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Abstract. The proof of the Combinatorial Hard Lefschetz Theorem for the “virtual”
intersection cohomology of a not necessarily rational polytopal fan as presented by Karu com-
pletely establishes Stanley’s conjectures for the generalizedh-vector of an arbitrary polytope.
The main ingredients, Poincaré Duality and the Hard Lefschetz Theorem, rely on an intersec-
tion product. In its original constructions, given independently by Bressler and Lunts on the
one hand, and by the authors of the present article on the other, there remained an apparent
ambiguity. The recent solution of this problem by Bressler and Lunts uses the formalism of
derived categories. The present article instead gives a straightforward approach to combinato-
rial duality and a natural intersection product,completely within the framework of elementary
sheaf theory and commutative algebra, thus avoiding derived categories.

Introduction. In [St], Stanley introduced the generalizedh-vector for arbitrary poly-
topes. For rational polytopes, this new combinatorial invariant agrees with the vector of even
(middle perversity) intersection cohomology Betti numbers of a projective toric variety as-
sociated with the polytope and thus, it enjoys the same properties. Stanley proved that the
Dehn-Sommerville equalities (i.e., Poincaré duality) remain valid in the general case, and he
conjectured that non-negativity and unimodality also should continue to hold. In the rational
case, the unimodality property follows from the “Hard Lefschetz Theorem” for the intersec-
tion cohomology of a projective variety.

This conjecture motivated the search for a purely combinatorial approach to the inter-
section cohomology of toric varieties that would allow to drop any rationality assumption. A
suitable framework has been developed independently in [BBFK2] and by Bressler and Lunts
in [BreLu1]. The common basic idea is to imitate the construction of the equivariant intersec-
tion cohomology sheaf and the transition to the“usual” intersection cohomology entirely in
fan-theoretic terms: To view a (not necessarily rational) fan as a finite topological space with
the subfans as non-trivial open sets, naturally endowed with a sheafA of polynomial rings,
and to study the properties of a certain sheaf of modulesE on that “fan space” that agrees with
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274 G. BARTHEL, J.-P. BRASSELET, K.-H. FIESELER AND L. KAUP

the equivariant intersection cohomology sheaf for the associated toric variety in the rational
case. This approach then yields a “virtual” intersection cohomology theory for the class of
“quasi-convex” fans that includes all complete and hence, all polytopal fans.

At the time when these articles were written, a purely combinatorial version of the Hard
Lefschetz Theorem, as stated in Section 4, was still lacking. This was the only missing piece to
prove that the vector of even “virtual” intersection cohomology Betti numbers of a polytopal
fan agrees with the generalizedh-vector of the polytope, and thus, to fully establish Stanley’s
conjecture. As another problem, in the construction of the intersection product on the virtual
equivariant intersection cohomology sheaf, apparently non-canonical choices entered.

In the meantime, a proof of the combinatorial Hard Lefschetz Theorem has been pre-
sented by Karu in [Ka]. Since that result essentially relies on the Hodge-Riemann bilinear
relations for the “primitive” (virtual) intersection cohomology, its proof is based on the study
of the intersection product. The apparent ambiguity in the definition of that product, however,
makes the argumentation quite involved, since one has to carefully keep track of the choices
made.

A first simplified version has recently been presented by Bressler and Lunts in [BreLu2],
using the framework of derived categories. In particular, they verify by a detailed analysis
that none of the possible choices affects the definition of the pairing.

Our goal is to go one step further, namely, to give a short, direct, and elementary ap-
proach to duality and the intersection product in the “geometrical” spirit of [BBFK2], fol-
lowing ideas of [Bri], the only prerequisites being sheaf theory and commutative algebra.
For the convenience of the reader, we give here a complete presentation, and we always give
references to the corresponding statements in [BreLu1, 2].

Though we are mainly interested in the “virtual equivariant intersection cohomology”
sheafE , it is appropriate to work in the class of “pure sheaves” as defined in Section 2. Within
this class, we present a direct and explicit construction of the dual, notedDF , of a sheafF (see
Section 3). (In [BreLu1, 2], the duality functor is defined as an endofunctor of a vast derived
category containing the pure sheaves as invariant subcategory.) To give an idea, we summarize
the most important results, using this notation, explained more systematically in Section 1:
Let∆ be a quasi-convex fan in a vector spaceV of real dimensionnwith a fixed volume form,
and∂∆, its boundary fan. The global sections of the equivariant intersection cohomology
sheafE on∆ and on(∆, ∂∆), respectively, are (graded) modules over the (graded) symmetric
algebraA := S(V ∗) of polynomial functions onV .

DUALITY THEOREM. The dual DF of a pure sheafF is again pure, and on an oriented
fan, there is a natural biduality isomorphism

F ∼=−→ D(DF) .
For a pair (F ,G) of mutually dual pure sheaves on an oriented quasi-convex fan ∆, there is
a global duality relation

F(∆) ∼= Hom(G(∆, ∂∆),A[−2n])
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COMBINATORIAL DUALITY AND INTERSECTION PRODUCT 275

and hence, a pairing

F(∆)× G(∆, ∂∆)→ A[−2n]
on the level of global sections.

Here the “relative” sections are those vanishing on the boundary subfan, they replace the
sections with compact support in ordinary sheaf theory.

The crucial step in the construction ofDF is the definition of the restriction homomor-
phisms from a cone to a facet; the image of a section can be interpreted as a kind of “residue”
along the facet. While keeping every single step easily accessible, the structure of the proof
of Poincaré duality and the naturality of the intersection product is the ‘classical’ one, as in
[BreLu1, 2].

An intersection producton the (graded) sheafE corresponds to a sheaf homomorphism
ϑ : E → DE of degree zero; in fact, we check thatE is self-dual in a natural way.

The main applications, namely, the “Poincaré Duality Theorem” and the “Compatibility
Theorem” (cf. [BreLu2, 3.16 and 7.2]) as stated below, fit into the inductive proof of the Hard
Lefschetz Theorem (HLT) as given in [Ka] (see also [BreLu2]): Assuming HLT for poly-
topal fans in dimensiond < n, the “Poincaré Duality Theorem” yields a natural intersection
product on every fan in dimensionn. In [Ka], it is shown that the Hodge-Riemann bilinear
relations (HRR) for simplicial fans in any dimension — which hold by [Mc] — together with
HRR for arbitrary fans in dimensionsd < n imply HRR and thus, HLT in dimensionn.
In that induction step, it is most helpful to work with a canonical pairing, and to apply the
“Compatibility Theorem”.

