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A CHARACTERIZATION OF COLLECTIONSOF TWO-POINT SETS
WITH THE UNIQUENESS PROPERTY
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Abstract. We give a sufficient condition for a collection of two-point sets to have the
uniqueness property for meromorphic functions.

1. Introduction. For nonconstant meromorphic (or entire) functighe&ndg on C
and a discrete setin C = C U {co} (or C), we write f*(S) = ¢*(S) if £~1(S) = ¢71(5)
and if for eachzg € f~1(S) two functionsf — f(zo) andg — g(z0) have a zero point with
the same multiplicity ato, where a zero point of — co andg — co means that of Af and
1/g, respectively.

Let {S1,...,S,} be afinite collection of pairwise disjoint discrete setsﬁir{or O). If
f*(8)) = g"(S)) A < j < ¢q) imply f = g for two nonconstant meromorphic functions
f andg (or two nonconstant entire functionsand g) on C, then the collection is said to
have the uniqueness property for meromorphic (or entire) functions (abbreviated to UPM (or
UPE)). As examples of such collections, we wniNevanlinna’s four values theorem ([N]),
uniqueness range sets for meromorphic or entire functions ([LY], [Y2]) and so on ([S], [Y3]).
However, there is no result except [N], [T, @rem 1.4] and [Y1] that characterizes such
collections. In this paper we give a characterization for collections of two-point sets with the
unigueness property.

The authors would like to thank the referee for pertinent comments.

2. Combinatorial lemmas and Borel’'s lemma. For a large part of this section we
proceed as in [F, 82]. LeG be a torsion-free abelian multiplicative group, and consider
ag-tuple A = (ag,ap, ..., ay) of elementsy; in G. For a subgroupi of G generated
by a1, az, ..., a,, we can take a basi@y, ..., b} of A . Then eachy; can be uniquely
represented as

aj = bllilbzliZ . btlit
with suitable integerg .

DEFINITION 2.1. We call integerg1, p2, ..., p; with the following property to be
generic with respect td;; and call the integerg := Ztr:l liz pr representations of ¢; (1 <
i <q):
If ll = :l:ljv then (1117 1127 ey ll[) = :l:(ljlv l]27 ey l][) )
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where double signs are in the same order.
For example, it is enough to take, = p*™! (1 < t < 1) for an integerp >
2max|liz|; 1<i<g,1<t <t}

DEFINITION 2.2. Letg >r > s > 1andA = (a1, a, ..., ay) ag-tuple of elements
a; inG.

(i) We call A to have theproperty (P, ;) if any r elementsz, 1y, a,2), ..., a,) IN A
satisfy the condition that, for any given, iz, ...,i; (1 < i1 < --- < iy < r), there exist
some othelj1, j2, ..., js A< j1 <--- < js <r {i1,..., i} # {j1. ..., Js}) satisfying

Auin)utip) ** " ulis) = A(jp) (o)~ " Du(js) -
(i) We call A to have theoroperty (P*) if each element Oﬂ_[?=1 a;j®i; e;=01(1<
Jj < ¢)} coinsides with another one of this set, Wh&;@ = 1 (the unit element of;).
Let us study relations among for a g-tuplea = (a1, az, ..., a,) with the property
(P.5) or (P*). To this end, we take representatiéndy, ..., I, ofay, az, .. ., a4 for suitably
chosen basis and generic integers. \Wargge the order of representations to be

Sljgf"'fl‘

ljl Jq *

LEmMMA 2.3 (for the proof, see [F]). If ag-tuple has the property (P, ), it holds that
ljy =1j

Js+1 —

e =1

Js+u >
and hence

Aj, = Ajgq = " = djgyy
foru:=q—r—+1

LEMMA 2.4. Ifag-tuple (ay, az, ..., ay) hasthe property (P*), then at least one a;
isthe unit element 1.

PROOF. Assume that none afy, az, ..., a4 is the unit element. Thely # 0, j =
1,2,...,q. Letm be the integer such that
l/l Sl/2 S Sllm <O<ljm+1 S Sl/q

If m = 0 orm = g, then there is no negativg or positivel;, respectively. Consider the
case ofm > 0. Thenl; + 1, + --- + [}, is the minimum partial sum of representations
and there is no other such combination with this sum, which contradicts the assumption that
(a1, az, ..., aq) has the propertyP*). Hence we have: = 0. In the case of: = 0, we get

a contradiction by the same method. In consequence, there isisem@(1 < j <¢g). O

In the next section we investigate the torsion-free abelian multiplicative grogpe/C,
where€ is the abelian group of entire functions without zeros érisl the subgroup of non-
zero constant functions.

We close this section by the following Borel's Lemma, whose proof can be found, for
example, on p. 186 of [L].
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LEMMA 2.5. Ifentirefunctions o, a1, ..., a, Without zeros satisfy
ap+or+--+o, =0,

thenforeach j =0, 1,..., nthereexistssomek # j such that o/; /oy is constant.

