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Abstract. The proof of the Combinatorial Hard Lefschetz Theorem for the “virtual”
intersection cohomology of a not necessarily rational polytopal fan as presented by Karu com-
pletely establishes Stanley’s conjectures for the generaliaggttor of an arbitrary polytope.

The main ingredients, Poincaré Duality and the Hard Lefschetz Theorem, rely on an intersec-
tion product. In its original constructions, given independently by Bressler and Lunts on the
one hand, and by the authors of the present article on the other, there remained an apparent
ambiguity. The recent solution of this problem by Bressler and Lunts uses the formalism of
derived categories. The present article instead gives a straightforward approach to combinato-
rial duality and a natural intersection produzbmpletely within the framework of elementary

sheaf theory and commutative algebra, thus avoiding derived categories.

Introduction. In [St], Stanley introduced the generalizediector for arbitrary poly-
topes. For rational polytopes, this new combinatorial invariant agrees with the vector of even
(middle perversity) intersection cohomology Betti numbers of a projective toric variety as-
sociated with the polytope and thus, it enjoys the same properties. Stanley proved that the
Dehn-Sommetrville equalities (i.e., Poincaré duality) remain valid in the general case, and he
conjectured that non-negativity and unimbtyaalso should continue to hold. In the rational
case, the unimodality property follows from the “Hard Lefschetz Theorem” for the intersec-
tion cohomology of a projective variety.

This conjecture motivated the search for agdyrcombinatorial approach to the inter-
section cohomology of toric varieties that would allow to drop any rationality assumption. A
suitable framework has been developed independently in [BBFK2] and by Bressler and Lunts
in [BreLul]. The common basic idea is to imitate the construction of the equivariant intersec-
tion cohomology sheaf and the transition to theual” intersection cohomology entirely in
fan-theoretic terms: To view a (not necessarily rational) fan as a finite topological space with
the subfans as non-trivial open sets, naturally endowed with a sheéfpolynomial rings,
and to study the properties of a certain sheaf of modtil@s that “fan space” that agrees with

2000Mathematics Subject Classification. Primary 14F43; Secondary 14M25, 52Bxx.

Key words and phrases. Combinatorial intersection conomology, noational polytopes, intersection product,
duality, Combinatorial Hard Lefschetz theorem.

Fir finanzielle Unterstitzung danken wir dBeutschen Forschungsgemeinschaft (DFG, im Rahmen des
Schwerpunktprogramms SPP 108#bbale Methoden der Komplexen Geometrie) sowie der Universitat Konstanz
(Projekt 1/88).

Nous remercions de nous avoir accueillis en tantfgtié Groupe de Travail, les Unités du CNRS de Marseille:
Le Centre International de Rencontres Mathématiques (CIRM) et I Institut de Mathématiques de Luminy (IML).

O — ©



——

274 G. BARTHEL, J.-P. BRASSELET, K.-H. FIESELER AND L. KAUP

the equivariant intersection cohomology sheaf for the associated toric variety in the rational
case. This approach then yields a “virtualtersection cohomology theory for the class of
“quasi-convex” fans that includes all complete and hence, all polytopal fans.

At the time when these articles were written, a purely combinatorial version of the Hard
Lefschetz Theorem, as stated in Section 4, was still lacking. This was the only missing piece to
prove that the vector of even “virtual” intersection cohomology Betti numbers of a polytopal
fan agrees with the generalizéevector of the polytope, and thus, to fully establish Stanley’s
conjecture. As another problem, in the construction of the intersection product on the virtual
equivariant intersection cohomology sheaf, apparently non-canonical choices entered.

In the meantime, a proof of the combinatorial Hard Lefschetz Theorem has been pre-
sented by Karu in [Ka]. Since that result essentially relies on the Hodge-Riemann bilinear
relations for the “primitive” (virtual) intersection cohomology, its proof is based on the study
of the intersection product. The apparent ambiguity in the definition of that product, however,
makes the argumentation quite involved,cgirone has to carefully keep track of the choices
made.

A first simplified version has recently beerepented by Bressler and Lunts in [BreLu2],
using the framework of derived categories. In particular, they verify by a detailed analysis
that none of the possible choiceseddts the definition of the pairing.

Our goal is to go one step further, namely, to give a short, direct, and elementary ap-
proach to duality and the intersection product in the “geometrical” spirit of [BBFK2], fol-
lowing ideas of [Bri], the only prerequisites being sheaf theory and commutative algebra.
For the convenience of the reader, we givesheicomplete presentation, and we always give
references to the corresponding statements in [BreLul, 2].

Though we are mainly interested in the “virtual equivariant intersection cohomology”
shealft, it is appropriate to work in the class gfure sheaves’ as defined in Section 2. Within
this class, we present a direct and explicit construction of the dual, fgtedf a sheafF (see
Section 3). (In [BreLul, 2], the duality functor is defined as an endofunctor of a vast derived
category containing the pure sheaves as iaveusubcategory.) To give an idea, we summarize
the most important results, using this notation, explained more systematically in Section 1:
Let A be a quasi-convex fan in a vector spatef real dimensiom with a fixed volume form,
and oA, its boundary fan. The global sections of the equivariant intersection cohomology
sheaf€ on A and on(A4, 3 A), respectively, are (graded) modules over the (graded) symmetric
algebraA := S(V*) of polynomial functions orV.

DuALITY THEOREM. Thedual DF of a pure sheaf 7 isagain pure, and on an oriented
fan, thereisa natural biduality isomorphism

F = DDF).