“EQUIVARIANT ” POINCARÉ DUALITY THEOREM. In the above situation, let us as-
sume that the Hard Lefschetz Theorem holds in all dimensions below n. Then there is a
natural intersection product

E(∆)× E(∆, ∂∆) → A[−2n] ,(1)

giving rise to a dual pairing of finitely generated free A-modules.

For the following supplement, let̂E be the equivariant intersection cohomology sheaf of
a refinement∆̂ of ∆ with refinement mapι : ∆̂→ ∆.

COMPATIBILITY THEOREM. Let E → ι∗(Ê) be a homomorphism of graded sheaves
extending the identity Eo = R = ι∗(Ê)o at the zero cone o. Then the “global” intersection
products are compatible, i.e., the following diagram is commutative:

E(∆)× E(∆, ∂∆) −→ Ê(∆̂)× Ê(∆̂, ∂∆̂)
↘ ↙

A[−2n] .
(2)

The present article is a complete version of the results announced in [Fi]. We want to
thank Tom Braden for useful comments and remarks.
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1. Preliminaries. For the convenience of the reader, we recall some basic notions,
notation and constructions to be used in the sequel.

1.1. Basic algebra. LetV be a real vector space of dimensionn, andA := S(V ∗),
the symmetric algebra on the dual vector spaceV ∗, i.e., the algebra of real valued polynomial
functions onV . We endowA with the even grading given byA2 = V ∗, a convention moti-
vated by equivariant cohomology, and we letm := A>0 be the homogeneous maximal ideal
of A. For a gradedA-moduleM, its reduction modulom,

M̄ := (A/m)⊗A M ,

is a graded real vector space.
For a strictly convex polyhedral coneσ ⊂ V , we letVσ ⊂ V denote its linear span. In

analogy to the definition ofA, we consider the graded algebra

Aσ := S(V ∗σ ) .
We usually identify its elements with polynomial functions on the coneσ .

To avoid cumbersome notation, we admit graded homomorphisms even if they are not of
degree zero.

1.2. Fan topology and sheaves. Motivated by the coarse “toric topology” on a toric
variety given by torus-invariant open sets, we consider a fan∆ (which need not be rational)
in V as a finite topological space with the subfans as open subsets. The “affine” fans

〈σ 〉 := {σ } ∪ ∂σ � ∆ with boundary fan ∂σ := {τ ∈ ∆; τ � σ }
form a basis of the fan topology by open sets that cannot be covered by smaller ones. Here�
means that a cone is a face of another cone or that a set of cones is a subfan of some other fan;
furthermore,τ ≺1 σ means thatτ is a facet of the coneσ .

Sheaf theory on that “fan space” is particularly simple, since a presheaf given on the
basis already “is” a sheaf. In particular, for a sheafF on∆, the equality

F(〈σ 〉) = Fσ
of the set of sections on the affine fan〈σ 〉 and the stalk at the pointσ holds.

Furthermore, a sheafF on∆ is flabby if and only if each restriction homomorphism
�σ∂σ : F(〈σ 〉)→ F(∂σ ) is surjective.

In particular, we consider (sheaves of)A-modules, whereA is thestructure sheaf of ∆,
i.e., the graded sheaf of polynomial algebras determined byA(〈σ 〉) := Aσ , the restriction
homomorphism�στ : Aσ → Aτ being the restriction of functions onσ to the faceτ � σ .
The set of sectionsA(Λ) on a subfanΛ � ∆ constitutes the algebra of conewise polynomial
functions on the support|Λ| in a natural way.

Given a homomorphismϕ : F → F ′ of sheaves on∆ and a subfanΛ, we often write

FΛ := F(Λ) , Fσ := F(〈σ 〉) and ϕΛ : FΛ → F ′Λ .

Similarly, for a pair of subfans(Λ,Λ0) with Λ0 � Λ, we define

F(Λ,Λ0) := ker(�ΛΛ0
: FΛ → FΛ0) ,
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the submodule of sections onΛ vanishing onΛ0. In particular, for a purelyn-dimensional
subfanΛ, we consider the case whereΛ0 is theboundary fan ∂Λ, i.e., the subfan generated
by those (n−1)-cones which are a facet of exactly onen-cone inΛ. The sections vanishing
on∂Λ could be regarded as an analogue of “sections with compact support”.

1.3. Sheaf and Fan Constructions. Letf : V → W be a linear map inducing a
morphism of fans between a fan∆ in V and a fanΛ in W , i.e., it maps each cone of∆ into a
cone ofΛ. LetA andB denote the corresponding sheaves of conewise polynomial functions,
and letF on∆ andG onΛ be sheaves of gradedA- or B-modules, respectively. For cones
σ ∈ ∆ andγ ∈ Λ with f (σ) ⊂ γ , there is an induced homomorphismBγ → Aσ and thus,
the structure of aBγ -module onFσ .

We are especially interested in the following constructions:
(i) Thedirect image f∗(F) onΛ is theB-module sheaf defined by

f∗(F)γ := Ff−1(γ ) with f−1(γ ) := {σ ∈ ∆ ; f (σ) ⊂ γ } � ∆ .
The direct image of a flabby sheaf is again flabby.

(ii) The inverse image f ∗(G) on∆ is theA-module sheaf determined by

f ∗(G)σ := Aσ ⊗Bγ Gγ for σ ∈ ∆ and the minimalγ ∈ Λ with f (σ) ⊂ γ .

(iii) For W = V, f = idV and(∆̂,∆) with a subdivision ∆̂ of ∆ instead of(∆,Λ),
we obtain thus arefinement morphism

ι : ∆̂→ ∆ , σ �→ γ .

In particular, we will consider the case of an affine fan〈σ 〉 given by ann-dimensional cone,
and its stellar subdivision

σ̂ := ∂σ + λ := ∂σ ∪ {τ + λ ; τ ∈ ∂σ }
with respect to a rayλ := � ∩ σ , where� is a one-dimensional linear subspace passing
through the interior ofσ .

(iv) For a coneσ ∈ ∆, its closure in the fan topology is the star

∆�σ := {γ ∈ ∆; γ � σ } .
In general, this is not a fan. The collection

∆/σ := {π(γ ); γ ∈ ∆�σ }
of the image cones with respect to the projectionπ : V → W := V/Vσ , however, is a fan,
called thetransversal fan of σ with respect to∆. The induced mapπσ : ∆�σ → ∆/σ is a
homeomorphism.

