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HARDY SPACESASSOCIATED TO THE SECTIONS
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Abstract. In this paper we define the Hardy spaﬁé.(R") associated with a family
F of sections and a doubling measwewhereF is closely related to the Monge-Ampeére
equation. Furthermore, we show that the dual spadéjb(R") is just the spac@&MO £(R"),
which was first defined by Caffarelli and @&rrez. We also prove that the Monge-Ampére
singular integral operator is bounded frdi}-(R") to L1(R", dp).

1. Introduction. In 1996, Caffarelliand Gutiérrez [CG1] studied real variable theory
related to the Monge-Ampére equation. They gave a Besicovitch type covering lemma for a
family F of convex sets in EuclideanrspaceR”, whereF = {S(x,t); x € R* andr > 0}
andS(x, 1) is called asection (see the definition below) satisfying certain axioms of affine
invariance. In terms of the sections, Caffarelli and Gutiérrez set up a variant of the Calderén-
Zygmund decomposition by applying this covering lemma and the doubling condition of a
Borel measure.. The decomposition plays an important role in the study of the linearized
Monge-Ampere equation [CG2]. As an application of the above decomposition, Caffarelli
and Gutiérrez defined the Hardy-Littlewood maximal operafoand BMO ~(R") space as-
sociated to a familyF of sections and the doubling measureand obtained the weak type
(1,1) boundedness af and the John-Nirenberg inequality fBMO £(R") in [CG1].

Let us recall the definition of sections and the doubling measure listed below. 4B
andr > 0, letS(x, t) denote an open and bounded convex set containingle call S(x, 1)

a section if the family {S(x,¢); x € R",r > 0} is monotone increasing in i.e., S(x,t) C
S(x,t") fort < ¢, and satisfies the following three conditions:

(A) There exist positive constant§;, K», K3 andey, €2 such that given two sections

S(xo0, 10), S(x, 1) with ¢ < g satisfying

S(xo,10) N S(x,1) #0,
and an affine transformatidh that “normalizes’S (xo, 1), that is,
B(0,1/n) C T(S(xo0,t0)) C B(0,1),
there existg € B(0, K3) depending or§(xg, tp) andS(x, 1), which satisfies

B(z, Ka(t/t0)?) C T(S(x, 1)) C B(z, Ka(t/t0)")
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and
T(z) € B(z, (1/2)K2(t/10)?) .

Here and belows(x, r) denotes the Euclidean ball centered atith radiusz.
(B) There exists a constafit> 0 such that given a sectiof(x, r) andy ¢ S(x, 1), if
T is an affine transformation that “normalize${x, ¢), then forany O< ¢ < 1

B(T(y),e)NT(S(x,(L—e))=0.

(C) NyaoSkx, 1) ={x}andlJ,.oS(x, 1) =R"

In addition, we also assume that a Borel meagumghich is finite on compact sets is
given, u(R") = oo, and satisfies the followindoubling property with respect taF, that is,
there exists a constaAtsuch that

(1.2) w(S(x,2t)) < Au(S(x,t)) foranysectionS(x,t) € F.

An important example of the familf of sections is given as follows. Lét: R" — R
be a convex smooth function. For any given paird R", let £(x) be a supporting hyperplane
of ¢ at the point(x, ¢(x)). Fort > 0, define the set

Sp(x,t) ={y e R"; ¢(y) < L(x) +1}.
Then
F ={Sp(x,1); x € R" andr > 0}

is a family of sections that satisfies the properties (A), (B) and (C). Moreover, the Monge-
Ampere measure generated by the convex funegion

detD?p = 1

satisfies the doubling condition (1.1) under certain conditiop.ofor instance, if the graph
of ¢ contains no lines, thep satisfies the doubling condition (1.1) (see [C, CG1]). The
terminologysection comes from the fact thaf, (x, r) is obtained by projecting oR" the
bounded part of the graph @f cut by a hyperplane parallel to the supporting hyperplane at
(x, p(x)).

In [CG1], Caffarelli and Gutiérrez defined the spa@®O r(R") associated with the
family F and the Borel measurne satisfying the doubling condition (1.1). Lgtbe a real-
valued function defined oR". We say thatf € BMO x(R") if

1
Il = SUP—/ |f(x) —ms(f)ldpn(x) < oo,
SeF n(S) Js

wheremg(f) denotes the mean gf over the sectiors defined by

1
— d .
S /Sf(x) w(x)

Similar to the classic case, Caffarelli and Gutiérrez [CG1] also proved the following John-
Nirenberg inequality foBMO £:

ms(f) =
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There exist positive constants C1 and C2 dependent only on the measure . such that, for
every continuous f € BMO £(R") and every section S,

£ (x) — ms(f)l)
d Co.
(S)/ ( 171 ) = &

Hence, it is an important and interesting problem to ask whether it is possible to set up
a Hardy space with respect to the family of sectidhand a doubling measure. In this paper
we are going to construct such a Hardy space. We first introfdueg-atoms and the atomic
Hardy spaceH}’"(R”) for ¢ > 1 with respect to the family. Then we show that the atomic
Hardy spaceﬁ]lg"(R”) are all equivalent for any > 1. Thus we may define the Hardy space
H}(R”). We will further prove that the dual spacth}E(R") is just the spac8MO ~(R"),
which was defined by Caffarelli and Gutiérrez[[CG1]. Moreover, as an application of the
atomic decomposition, we will also prove that the Monge-Ampere singular integral operator
(defined later) is bounded frodi :(R") to LY(R", d).

We now define 41, ¢)-atom and the atomic Hardy space with respect to a farfilyf
sections and a doubling measure

DEFINITION 1.1. Letl< g < oo. Afunctiona(x) € LY(R",du) is called a(1, q)-
atom if there exists a sectidf(xg, 7o) € F such that

(i) suppa) C S(xo, to);
(i) froalo)du(x) =
(i) llallg < [1(S(xo, 1)1, wherellall g = (fps la()|?dp(x))¥? and Yq +
1/q' =1.
The atomic Hardy spachlg"(R”) is defined by
HZ'(R")
(1.2) , s .
={feS§; f(x):Z)\.jClj(X), eacha; is a(l, g)-atom andZ|xj| <00y,
J J
whereS(R") denotes the space of Schwartz functions &H(&R") is the dual space & (R").
Define theHjlgq norm of f by

£l =inf{Z|Aj|},
J

where the infimum is taken over all decompositiongot ;A a; above.
The first result of this paper is
THEOREM 1.1. Forg > 1, Hy'(R") = HF®(R").

By Theorem 1.1, we may take the atomic Hardy spHéé’ for anyq > 1 as the defini-
tion of the Hardy spacH}E(R”). Our second task is to show the following duality.

