ON A CONJECTURE OF SHOKUROV: CHARACTERIZATION OF TORIC VARIETIES

Yuri G. Prokhorov

(Received January 31, 2000)

Abstract

We verify a special case of V. V. Shokurov's conjecture about characterization of toric varieties. More precisely, we consider three-dimensional log varieties with only purely \log terminal singularities and numerically trivial log canonical divisor. In this situation we prove an inequality connecting the rank of the group of Weil divisors modulo algebraic equivalence and the sum of coefficients of the boundary. We describe such varieties for which the equality holds and show that all of them are toric.

1. Introduction. The aim of this note is to discuss the birational characterization of toric varieties. Let X be a normal projective toric variety and let $D=\sum_{i=1}^{r} D_{i}$ be the sum of invariant divisors. It is well-known that the pair (X, D) has only \log canonical singularities (see, e.g., [3, 3.7]), $K_{X}+D$ is linearly trivial and $r=\operatorname{rank}(\operatorname{Weil}(X) / \approx)+\operatorname{dim}(X)$, where $\operatorname{Weil}(X)$ is the group of Weil divisors and \approx is the algebraic equivalence.

Shokurov observed that this property can characterize toric varieties:
Conjecture 1.1 ([12]). Let $\left(X, D=\sum d_{i} D_{i}\right)$ be a projective log variety such that (X, D) has only log canonical singularities and numerically trivial. Then

$$
\sum d_{i} \leq \operatorname{rank}(\operatorname{Weil}(X) / \approx)+\operatorname{dim}(X) .
$$

Moreover, if the equality holds, then $(X,\lfloor D\rfloor)$ is a toric pair.
Shokurov also conjectured the relative version of Conjecture 1.1 (cf. Theorem 2.3) and expects that one can replace the numerical triviality of $K_{X}+D$ with the nefness of $-\left(K_{X}+D\right)$. We do not discuss these points in detail here.

Conjecture 1.1 was proved in dimension two in [12] (see also [9, Sect. 8] and Proposition 2.1 below). Our main result is the following partial answer to Conjecture 1.1 in dimension three:

THEOREM 1.2. Let $\left(X, D=\sum d_{i} D_{i}\right)$ be a three-dimensional projective variety over C such that $K_{X}+D \equiv 0$ and (X, D) has only purely log terminal singularities. Then

$$
\begin{equation*}
\sum d_{i} \leq \operatorname{rank}(\operatorname{Weil}(X) / \approx)+3 \tag{1.3}
\end{equation*}
$$

Moreover, if the equality holds, then up to isomorphisms one of the following holds:
(i) $X \simeq \boldsymbol{P}^{3},\lfloor D\rfloor=0$ or $\lfloor D\rfloor=\boldsymbol{P}^{2}$;
(ii) $\quad X \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{2},\lfloor D\rfloor=0$ or $\lfloor D\rfloor=\{\mathrm{pt}\} \times \boldsymbol{P}^{2}$ or $\lfloor D\rfloor=\boldsymbol{P}^{1} \times\{$ line $\} ;$

[^0](iii) $\quad X \simeq \boldsymbol{P}\left(\mathcal{O}_{\boldsymbol{P}^{1}} \oplus \mathcal{O}_{\boldsymbol{P}^{1}} \oplus \mathcal{O}_{\boldsymbol{P}^{1}}(d)\right), d \geq 1,\lfloor D\rfloor$ is the section corresponding to the surjection $\mathcal{O}_{\boldsymbol{P}^{1}} \oplus \mathcal{O}_{\boldsymbol{P}^{1}} \oplus \mathcal{O}_{\boldsymbol{P}^{1}}(d) \rightarrow \mathcal{O}_{\boldsymbol{P}^{1}}(d)$;
(iv) $X \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1},\lfloor D\rfloor=0$ or $\lfloor D\rfloor=\{\mathrm{pt}\} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ or $\lfloor D\rfloor=\left\{\mathrm{pt}_{1}, \mathrm{pt}_{2}\right\} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1} ;$
(v) $\quad X \simeq \boldsymbol{P}\left(\mathcal{O}_{\boldsymbol{P}^{2}} \oplus \mathcal{O}_{\boldsymbol{P}^{2}}(d)\right), d \geq 1,\lfloor D\rfloor$ is the negative section, or a disjoint union of two sections, one of them is negative;
(vi) $\quad X \simeq \boldsymbol{P}\left(\mathcal{O}_{\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}} \oplus \mathcal{L}\right), \mathcal{L} \in \operatorname{Pic}\left(\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}\right),\lfloor D\rfloor$ is the negative section, or a disjoint union of two sections, one of them is negative.