(v) Applying (iv) to the case of̂σ from (iii), the projectionπ : V → W := V/� maps
the boundary fan∂σ homeomorphically onto the “flattened boundary fan”

Λσ := σ̂ /λ ∼= ∂σ

inW . In that situation, choosing a linear formT ∈ A2 with T |λ > 0, we obtain isomorphisms
ker(T ) ∼= W and thusA ∼= B[T ], where we identifyB := S(W∗) with the subalgebra
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278 G. BARTHEL, J.-P. BRASSELET, K.-H. FIESELER AND L. KAUP

π∗(B) ⊂ A. Moreover, for a sheafF on 〈σ 〉 and its imageG := π∗(F |∂σ ) onΛσ , there is a
natural isomorphism ofB-modules

GΛσ
∼= F∂σ .(3)

We use notation such as∆d := {γ ∈ ∆; dimγ = d},∆≤d , etc. The fan∆ in V is said to be:
(a) oriented if for each coneσ ∈ ∆, an orientation orσ of Vσ is fixed in such a way that

orientations for full-dimensional cones coincide,
(b) purely n-dimensional if each maximal cone of∆ lies in∆n,
(c) irreducible if it is not the union of two proper subfans with intersection included in

∆≤n−2,
(d) normal if it is purelyn-dimensional and for each coneσ ∈ ∆, the transversal subfan

∆/σ is irreducible inV/Vσ , or, equivalently, if the support|∆| is a normal pseudomanifold
with or without boundary,

(e) quasi-convex if it is purely n-dimensional and the support|∂∆| of its boundary
subfan is a real homology manifold. Note that a quasi-convex fan is normal, but not vice
versa.

2. Pure sheaves on a fan. We recall the definition of the class of “pure” sheaves on
a fan space that plays a key role in the sequel.

DEFINITION 2.1. A pure sheaf on a fan∆ is a flabby sheafF of gradedA-modules
such that, for each coneσ ∈ ∆, theAσ -moduleFσ = F(〈σ 〉) is finitely generated and free.

We collect some useful facts about these sheaves, proved in [BBFK2] and [BreLu1]
(where the class of these sheaves is denotedM. We note in passing that on a non-simplicial
fan, pure sheaves are not locally free.)

Pure sheaves are built up from simple objects that correspond to the cones of the fan,
or, equivalently, to the stalks of the structure sheafA. Up to a shift, such a simple sheaf
is obtained from the corresponding stalk by the minimal “pure” extension process described
below.

SIMPLE PURE SHEAVES: For each coneσ ∈ ∆, the corresponding simple sheafL =:
σL is the “minimal” pure sheaf supported on the star∆�σ and with stalkLσ = Aσ . It
is constructed as follows: On the subfan∆ \ ∆�σ , we setL := 0. By induction on the
dimension, we extend it to the cones in∆�σ , starting withLσ := Aσ . For a coneγ � σ , we
may assume thatL∂γ has been defined, and then set

Lγ := Aγ ⊗R L̄∂γ .

The restriction homomorphism�γ∂γ is defined by the following commutative diagram

Lγ := Aγ ⊗R L̄∂γ −→ L̄∂γ

←
− � := id⊗ s ↙ ‖

L∂γ = Aγ ⊗Aγ L∂γ −→ L̄∂γ ,
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where the diagonal arrows : L̄∂γ → L∂γ is anR-linear section of the reduction map in the
bottom row.

REMARK 2.2. 1. For each coneσ ∈ ∆, the corresponding simple sheafL = σL is
pure; it is characterized by the following properties:

(a) L̄σ ∼= R,
(b) for each coneτ �= σ , the reduced restriction homomorphism̄Lτ → L̄∂τ is an

isomorphism.
In particular, the property (b) implies the vanishing ofσL outside of the star ofσ .
2. For the zero coneo, the “generic point” of∆, the corresponding simple sheaf

E := ∆E := oL
is called the(virtual) equivariant intersection cohomology sheaf (or the minimal extension
sheaf) of∆. For a quasi-convex fan∆, we may define its (virtual)intersection cohomology as

IH(∆) := Ē∆ .(4)

3. By extending scalars, each “local” sheafσL is derived from the “global” sheaf∆/σE
of the corresponding transversal fan: As in 1 (iv), we letπσ := π |∆�σ : ∆�σ → ∆/σ denote
the homeomorphism induced from the projectionV → V/Vσ . The inverse imageπ∗σ (∆/σE)
is a flabby sheaf of gradedA-modules on the closed subset∆�σ of ∆. Its trivial extension to
the whole fan space∆ then yields the sheafσL.

The following elementary decomposition theorem has been proved in [BBFK2, 2.4] and
in [BreLu1, 5.3]:

THEOREM 2.3 (Decomposition theorem).Every pure sheaf F on ∆ admits a (non-
canonical) direct sum decomposition of A-modules

F ∼=
⊕

σ∈∆
(σL⊗R Kσ )

with Kσ := Kσ (F) := ker(�̄σ∂σ : F̄σ → F̄∂σ ), a finite dimensional graded vector space.

For a proof of the following special case, we refer to [BBFK2, 2.5].

EXAMPLE. Let ι : (V , ∆̂) → (V ,∆) be a refinement morphism. Thenι∗(Ê) is a pure
sheaf. Its decomposition is of the form

ι∗(Ê) ∼= E ⊕
⊕

σ∈∆≥2

(σL⊗R Kσ ) ,

where the “correction terms” are “of higher order”: they are supported on the closed subset
∆≥2, and the corresponding vector spacesKσ are (strictly) positively graded.

REMARK 2.4. For a pure sheafF on the boundary fan∂σ of ann-dimensional cone
and the projection mappingπ : (V , ∂σ)→ (W,Λσ ) corresponding to a rayλ as in 1.3, (iii),
the direct imageπ∗(F |∂σ ) is a pure sheaf onΛσ .
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3. The dual of a pure sheaf. In this section, the symbolF always denotes a pure
sheaf on an oriented fan∆. Furthermore, unless otherwise stated, the symbol Hom is un-
derstood to mean HomA, and⊗ means⊗R. Moreover, for a coneσ ∈ ∆, we consider
detV ∗σ :=

∧dimσ
V ∗σ as a graded vector space concentrated in degreed = 2 dimσ , with the

convention detV ∗o = R.
To F , we associate its dualDF and show the following properties: The dual is again a

pure sheaf on∆, and for normal∆, the module of sections(DF)∆ is the dual of the module
F(∆,∂∆) of sections ‘with compact supports’ ofF .

3.1. Construction of the dual sheaf. To construct the dualDF of the pure sheafF
on ∆, we recall that it suffices to define its sections over affine fans — this will be done
in such a way that duality holds by definition — and to specify the restriction morphisms
between them.