For a pair (F, G) of mutually dual pure sheaves on an oriented quasi-convex fan A, there is
a global duality relation

F(A) = Hom(G(A, d4), A[—2n])
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and hence, a pairing
F(A) x G(A,0A) - A[—2n]
on the level of global sections.

Here the “relative” sections are those vanishing on the boundary subfan, they replace the
sections with compact support in ordinary sheaf theory.

The crucial step in the construction DEF is the definition of the restriction homomor-
phisms from a cone to a facet; the image of a seatian be interpreted as a kind of “residue”
along the facet. While keeping every singlepstasily accessible, the structure of the proof
of Poincaré duality and the naturality of the intersection product is the ‘classical’ one, as in
[BreLul, 2].

An intersection produabn the (graded) she&f corresponds to a sheaf homomorphism
v : € — DE of degree zero; in fact, we check tiats self-dual in a natural way.

The main applications, namely, the “Poincaré Duality Theorem” and the “Compatibility
Theorem” (cf. [BreLu2, 3.16 and 7.2]) as stated below, fit into the inductive proof of the Hard
Lefschetz Theorem (HLT) as given in [Ka] (see also [BreLu2]): Assuming HLT for poly-
topal fans in dimensiod < n, the “Poincaré Duality Theorem” yields a natural intersection
product on every fan in dimension In [Ka], it is shown that the Hodge-Riemann bilinear
relations (HRR) for simplicial fans in any dimension — which hold by [Mc] — together with
HRR for arbitrary fans in dimension$ < » imply HRR and thus, HLT in dimension.

In that induction step, it is most helpful to work with a canonical pairing, and to apply the
“Compatibility Theorem”.

“EQUIVARIANT” POINCARE DUALITY THEOREM. In the above situation, let us as-
sume that the Hard Lefschetz Theorem holds in all dimensions below n. Then there is a
natural intersection product

Q) E(A) x E(A,04) — A[-2n],
giving rise to a dual pairing of finitely generated free A-modules.

For the following supplement, lét be the equivariant intersection cohomology sheaf of
a refinementA of A with refinement map: A — A.

COMPATIBILITY THEOREM. Let& — () bea homomor phism of graded sheaves
extending the identity £, = R = (), at the zero cone o. Then the “ global” intersection
products are compatible, i.e., the following diagram is commutative:

E(A) x E(A,dA) — E(A) x E(A, dA)
2) N e
Al—21] .

The present article is a complete version of the results announced in [Fi]. We want to
thank Tom Braden for useful comments and remarks.
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1. Preliminaries. For the convenience of the reader, we recall some basic notions,
notation and constructions to be used in the sequel.

1.1. Basic algebra. L&t be a real vector space of dimensionandA := S(V*),
the symmetric algebra on the dual vector spgéei.e., the algebra of real valued polynomial
functions onV. We endowA with the even grading given by? = V*, a convention moti-
vated by equivariant cohomology, and wetdet= A>9 be the homogeneous maximal ideal
of A. For a gradedi-moduleM, its reduction modulan,

M = (A/m)®a M,

is a graded real vector space.
For a strictly convex polyhedral core C V, we letV, C V denote its linear span. In
analogy to the definition ofl, we consider the graded algebra

Ay = S(VF).

We usually identify its elements with polynomial functions on the cene

To avoid cumbersome notation, we admit graded homomorphisms even if they are not of
degree zero.

1.2. Fan topology and sheaves. Motivated by the coarse “toric topology” on a toric
variety given by torus-invariant open sets, we consider afgwhich need not be rational)
in V as afinite topological space with the subfans as open subsets. The “affine” fans

(o) :={o}Udo < A with boundary fan do :={t € A; 7 Z o}

form a basis of the fan topology by open sets that cannot be covered by smaller ones. Here
means that a cone is a face of another cone or that a set of cones is a subfan of some other fan;
furthermorer <3 o means that is a facet of the cone.

Sheaf theory on that “fan space” is particlyasimple, since a presheaf given on the
basis already “is” a sheaf. In particular, for a shé&abn A, the equality

F(o) =Fo

of the set of sections on the affine fan) and the stalk at the poiat holds.

Furthermore, a sheaf on A is flabby if and only if each restriction homomorphism
05, : F({o)) — F(do) is surjective.

In particular, we consider (sheaves gfimodules, whered is thestructure sheaf of A,
i.e., the graded sheaf of polynomial algebras determinedl@y)) := A,, the restriction
homomorphismp? : A, — A being the restriction of functions an to the facer < o.
The set of sectionsl(A) on a subfamd < A constitutes the algebra of conewise polynomial
functions on the suppoftA| in a natural way.

Given a homomorphism : 7 — F’ of sheaves omt and a subfan, we often write

Fp:=F(A), F,:=F({o)) and ¢a:Fs— F).
Similarly, for a pair of subfangA, Ag) with Ag < A, we define

Fa,pg) = ker(gjl‘o :Fa— Fay),
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the submodule of sections aofi vanishing onAg. In particular, for a purely:-dimensional
subfanA, we consider the case wherg is theboundary fan 9 A, i.e., the subfan generated
by those f—1)-cones which are a facet of exactly oneone inA. The sections vanishing
ond A could be regarded as an analogue of “sections with compact support”.

1.3. Sheaf and Fan Constructions. Lgt: V — W be a linear map inducing a
morphism of fans between a fahin V and a fanA in W, i.e., it maps each cone df into a
cone ofA. Let. A andB3 denote the corresponding sheaves of conewise polynomial functions,
and letF on A andG on A be sheaves of graded- or 5-modules, respectively. For cones
o € Aandy € Awith f(o) C y, there is an induced homomorphistp — A, and thus,
the structure of &, -module onF .

