such combination with this sum, which contradicts the assumption that
(a1, a2, . . . , aq) has the property(P ∗). Hence we havem = 0. In the case ofm = 0, we get
a contradiction by the same method. In consequence, there is somelj = 0 (1 ≤ j ≤ q). �

In the next section we investigate the torsion-free abelian multiplicative groupG = E/C,
whereE is the abelian group of entire functions without zeros andC is the subgroup of non-
zero constant functions.

We close this section by the following Borel’s Lemma, whose proof can be found, for
example, on p. 186 of [L].
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LEMMA 2.5. If entire functions α0, α1, . . . , αn without zeros satisfy

α0 + α1 + · · · + αn = 0 ,

then for each j = 0, 1, . . . , n there exists some k �= j such that αj/αk is constant.

3. Main theorems.

THEOREM 3.1. Let {S1, . . . , Sq } be a collection of pairwise disjoint two-point sets.
Put Sj = {ξj , ηj } = {z ; z2 + ajz + bj = 0} (ξj �= ηj ). Assume that there is no Möbius
transformation T such that T (ξj ) = ηj and T (ηj ) = ξj for three distinct j ’s. If q ≥ 6, then
the collection has UPM.

LEMMA 3.2. Let Sj = {ξj , ηj } = {z ; z2 + aj z + bj = 0} (j = 1, 2, 3) be pairwise
disjoint. Then there exists a Möbius transformation T such that T (ξj ) = ηj and T (ηj ) =
ξj (j = 1, 2, 3) if and only if

∣∣∣∣∣∣
1 a1 b1
1 a2 b2
1 a3 b3

∣∣∣∣∣∣ = 0 .(3.3)

PROOF. Assume that (3.3) holds. Then there exist constantsa, b, c such that(a, b, c) �=
(0, 0, 0) and a + b(ξj + ηj ) + cξjηj = 0 for j = 1, 2, 3. We can take the Möbius transfor-
mationT (z) = −(bz + a)/(cz + b) satisfyingT (ξj ) = ηj , T (ηj ) = ξj for j = 1, 2, 3.

Conversely, assume that a Möbius transformationT (z) = (az + b)/(cz + d) satisfies
T (ξj ) = ηj , T (ηj ) = ξj for j = 1, 2, 3. Then we haveb + aξj − dηj − cξjηj = 0 and
b+aηj −dξj −cξjηj = 0 for j = 1, 2, 3. By adding these identities, we get 2b+(a−d)(ξj +
ηj ) − 2cξjηj = 0 for j = 1, 2, 3. Then (3.3) follows from these, sinceb = c = a − d = 0 is
impossible. �

PROOF OFTHEOREM 3.1. It suffices to treat the case ofq = 6. Assume thatf ∗(Sj ) =
g∗(Sj ) for two nonconstant meromorphic functionsf andg. We may writef = f1/f0 by
entire functionsf0, f1 without common zeors, andg = g1/g0 in a similar manner. Then there
are entire functionsαj without zeros such that

f1
2 + ajf1f0 + bjf0

2 = αj (g1
2 + ajg1g0 + bjg0

2) , j = 1, . . . , 6

by the assumptionf ∗(Sj ) = g∗(Sj ). These are expressed as

(3.4)




1 a1 b1 α1 a1α1 b1α1
1 a2 b2 α2 a2α2 b2α2
...

...
...

...
...

...

1 a6 b6 α6 a6α6 b6α6







f1
2

f1f0

f0
2

−g1
2

−g1g0

−g0
2




=




0
0
...

0


 ,
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where the determinant of the squarematrix is identically zero because off1 �≡ 0. In the
expansion of the determinant, the coefficient ofαj1αj2αj3 is given by