SECTIONS OVER A CONEσ ∈ ∆. AsAσ -module, we define(DF)σ = DF(〈σ 〉) by

(DF)σ := Hom(F(σ,∂σ ), Aσ )⊗ detV ∗σ .(5)

RESTRICTION HOMOMORPHISMS. For a faceτ � σ , the homomorphism�στ is con-
structed in two steps: In the first step, we deal with the case of a facet; in the second step, we
extend this recursively to the general situation of a face of arbitrary codimension.

To that end, we needtransition coefficients εστ = ±1 for the facetsτ of σ . They are
defined in the following way: Ford := dimσ , the inclusionVτ ⊂ Vσ induces a natural map
κ :∧d−1

V ∗σ →
∧d−1

V ∗τ = detV ∗τ . We choose a linear formh onV ∗σ with Vτ = ker(h) and
h|σ ≥ 0. Every element of detV ∗σ decomposes in the formh∧ η with unique imageκ(η). We
thus obtain a homomorphism

ψh : detV ∗σ → detV ∗τ , h ∧ η �→ κ(η) .(6)

With the volume formsωσ ∈ detV ∗σ andωτ ∈ detV ∗τ defining the respective orientations, we
now set

εστ := sign(λ) with λ := ψh(ωσ )/ωτ ∈ R �=0

(i.e.,λ given byψh(ωσ ) = λ · ωτ ).
Step 1: Restriction homomorphism for a facet τ ≺1 σ .

Using again the linear formh ∈ V ∗σ , we are going to define another homomorphism

ϕh : Hom(F(σ,∂σ ), Aσ )→ Hom(F(τ,∂τ ), Aτ )

and see that

ϕλh = λϕh and ψλh = λ−1ψh

for every non-zero scalarλ ∈ R. Thus the homomorphism

ϕh ⊗ ψh : Hom(F(σ,∂σ ), Aσ )⊗ detV ∗σ → Hom(F(τ,∂τ ), Aτ )⊗ detV ∗τ
does not depend on the special choice ofh, so we may set

�στ := εστ · ϕh⊗ψh .(7)
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The mapϕh associates to a homomorphismf : F(σ,∂σ ) → Aσ the homomorphismϕh(f ) :
F(τ,∂τ ) → Aτ , which acts in the following way: We first extend a sections ∈ F(τ,∂τ ) trivially
to ∂σ and then to a sectioňs ∈ Fσ ; we thus havehš ∈ F(σ,∂σ ) and may finally set

ϕh(f )(s) := f (hš)|τ ∈ Aτ .(8)

In order to see that this definition is independent of the particular choice ofš, we present
an alternative description, following the argument of [BBFK2, p. 36]: We use three exact
sequences, starting with

0→ F(σ,∂σ ) → Fσ → F∂σ → 0 .

The second one is composed of the multiplication withh and the projection onto the cokernel:

0−→ Aσ
µh−→ Aσ −→ Aτ −→ 0 .

Eventually the subfan∂τ σ := ∂σ \ {τ } of ∂σ gives rise to the exact sequence

0→ F(τ,∂τ ) → F∂σ → F∂τ σ → 0 .

The associated Hom-sequences provide a diagram

Ext(F∂τ σ , Aσ )�
Hom(Fσ ,Aσ ) −→ Hom(F(σ,∂σ ), Aσ )

α−→ Ext(F∂σ ,Aσ )�β

Hom(F(τ,∂τ ), Aσ ) −→ Hom(F(τ,∂τ ), Aτ )
γ−→ Ext(F(τ,∂τ ), Aσ ) −→ Ext(F(τ,∂τ ), Aσ )

with Ext= Ext1A. We show thatγ is an isomorphism; we then have

ϕh := γ−1 ◦ β ◦ α .
In fact, the rightmost arrow in the bottom row is the zero homomorphism, since it is induced
by multiplication withh, which annihilatesF(τ,∂τ ). On the other hand, theAτ -moduleF(τ,∂τ )
is a torsion module overAσ , so that Hom(F(τ,∂τ ), Aσ ) vanishes.

Step 2: Restriction homomorphism for faces of higher codimension.
For a faceτ ≺ σ of codimensionr ≥ 2, we choose a “flag”

τ0 := τ ≺1 τ1 ≺1 · · · ≺1 τr := σ
of relative facets joiningτ andσ . Defining the restriction homomorphism�στ as the composite
of the�τi+1

τi , we have to show that the result does not depend on the particular choice of the
flag. This is easy to see in the caser = 2: For two flagsγ ≺1 τ ≺1 σ andγ ≺1 τ

′ ≺1 σ and
h, h′ ∈ V ∗σ as above, we setg := h|Vτ ′ andg ′ := h′|Vτ , and then find

ϕg ′ ◦ ϕh = ϕg ◦ ϕh′ and ψg ′ ◦ ψh = −ψg ◦ ψh′ ,
whence

�τγ ◦ �στ = �τ
′
γ ◦ �στ ′ .(9)
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Thus, for generalr, it suffices to verify that every two such flags can be transformed into each
other in such a way that in each step, only one intermediate cone is replaced by another one.
We proceed by induction on the codimensionr.

To prove that claim, we may assumeτ = o (otherwise, we replace∆ with ∆/τ ) and
∆ = 〈σ 〉. We want to compare the given flag(τj ) joining τ = o andσ with a second one,
say(τ̃j ). There is a chain of rays�1 := τ1, . . . , �s := τ̃1 such that the two-dimensional cones
�i+�i+1 belong to∆. We now proceed by a second induction on that numbers. For s = 1,
we may pass to the fan∆/τ1 and use the first induction hypothesis forr−1. For the induction
step, it evidently suffices to consider the cases = 2. Choosing any auxiliary flag of the form
o ≺1 τ1 ≺1 τ1+τ̃1 ≺1 · · · ≺1 σ , the cases = 1 yields its equivalence with the start flag. On
the other hand, by (9), the auxiliary flag is equivalent to the one obtained by interchangingτ1

andτ̃1, and this in turn is equivalent to the “twiddled” flag.
3.2. Global sections. We now show that formula (5) defining duality for cones actu-

ally extends to normal subfans. To that end, weneed the following preparatory results:

LEMMA 3.1. (i) For an arbitrary fan∆, there is a natural isomorphism

Θ :
⊕

σ∈∆n
(DF)σ

∼=−→ Hom(F(∆,∆≤n−1), A)⊗ detV ∗ .(10)