We are especially interested in the following constructions:

(i) Thedirectimage f.(F) on A is theBB-module sheaf defined by

[Py = Fpag, with  f7H(y):={0 € A; f(o) Cy} = A.

The directimage of a flabby sheaf is again flabby.
(i) Theinverseimage f*(G) on A is the.A-module sheaf determined by

f*(@)o := Ay ®p, G, foro e Aandthe minimaj € A with f(o) C y.
(i) For W =V, f = idy and(A, A) with a subdivision A of A instead of(A, A),
we obtain thus aefinement mor phism
A= A , O Y.
In particular, we will consider the case of an affine fan given by anz-dimensional cone,
and its stellar subdivision
6:=00+A:=00U{t+A; T€do}

with respect to a ray. := ¢ N o, where? is a one-dimensional linear subspace passing
through the interior of .
(iv) Foraconer € A, its closure in the fan topology is the star

Asoi={y € Ajy = o}.
In general, this is not a fan. The collection
Ajo:={n(y);y € Asos}

of the image cones with respect to the projection V. — W := V/V,, however, is a fan,
called thetransversal fan of o with respect taA. The induced map, : A-, — A/oisa
homeomorphism.

(v) Applying (iv) to the case of from (iii), the projectionr : V — W := V /¢ maps
the boundary fane homeomorphically onto thelattened boundary fan”

Ay :=0/\ = 00

in W. In that situation, choosing a linear forfne A2 with T'|;, > 0, we obtain isomorphisms
ker(T) = W and thusA = B[T], where we identifyB := S(W*) with the subalgebra
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7*(B) C A. Moreover, for a sheaF on (o) and its imagej := 7. (F|ys) ON A,, there is a
natural isomorphism oB-modules

3 Ga, = Fys.

We use notation such a&’ := {y € A;dimy = d}, A=, etc. The fanA in V is said to be:

(a) orientedif for each coner € A, an orientation g of V, is fixed in such a way that
orientations for full-dimensional cones coincide,

(b) purely n-dimensional if each maximal cone aft lies in A",

(c) irreducibleif it is not the union of two proper subfans with intersection included in
Afn—Z,

(d) normal ifitis purely n-dimensional and for each conec A, the transversal subfan
A /o is irreducible inV/V, , or, equivalently, if the suppottd| is a normal pseudomanifold
with or without boundary,

(e) quasi-convex if it is purely n-dimensional and the suppadidA| of its boundary
subfan is a real homology manifold. Note that a quasi-convex fan is normal, but not vice
versa.

2. Puresheaveson afan. We recall the definition of the class of “pure” sheaves on
a fan space that plays a key role in the sequel.

DEFINITION 2.1. Apure sheaf on a fanA is a flabby sheafr of graded.A-modules
such that, for each conree A, the A,-moduleF, = F({o)) is finitely generated and free.

We collect some useful facts about these sheaves, proved in [BBFK2] and [BreLu1l]
(where the class of these sheaves is denfedVe note in passing that on a non-simplicial
fan, pure sheaves are not locally free.)

Pure sheaves are built up from simple objects that correspond to the cones of the fan,
or, equivalently, to the stalks of the structure shdafUp to a shift, such a simple sheaf
is obtained from the corresponding stalk by the minimal “pure” extension process described
below.

SIMPLE PURE SHEAVES: For each cone € A, the corresponding simple sheaf=:

«L is the “minimal” pure sheaf supported on the st&r, and with stalkL, = A,. It
is constructed as follows: On the subfan\ A.,, we setl := 0. By induction on the
dimension, we extend it to the conesAn, starting withL, := A,. For a cones > o, we
may assume thdty, has been defined, and then set

L, :=A, ®g Ly, .
The restriction homomorphisaf,’y is defined by the following commutative diagram
L, :=A, ®r l_,ay — l_,ay
l 0 =id®s v l

Lyy = Ay ®a, Lyy —> Lyy ,
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where the diagonal arrow: Z;,,, — Ly, is anR-linear section of the reduction map in the
bottom row.

REMARK 2.2. 1. Foreach cone € A, the corresponding simple she@f= , L is
pure; it is characterized by the following properties:

(@ L, =R,

(b) for each cone # o, the reduced restriction homomorphism — Lj, is an
isomorphism.

In particular, the property (b) implies the vanishing,af outside of the star af .

2. Forthe zero cone, the “generic point” ofA, the corresponding simple sheaf

E = A& =,L
is called the(virtual) equivariant intersection cohomology sheaf (or the minimal extension
sheaf) ofA. For a quasi-convex fai, we may define its (virtuaintersection cohomology as
4) IH(A):=E,.

3. By extending scalars, each “local” shgfis derived from the “global” sheaf,, £
of the corresponding transversal fan: As in 1 (iv), werdgt:= |4, , : Ao — A/o denote
the homeomorphism induced from the projection> V/V,. The inverse image (4 /,£)
is a flabby sheaf of graded-modules on the closed subs&t, of A. Its trivial extension to
the whole fan spaca then yields the sheafL.

The following elementary decomposition theorem has been proved in [BBFK2, 2.4] and
in [BreLul, 5.3]:

THEOREM 2.3 (Decomposition theorem)Every pure sheaf 7 on A admits a (non-

canonical) direct sum decomposition of .A-modules
F = PGLOrKy)
ogeA

with K, := Ko (F) := ker@j, : F; — F,), afinite dimensional graded vector space.