3. Main theorems.

THEOREM 3.1. Let {S1,...,S,} be a collection of pairwise disjoint two-point sets.
PutS; ={&.n;) = {z: 22 +ajz+b; = 0} (§; # n;). Assume that there is no Mobius
transformation 7 such that 7'(£;) = n; and T'(;) = &; for threedistinct j’s. If ¢ > 6, then
the collection has UPM.

LEMMA 3.2 LetS; = (g n;} = {2 22 +a;z+b; =0} (j = 1,2.3) bepairwise
digoint. Then there exists a Mobius transformation 7' such that 7'(&;) = n; and T (n;) =
& (j =1,2,3)ifand only if

1 a1 b1
a» by | =0.
1 a3z b3

=

(3.3)

PrOOF. Assume that (3.3) holds. Then there exist constanbsc such thata, b, ¢) #
(0,0,0)and a + b(¢; + n;) + c&jn; = 0for j = 1,2, 3. We can take the Mdbius transfor-
mation7 (z) = —(bz + a)/(cz + b) satisfyingT (¢;) =n;, T(n;) =&;for j =1,2,3.

Conversely, assume that a Mobius transformafign) = (az + b)/(cz + d) satisfies
TEj) =nj, Tyj) =§;forj =12 3. Thenwe havé + a&; — dn; — c&jn; = 0 and
b+an;j—d&;—c&;n; = 0for j =1, 2, 3. By adding these identities, we gét-2(a —d)(&; +
nj) —2c&;n; = 0for j = 1,2, 3. Then (3.3) follows from these, sinbe=c =a —d =01is
impossible. O

PROOF OFTHEOREM 3.1. lItsufficesto treat the casegpk= 6. Assume thaf*(S;) =
g*(S;) for two nonconstant meromorphic functiofisand g. We may writef = f1/fo by
entire functionsfp, f1 without common zeors, anfl= g1/ go in a similar manner. Then there
are entire functiona; without zeros such that

f12+ajflf0+bjf02 = aj(glz—i-ajglgo—i-bjgoz), j=1...,6

by the assumptiorf*(S;) = ¢*(S;). These are expressed as

f1?
1 a1 b1 a1 aie1 biog i fo 0
1 ax by a2 axaz booo o2
(34) T , =]
R : : -0 :
1 as bs o aswe bss — 9199 0

—90
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where the determinant of the squamatrix is identically zero because ¢gi # 0. In the
expansion of the determinant, the coefficien&r@fx j,o j, is given by
1 a; bj 1 a, by

ajp bjz 11 Ak, bkz s

+1
1 aj, bj 1 ay, by,

where{ji, j2, j3, k1, k2, k3} = {1, 2, ..., 6}. These coefficients are not zero by the assump-
tion together with Lemma 3.2. Also, by using Borel's Lemma for each trigie j2, j3),
there exists another triplgs, k2, k2) such that(e;, o j,a 5) / (o, ok, 005) IS constant, where
1<ji1<j2<ja<6, 1<k <ko<ks=<6and{j, jo, j3} # {ki, k2, k3}. From Lemma
2.3 we can deduce that there exjst j», 1 < j1 < j2 < 6, such thatr;, /a;, is constant.
Without loss of generality, we may assume titat= 1, j» = 2. Putc = o1/a2 and define a
rational functionp(zo, z1) by

212 + a1z120 + b1zo?
212 + a2z120 + bozo?
Then we have(fo, f1) = co(go, 91), i.e.,
fP+arf +bh _ 9% +arg+ b1
fZvarf +b2 P tazg+by
(i) The case of = 1. In this case, we get from (3.5)

(f —9(ar —a2) fg + (b1 — b2)(f + g) + (azb1 — a1b2)} = 0.
Assume thaif # g. Then we have
_ (b1 —b2) f + (azb1 — a1b2)
B (a1 —a2) f + (b1 — b2)
Note thata; = ap andby = by imply S1 = S2, which does not occur.
Now we consider the Mébius transformation
(b1 — b2)z + (azb1 — a1b?)
(a1 —a2)z+ (b1 — b2)
which exchange§; with n; for j = 1,2, and note thal ~1(z) = T(2). If f(z0) = &;
for somej, 3 < j < 6, then by the assumptiof(zo) = &; or g(z0) = n;. However, the
latter implies thatl" exchangeg; with »;, which contradicts the assumption. The former
implies thatt; is a fixed point of7. SinceT has at most two fixed points, at least six points
of &3, 13, ..., &, ne are Picard exceptional values @f which is also a contradiction. In
consequencef = g in this case.
(i) The case of # 1. If there is a pointg such thatf (zo) = g(zo) € S1 U S2, then
¢ = 1 by (3.5). Thereforef ~1(&;) = g71(n;) and f~1(n;) = g7 1(&;) for j = 3,...,6.
Also, there exist entire functions;, y; without zeros such that