(ii) If ∆ is purely n-dimensional, the A-modules

F(∆,∆≤n−1) ⊂ F(∆,∂∆) ⊂ F∆
are torsion-free and of the same rank. As a consequence, the restriction homomorphisms

Hom(F∆,A)→ Hom(F(∆,∂∆),A)→ Hom(F(∆,∆≤n−1), A)

for the dual modules are injective.
(iii) In the setup of cellular (“ Čech”) cochains and cocycles as presented in Section 3 of

[BBFK2], for an arbitrary sheaf G on a purely n-dimensional fan∆, there is an isomorphism

Z0(∆;G) = G(∆,∂∆) ,(11)

and for a normal fan, we also have an isomorphism

Z0(∆, ∂∆;G) = G∆ .(12)

PROOF. (i) For eachn-dimensional coneσ , the equality detV ∗σ = detV ∗ clearly
holds. Hence, the isomorphismΘ in question is immediately obtained from the defining
equality (5) for(DF)σ by applying the additive functor Hom(_ , A) ⊗ V ∗ to the obvious
direct sum decomposition

F(∆,∆≤n−1)
∼=

⊕

σ∈∆n
F(σ,∂σ ) .

(ii) For the special caseF = E , this has been proved in [BBFK2, 6.1, i)]. The proof
clearly carries over to arbitrary pure sheaves.
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(iii) We recall that the submodule

Z0(∆, ∂∆;G) ⊂ C0(∆, ∂∆;G) = C0(∆;G) =
⊕

σ∈∆n
Gσ

of degree zero cocyclesg = (gσ ) relative to∂∆ consists of those cochains that satisfygσ |τ =
gσ ′ |τ wheneverτ ∈ ∆n−1 is an “inner” facet, i.e., a common facet of twon-conesσ, σ ′ ∈ ∆,
whereas for the submodule

Z0(∆;G) ⊂ Z0(∆, ∂∆;G)
of absolute cocycles, we have to require in addition that the restriction ofgσ to each “outer”
facetτ ∈ ∂∆n−1 vanishes.

For (11) and (12), we note that in both cases, the right hand side is always contained
in the left hand side. In order to see the reverse inclusion, we have to show for a cochain
g = (gσ ) ∈ C0(∆;G) that gσ |γ = gσ ′ |γ holds wheneverγ ∈ ∆ is a common face of two
n-conesσ andσ ′. Since in the first case it suffices to consider conesγ �∈ ∂∆ (then the fan
∆/γ is even complete!) and in the second∆ is assumed to be normal, the conesσ andσ ′ can
be joined by a sequence ofn-cones intersecting successively in common facets containingγ .
It thus suffices to consider the case thatγ is a facet, where the statement is obvious. �

THEOREM 3.2. For a normal oriented fan ∆, the natural isomorphism Θ of (10) in-
duces isomorphisms

(DF)∆
∼=−→ Hom(F(∆,∂∆),A)⊗ detV ∗(13)

and

(DF)(∆,∂∆)
∼=−→ Hom(F∆,A)⊗ detV ∗ .(14)

By part (iii) of the preceding lemma it is sufficient to prove the following reformulation:

RESTATEMENT. For any 0-cochain ψ = (ψσ ) ∈⊕
σ∈∆n DFσ and its image Θ(ψ) in

Hom(F(∆,∆≤n−1), A)⊗ detV ∗, the equivalences

ψ ∈ Z0(∆, ∂∆;DF)⇐⇒ Θ(ψ) ∈ Hom(F(∆,∂∆),A)⊗ detV ∗(15)

and

ψ ∈ Z0(∆;DF)⇐⇒ Θ(ψ) ∈ Hom(F∆,A)⊗ detV ∗(16)

hold.

PROOF. We choose an auxiliary functionh =∏s
i=1 hi ∈ A2s as the lowest degree prod-

uct of linear formshi that vanishes on
⋃
τ∈∆n−1 Vτ ; so eachVτ is the kernelVi of somehi .

After fixing a positive volume form onV and thus, an isomorphismR
∼=−→ detV ∗, the ho-

momorphismsψhi of 3, (6) provide isomorphismsR ∼= detV ∗ ∼= detV ∗i . We may thus drop
the determinant factors on the right hand side, and for each coneγ ∈ ∆≥n−1, we may re-
place(DF)γ with Hom(F(γ,∂γ ), Aγ ) and the restriction maps with±ϕhi . Using the obvious
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inclusions

hF(∆,∂∆) ⊂ hF∆ ⊂ F(∆,∆≤n−1)

of torsion-freeA-modules, the right hand sides of (15) and (16) are equivalent to the inclusions

χ(hF(∆,∂∆)) ⊂ hA and χ(hF∆) ⊂ hA , where χ := Θ(ψ) .
Proof of the implications “⇒” in (15) and (16): It suffices to show that for a pertinent

0-cocycleψ, the divisibility relationhi |χ(hf ) holds for each indexi and for an arbitrary
sectionf in F(∆,∂∆) orF∆, respectively.

With fσ := f |σ ∈ Fσ for ann-coneσ , we write

χ(hf ) =
∑

σ∈∆n
ψσ(hfσ ) ∈ A .

For each indexi = 1, . . . , s, we introduce the functiongi := h/hi ∈ A2s−2. For the impli-
cation in (15), we consider a relative 0-cocycleψ = (ψσ ) ∈ Z0(∆, ∂∆;DF) and a section
f ∈ F(∆,∂∆) ‘with compact support’. Ifσ ∩Vi is not a facet ofσ or if it belongs to∂∆,
thengifσ lies inF(σ,∂σ ) and thusψσ (hfσ ) = hiψσ (gifσ ) ∈ hiA holds. Otherwise, there is
precisely onen-coneσ ′ �= σ such thatτ := σ ∩Vi is a common facet of both,σ andσ ′. We
now verify thathi divides the sumψσ(hfσ )+ ψσ ′(hfσ ′) or, equivalently, that

ψσ(hfσ ) |Vi = −ψσ ′(hfσ ′) |Vi
holds. Using the extensiongifσ ∈ F(σ,∂τ σ ) of (gif )|τ ∈ F(τ,∂τ ) in the formula (8), we obtain

ψσ(hfσ )|Vi = (ϕhi(ψσ ))((gifσ )|τ ) .
By the relative cocycle condition,ψσ andψσ ′ restrict to the same section in(DF)τ . Accord-
ing to the choice of the transition coefficientsεστ in the definition of the restriction homomor-
phism�στ in 3, (7), that yields

ϕhi(ψσ ) = −ϕhi(ψσ ′) ,
which implies our claim. Ifψ ∈ Z0(∆;DF) is an absolute cocycle andf ∈ F∆, the argument
is as above, only in the case whereτ := σ ∩Vi is an “outer” facet ofσ (i.e., contained in∂∆),
one has to use the fact thatψσ |τ = 0.