For a proof of the following special case, we refer to [BBFK2, 2.5].

EXAMPLE. Let:: (V, A) — (V, A) be a refinement morphism. The,r(é) is a pure
sheaf. Its decomposition is of the form

L@ = o PLLark,),
cen=2

where the “correction terms” are “of higher order”: they are supported on the closed subset
AZ2, and the corresponding vector spa&gsare (strictly) positively graded.

REMARK 2.4. For a pure sheaf on the boundary fado of annr-dimensional cone
and the projection mapping : (V, do) — (W, A,) corresponding to a ray as in 1.3, (iii),
the direct imager.(F|j,) is a pure sheaf od,,.
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3. Thedual of a pure sheaf. In this section, the symbaF always denotes a pure
sheaf on an oriented fan. Furthermore, unless otherwise stated, the symbol Hom is un-
derstood to mean Hom and® means®g. Moreover, for a cone € A, we consider
detV} := /\d'm" V. as a graded vector space concentrated in defree2 dimo, with the
convention dev = R.

To F, we associate its du@F and show the following properties: The dual is again a
pure sheaf om, and for normalA, the module of section&@F) 4 is the dual of the module
F(a.5 4 Of sections ‘with compact supports’ .

3.1. Construction of the dual sheaf. To construct the dual of the pure sheaf
on A, we recall that it suffices to define its sections over affine fans—this will be done
in such a way that duality holds by definition—and to specify the restriction morphisms
between them.

SECTIONS OVER A CONEs € A.  As A -module, we defin€DF), = DF({c)) by

(5) (DF)o := HOM(F (5,35, As) @ detV, .

RESTRICTION HOMOMORPHISMS For a facer < o, the homomorphisrg? is con-
structed in two steps: In the first step, we deal with the case of a facet; in the second step, we
extend this recursively to the general situation of a face of arbitrary codimension.

To that end, we neettansition coefficients ¢ = =£1 for the facetsr of o. They are
defined in the following way: Fad := dimo, the inclusionV; C V, induces a natural map
ik N7 vr - ATV = detVF. We choose a linear forion V* with V, = ker(k) and
hls > 0. Every element of dét* decomposes in the foria n with unique image (n). We
thus obtain a homomorphism

(6) Yy detVy — detV), hAn e k().

With the volume formsv, € detV, andw, € detV; defining the respective orientations, we
now set

€2 :=sign(x) with X := Yy (ws)/w: € R

(i.e., 2 given byy, (ws) = A - wy).
Sep 11  Restriction homomorphism for a facet 7 <1 o.
Using again the linear forrh € V., we are going to define another homomorphism

op - HOM(F (5 50, As) = HOM(F(7 57), A7)
and see that
@ =hon and Yo, =AMy,
for every non-zero scalar e R. Thus the homomorphism
o @ Y HOM(F (5,50, As) @ detV,) — HOM(F( 57y, A7) @ detV}
does not depend on the special choicé ofo we may set

(7) 07 ‘=¢7 - Ph®Yn .
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The mapy;, associates to a homomorphisfn: F, 5,) — As the homomorphisng; (f) :
F(z.91y = Ar, which acts in the following way: We first extend a sectiog F, ) trivially
to do and then to a sectiahe F;; we thus havés € F(, 3, and may finally set

8 on(f)(s) == f(hS)lc € Ac.

In order to see that this definition is independent of the particular choiée wé present
an alternative description, following the argument of [BBFK2, p. 36]: We use three exact
sequences, starting with

0— F(G,ag) — Fa — Faa — 0.

The second one is composed of the multiplication witmd the projection onto the cokernel:

O—>Aaﬂ>AU—>Ar—>O.

Eventually the subfaf,o := do \ {r} of do gives rise to the exact sequence
0— Fir9r) = Foo = Fyo — 0.

The associated Hom-sequences provide a diagram

EXt(FE),cn Acr)

HOM(F,, Ay) —> HOM(F(.30), Ag) — EXt(Faq, Ag)
lﬁ
Hom(F(r,ar)a AO') — Hom(F(r,E)r)a Ar) i) EXt(F(r,E)r)» Ao) — EXt(F(r,E)r), AO')

with Ext = Exti‘. We show thay is an isomorphism; we then have

1

op:i=y “oBou.

In fact, the rightmost arrow in the bottom row is the zero homomorphism, since it is induced
by multiplication with/, which annihilates; ). On the other hand, thé.-moduleF; )
is a torsion module ovet,, so that HoniF(; 3;), As) vanishes.

Sep 2 Restriction homomorphism for faces of higher codimension.

For a facer < o of codimensionr > 2, we choose a “flag”

=T <171 <1 <1 Tp:=0

of relative facets joining ando . Defining the restriction homomorphispfi as the composite

of the o7 **, we have to show that the result does not depend on the particular choice of the
flag. This is easy to see in the case- 2: For two flagsy <1 t <1 o0 andy <3 v/ <1 o and

h,h' € V} as above, we set:= hly_, andg’ := 1'|y,, and then find

g opn =@go@y and Yy oYy =—Ygo0Yy,
whence

T

9) 0y, 007 =0y, °0y -
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Thus, for general, it suffices to verify that every two such flags can be transformed into each
other in such a way that in each step, only orteiimediate cone is replaced by another one.
We proceed by induction on the codimension

To prove that claim, we may assume= o (otherwise, we replacé with A/t) and
A = (o). We want to compare the given fldg;) joining r = o ando with a second one,
say(z;). Thereis a chain of rays, := 11, ..., o5 := 71 such that the two-dimensional cones
oi+oi+1 belong toA. We now proceed by a second induction on that numbé&iors = 1,
we may pass to the fan /71 and use the first induction hypothesis ferl. For the induction
step, it evidently suffices to consider the case 2. Choosing any auxiliary flag of the form
0 <111 <1 1+7T1 <1 --- <1 0, the case = 1 yields its equivalence with the start flag. On
the other hand, by (9), the auxiliary flag is equivalent to the one obtained by interchamging
and7y, and this in turn is equivalent to the “twiddled” flag.