¢(z0,21) =

3.5

T(z) =—

fi—é&ifo=Bjg1—mjg), n—-§gp=yi(fi—njfo), j=3,....6.
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By multiplying each side of these equations, we have

fig1 — £ (figo + fogr) + &2 fogo = 8 {fror — n;(figo + fogr) + n;%fogo)

wheres; = g;y;. Since these identities yields the equation

1-83 £3—n3d3 &% — 13283 fg 0
1-84 &a—nads E2—na®sa || —(f+9 |=|0].
185 &5 —nsds &52— 15285 1 0

we have
1-683 £ —n3d3 £3° — 383
1—84 &a—nada &% —nass | =0.
1-85 &5 —nsds £52 — 05285

In the expansion of the determinant, none of the coefficients of each elemenrt 4, §3, 34,

385, 8384, 8435, 8355, 8384585} IS zero. Then each of these eight functions has a partner among
them such that their ratio is constant by Borel's Lemma. In other wards,([83], [84], [85])

has the property P*), where forp € £ we express byg] the class in/C to which ¢
belongs. Indeed, a product of any three elemenésdoincides with some element Biup to
multiplying constant, and also it is proportional to another elemem. ilHlowever the latter
coincides with a product of diérent at most three elementsdhor the unit element from

the beginning. Thug' has the propertyP*). It follows from Lemma 2.4 that there exists

73, 3 < j3 <5, such thab, is constant, and we may assume tfwat= 3. Putd = §3. Then

we have

f191 — E3(f190 + fogr) + &3° fogo = d{ frg1 — n3(f1go + fogr) + n3® fogo)
and
fg—&(f+9 +E°=d{fg—ns(f+9) +n3?}.

Without loss of generality, we may assume tlfaiakes at least three values&f na, &5, 15
by assuming that an exceptional value belongSgtaf it exists in S5 U S5 U Se. Hence we
have

(3.6) Einj —Ea(E; +n)) +E3° = d{gn; — 3 +nj) + 3’} j=4,5
and

&% +ajEa+bj =dng® +ajna+bj}, j=45.
By expressing these as

£32 + aatz + ba  13% + aanz + ba 1 _ 0
£3% + aséz +bs  13% +asnz + bs —d 0)’

£32 + asgz +ba  n3% + aanz + ba
532 + asé3 + bs 7732 + asnz + bs

we have
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On the other hand, we see that

1 a3 b3 | &2 3?2 1
1 as by |-|& n3 0]|#0,
1 as bs 1 1 0

which is a contradiction. This completes the proof.

£3° +asks+ba n3® +ammz+ba| _
£3° +asks +bs  n3® +asnz +bs

THEOREM 3.6. Let {S1,...,S,} be a collection of pairwise digoint two-point sets.
Put S; = {£;,n;} = {z; 22 +ajz+b; = 0} (§; # n;). Assume that there is no Mdbius
transformation 7' such that 7(£;) = n; and T(n;) = &; for three distinct j's and that
aj # ax (j # k). If ¢ > 5, then the collection has UPE.

The outline of the proof is the same as that of the proof of Theorem 3.1. There exist two
points, which are contained in the sixth §gt The first is the point to get (3.4) and the second
is the one to get (3.6), where we assumed that one of the exceptional valfies of Sg if
they exist inS4 U S5 U Sg. We can avoid the second, since entire functions have no pole.
Instead of (3.4) we can use the relation

f2
0O 0 1 O 0 1 f 0
1 a1 b1 a1 aia1 brag 1 0
_92 =1 - ’
1 a5 bs a5 asas bsas _i 0

where the determinant of the square matrix is identically zero. Also, we see by the assump-
tions that in its expansion none of the coefficientsr@rj,0j,, 0 < j1 < j2 < j3 < 5, is
zero, whereyg = 1. Then there existy, j2, 0 < j1 < j2 < 5, such thaty;, /«, is constant.
If j1 > 1, then the rest of the proof proceeds in the same way as that of Theorem 3.1.

Now we consider the case gf = 0. We may assume tha = 1. Putc := aj(constant).
Then we have

f2+a1f +b1=c(g®+ag+b1).

If c=1andf # g,thenf 4+ g + a1 = 0. We may assume that neither&fand, are
exceptional values of andg. If there is a pointg such thatf (zg) = &2, g(z0) = 12, then
we geta1 = ap, which is a contradiction. Otherwise, we hav@ 2= —a1 = 2n2, which is
also a contradiction. Consequentfy= g if ¢ = 1.

Whenc # 1, we can proceed in the same way as in the proof of the case (ii) of Theorem
3.1, and complete the proof.
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