THEOREM 1.2. Thedual space of H}(R") isthe space BMO (R").
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In 1997, Caffarelli and Gutiérrez [CG3] defined a class of the Monge-Ampeére singular
integral operators as follows. Suppose that @ < 1 andc1, c2 > 0. Let{k;(x, y)}72, be a
sequence of kernels satisfying the following conditions:

(1.3) suppi(-,y) C S(y,2) forall y e R?;

(1.4) suppi(x,-) C S(x,2) forallx € R?;

(1.5)  frokiCx, )dp(y) = [guki(x, y)du(x) =0 forallx, y € R";

(1.6) supfgu lki(x, Y)Idpu(y) < c1forallx € RY;

1

(1.7)  supfga lki(x, y)|du(x) < czforally e RY;
i
(1.8) If T is an affine transformation that normalizes the secsion 2/), then

ki (u, y) — ki(v, y)| < 1T (u) =T ()|

__ 2
n(S(y, 2)
(1.9) If T is an affine transformation that normalizes the secSion 2/), then
c2
kiCe,u) —ki(x, )| £ ————=—|Tw) - T()|*.
| | u(S(x, 2‘))| |
DenotekK (x, y) = >, ki (x, y). TheMonge-Ampére singular integral operator H is defined
by
H(f) () = /R K, 9) f ARy -

Caffarelliand Gutiérrez [CG3] proved thatis bounded fronL.2(R",d ) to LA(R", d ).
Subsequently, Incognito [In] gave the weak type (1,1) estimatd .obJsing the atomic de-
composition ofH}E(R”), we have the following result for the operathr.

THEOREM 1.3. Theoperator H isa bounded operator from H}(R”) to LL(R", dp).

As an application of Theorem 1.3, we have a different method from [In] to obtain the
following corollary.

COROLLARY 1.1. Theoperator H isboundedon L?(R",du),1 < p < oc.

Indeed, it follows from Theorem 1.3 and thé(R", d..) boundedness df (see [CG3])
that we can easily get the? (R", du) boundedness off for 1 < p < 2 by applying the
interpolation theorem. We then use the duality to getitheR", di) boundedness aoff for
2<p<oo.

The organization of this paper is as falls. In Section 2 we recall some elementary
properties of the Hardy-Littlewood maximal operator with respect to sections, and two cover-
ing lemmas. The equivalence of all atomic Hardy spakié@(R”) will be proved in Section
3. In Section 4, we will show that the dual spacefﬁ}_(R”) is BMO£(R"). Finally, the
(HL, Lf;) boundedness of the Monge-Ampére singular integral opefatwill be proved in
Section 5. Finally, we would like to point out that the basic idea of proving our main results
in this paper is based on a noted paper [CW2] by Coifman and Weiss.
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2. Elementary properties of sections and covering lemmas. From the properties
(A) and (B) of sections, Aimar, Forzani, and Toledano [AFT] obtained the followngglfing
property: There exists a constaft> 1, depending only 08, K1, ande1, such that for each
y € S(x, 1),

(D) S(x,1) C S(y,0r) andS(y, ) C S(x, 01).
Define a functiorp onR" x R" by

px,y)=inf{r >0; y e S(x,1)}.

Using the engulfing property (D), Incognito [In] obtained the following conclusions:

(E) p(x,y) <0p(y,x)forallx,yeR".

(F) p(x.y) <6%(p(x.2) +p(z, y) forallx, y, z € R".
Obviously, from the definition op, it is easy to see that

(G) foragiven sectioS(x,t),y € S(x,t) ifand only if p(x, y) < t.

In [CG1], Caffarelli and Gutiérrez defined the Hardy-Littlewood maximal operafor
with respect to a familyF of sections and the doubling measuréy

1
2.1 Mf(x) =sup——— du(y).
(2.1) f(x) t>c?u(5(x,t)) S(x’t)lf(y)l w(y
We now give some elementary properties of the operéator

LEMMA 2.1. Let M bethe Hardy-Littlewood maximal operator defined by (2.1).
(i) M isof weaktype (1, 1), that is, there exists a constant Co such that for all » > 0
andany f € LY(R", dp)

C
pilr € R Mf() > 20) < 2 f oy

(i) Misoftype(p, p) for 1 < p < o0, that is, there exists a constant Cy such that
forany f € LP(R",du)

IMflip < Callfllge -
(i) Forall » > 0,theset P* = {x € R"; Mf(x) > A} isaopensetinR".

(iv) Let f e LY(R",dp) and supp(f) C So := S(xo,%0) € F. Then there exists a
constant C2 = C2(A, 0) such that, when A > Ca2 - ms,(| f1),

P* ={x e R"; Mf(x) > A} C S(x0, 20%(1+ O)itg) ,
wherem s, (| f|) isthe mean of | f| over the section So.

PROOF. See [CG1] for the proof of conclusion (i). From (i) and the obvious bound-
edness off on L*(R", dw), by applying the Marcinkiewicz interpolation theorem, we get
(ii).

Now let us turn to the proof of (iii). Denote b the complement o c R". It
suffices to show thatP*)¢ = {x € R* ; Mf(x) < A} is a closed set for all. > 0. Let
{xrlpe, C (P")¢ be a sequence of points such that- x ask — co. We have to show that,
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foranyr > 0 andS(x, 1) € F,

1

2.2 S d A.
(2.2) TS S(mlf(y)l wn(y) <

DenoteS; = S(xg, 1) and fi(y) = f(y)xmmsk (y)forallk=1,2,..., where

S, )ASk = (S(x, )\ Sk) U (Sk\S(x, 1)) .
Thus, | fi()| < |f()| for all k and lim,_ o fx(y) = 0 (u-a.e.). Applying the Lebesgue
dominated convergence theorem, we have

lim —— d =0
M o) s, FEONRO)

On the other hand,

w(sy) 1 1(Sk)
- - d _ PR d PR
50 t))/ [fDldp(y) = SG.1) SD Sklf(y)l u(y) < 5G.0)
Hence
_t ARG < ——— Ol (y)
w(SG0) Jsen T D= s, r)) sens
d
S t))/ [fldp(y)
1 ()
d kel T,
HSG ) s TEONMED+ ige )

Takingk — oo, we obtain (2.2).