3.2. Global sections. We now show that formula (5) defining duality for cones actu-
ally extends to normal subfans. To that end,iveed the following peparatory results:

LEMmMA 3.1. (i) For anarbitrary fan A, thereis a natural isomorphism

(10) 0 : @ (DF)y —> HOM(F 4 pn1), A) @ detV*.

geAn
(i) If Aispurely n-dimensional, the A-modules
Fia,a=n-1y C Fa9a) C Fa
are torsion-free and of the same rank. As a consequence, the restriction homomor phisms
Hom(FA, A) —> Hom(F(A,M), A) —> Hom(F(A’Agfz—l), A)

for the dual modules areinjective.
(iii)  Inthesetup of cellular (* Cech”) cochainsand cocyclesas presented in Section 3 of
[BBFK2], for an arbitrary sheaf G on a purely n-dimensional fan A, there is an isomorphism

(11) 7%4;6) = GA04)
and for a normal fan, we also have an isomorphism
(12) 7%A,04;G)=Ga.

PROOF. (i) For eachn-dimensional coner, the equality deV = detV* clearly
holds. Hence, the isomorphism in question is immediately obtained from the defining
equality (5) for(DF), by applying the additive functor Hofm, A) ® V* to the obvious
direct sum decomposition

Fa,az-1 = D Foo) -

geA"

(i) For the special cas& = &, this has been proved in [BBFK2, 6.1, i)]. The proof
clearly carries over to arbitrary pure sheaves.
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(i)  We recall that the submodule

7°%4,94;9) € €%4,04:6) = C%A:9) = P Go
geAl
of degree zero cocycles= (g, ) relative tod A consists of those cochains that satigfy, =
go'|- Wheneverr € A"~1is an “inner” facet, i.e., a common facet of tweconeso, o’ € A,
whereas for the submodule

7%A; 6) c 2%A, 44; G)

of absolute cocycles, we have to require in addition that the restrictigyp tf each “outer”
facetr € 34”1 vanishes.

For (11) and (12), we note that in both cases, the right hand side is always contained
in the left hand side. In order to see the reeemclusion, we have to show for a cochain
g = (g5) € CO%A; Q) thatg,|, = go,’|, holds whenevey e A is a common face of two
n-coneso ando’. Since in the first case it suffices to consider copeg 9 A (then the fan
A/y is even complete!) and in the seconds assumed to be normal, the comeandos’ can
be joined by a sequence ofcones intersecting successively in common facets contajning
It thus suffices to consider the case thds a facet, where the statement is obvious. O

THEOREM 3.2. For a normal oriented fan A, the natural isomorphism ® of (10) in-
duces isomor phisms

11

(13) (DF)a — HOm(F(A’aA), A)® detv*
and
(14) (DF)(a.54) —> HOM(F4, A) ® detV* .

By part (iii) of the preceding lemma it is sufficient to prove the following reformulation:

RESTATEMENT.  For any O-cochain y = (5) € @, .1 DF, anditsimage O () in
HOM(F (4 p<n-1), A) ® detV*, the equivalences

(15) v € Z%A,0A; DF) < O(y) € HOM(F(4.54). A) ® detV*
and

(16) Vv € Z%A; DF) & O ) € HOm(Fa, A) ® detV*
hold.

PROOF. We choose an auxiliary function= [:_; h; € A% as the lowest degree prod-
uct of linear formsk; that vanishes o), 4.-1 Vz ; SO eachV; is the kernelV; of somer;.
After fixing a positive volume form oV and thus, an isomorphis® —> detV*, the ho-
momorphismsy;,; of 3, (6) provide isomorphismR = detV* = detV;*. We may thus drop
the determinant factors on the right hand side, and for each goaeA="—1, we may re-
place(DF), with Hom(F, 3,), A,) and the restriction maps witky;,. Using the obvious
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inclusions
hFa94) ChFA C Fp p<n-1y
of torsion-freeA-modules, the right hand sides of (15) and (16) are equivalent to the inclusions
x(hFasa) ChA and x(hFa) ChA, where x :=O).

Proof of the implications “=" in (15) and (16): It suffices to show that for a pertinent
0-cocycleyr, the divisibility relation’; | x (hf) holds for each index and for an arbitrary
sectionf in Fa,3a) Or Fa, respectively.