Proof of the implications “⇐”: We now assume that the homomorphismχ = Θ(ψ) :
F(∆,∆≤n−1) → A can be extended to the larger modulesF(∆,∂∆) or F∆, respectively (cf.
parts (i, ii) in the preceding lemma). We have to verify the pertinent cocycle condition for
ψ = (ψσ ), namely, the equalityψσ |τ = ψσ ′ |τ wheneverτ is a common “inner” facet of two
n-conesσ, σ ′ ∈ ∆, and, in the second (“absolute”) case, the additional vanishingψσ |τ = 0 if
τ is an “outer” facet ofσ .

For an “inner” facetτ = σ ∩σ ′, let i be the index with ker(hi) = Vτ . We fix an arbitrary
sectionf0 ∈ F(τ,∂τ ) and, as for (8), extend it to sectionsf ∈ Fσ , f ′ ∈ Fσ ′ vanishing on all
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the remaining facets ofσ and ofσ ′, respectively. Patching them together and extending by 0
yields a sectionf1 ∈ F(∆,∂∆). Then the equation

hiχ(f1) = χ(hif1) = χ(hif + hif ′) = ψσ (hif )+ ψσ ′(hif ′) ,
after restriction toτ , yields

0= (hiχ(f1))
∣∣
τ
= ϕhi(ψσ )(f0)+ ϕhi(ψσ ′)(f0) = (ψσ |τ − ψσ ′ |τ )(f0) .

Finally, we leave it to the reader to consider the remaining case whereχ can be extended to
the largest moduleF∆, andτ ∈ ∂∆ is an “outer” facet. �

3.3. Purity. We now show that duality preserves purity.

THEOREM 3.3. The dual sheaf DF of a pure sheaf F is pure.

PROOF. As in Corollary 4.12 in [BBFK2], theAσ -moduleF(σ,∂σ ) is free of finite rank,
thus also its dual(DF)σ ; hence, all we have to verify is flabbyness: For each coneσ ∈ ∆,
the restriction homomorphism

�σ∂σ : (DF)σ → (DF)∂σ
is surjective.

To that end, we first interpret(DF)∂σ . We may assume dimσ = n and use the setup of
1 (iv). ForG := π∗(F |∂σ ), as in 1, (3), there is a natural isomorphism

(DG)Λσ ∼= (DF)∂σ
of B-modules, while for the complete fanΛσ in W , Theorem 3.2 yields

(DG)Λσ ∼= HomB(GΛσ , B)⊗ detW∗ .

Using the isomorphism (3), we thus obtain a chain of isomorphisms

(DF)∂σ ∼= (DG)Λσ ∼= HomB(GΛσ , B) ∼= HomB(F∂σ , B) .

Eventually, using these isomorphisms, a sectionβ ∈ (DF)∂σ may be interpreted as an ele-
ment of HomB(F∂σ , B).

To proceed with the proof, we introduce the sheafH := π∗(G) on σ̂ . There are isomor-
phisms

Hσ̂
∼= A⊗B GΛσ ∼= A⊗B F∂σ and H∂σ̂

∼= F∂σ(17)

and a “Thom isomorphism”

µg : Hσ̂
∼=−→ gHσ̂ = H(σ̂,∂σ̂ ) , h �→ gh(18)

with a conewise linear functiong ∈ A2
(σ̂ ,∂σ̂ )

, unique up to a non-zero scalar multiple, that

is constructed conewise as follows: We fix a nontrivial linear formf ∈ A2
λ. For a facet

τ ≺1 σ , let gτ ∈ A2 be the unique linear form with ker(gτ ) = Vτ andgτ |λ = f . Then we set
g|τ+λ := gτ .
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For each facetτ of σ , the functiongτ induces an isomorphism

detV ∗ ∼= detV ∗τ , gτ ∧ η �→ η|Vτ .
Hence, the composed isomorphism detV ∗ ∼= detV ∗τ ∼= detW∗ is independent ofτ . We thus
may drop the determinant factors.

We want to show that an inverse imageα ∈ (DF)σ = Hom(F(σ,∂σ ), A) of β ∈ (DF)∂σ
with respect to�σ∂σ is given by the composite

F(σ,∂σ )
i−→ H(σ̂,∂σ̂ )

µ1/g−→ Hσ̂
∼= A⊗B F∂σ idA⊗β−→ A⊗B B = A

whereµ1/g is the isomorphism “division byg” corresponding to (18), and the homomorphism
i is constructed as follows: SinceFσ is a freeA-module and the restriction homomorphism
Hσ̂ → H∂σ̂ is surjective, cf. (17), the operator�σ∂σ for the sheafF admits a factorization of
the form

Fσ
j−→ Hσ̂ −→ H∂σ̂

∼= F∂σ .
Sincej (F(σ,∂σ )) clearly is contained inH(σ̂,∂σ̂ ), we may choosei := j |F(σ,∂σ) .

To prove the equalityα|∂σ = β, it still remains to show thatα|τ = β|τ for all facets
τ ≺1 σ . Here we identify the (naturally isomorphic) algebrasB andAτ .

We fix an arbitrary sections ∈ F(τ,∂τ ) ⊂ F∂σ , where the inclusion is given by trivial
extension. Using the isomorphisms (17) and (18), any further extensionš of s to a section
of F on the whole coneσ , regarded as section inHσ̂ ⊃ Fσ , can be written in the form

š = 1⊗ s + gd ∈ Hσ̂ ∼= A⊗B F∂σ
with some correction termd ∈ Hσ̂ . Recalling the formula (8) in the definition of the ho-
momorphism�στ for DF , we have to show that the restriction of the polynomial function
α(gτ · š) ∈ Aσ to τ coincides withβ(s). To that end, we note thatgτ · (1⊗ s) = g · (1⊗ s)
holds, since the support of 1⊗ s ∈ Hσ̂ is contained inτ + λ. So we eventually have the
equality

α(gτ · š)|τ = (idA ⊗ β)(1⊗ s + gτ d)|τ = (idA ⊗ β)(1⊗ s)|τ ,
and thus�στ (α) mapss to β(s). �

3.4. Biduality. In order to see that the dual sheafDF of a simple pure sheaf again is
simple, we need biduality:

THEOREM 3.4 (Biduality theorem). (cf. [BreLu1, 6.23])Every pure sheaf on an ori-
ented fan is reflexive: For such a sheaf F , there exists a natural isomorphism