Finally, we prove the conclusion (iv). Lete R* and suppose (xo, x) > 26%(1 + 6)1g
(equivalentlyx ¢ S(xo, 202(1 + 0)1g) by the property (G) of sections). Then for an¥ 1,
S(x, t) N S(xo, tp) = ¥. Indeed, ify € S(x, t) N S(xo, to), then by the properties (E), (F) and
(G) of sections

26%(1+6)t0 < p(xo0, x) < 6%(p(x0, ¥) + p(y, X)) < 6%(p(x0, ¥) + 6p(x, ¥))
< 02(10+ 61) < 0%(1+06)1p.
The contradiction shows that sughcannot exist. Thugfs(x’t) |f()|dr(y) = 0 for any
sectionS(x, 1) with ¢ < 1. Hence, whenever ¢ S(xq, 202(1 + 6)1o),
1
Mf(x) =sup——— [fDDNdp(y) .
f t>t?M(S( D) Jsn o Y
On the other hand, for a sectidiix, #) with ¢ > 9, we only consider the case th&tx, 1) N
S(xo, to) # . In this case, we take € S(x, 1) N S(xp, 0). Using the properties (E) and (F)
of sections again, we have
S(xo, to) C S(z,010) C S(z,01).
On the other hand, by e S(x, 1) C S(x, 61) we getS(z, 8t) C S(x, 6%t). Hence

(2.3) S(xo, f0) C S(x,0%).
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By (2.3) and the doubling condition (1.1) of the measure

wS&o,10) _ w(SE0%0) _ 1121060
u(Sx, 1) (S, 1) '

DenotingC, = A1t210%9 e obtain by (2.4) that for ¢ S(xo, 20%(1 + 6)10) ands > 1o

(2.4)

1 11(S(x0, 10)) 1
d d
(5. 1) S(X’I)If(y)l n(y) = 50 D) 2SGo o) S(xo’to)lf(y)l n(y)
< Co-mgy(If]) .

This shows that whenever¢ S(xo, 202(1 + 0)1g), we haveM f (x) < C2 - mgs,(] f]). There-
fore, if A > Ca-msy (| f1), thenP* c S(xo, 20%(1+6)10). This completes the proof of Lemma
2.1.

LEMMA 2.2 (Vitali-Wiener type covering lemma for sections)let £ Cc R" be a
bounded set. If for each x € E there exists a section S(x, 7(x)) C E with t(x) > 0, then
there exists a sequence {x j};?‘; 1 C E suchthat

0 (S, t(xj))}‘]’.‘;1 isadigoint sequence of sections;

(i) U521 S(x;,46%(x)) D E.

PROOF. DenoteFr = {S(x,t(x)); x € E}. SinceE is a bounded set, we may assume
that

L =supt(x); Sx,t(x)) € Fg} < 0.
Takex; € E such that (x1) > L/2. If E\S(x1, 463 (x1)) = ¥, then we stop. Otherwise, we
takex € E\S(x1, 4% (x1)) such that

t(x2) > %Suﬂt(x) ; S(x,t(x)) € Fgandx € E\S(x1, 4493t(x1))}.

If E\{S(x1,46% (x1)) U S(x2,40% (x2))} = 0, then we stop. Otherwise, we take €
E\{S(x1, 403t (x1)) U S(x2, 4031 (x2))} such that

t(x3) > %Suﬂt(x); S(x,t(x)) € Fr andx € E\{S(x1, 403 (x1)) U S(x2, 403 (x2))}} .

If EC Ule S(x;,46% (x;)), then we stop. Otherwise, we will continue the same process.
In general, for thgth-stage we pick; € E\ U{:ll S(x;, 403t (x;)) such that

j—-1
(2.5) 1(x;) > %sup{t(x) ; S(x,1(x)) € Fg andx € E\ | S(xi, 403t(x,-))} .
i=1

Continuing in this way, we construct a sequence of sectionggn possibly infinite and
denoted by{S(x;, t(xj))}?o:l, satisfying the following conditions:

(@ Forj>1,x; ¢ U2 SCxi, 40% (xi)).

(b) Fori < j,t(x;) > (1/2)t(x}).
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We first show thaf{S(x;, r(x;))} is disjoint. Suppose that € S(x;, r(x;)) N S(x;, 1(x})).
Without loss of generality, we may assume that j. Hencer(x;) > (1/2)z(x;). By the
properties (E), (F) and (G), we have

p(xi,xj) < 0%(p(xi, y) + p(y, x))) < 0%(p(xi, y) +0p(xj, ¥))
< 0%(1(x;) + 01(x))) < 02(L+ 20)1 (x;)
< 493 (x;).
Using the property (G) again, we gef € S(x;,46%(x;)). However, this contradicts the
condition (a).
Now we prove thatt C U?‘;l S(xj, 403t(xj)). If it is not the case, then there exists
xo € E such thatyg ¢ U?‘;l S(xj, 403t(xj)). So, there exists a sectidixg, 1 (x0)) € Fg

with 7 (xg) > 0. Since{S(x;, t(xj))}‘]?‘;l is disjoint andU?il S(xj,t(x;)) C E is bounded,
we have

0> [E| =

UECRTEIED ST
=1

j=1
where|E| denotes the Lebesgue measure of theEsdfrom this we get

lim [S(xj,1(x;)| =0,
J—)OO
and hence
(2.6) lim 7(x;) =0,
]—)OO
because, for eacl, S(x;,7(x;)) is a bounded, convex, open setRi. By (2.6) we may

choosej large enough such that@ ;) < t(xg). However, this contradictsx ;) > (1/2)t(xo)
by (2.5), because

0 j—1
x0 € E\ | SGu. 403 (x0)) € E\ | (i, 40% (x) .
k=1 i=1

Thus we finish the proof of Lemma 2.2.

Before proving the following covering lemmket us recall another property of sections.
In [AFT], the authors proved that if a famil§f of sections satisfies the properties (A), (B) and
(C), then there exists a quasi-met#ice, y) on R" with respect taF defined by

d(x,y)=inf{r;x € S(y,r)andy € S(x,r)}.
The triangular constant of the quasi-metfits just they appeared in the property (D), that is,
d(x,y) <0(d(x,7)+d(z,y)) foranyx,y,zeR".

Moreover, denoting by, (x,r) = {y € R"; d(x, y) < r} thed-ball of centerx with radius
r, we have the following facts.

O — ©



——

HARDY SPACES ASSOCIATED TO SECTIONS 155

LEMMA 2.3. Let E beanopensetin R" and E¢ denote the complement of E. For any
x € E,writer =d(x, E°) = inf{d(x, y); y € E°}. Then
i) dix,E >0
(i) By(x,r) C E;
(i) Bg(x,2r)NE° £ 0.

PrROOF. (i) If d(x, E°) = O, then there exists a sequenpg} € E¢ such that
d(x,y,) < 1/n for eachn. Hence,y, € S(x,1/n) for everyn. On the other hand, since
E is open, thereis atnn > O suchthaB(x,e) = {y € R"; |[x —y| < ¢} C E. By the property
(C) of sections,

yn € S(x,1/n) C B(x,¢) C E whenn is large enough

But this is impossible becaus$e,} € E€ for all n.
(i) If By(x,r)N EC #£ @, then there existsg € By(x,r) N E€. Thus

r=dx,E°)=inf{d(x,y); ye E°} <d(x,y0) <r.