With f, := fl|, € F, for ann-coneo, we write

X(hf) =Y Yolhfs) € A.

ogeAn

For each index = 1, ..., s, we introduce the functio; := h/h; € A*~2. For the impli-
cation in (15), we consider a relative 0-cocygle= (v,) € Z%A, dA; DF) and a section
f € Fapa ‘with compact support’. lfo N'V; is not a facet ofo or if it belongs tod A,
theng; f, lies in F; y0) and thusy, (hfs) = hiys (gi fo) € hi A holds. Otherwise, there is
precisely onei-conec’ # o such that := o NV; is a common facet of botls;, ando’. We
now verify thath; divides the sumy,(hf,) + v, (hf,) or, equivalently, that

Vo(hfo) lvi = Yo (hfsr) I,

holds. Using the extensiof f5 € F(s.5,0) Of (i f)|r € F(z,57) in the formula (8), we obtain

Volhfo)lvi = (@n(¥o))((gifo)le) -

By the relative cocycle condition, andy,- restrict to the same section {®.F).. Accord-
ing to the choice of the transition coefficients in the definition of the restriction homomor-
phisme? in 3, (7), that yields

(Vo) = —on(¥o1)

which implies our claim. lfy € Z%(A; DF) is an absolute cocycle anle F,, the argument
is as above, only in the case where= o N V; is an “outer” facet ot (i.e., contained i A),
one has to use the fact thag |, = 0.

Proof of the implications “<": We now assume that the homomorphigm= © (y) :
Fa a=n-1y — A can be extended to the larger modulgs 54) or Fa, respectively (cf.
parts (i, ii) in the preceding lemma). We have to verify the pertinent cocycle condition for
¥ = (Y¥o), namely, the equality, |, = ¥,/|: wheneverr is a common “inner” facet of two
n-coness, o’ € A, and, in the second (“absolute”) case, the additional vanishirig = O if
T is an “outer” facet ob.

For an “inner” facet = o No’, leti be the index with kei;) = V,. We fix an arbitrary
sectionfo € F(r.97) and, as for (8), extend it to sectiofise F,, f' € F, vanishing on all

O — ©



——

COMBINATORIAL DUALITY AND INTERSECTION PRODUCT 285

the remaining facets af and ofo’, respectively. Patching them together and extending by 0
yields a sectiory1 € F(a 54). Then the equation

hix(f1) = x(hi f1) = x (hif + hif") = Yo (hif ) + Yo (hif ) .
after restriction tar, yields
0= (hi)((fl))’r = ¢n (Yo ) (f0) + on(Y6)(fo) = Wolr — Yorlo) (fO) -

Finally, we leave it to the reader to consider the remaining case wheeas be extended to
the largest modulé’s, andr € 9 A is an “outer” facet. O

3.3. Purity. We now show that duality preserves purity.
THEOREM 3.3. Thedual sheaf DF of a pure sheaf F is pure.

PrROOF. Asin Corollary 4.12 in [BBFK2], thed,-moduleF ;. j.) is free of finite rank,
thus also its dualDF).; hence, all we have to verify is flabbyness: For each core A,
the restriction homomorphism

05 : (DF)s — (DF)jq

is surjective.
To that end, we first interpréDF) .. We may assume dim = n and use the setup of
1(iv). ForG := 7. (Flss), @s in 1, (3), there is a natural isomorphism

(DG)a, = (DF)io
of B-modules, while for the complete fafi, in W, Theorem 3.2 yields
(DG)s, = Homg(G4,, B) ® detW™.
Using the isomorphism (3), we thus obtain a chain of isomorphisms
(DF)oo = (DG)a, = HOMp(G 4, , B) = Homg(Fjs, B) .

Eventually, using these isomorphisms, a secfioa (DF)j, may be interpreted as an ele-
ment of Hong (Fy,, B).

To proceed with the proof, we introduce the shiaf= 7*(G) ons. There are isomor-
phisms

a7 H; Z2AQpGa, EAQ®p Fye and Hy; = Fy,
and a “Thom isomorphism”

(18) g : Hy — gHs; = Hi g6y, h—> gh
with a conewise linear functiop € Aé_a&), unique up to a non-zero scalar multiple, that

is constructed conewise as follows: We fix a nontrivial linear fofme AZ. For a facet
T <1 0, letg; € A? be the unique linear form with kéy,) = V; andg;|, = f. Then we set
Gle4r == gr.
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For each facet of o, the functiong, induces an isomorphism
detvV* =ZdetV), ¢ Ane nly,.

Hence, the composed isomorphism Wét= detV” = detW* is independent of. We thus
may drop the determinant factors.
We want to show that an inverse image (DF), = HOM(F(5,35), A) Of B € (DF)so
with respect tej . is given by the composite
j M1/ ~ ida®p
Fo90) —> H.p6) — Hy S A®p Fyo —> AQpB=A
whereyiy, 4 is the isomorphism “division by” corresponding to (18), and the homomorphism
i is constructed as follows: Sindg; is a freeA-module and the restriction homomorphism

Hs — Hys is surjective, cf. (17), the operatpf  for the sheafF admits a factorization of
the form

Fy -1 Hy —> Hyy = Fy, .

Since;j (Fs,55)) clearly is contained it 55, we may choose:= j|r, ,,-

To prove the equality|y, = B, it still remains to show that|, = |, for all facets
7 <1 0. Here we identify the (naturally isomorphic) algebi@sndA-.