F ∼=−→ D(DF) .
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PROOF. Over a coneσ ∈ ∆, the biduality isomorphismFσ → DDFσ is obtained by
these isomorphisms:

(DDF)σ = Hom((DF)(σ,∂σ ), Aσ )⊗ detV ∗σ
∼= Hom(Hom(Fσ ,Aσ )⊗ detV ∗σ ,Aσ )⊗ detV ∗σ
∼= Hom(Hom(Fσ ,Aσ )⊗ detV ∗σ ,Aσ ⊗ detV ∗σ )
∼= Hom(Hom(Fσ ,Aσ ),Aσ ) ,

(19)

where the first isomorphism follows from Theorem 3.2 applied to the fan∆ := 〈σ 〉 in the
vector spaceVσ . The freeAσ -moduleFσ is reflexive, so it can be naturally identified with its
bidual, i.e., the fourth module in (19). Since this conewise construction is natural, it carries
over to the sheaves. �

COROLLARY 3.5. (cf. [BreLu1, 6.26]) For each cone σ ∈ ∆, the simple pure sheaf

σL satisfies

D(σL) ∼= σL⊗ detV ∗σ .

In particular, the equivariant intersection cohomology sheaf E is self-dual with an isomor-
phism

ϑ : E ∼=−→ DE(20)

of degree zero.

PROOF. Clearly, by biduality,DF = 0 impliesF = 0. On the other hand, duality
respects direct sum decompositions. Since the bidualD(D(σL)) ∼= σL is simple, the Decom-
position Theorem 2.3 implies that the dualD(σL)must be a simple sheaf. For a pure sheafF
and a coneσ ∈ ∆, theAσ -moduleF∂σ is a torsion module, whenceFσ = 0 if and only if
F(σ,∂σ ) = 0. Hence a pure sheaf and its dual have the same support, soD(σL) andσL agree
up to a shift. To determine it explicitly, we use the equalityσL(σ,∂σ ) = σLσ = Aσ , which
yieldsD(σL)σ ∼= Hom(Aσ ,Aσ )⊗ detV ∗σ ∼= Aσ ⊗ detV ∗σ . �

4. The intersection product. In order to make precise the naturality of the intersec-
tion product, we introduce the following notion:

DEFINITION 4.1. A duality correlation on∆ is a sheaf homomorphism

ϕ : E → DE
of degree 0 from the equivariant intersection cohomology sheaf to its dual extending the nat-
ural identification

Eo = R
1�→1∗−→ R∗ = DEo .

After multiplication with an appropriate scalar factor if necessary, any isomorphismE →
DE provides such a duality correlation. The first and main aim of this section is to prove the
following result:
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THEOREM 4.2. On every fan ∆, there is a unique duality correlation. It defines a self
duality E ∼= DE for the equivariant intersection cohomology sheaf E .

Existence has already been shown in Corollary 3.5; uniqueness follows from Proposition
4.5, applied toF = DE . But let us first state the global version of duality, which is needed
later on in the proof of lemma 4.6:

REMARK AND DEFINITION 4.3. Let∆ be a normaln-dimensional oriented fan. If
we fix a positive volume formω ∈ detV ∗, then every duality correlationϕ gives rise to an
intersection product on∆, i.e., a pairing

E∆ × E(∆,∂∆)→ A[−2n](21)

as follows: The isomorphismΘ of Lemma 3.1 yields an isomorphism

(DE)∆ Θ−→ Hom(E(∆,∂∆),A)⊗ detV ∗
∼=−→ Hom(E(∆,∂∆),A[−2n]) .

Composed with the duality correlationϕ∆ on the level of global sections it provides a homo-
morphism

χ∆ := χω∆ : E∆→ Hom(E(∆,∂∆),A[−2n]) ,(22)

which is equivalent to (21).

THEOREM 4.4. (cf. [BBFK2, 6.3] and [BreLu1, 6.28]) Let the oriented fan ∆ be
normal, and fix a positive volume form ω ∈ detV ∗. If a duality correlation ϕ : E → DE is an
isomorphism, then the induced pairing

E∆ ×E(∆,∂∆)→ A[−2n]
is a duality pairing of reflexiveA-modules. If∆ is even quasi-convex, then the A-modulesE∆
and E(∆,∂∆) are free, and thus the associated reduced pairing

Ē∆ × Ē(∆,∂∆)→ Ā[−2n] ∼= R[−2n](23)

is a duality pairing of graded real vector spaces.

PROOF. Composing the isomorphismsϕ∆ andϕ(∆,∂∆) with the isomorphisms (13) and
(14) of Theorem 3.2, one obtains:

E∆
∼=−→ DE∆ ∼= Hom(E(∆,∂∆),A)

and

E(∆,∂∆)
∼=−→ DE(∆,∂∆) ∼= Hom(E∆,A) .

If ∆ is even quasi-convex, then the modulesE∆ andE(∆,∂∆) are free, see [BBFK2, 4.8,
4.12]. �

We now state and prove the proposition that yields the unicity of the duality correlation.
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PROPOSITION 4.5. (see [BBFK2, 1.8 iii)] and [BreLu2, 3.14])For a fan ∆ and two
copies E and F of the equivariant intersection cohomology sheaf, every homomorphism

R = Eo → Fo = R

extends in a unique manner to a homomorphism E → F of degree 0.

For the proof, we assume the Vanishing Lemma 4.6. The rest of this section will then be
dedicated to the proof of that lemma.

PROOF. The extension is constructed conewise by induction on the dimension: We have
to show that over each non-zero coneσ , a homomorphismϕ∂σ : E∂σ → F∂σ extends in a
unique way to a homomorphismϕσ : Eσ → Fσ . Assuming Lemma 4.6 (i), theA-modules
Eσ andFσ are generated by homogeneous elements of degree below dimσ . On the other
hand, Lemma 4.6, (iii) yieldsEq(σ,∂σ ) = 0 = F

q

(σ,∂σ ) for q ≤ dimσ . Hence, the restriction

mapsEqσ → E
q

∂σ andFqσ → F
q

∂σ are isomorphisms forq < dimσ , whence the uniqueness
of ϕσ follows. The existence is a consequence of the fact thatEσ is a freeAσ -module. �

We thus have to prove the following result, the proof of which is based on the Hard
Lefschetz theorem 4.7 for fans in lower dimensions:

LEMMA 4.6 (Vanishing lemma). (see [BBFK2, 1.7, 1.8 ii)] and [BreLu2, 3.13])For
the equivariant intersection cohomology sheaf E on a non-zero cone σ, the following equiva-
lent conditions hold:

(i) Ē
q
σ = 0 for q ≥ dimσ ,

(ii) Ē
q

(σ,∂σ ) = 0 for q ≤ dimσ ,

(iii) E
q

(σ,∂σ )
= 0 for q ≤ dimσ .