This contradiction shows thdi; (x, r) C E.

(i) If By(x,2r) C E,thenwe have € By(x,2r) C E wheneverd(x, y) < 2r. On
the other hand, there exists a sequep¢g C E€ such thatd(x, y,) < d(x, E) + 1/n =
r+1/nforalln € N. Sincer > 0, we haver + 1/n < 2r, whenn is large enough. Thus
yn € Bg(x,2r) C E for n large enough. However, this contradi¢is} c E€ for all n.

The following relationship between a section andtball can be found in [AFT].
(H) Foranyx € R*andanyr > 0, S(x,r/20) C By(x,r) C S(x,r).
Now let us state and prove the Whitney type covering lemma for sections.

LEMMA 2.4 (Whitney type covering lemma for sections$uppose that £ C R" isa
bounded open set in R" and C > 1. Then there exists a sequence of sections {S(xx, #%)}72,
satisfying the following:

(i) LetSy = S(xk, ). ThenE = Ulfil Sk.

(i) Let Sx = S(xx, 16C631). Thenfor eachk, Sy N E€ (.

(i) Let Sy = S(xk, 2CH1). Then {8k}, is a @-digoint collection, that is, there
existsa constant ©® = @ (A, 6, C) suchthat Y. ; Xs, (x) < O.

PROOF. Letr(x) =d(x, E€) forx € E. By property (H), we have
r(x) r(x) r(x) r(x)
S(L W> C Bd(x, W) C S<x, W) C Bd<x, %)

r(x)
C S(x, —) C By(x,r(x)) C E.
20
Therefore, the family of sectionss (x, r(x)/40%803C) ; x e E} satisfies the condition of
Lemma 2.2. By the conclusions of Lemma 2.2, there exists a seqiief}ge; C E such that
(@) {S(xx. rx/403803C)}2°  is a disjoint sequence of sections,
(b) U2y S(xx, 1 /80%C) D E,

2.7)
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where and below we denotéx) by r; for simplicity. By (2.7) and (b) we obtain
o0 }”k o0 }”k o rk

2.8 E S , S ,—>5 B , — E.

( ) CkL:Jl (xk 893C>CkL_Jl (xk 402> CkL:Jl d(xk 29) C

We first prove thaf B, (xx, v /20)}32 1 is a®@-disjoint collection. Leto € By (xk, ri/20)
and denot&Rg = d(zo, E€). Then

re = d(zk. E°) < 01d(xi. 20) +d (20, E)] < 9(2—2 + Ro) =2 +0Ro.
Thusr; < 26 Rg. From this, we have
(2.9) By(xk,1¢/20) C By(z0, 20Rg) foreachk.
Indeed, for any € By (xk, rr/260),
d(zo, y) = 0ld(zo, x) +d(xk, y)]1 < 0(rk/20 +rc/20) < 20Ro.
On the other hand, we see that

Ro =d(zo, E€) <0[d(z0, xr) + d(xx, EY)]

Ik 1 1 3 3 Ik
<0 = =(z4+0)n=(z+6)40°80°C - ———.
= (29 “") <2+ )”‘ <2+ ) 463863C
Equivalently,
Tk Ro

2.10 > .
(2.10) 4p3803C — (1/2+ 0)403863C

Now we assume that

(2.11) 20 €[ Balxx;. 1, /29) -
J
To simplify the notation we denote; = xx; andr; = rx;. Then by (2.9), for eacl,
Ba(xi, ——2—) c Ba[x;, 2= ) c Bu(zo, 26 Ro)
d J? 483893C d ] 29 d ZOa 0)-
Note that for eachi, By(x;, r;/46%803C) C S(x;, r;/463803C) by (H). Hence, the sequence
{Ba(xj, rj/493893C)}‘]?° 1 is also disjoint by (a). Thus by (2.10)

i rj } - Ro
463803C " 493803C | ~ (1/2+6)403803C
By Lemma 1.1 in [CW1], there exists a const@nt= © (A, 6, C) such that the numbers of
Jj in (2.11) cannot be greater th&nh By the @-disjointness o B, (xx, v /20)};2 4 and (2.7),
we obtain the9-disjointness of S (xx, rx /462)}2° ;.
Finally, we taker, = ry/80°C. Then by (2.8) we get the conclusions (i) and (iii) of
Lemma 2.4. As for the conclusion (i), it is a direct result of Lemma 2.3 (iii), because

Sk = S(xx, 16C03%) = S(xx, 2r) D Ba(xe, 2rk) -

d(xi,xj) > min{

O — ©
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Therefore we complete the proof of Lemma 2.4.
The following fact is obvious.

LEMMA 2.5. Supposethat Fi C Ej for eachk, and { Ex}72 ; isa @-digjoint collection.
Then {F}.};2, isalso a @-digoint collection.

REMARK 2.1. By the conclusion (iii) of Lemma 2.4 and Lemma 2.5,}72 ; is also
a®-disjoint collection, sinces; c Sy for eachk.

3. Proof of theorem 1.1. First it is easy to see that for ajl > 1, H;OO(R”) C

H;"(R”). We now show that the opposite inclusion also holds. It suffices to prove that every
(1, g)-atoma(x) has the representation

(3.1) a(x) =Y aja;(x),
J

where eacla; (x) is a(1, oo)-atom anazj loej| < oo.
Sincea(x) isa(l, g)-atom, there exists a secti6g = S(xo, 19) € F such that supf) C
S(xo, 10). We denoté (x) = u(Sp)a(x). Then

(3.:2) (i) suppb) C So, (i) / b(x)du(x) =0, and (i) [1bllLeqy < (L(So)Y.

On the other hand, we take the const@nt 6(1 + 0) in Lemma 2.4. Then by (1.1) we have
S,
(3.3) #(S) < AZHORO%AH0) . ko forevery k.
w(Sk)

For a positive integet, letN” = N x N x --- x N-andN® = {0}. We denote the general
elementinN™ by j,,. We prove the following proposition by an inductive argumenton

ProPOSITION 3.1. There exists a sequence of sections {S;,} C F,je¢ € N ¢ =

0,1, ..., suchthat for each natural number m
m—1 _

(3.4) b(x) = DoOa Y o' D u(Sjaj, )+ Y hy, ().
=0 JjeeNt Jm€eN™

wherea = a(q, A, 0), Do = Do(A, 6), and
() aj,(x)isa(l, co)-atomsupportedinS;,, jo e N, ¢ =0,1,....,m —1;
() U, enm Sjn € {x € R (Mgh)(x) > o™ /2}, and (Myb)(x) = [M(1b]7)(x)1V/4;
(1) {S;,} isa@“-digoint collection;
(IV) thefunctionsh;, (x) are supportedin S;,;
V) [hj,x)dpx)=0;
(VD) 1R, (O] < 1b()] 4 Doa™ xg, (x);
(Vi) [ms;, (1, |19 < 2Doa™.