We fix an arbitrary section € F; 3y C Fss, Where the inclusion is given by trivial
extension. Using the isomorphisms (17) and (18), any further extegsibr to a section
of F on the whole cone, regarded as section il; O F,, can be written in the form

§=1®s+gd € H; = A®p Fy,

with some correction terrd € H;. Recalling the formula (8) in the definition of the ho-
momorphisme? for DF, we have to show that the restriction of the polynomial function
a(g; - §) € A, to T coincides withB(s). To that end, we notethagt - (1®s) =g (1® s)
holds, since the support of& s € H; is contained int + A. So we eventually have the
equality

a(gr -l =(da @ BA®s + ged)|r = (ida @ BA® $)|z,

and thus? (o) mapss to S(s). O

3.4. Biduality. In order to see that the dual sh&af of a simple pure sheaf again is
simple, we need biduality:

THEOREM 3.4 (Biduality theorem). (cf. [BreLul, 6.23])Every pure sheaf on an ori-
ented fan is reflexive: For such a sheaf F, there exists a natural isomorphism

F = D(DF) .
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PROOF. Over a coner € A, the biduality isomorphisn¥, — DDF, is obtained by
these isomorphisms:

(DDF)o = HOM((DF) (5.50), As) @ detV:
= Hom(Hom(F,, A,) @ detV), A,) ® detV
= Hom(Hom(Fy, A;) ® detV), A, ® detV;)
= Hom(HomM(F,, Ay), Ay) ,

(19)

where the first isomorphism follows from Theorem 3.2 applied to thefar= (o) in the
vector spacé/,. The freeA,-moduleF, is reflexive, so it can be naturally identified with its
bidual, i.e., the fourth module in (19). Since this conewise construction is natural, it carries
over to the sheaves. a

COROLLARY 3.5. (cf.[BreLul, 6.26]) For each coneo € A, the simple pure sheaf
o L satisfies

D(,L) = ;L detVr.
In particular, the equivariant intersection cohomology sheaf £ is self-dual with an isomor-
phism
(20) 9 = DE
of degree zero.

ProOOF. Clearly, by biduality, DF = 0 impliesF7 = 0. On the other hand, duality
respects direct sum decompositions. Since the bit@(, £)) = , L is simple, the Decom-
position Theorem 2.3 implies that the d@&l, £) must be a simple sheaf. For a pure sh€af
and a coner € A, the A,-module Fy,, is a torsion module, whencg, = 0 if and only if
F(s.90) = 0. Hence a pure sheaf and its dual have the same supp@i{,9t) and, L agree
up to a shift. To determine it explicitly, we use the equalitys. 50y = « L6 = Ay, Which
yieldsD(; £)s = HOm(A,, As) @ detV}: = A, ® det V. ]

4. Theintersection product. In order to make precise the naturality of the intersec-
tion product, we introduce the following notion:

DEFINITION 4.1. Aduality correlation on A is a sheaf homomorphism
¢:E&—>DE

of degree 0 from the equivariant intersection cohomology sheaf to its dual extending the nat-
ural identification

& =R YL R =Dpsg,.

After multiplication with an appropriate scalar factor if necessary, any isomorphism
D& provides such a duality correlation. The first and main aim of this section is to prove the
following result:
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THEOREM 4.2. Onevery fan A, thereis a unique duality correlatianlt defines a self
duality £ = D¢ for the equivariant intersection cohomology sheaf £.

Existence has already been shown in Corgl&5; uniqueness follows from Proposition
4.5, applied toF = DE. But let us first state the global version of duality, which is needed
later on in the proof of lemma 4.6:

REMARK AND DEFINITION 4.3. LetA be a normal-dimensional oriented fan. If
we fix a positive volume fornm € detV*, then every duality correlatiop gives rise to an
intersection product on A, i.e., a pairing

(21) EA X E(AﬁgA) —> A[—2n]
as follows: The isomorphisr® of Lemma 3.1 yields an isomorphism

(DE) 4 2> HOM(E( 4.5y, A) ® det V* —> HOM(E (.54, A[—2n]) .

Composed with the duality correlatign, on the level of global sections it provides a homo-
morphism

(22) XA = XA Ea = HOM(E (4 54y, A[—2n]),
which is equivalent to (21).

THEOREM 4.4. (cf. [BBFKy, 6.3] and [BreLy, 6.28]) Let the oriented fan A be
normal, and fix a positive volume formw € detV*. If aduality correlation ¢ : £ — DE isan
isomor phism, then the induced pairing

EA X E(A,E)A) e A[—2n]

isaduality pairing of reflexive A-modules. If A is even quasi-convex, then the A-modules E 5
and Ea ) arefree, and thus the associated reduced pairing

(23) EA X E(A,HA) — A[—Zn] = R[—2n]
isa duality pairing of graded real vector spaces.

ProoOF.  Composing the isomorphismg andga 4y with the isomorphisms (13) and
(14) of Theorem 3.2, one obtains:

EA i) DSA = HOm(E(A’aA), A)
and
E(A,HA) i) Dg(A,aA) = Hom(EA, A).

If A is even quasi-convex, then the moduleg and E4 54y are free, see [BBFK2, 4.8,
4.12]. O

We now state and prove the proposition that yields the unicity of the duality correlation.
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PROPOSITION 4.5. (see [BBFK2, 1.8 iii)] and [BreLu2, 3.14])For a fan A and two
copies £ and F of the equivariant intersection cohomology sheaf, every homomorphism

R=E,— F,=R
extendsin a unique manner to a homomorphism & — F of degreeO.

For the proof, we assume the Vanishing Lemma 4.6. The rest of this section will then be
dedicated to the proof of that lemma.

PROOF. The extension is constructed conewise by induction on the dimension: We have
to show that over each non-zero canga homomorphisnyy, : Es, — Fj, extends in a
unique way to a homomorphisgy, : E, — F,. Assuming Lemma 4.6 (i), tha-modules
E, and F, are generated by homogeneous elements of degree below. ddn the other
hand, Lemma 4.6, (iii) yieldfé’maa) =0= F((fr,aa) for ¢ < dimo. Hence, the restriction
mapsEd — E{ andF] — F; are isomorphisms fof < dimo, whence the uniqueness
of ¢, follows. The existence is a consequence of the factibat a freeA,-module. O

We thus have to prove the following result, the proof of which is based on the Hard
Lefschetz theorem 4.7 for fans in lower dimensions:

LEMMA 4.6 (Vanishing lemma). (see [BBFK2, 1.7, 1.8 ii)] and [BreLu2, 3.13fpr
the equivariant intersection cohomology sheaf £ on a non-zero cone o, the following equiva-
lent conditions hold:

() EZ =0forg >dimo,

(i) E ;. =0forg <dimo,
(i) EY, ,, =0forg <dimo.