±
∣∣∣∣∣∣

1 aj1 bj1

1 aj2 bj2

1 aj3 bj3

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

1 ak1 bk1

1 ak2 bk2

1 ak3 bk3

∣∣∣∣∣∣ ,

where{j1, j2, j3, k1, k2, k3} = {1, 2, . . . , 6}. These coefficients are not zero by the assump-
tion together with Lemma 3.2. Also, by using Borel’s Lemma for each triple(j1, j2, j3),

there exists another triple(k1, k2, k2) such that(αj1αj2αj3)/(αk1αk2αk3) is constant, where
1 ≤ j1 < j2 < j3 ≤ 6, 1 ≤ k1 < k2 < k3 ≤ 6 and{j1, j2, j3} �= {k1, k2, k3}. From Lemma
2.3 we can deduce that there existj1, j2, 1 ≤ j1 < j2 ≤ 6, such thatαj1/αj2 is constant.
Without loss of generality, we may assume thatj1 = 1, j2 = 2. Putc = α1/α2 and define a
rational functionϕ(z0, z1) by

ϕ(z0, z1) = z1
2 + a1z1z0 + b1z0

2

z1
2 + a2z1z0 + b2z0

2
.

Then we haveϕ(f0, f1) = cϕ(g0, g1), i.e.,

(3.5)
f 2 + a1f + b1

f 2 + a2f + b2
= c

g2 + a1g + b1

g2 + a2g + b2
.

(i) The case ofc = 1. In this case, we get from (3.5)

(f − g){(a1 − a2)f g + (b1 − b2)(f + g) + (a2b1 − a1b2)} = 0 .

Assume thatf �= g. Then we have

g = − (b1 − b2)f + (a2b1 − a1b2)

(a1 − a2)f + (b1 − b2)
.

Note thata1 = a2 andb1 = b2 imply S1 = S2, which does not occur.
Now we consider the Möbius transformation

T (z) = − (b1 − b2)z + (a2b1 − a1b2)

(a1 − a2)z + (b1 − b2)
,

which exchangesξj with ηj for j = 1, 2, and note thatT −1(z) = T (z). If f (z0) = ξj

for somej, 3 ≤ j ≤ 6, then by the assumptiong(z0) = ξj or g(z0) = ηj . However, the
latter implies thatT exchangesξj with ηj , which contradicts the assumption. The former
implies thatξj is a fixed point ofT . SinceT has at most two fixed points, at least six points
of ξ3, η3, . . . , ξ6, η6 are Picard exceptional values off , which is also a contradiction. In
consequence,f = g in this case.

(ii) The case ofc �= 1. If there is a pointz0 such thatf (z0) = g(z0) �∈ S1 ∪ S2, then
c = 1 by (3.5). Thereforef −1(ξj ) = g−1(ηj ) andf −1(ηj ) = g−1(ξj ) for j = 3, . . . , 6.
Also, there exist entire functionsβj , γj without zeros such that

f1 − ξj f0 = βj (g1 − ηj g0) , g1 − ξj g0 = γj (f1 − ηjf0) , j = 3, . . . , 6 .
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By multiplying each side of these equations, we have

f1g1 − ξj (f1g0 + f0g1) + ξj
2f0g0 = δj {f1g1 − ηj (f1g0 + f0g1) + ηj

2f0g0}
whereδj = βjγj . Since these identities yields the equation

 1 − δ3 ξ3 − η3δ3 ξ3
2 − η3

2δ3

1 − δ4 ξ4 − η4δ4 ξ4
2 − η4

2δ4

1 − δ5 ξ5 − η5δ5 ξ5
2 − η5

2δ5





 f g

−(f + g)

1


 =


 0

0
0


 ,

we have ∣∣∣∣∣∣
1 − δ3 ξ3 − η3δ3 ξ3

2 − η3
2δ3

1 − δ4 ξ4 − η4δ4 ξ4
2 − η4

2δ4

1 − δ5 ξ5 − η5δ5 ξ5
2 − η5

2δ5

∣∣∣∣∣∣ ≡ 0 .

In the expansion of the determinant, none of the coefficients of each element ofB = {1, δ3, δ4,

δ5, δ3δ4, δ4δ5, δ3δ5, δ3δ4δ5} is zero. Then each of these eight functions has a partner among
them such that their ratio is constant by Borel’s Lemma. In other words,C = ([δ3], [δ4], [δ5])
has the property(P ∗), where forϕ ∈ E we express by[ϕ] the class inE/C to which ϕ

belongs. Indeed, a product of any three elements inC coincides with some element inB up to
multiplying constant, and also it is proportional to another element inB. However the latter
coincides with a product of different at most three elements inC or the unit element from
the beginning. ThusC has the property(P ∗). It follows from Lemma 2.4 that there exists
j3, 3 ≤ j3 ≤ 5, such thatδj3 is constant, and we may assume thatj3 = 3. Putd = δ3. Then
we have

f1g1 − ξ3(f1g0 + f0g1) + ξ3
2f0g0 = d{f1g1 − η3(f1g0 + f0g1) + η3

2f0g0}
and

f g − ξ3(f + g) + ξ3
2 = d{f g − η3(f + g) + η3

2} .