O — ©
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We first show that if the properties from (I) to (VII) hold for eagh € N, then (3.1)
holds. By (3.3), (I, (lll), Lemma 2.5 and Lemma 2.1 (i), we have

Z n(S;,) < Ko Z M(Sjm)SKo@mM< U Sjm>

JmeN™ JmeN™ JmeNm
< Ko®" n({x € R"; (Myb)(x) > o™ /2})
< Ko®" Co(2/a™)"|b]|%, .
I

(3.5)

In the last inequality, we use the conclusion (i) of Lemma 2.1. By (iii) in (3.2)

oo Y u(S),) < CoKo2! Y (Ot )" u(So).

m=1 JmEN™ m=1

Hence, if we choose such thatr > ©®Y@=D then

(3.6) oo™ Y (S, < Bu(So),

m=1 Jm€eN™
whereB = B(q, A, 6, a) is independent ad (x).
By (IV) and (VII) we have

1 1/q
(3.7) /Ihjm(x)ldu(x) < M(Sjm)<—u(s‘ )/ Ihjm(x)lqdu(x)> < u(S;,) - 2Doa™ .
Jm j

SJm
DenoteH,, (x) =3, -nm hj, (x). Then (3.5) and (3.7) imply
/ |Hu(0)ldpx) < Y / |1, ()| (x)

(3.8) el
<2Doa™ Y u(S;,) < 27 CoKoDo(@at )" bI|%, .
"
Jm€N™

Thus, ifa > ©1/@=D then by (3.8)

(3.9) ”moo/ | Hpn(x)|dpn(x) < Cu(So) - |i_f)Tloo(@al_q)m =0.
On the other hand, by (I) and (3.6),

/Do@aZai Z M(S'j,-)laj,-(xﬂdﬂ(x)

i=m j,-ENi

(3.10) = [ Doa Y0 ¥ wiSplay oldnt)

i=m j,'ENi
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o0
< DoOa Y o' > w(Sllaj L - 1(Sj)

i=m j,'ENi

o
< DopPu Zai Z M(Sj,-) -0 (m— ).

i=m j,'ENi

It follows from (3.9) and (3.10) that, when — oo,

DoBua '«
M(ESO?Z Z M(SJ@)aJ@(X)‘F ( ~ Z hj, (x)

JjeeNt Jm€N™

converges td(x)/u(So) = a(x) in theLl norm. Thus, in the sense of distribution we have

DoOO{
Z Y wSiaj, @),
~ u(So) Pt

where eacla,, (x) is a(1, oo)-atom and

DO@a Z Z
M(S],,,) < B <.
w1 (So) P!

From this, we obtaim(x) € H;:OO(R”). Hence, to prove Theorem 1.1, it remains only to
show that the properties from (I) to (VII) hold for eaghe N.

PROOF OFPROPOSITION3.1. We first show that these properties are validiios 1.
Let E = {x € R"; (Myb)(x) > «}. By (iii) in (3.2) and Lemma 2.1 (v), itt? > Cp >
Co - msy(|b]?), then
E® C S(x0,20*(1+ 0)t0) := So.
From this and Lemma 2.1 (iii)g* is a bounded open setdfl > Co. By Lemma 2.1 (i), we
have

(3.11) n(E®) = Co(llbll g /a)? < Coa™ u(So) -

Applying Lemma 2.4 taE* with the constan€ = 6(1+6), we obtain a sequence of sections
{S; = S(xj, t])}°° , satisfying

m Uy S] = E“ C {x e R"; (Myb)(x) > o™ /2},

D) {Sj = S(x;,20%(1+ 0)t,)} is a@-disjoint collection,
and for eacly

(3.12) S;iN(E*)" #0, where S;=S(x;,169*1+6)1;).

If we denote byy; (x) the characteristic function of;, thenz‘;ozl xj(x) < © by Remark
2.1. Let

x,(X)/Z X () if xeEY,
njx) =

if x¢E*,

O — ©
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and
) {b(x) if x¢E“,
X) = .
g0 ijsj(njb)xj(x) if xeEY.

In addition, 2 (x) = b(x)n;(x) —ms;(n;b)x;(x) foranyx € R". Thenb(x) = go(x) +
> i21hj(x) foranyx € R".

By the property (C) of sections and the fact that the Hardy-Littlewood maximal operator
M related to sections is of weak type (1,1) (see Lemma 2.1 (i)), it is easy to check that the
Lebesgue differential theorem holds for the fansiiyof sections. So, ik ¢ E%, we have

[g0(0)| = |b(x)] = (Myb)(x) < .

On the other hand, by (3.12) there exis}se S’j N (E*)¢. By the property (D) of sections,
we have

(3.13) Sj = S(x;,169* 1+ 0)1;) C S(z;,169°(L + O)1))
and
(3.14) S(zj, 1601+ 0)t)) C S(x;, 169°(L+ 60)1)) .

The above (3.13) yields
(3.15) S(xj. 1) C 85 C S(z;,169°(L+ 0)1))
which implies

< . /|b(x)|qdu(x))l/q<<M(S(Zf’1695(1+9)f1))>1/q
B Js; ) u(S)

1 1/q
" <M(S(Zj’ 1605(1 + 0)t;)) S(z2;,1605(1+6)1)) lb(x”qu(X))
- (M(S(Zj, 160°(1 + 0)t;))
- )

Using the inclusion relations (3.14) and (3.15) again, we have

W(S(z;, 16051+ 0)1))  1u(S(zj, 1695(1 + 0)1))

1/q
) ~(Myb)(z;) .

n(S;)  (S(zj, 16041+ 0)t)))
1(S(z;, 16941+ 0)1))  p(S(xj, 169°(1+6)1)))
w(S(xj, 1695(1 + 0)t;)) (S;)
< Altlog6 A5+'°9295(1+9),
and hence
1 lq 6
(3.16) ( / |b<x)|qcm(x>) < (ASHoRPAN VA (M by () .
u(Sy) Js;

O — ©
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Thus, ifx € E“, by Remark 2.1 together with (3.16) and noting that (E“)¢, we obtain

1
l90(x)] < / b)) ()
’ at%ast“(sf) S; !
® terms

1 . 1/q
b d < ® Do,
fZ(,wj) /s,.' )| u(x)> < O Do

ibid

whereDg = (A8H0%0°1+0))1/a This shows that
(1) |go(x)| < ®Dga foranyx € R".
SinceE* ¢ Sp andgo(x) = b(x) forx ¢ E%, by (i) in (3.2), we have
(2) supgigo) C So.
By the definition ofz; (x), we have
(IV) supp(hj) C S; for eachy,
(V) [hj(x)dp(x) =0 foreach.
Noting that||hj||L%t < 2||bxj||L;1L = Zfsj |b(x)|du(x) and by Remark 2.1, we have

Dokl =2y fs |b(x)dp(x) < 20 / |b(x)ldpu(x)
i i

;S
=20|bllp1 = 2@|Iblle(M(So))l/q/ <20 u(So) .