PROOF. Let us first prove (i). We may assume dim= n and we use the setup of 1 (v).
First of all note that

(B/mp) ®p Eys = (B/mp)[T] ®@p[7] Eso -
Now we tensor the exact sequence
0 —> (B/mp)[T] —> (B/mp)[T] — A/ms —> O
with Ey, and obtain the exact sequence
(B/mp) ® Ear 5 (B/mp) ®p Ege —> (A/ma) ®4 Egg —> 0
with fir :=id(g/my) ® ur, wherepr acts on theA-moduleE;, . Thus
Ejs = cokeljir : (B/mp) ®p Ejs — (B/mp) ®p Ejo) .

On the other hand, according to [BBFK2, (5.3.®)gether with 1, (3) and using the notation
of 2.2, (4), we have an isomorphism

Eys = cokeljiy : [H(Ay;) — [H(A)),
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wherepy : £(As) — £(Aq) is the multiplication with the strictly convex conewise linear
function

Yi=To(le) L € A%(Ay).

It now suffices to apply fom := n—1 the following theorem proved in [Ka]:

THEOREM 4.7 (Combinatorial hard Lefschetz theorenm)et A be a complete fan in
the m-dimensional vector space V and ¢ € A%(A) aconewiselinear strictly convex function.
Then the “ Lefschetz homomorphism|rm” L := i, : E4 — E 4 induced by the multiplication
Wy : Eq4 — E 4 with ¢ yieldsisomorphisms

LF:TH™ A > TH" T (A)
for each k > 0. In particular, L isinjectivein degreesg < m — 1 and surjective in degrees
qg>m-—1

Let us finish the proof of Lemma 4.6: The equivalence of (i) and (ii) follows from (20)
and the dual pairing (23) in Theorem 4.4 in the particular ease (o), while the equivalence
of (ii) and (iii) is a consequence of the following fact: For a finitely generated graded
moduleM, one hasW? = 0 forg < r if and only if M4 = O forg < r. O

5. Comparison with previous definitions. Let:: (V, A) — (V, A) be anoriented
refinement, i.e., if a cone inA4 is contained in a cone in¢, then their orientations coincide.

PROPOSITION 5.1. For every puresheaf F on A, there exists a canonical isomor phism

D@x(F)) = (DF).
PROOF Foraconer € A4, leté < A denote its refinement. Then the formula (13) of
Theorem 3.2, applied t, yields the isomorphism in the following chain

D(1+(F))o = HOM(14(F) (6,50, A) ® detV) = HoOm(Fs 55), A) @ detV,}
=~ DF; = 1,(DF), m

We now can prove the Compatibility Theorem stated in the introduction:

THEOREM 5.2 (Compatibility theorem). (cf. [BreLu2, 7.2])Let £ bethe equivariant
intersection cohomology sheaf of the oriented refinement A of the normal n-dimensional fan
A andlet e 1 € — 1, (€) be a homomorphism of graded sheaves extending the identity
E(0) = R = 1,(£)(0). Then theintersection products provide a commutative diagram

E(A)x E(A,048) —> E(A) x E(A, dA)

N v
Al[—2n].
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PrROOF. The homomorphisma provides a diagram
RN (&)

| |

pe 2L pié) = ..Dé),

where the vertical arrows arerespectively.. () with the duality correlations : £ — DE
of (20) and?d : & — DE. It is commutative at the zero cone and thus everywhere, see
Proposition 4.5. Passing to the level of global sections yields the claim. ]

Finally let us discuss the approach of [BBFK2, 6.1]. Here we use the notion &fain
uation map:

DEFINITION 5.3. LetA be an oriented purely-dimensional fan in the vector spate
endowed with a volume forms € detV*. Then, for 1e EQ = E? = R, the homomorphism

eq = x4 : Eapn) — Al=2n],
see (22), is called thevaluation map associated to.

THEOREM 5.4. Let A bean oriented normal fan in a vector space V endowed with a
volume formw € detV*. Furthermore let

B:EXE—E
be a bilinear map of .A-module sheaves extending the multiplication
E,xE,=RxXR—> R=E,
of real numbers. Then the pairing
(24) eh0Ba:E(A) x E(A,0A) - E(A,0A) — A[—2n]
coincides with the intersection product.

Note that for a simplicial famt, the equality = A holds, so the bilinear map neces-
sarily is the multiplicéion of functions and thus, symmetric. In the non-simplicial case, the
map g is not uniquely determined. Nevertheless, there always exists such g rieg is
symmetric. For a complete fan, the intersection product is thus symmetric, which also follows
from Theorem 5.2 with a simplicial subdivisiof of A.

PROOF OF5.4. For each cone and a positive volume form, € det(V.), we define
€5’ : E(0,90) = As[—2dimo] analogously t@%. Thene;” ® w, does not depend on the
choice ofw,, and the family of homomorphisms

Po 1€ = DE, s> (€7 o B)(s, ) ® ws

defines a duality correlatiop : £ — DE and thus, according to Theorem 4.2, is unique. In
particular, the pairing (24) is the intersection product. O
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