Without loss of generality, we may assume thatf takes at least three values ofξ4, η4, ξ5, η5

by assuming that an exceptional value belongs toS6, if it exists in S4 ∪ S5 ∪ S6. Hence we
have

(3.6) ξj ηj − ξ3(ξj + ηj ) + ξ3
2 = d{ξjηj − η3(ξj + ηj ) + η3

2} , j = 4, 5

and

ξ3
2 + ajξ3 + bj = d{η3

2 + ajη3 + bj } , j = 4, 5 .

By expressing these as(
ξ3

2 + a4ξ3 + b4 η3
2 + a4η3 + b4

ξ3
2 + a5ξ3 + b5 η3

2 + a5η3 + b5

) (
1

−d

)
=

(
0
0

)
,

we have ∣∣∣∣ ξ3
2 + a4ξ3 + b4 η3

2 + a4η3 + b4

ξ3
2 + a5ξ3 + b5 η3

2 + a5η3 + b5

∣∣∣∣ = 0 .
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On the other hand, we see that
∣∣∣∣ ξ3

2 + a4ξ3 + b4 η3
2 + a4η3 + b4

ξ3
2 + a5ξ3 + b5 η3

2 + a5η3 + b5

∣∣∣∣ =
∣∣∣∣∣∣

1 a3 b3
1 a4 b4
1 a5 b5

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
ξ3

2 η3
2 1

ξ3 η3 0
1 1 0

∣∣∣∣∣∣ �= 0 ,

which is a contradiction. This completes the proof.

THEOREM 3.6. Let {S1, . . . , Sq } be a collection of pairwise disjoint two-point sets.
Put Sj = {ξj , ηj } = {z ; z2 + aj z + bj = 0} (ξj �= ηj ). Assume that there is no Möbius
transformation T such that T (ξj ) = ηj and T (ηj ) = ξj for three distinct j ’s and that
aj �= ak (j �= k). If q ≥ 5, then the collection has UPE.

The outline of the proof is the same as that of the proof of Theorem 3.1. There exist two
points, which are contained in the sixth setS6. The first is the point to get (3.4) and the second
is the one to get (3.6), where we assumed that one of the exceptional values off is in S6 if
they exist inS4 ∪ S5 ∪ S6. We can avoid the second, since entire functions have no pole.

Instead of (3.4) we can use the relation




0 0 1 0 0 1
1 a1 b1 α1 a1α1 b1α1
...

...
...

...
...

...

1 a5 b5 α5 a5α5 b5α5







f 2

f

1
−g2

−g
−1




=




0
0
...

0


 ,

where the determinant of the square matrix is identically zero. Also, we see by the assump-
tions that in its expansion none of the coefficients ofαj1αj2αj3, 0 ≤ j1 < j2 < j3 ≤ 5, is
zero, whereα0 ≡ 1. Then there existj1, j2, 0 ≤ j1 < j2 ≤ 5, such thatαj1/αj2 is constant.
If j1 ≥ 1, then the rest of the proof proceeds in the same way as that of Theorem 3.1.

Now we consider the case ofj1 = 0. We may assume thatj2 = 1. Putc := α1(constant).
Then we have

f 2 + a1f + b1 = c(g2 + a1g + b1) .

If c = 1 andf �= g, thenf + g + a1 = 0. We may assume that neither ofξ2 andη2 are
exceptional values off andg. If there is a pointz0 such thatf (z0) = ξ2, g(z0) = η2, then
we geta1 = a2, which is a contradiction. Otherwise, we have 2ξ2 = −a1 = 2η2, which is
also a contradiction. Consequently,f = g if c = 1.

Whenc �= 1, we can proceed in the same way as in the proof of the case (ii) of Theorem
3.1, and complete the proof.
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