Hencego(x) + Z‘;Ozl hj(x) converges td(x) in the L}l norm. In fact, it is also convergent
almost everywhere, since the sum has at na@serms. Thus, by (V) and (ii) in (3.2), we
obtain

() [ go(x)du(x)=0.
Setag(x) = go(x)(Do@au(So))~t. From the facts (1), (2), and (3), we see thgty) is a
(1, co)-atom supported in the sectidp, which is just (I). So, we have

b(x) = DoOapu(So)ao(x) + Y hj(x),
j=1

which is (3.4) form = 1. It follows from (3.16) that

1
w(S;)

sincez; ¢ E®. Hencelh;(x)| < [b(x)| + ms; (1bn;1)x;(x) < |b(x)| + Doax;(x) by (3.17),
and (VI) holds. Finally, using (3.17) agaiitis easy to check that (VII) is also valid. Thus
we prove Proposition 3.1 forn = 1.

We now assume that Proposition 3.1 holdsriigrand show that it is also true for + 1.
LetEj, = {x € R"; (Myh;,)(x) > o”*1}. By the hypothesis (IV), sugp,,) C S;, =
S(xj,st,)- Ifa? > C2(2Dg)?, then by (VII) we have

1/q9
(3.17) ms; (|bn;jl) < ( /S Ib(X)quM(X)> < Do - (Myb)(z;) < Doc,

Coms;,, (1), |7) < C2((2Doa™)? < od(m+D)

O — ©
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Apply Lemma 2.1 (iv) to ge€;, C §j, := S(xj,,20%(1+ 0)t;,). ThusE;, is a bounded
open set ifa? > C2(2Dg)? by Lemma 2.1 (ii). Applying Lemma 2.4 foE;, with the
constanC = 0 (1 + ), we obtain a sequence of sectiqs§m = S(xj.m, t;m)};?il such that

@) U; S, =Ej, ClxeR"; (Mghj,)(x) > a"1/2},

5) {8 =5 , 20%(1 + 0)t; 1172, is a©-disjoint collection,

(6) for each, S; N(E;, )¢ # 9, Where§§.n1 =S, 1604(1 + o)t ).
By the hypothesis (111) fom, we know thal{Sjm} is a®@™-disjoint collection, since the totality
of sections in the faminS;m} is @™+ disjoint for all j,, € N” andi € N. This shows that
(1) holds form + 1.

Now denote the characteristic function of sectifi;.rg by X;m (x). Then it follows from
(5) and Lemma 2.5 thgt {2, X} (x) < O. Let

i l H
v () = {gjm(x)/ D¢ X, (%) :‘ i ; g,m
]m E)
and
hj, (x) if x¢E;j,
Gim (¥) = {ZimS; (hj s )X () it xeEj, .

In addition, we havaj.m (x) =hj, (x)”i'm (x) — mgi. hj, n;m)xjm (x) foranyx e R".
If x ¢ Ej,, then
|G OO < [, ()] < (Mghj,)(x) <™ F1.

On the other hand, by (6) and by making use of the properties of sections and the same idea
as in proving (3.16), we may get

1/q .
(3.18) (M(Si e |hjm(x)|qdu(x)) < (A6+I0929 (1+9))1/q(Mthm)(Zj)
' Jm S5

Jm

< DoOlm+1,
wherez; € Sj N (E;,)° andDg = (A®H0%:6°A+0))1/a Hence, ifx € E;,, then by (5),
Lemma 2.5 and (3.18) we have

g O < Y

at most M(Sl' ) s

LIMESUIMENTINES

o terms Jm Jm

Z ( 1 / . 1/q9
< . Ih ()] dM(X)>

b \1(S},) s, !

<® DoOlm+l .

Thus we obtain
(7) 1g;, ()| < ®Doa+1 for anyx € R™.
SinceE;, C §;,, by the definition ofy;, (x) we have
(8) supgg;,) C Sj,-

O — ©
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In addition, it is obvious that sumb;m) C Sj andfh;m (x)du(x) = 0 for eachj. Thus

(IV) and (V) hold form + 1. Sincellh;mllLt < 2||hj, Xj ”Li =2[¢ |hj,(x)|du(x), by (5)
Jm

together with Lemma 2.5 we have

Sty <2 [ I @lduto <20 /U Ll
i i Jm

i jm

< 201k, Iy < 2611, 1l (0(S;, )Y < 20u(S;,).

Henceg;, (x)+72; A, (x) converges ta, (x) intheL; norm (itis also convergent almost

everywhere). Thus, by the cancellation properties gi(x) andhi.m (x) for eachi, we have
) [ gj,(x)dux)=0.

If we seta;,, (x) = g;, (x)(Do@a™*111(S;,))~1, then from (7), (8) and (9) we see tha, (x)

is a(1, oo)-atom supported in the sectidi, . This shows that (1) is valid fom + 1. By the

definition ofh;m (x), the hypothesis on;, (x) for m, and (3.18), we have

. 1 ]
01 = {01+ < [ L, 0

n(ss,
1 Yay
< {lb(x)| + 2Doa™ + <—1 / |7, (x)quu(x)> }X;,,’(X)
/VL(S]1) S;m

< {|b(x)| + 2Doe™ + Do 1)y} (x)
< |b(x)| + 2Doa™ Ty} (x)
providede > 2, which means that (VI) holds for + 1. By (3.18), we see that (VII)
is also valid form + 1, since by the definition Oﬁij,,, we know that(m i (|h§.m|’1))1/’1 <
20mgi (5, 1),
Finally, by (VI) we see that
(Mgh,)(x) < (Myb)(x) + 2Doa™ forall x e R".
Thus, forany € E;,, we have
(3.19) "t < (Myhj,)(x) < (Mgb)(x) 4+ 2Doa™ < (Myb)(x) 4+ o™ 1 /2
as long asx > 4Dg. Then, by (4) and (3.19), we obtain
U st = U (U Sj.m) C U Ej, C{x e R"; (Myb)(x) > o 1/2}.
Jm€N™ Jm€N™ “ieN Jm €N
ieN
So, (Il) holds form + 1.
In consequence, to complete the proof of Proposition 3.1 we only need ta takee

a > maxeY =Y ¢4 2pocy/, 2, 4Do},

since each of these numbers depends only,ohandé and is independent af.