PROOF. Let us first prove (i). We may assume dimσ = n and we use the setup of 1 (v).
First of all note that

(B/mB)⊗B E∂σ ∼= (B/mB)[T ] ⊗B[T ] E∂σ .
Now we tensor the exact sequence

0−→ (B/mB)[T ] µT−→ (B/mB)[T ] −→ A/mA −→ 0

with E∂σ and obtain the exact sequence

(B/mB)⊗B E∂σ µ̄T−→ (B/mB)⊗B E∂σ −→ (A/mA)⊗A E∂σ −→ 0

with µ̄T := id(B/�B) ⊗ µT , whereµT acts on theA-moduleE∂σ . Thus

Ē∂σ ∼= coker(µ̄T : (B/mB)⊗B E∂σ → (B/mB)⊗B E∂σ ) .
On the other hand, according to [BBFK2, (5.3.2)] together with 1, (3) and using the notation
of 2.2, (4), we have an isomorphism

Ē∂σ ∼= coker(µ̄ψ : IH(Λσ )→ IH(Λσ )) ,
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whereµψ : E(Λσ ) → E(Λσ ) is the multiplication with the strictly convex conewise linear
function

ψ := T ◦ (π |∂σ )−1 ∈ A2(Λσ ) .

It now suffices to apply form := n−1 the following theorem proved in [Ka]:

THEOREM 4.7 (Combinatorial hard Lefschetz theorem).Let Λ be a complete fan in
them-dimensional vector space V andψ ∈ A2(Λ) a conewise linear strictly convex function.
Then the “Lefschetz homomorphism|rm” L := µ̄ψ : ĒΛ → ĒΛ induced by the multiplication
µψ : EΛ→ EΛ with ψ yields isomorphisms

Lk : IHm−k(Λ)→ IHm+k(Λ)

for each k ≥ 0. In particular, L is injective in degrees q ≤ m − 1 and surjective in degrees
q ≥ m− 1.

Let us finish the proof of Lemma 4.6: The equivalence of (i) and (ii) follows from (20)
and the dual pairing (23) in Theorem 4.4 in the particular case∆ = 〈σ 〉, while the equivalence
of (ii) and (iii) is a consequence of the following fact: For a finitely generated gradedA-
moduleM, one hasMq = 0 for q ≤ r if and only if M̄q = 0 for q ≤ r. �

5. Comparison with previous definitions. Let ι : (V , ∆̂) → (V ,∆) be anoriented
refinement, i.e., if a cone in∆̂d is contained in a cone in∆d , then their orientations coincide.

PROPOSITION 5.1. For every pure sheaf F on ∆̂, there exists a canonical isomorphism

D(ι∗(F)) ∼= ι∗(DF) .
PROOF. For a coneσ ∈ ∆d , let σ̂ � ∆̂ denote its refinement. Then the formula (13) of

Theorem 3.2, applied tôσ , yields the isomorphism in the following chain

D(ι∗(F))σ = Hom(ι∗(F)(σ,∂σ ), A)⊗ detV ∗σ = Hom(F(σ̂ ,∂σ̂ ), A)⊗ detV ∗σ
∼= DFσ̂ = ι∗(DF)σ �

We now can prove the Compatibility Theorem stated in the introduction:

THEOREM 5.2 (Compatibility theorem). (cf. [BreLu2, 7.2])Let Ê be the equivariant
intersection cohomology sheaf of the oriented refinement ∆̂ of the normal n-dimensional fan
∆, and let ε : E → ι∗(Ê) be a homomorphism of graded sheaves extending the identity
E(o) = R = ι∗(Ê)(o). Then the intersection products provide a commutative diagram

E(∆)× E(∆, ∂∆) −→ Ê(∆̂)× Ê(∆̂, ∂∆̂)
↘ ↙

A[−2n] .
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PROOF. The homomorphismε provides a diagram

E ε−→ ι∗(Ê)

←
−

←
−

DE Dε←− Dι∗(Ê) ∼= ι∗(DÊ) ,
where the vertical arrows areϑ respectivelyι∗(ϑ̂) with the duality correlationsϑ : E → DE
of (20) andϑ̂ : Ê → DÊ . It is commutative at the zero cone and thus everywhere, see
Proposition 4.5. Passing to the level of global sections yields the claim. �

Finally let us discuss the approach of [BBFK2, 6.1]. Here we use the notion of aneval-
uation map:

DEFINITION 5.3. Let∆ be an oriented purelyn-dimensional fan in the vector spaceV ,
endowed with a volume formω ∈ detV ∗. Then, for 1∈ E0

∆ = E0
o = R, the homomorphism

eω∆ := χω∆(1) : E(∆,∂∆)→ A[−2n] ,
see (22), is called theevaluation map associated toω.

THEOREM 5.4. Let ∆ be an oriented normal fan in a vector space V endowed with a
volume form ω ∈ detV ∗. Furthermore let

β : E × E → E
be a bilinear map of A-module sheaves extending the multiplication

Eo × Eo = R × R→ R = Eo
of real numbers. Then the pairing

eω∆ ◦ β∆ : E(∆)× E(∆, ∂∆)→ E(∆, ∂∆)→ A[−2n](24)

coincides with the intersection product.

Note that for a simplicial fan∆, the equalityE = A holds, so the bilinear mapβ neces-
sarily is the multiplication of functions and thus, symmetric. In the non-simplicial case, the
mapβ is not uniquely determined. Nevertheless, there always exists such a mapβ that is
symmetric. For a complete fan, the intersection product is thus symmetric, which also follows
from Theorem 5.2 with a simplicial subdivision̂∆ of ∆.

PROOF OF5.4. For each coneσ and a positive volume formωσ ∈ det(V ∗σ ), we define
e
ωσ
σ : E(σ,∂σ ) → Aσ [−2 dimσ ] analogously toeω∆. Theneωσσ ⊗ ωσ does not depend on the

choice ofωσ , and the family of homomorphisms

ϕ̃σ : Eσ → DEσ , s �→ (eωσσ ◦ β)(s,_)⊗ ωσ

defines a duality correlatioñϕ : E → DE and thus, according to Theorem 4.2, is unique. In
particular, the pairing (24) is the intersection product. �
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