O — ©
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4. Proof of theorem 1.2. We need to give an equivalent definition®¥0 ~(R") with
respect to the familyF and the doubling Borel measure Let f be a real-valued function
defined orR". We say thatf € BMO%.(R"), 1 < g < oo, if

1 1/q9
I fllg« = SUP<—/ [f(x) — ms(f)l‘fdu(x)> < 00.
SeF n(S) Js

PROPOSITION 4.1. Forany1 < g < oo, BMO%L(R") = BMO £ (R").

PrROOF. By Hdlder’s inequality, it is easy to geRMOfE(R”) C BMO£(R"). On the
other hand, we assume thgt € BMO£(R") with || f|l. = 1. Then there exist positive
numbersy < 1 andI” depending only o in (1.1) and the constants in the properties (A)
and (B) of sections, such that, for any secttba F and eactk =0,1, 2, ...,

(4.1) u(xeS;[f(x)—ms(Hl>T+kl}) < 86#({)6 €S |f(x)—ms(HH>T}).
(See (6-6) in [CG1, p. 1091] for the proof.) Thus

1 oo
m /S [f(x) —ms(H)|Tdu(x) = %/0 aq_lu({x €S | f(x)—ms(f)] > al)da
r

=5 fo o' Mu(x € S5 £ () = ms(f)] > a)da

44 / W u(x €S 1F () — ms(f)] > a))da
n(S) Jr
=N+ 1.

Here we have

r
(4.2) h<-1 | 07l 4 (S)da < I < .
n(S) Jo

On the other hand, by (4.1) and noting that< 1, we get
o
o=t [l P € S5 1500 = ms(P] > e+ I
wn(S) Jo

o]

! e ryt S rhd
_m,;/kr a4+ D) pudxeS; | f(x)—ms(f)l >a+ IT'NHda

4 < (k+DI+ T u(x € S5 1f ) —ms(NHl >kl +T)-T
(4.3) P

IA

a5
® 2
Sk DU el € S5 £ ) = ms()] > T
k=0

<qI*) (k+2)7 e < CqI?.
k=0

From (4.2) and (4.3), we conclude tha¥/0%.(R") > BMO £ (R").

O — ©
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PROOF OF THEOREM 1.2. To prove Theorem 1.2, we need to show thay ife
BMO £(R"), then

(4.4) lg(f) = /Rn S () g(x)dp(x)

is a bounded linear functional dﬂi]lgq(R”), and conversely that for any bounded linear func-
tional/ on H}(R”), there exist® € BMO £(R") such that

l(f):/ f)b)du(x) forall fe HER).
R)'l

By the conclusions of Theorem 1.1 and Proposition 4.1, it suffices to show that the dual space
of the atomic Hardy spacH]l,;q(R”) is BMO?E/(R") for someg with 1 < ¢ < oo, that is,
(HF‘(R") = BMO-(R"), where ¥g + 1/¢' = 1.

We first prove thaBMO%L-(R") C (Hy!(R"). Write D = HF‘(R") N LL(R", dp),
whereL! (R", d ) consists of all functions id.9 (R", d ) with compact supports. Since the
set of all functions with the fornz,](\’:l Meag(x) is dense inH;"(R”), D is a dense subset of
H;q(R”). Then we will see that, for any € BMO}’E/(R”), the linear functional, defined in

(4.4) is bounded on the dense suhBetf H}"(R”).
For N € N, we set

N if g(x)>N,
gN(x) = l gx) if gl < N,
—N if g(x)<—N.
Then it is easy to verify thajy (x) € BMO}I(R”) andlignllg « < 4lgllg «-
Setf(x) = Y ;o4 ak(x) € D, wherea(x) is a (1, g)-atom supported in a section
Sk € F. Thus, by the definition of thél, g)-atom, we have

[e¢]

<D Il

k=1
o
<l
k=1

) 1dq'
Ak ] ”ak”L7‘</s lgn (x) — ms, (gn)1? du(x)>
k

' /R N0 ()

/R a0 ()

/S a () gn () — ms, (g1 (x)
k

(4.5)

E/%S II

k=1

M

1 J 1/q'
M| —— — d
| k'(M(Sk) . [gn (x) —mg, (gn)] M(X)>

>~

=1
IfIIHjT,q “Allgllg s -

=<

Sinceg(x) € BMO?E/(R") is a locallyq’-th integrable function oR",
|f @) gy ()] < [f()g)| € LYR", dp).
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By the Lebesgue dominated convergence theorem and (4.5),

'/ J(x)g(x)du(x) lim / J gy )dp(x)| = I1F 1l yra -4l gllg s -
R N—oo Jre F

This shows that the linear functionglis bounded orD, and||/4|| < 4] gl,,«. Consequently,
I, has a unique bounded extension[dé;q(R”), sinceD is a dense subset di]lgq(R”). In
this sense we then ha\lE/IO}/(R”) C (H;"(R”))’.

In order to prove the inverse incIusiQH;q(R”))’ C BMOqf/(R"), we need to show that
if [ is a bounded linear functional QH;’](R"), then there exists(x) € BMO}I(R”) such
that for anyf e H;q(R”)

I(f) = fR FOObR)

The proof will be divided into the following three steps.
Step 1. Letus first prove(H]lgq(R"))/ C (L3(S,dw))’, whereS = S(x, 1) € Fis any
section inR" and

L{(S,dp) = {f e LY(R",duw); f =0pu-a.e.onSand /S F)du(x) = 0} )

Indeed, whery (x) € L§(S,dp), itis easy to check that(x) = f(x)(M(S))—l/f/||f||;}(s)
i
s a (L g)-atom. Thusf() = a1l € Hp'RY and |1 fl,n0 <

(M(S))l/‘/ﬂf”Lz(S)- Therefore, we have

(4.6) HCOT= W YU f g s)

which shows that is also a bounded linear functional dr(S, du). SinceL{(S,dw) C
L4(S, dw), using the Hahn-Banach extension theorem, we know/thas a unique bounded
extension orL9(S, du). Since 1< g < oo, by the Riesz representation theorem, there exists
b(x) € L4'(S, dp) such that

4.7) l(f):/sf(x)b(x)du(x) forall fe L{(S, dw).
Furthermore, we have the following fact:

IffS fx)b(x)du(x)=0forall f € Lg(S, du), then b(x) is constant for almost every
x € S.

Indeed, sinces is a bounded convex set, for ahyx) € LI(S, du) we haveh(x) — mg(h) €

L{(S,dp). Thus

0= / b(x)[h(x)—mg(h)]ldu(x) = / h(x)[b(x) —mg(b)ldu(x) forall h e LI(S,du).
s S

Henceb(x) = mg(b) almost every € S.
Sep 2. Fix xo € R" and choose a sequence of positive increasing nun‘{ln,e}fj@l
such thatlim_, o t; = co. Then, by the property (C) of sectior{S,(xo, [j)}j:]_ is a sequence
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of sections with J72; S; = R", whereS; = S(xo, ;). By (4.7), for eachs;, there exists
bj(x) € LY (S;, du) satisfying (4.7).
Consider an arbitrary e L‘é(Sl, duw). There exists1(x) € L9 (S1, dw) such that

(4.8) I(f) = /S FEObLOdR )
1

By S2 D S1, we haveL{(S2, du) D L§(S1, dw) and f € Lj(S2, dp). Therefore, there exists
bo(x) € L9 (S, dp) such that

(4.9) 1) = /S F b2 (x) = /S b))
2 1
since suppf) C S1. From (4.8) and (4.9), we get
(4.10) / F)[b1(x) — ba(x)ldu(x) =0 forall f e Lg(Sl, du).
N

Applying the fact shown in Step 1, we habg(x) — ba(x) = C1 for almost everye € Ss.
Now we write

bl(x) if xe Sl,

b(x) = .
) {bz(x) 101 if x eSSt
Then we obtain
ICf) =/ fOO)b)du(x) forany f e L{(S;,dw), j=1,2.
Sj

By a method quite similar to the above, we may obtain a fundiian satisfying

(4.11) 1(f) =/ f)bx)du(x) forany f e LE(S; dw), j=1,2,....
Sj

Sep 3. Now we prove that the abovgx) € BMO}I(R”) and satisfies

(4.12) I(f) =/ f)b)du(x) forany f e HzY(R").
Rll

We need the following fact about sectionsRf.

Assumethat So = S(yo, r) € F isan arbitrary section in R”. Then there exists jo such
that S;, O So, where S;, = S(xo, tj,) iSthe jo-th section of the sequence in Step 2.

Indeed, bij‘;l S; = R", there exists a sectiofy = S(xo, #;) such thatS(xo, #;) N
S(yo, r) # @ with ; > r. Then there exists € S(xo, ;) N S(yo, r). From the property (D)
of sections, we hav&(yo, r) C S(z,0r) C S(z,0t;). Sincez € S(xo, t;) C S(xo, 0;), Using
the property (D) again, we knosiz, 67;) C S(xo, 6%;) and thereforeS(yo, r) C S(xo, 6%1;).
Now if we takejo such that;, > 62, thenS(yo, r) C S(xo, tj,)-

Now, let us return to the proof of (4.12). For apye H]lgq(R”), we may writef (x) =
Y req Meak(x), whereag(x) is a (1, ¢)-atom supported in the sectigh € F. By the fact
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above, for eaclt there existgj, such thatS; C S;, = S(xo, t;,). By the definition of(1, ¢)-
atom, we havey (x) € L§(Sj,, dw). Thus by (4.11),

(4.13) lap) = / 4 (b (X)d e (x) = /R (b () (x)

S
Since the functiondlis linear, by (4.13) we obtain

1) = 3 heda) = Y [ awtopdne = [ f@b@du.
k=1 =1 R R

Finally, to finish the proof of Step 3, it remains to show that) € BMO?E/(R"). For any
sectionS € F, let h(x) € L4(S,du) with supph) C S and ”h”LZ < 1. Thena(x) =
(1/2)(M(S))—1/q'[h(x) —mgs(h)]x(x)is a(l, ¢g)-atom supported iy and||a||LZ < 1. Thus,
(4.13) implies that

' /S abdp)| = [1@)] < 1]
Hence
(u(S) =Y /S [h(x) — ms(h)]b(x)duw(x)| < 2| .
That is,
(4.14) (u(S)~ Y4 /S h(x)[b(x) — ms(b)ldu(x)| < 2||I] .

From (4.14), we have

(SN~ b —ms ) g = (($) M7 sup

h <1
Al g <

/Sh(X)[b(X)—ms(b)]dM(X) =21

Since the sectiol € F is arbitrary, we may conclude thatx) € BMO?(R”). This com-
pletes the proof of Theorem 1.2.

5. Proof of theorem 1.3. Applying Theorem 1.1, we only have to show that there
exists a constar® such that
(5.1) ||H(a)||L§ < C forall (1, 2)-atoma.

By Definition 1.1, there exists a sectiéh = S(yo, f0) € F such that supa) C Sp. Denote
S = S(yo, 40?10, whered is the constant appearing in the property (D) of sections. By the
doubling property (1.1) oft, we have

(5.2) 1(S3) < A3F20%0 . (S) .

Thus
/ IH(a)(x)IdM(x)=/ |H(a)(x)|du(x)+/ |H (a)(x)|dp(x)
(53) R S (8¢
=1+ 1.
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By the (L2, L?)-boundedness of the operattir(see [CG3]) and (5.2), we get

1/2
I < m(sz;)]l/z( f IH(a)(X)Isz(X)>
(5.4 S5

On the other hand, by the cancellation condition of the aipme have

I = / f K(m)a(y)du(y)'du(x)
(Séc Rn

-[ 2] ki(x,y>a<y)du(y>‘du<x)
e 15 Jre

-[ 2] [ki(x,y)—ki(x,yo)]a(y)du(y)‘dM(X)
(Sg)" ; R»

<> / la(y)| / ki (x, ) — ki (x, yo)ldpu(x)dju(y)
i R (SS)C

=/ Ia(y)IZ/ ki (x, y) = ki(x, yo)ldpu(x)du(y) -
So sy

By the size condition of the atom it suffices to prove that there exists a constaimdepen-
dent of the atona such that

(5.5) Z/(s*>' ki (x, y) — ki (x, yo)ldp(x) < C.
i 0
Indeed, if (5.5) holds, then
= [ lamidum =c.
So

which combined with (5.4) implies (5.1).
Therefore, in order to prove Theorem 1.3, it remains only to prove (5.5). By the property
(G) of sections, we have

(5.6) p(0.y) <to and p(yo.x) = 46%10

if y € So andx € (S3)¢. So, by (5.6), we see that whene So andx € (5)¢,
p(v0.x) > 40%p(y0.y) -

Using the conclusion of Lemma 1 in [In], we get (5.5).
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