In all cases $(X,\lfloor D\rfloor)$ is toric.
Clearly, our theorem is not a characterization of toric varieties, but we hope that Conjecture 1.1 can be proved in a similar way.

This paper is based on the subject of my talk given at Waseda seminar on January 18, 2000. I am grateful to the participants of this seminar for their attention and valuable discussions. I would also like to thank the Department of Mathematics of Tokyo Institute of Technology for the hospitality during my stay in 1999-2000. This work was partially supported by the grant INTAS-OPEN-97-2072.

2. Preliminaries.

Notation. All varieties are defined over \boldsymbol{C}. Basically we employ the standard notation of the Minimal Model Program (MMP, for short). Throughout this paper $\rho(X)$ is the Picard number and $\overline{N E}(X)$ is the Mori cone of X. We call a pair (X, D) consisting of a normal algebraic variety X and a boundary D on X a log variety or a log pair. Here a boundary is a \boldsymbol{Q}-Weil divisor $D=\sum d_{i} D_{i}$ such that $0 \leq d_{i} \leq 1$ for all i. A contraction is a projective morphism $\varphi: X \rightarrow Z$ of normal varieties such that $\varphi_{*} \mathcal{O}_{X}=\mathcal{O}_{Z}$. Abbreviations klt, plt, lc are reserved for Kawamata \log terminal, purely \log terminal and \log canonical, respectively (refer to [11], [4] and [3] for the definitions). Let (X, D) be a \log pair and let $S:=\lfloor D\rfloor$. For simplicity, assume that (X, D) is lc in codimension two. The Adjunction Formula proposed by Shokurov [11, Sect. 3] states that $\left.\left(K_{X}+D\right)\right|_{S}=K_{S}+\operatorname{Diff}_{S}(D-S)$, where $\operatorname{Diff}_{S}(D-S)$ is a naturally defined effective \boldsymbol{Q}-Weil divisor on S, a so-called different. Moreover, $K_{X}+D$ is plt near S if and only if S is normal and $K_{S}+\operatorname{Diff}_{S}(D-S)$ is klt [4, 17.6]. $L C S(X, D)$ denotes the locus of log canonical singularities of (X, D) that is the set of all points where (X, D) is not klt [11]. Let $\varphi: X \rightarrow Z$ be any fiber type contraction and let $D=\sum d_{i} D_{i}$ be a \boldsymbol{Q}-divisor on X. We will write $D=\sum_{\text {ver }} d_{i} D_{i}+\sum_{\text {hor }} d_{i} D_{i}=D^{\text {ver }}+D^{\text {hor }}$, where $\sum_{\text {ver }}$ (resp. $\sum_{\text {hor }}$) runs through all components D_{i} such that $\operatorname{dim} \varphi\left(D_{i}\right)<\operatorname{dim}(Z)\left(\right.$ resp. $\varphi\left(D_{i}\right)=Z$). We will frequently use the above notation without reference.

In dimension two Conjecture 1.1 is much easier than higher dimensional one. We need only the following weaker version:

Proposition 2.1. Let $\left(X, D=\sum d_{i} D_{i}\right)$ be a projective log surface such that $-\left(K_{X}+D\right)$ is nef and (X, D) is lc. Then $\sum d_{i} \leq \rho(X)+2$. Moreover, if the equality holds and (X, D) is klt, then $X \simeq \boldsymbol{P}^{2}$, or $X \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.

For the general statement we refer to [12], see also [9].

Proof. Assume that $\sum d_{i}-\rho(X)-2 \geq 0$ and run K_{X}-MMP. According to [1], Log MMP works even in the category of \log canonical pairs. On each step, $\sum d_{i}-\rho(X)-2$ does not decrease and all assumptions are preserved (see [4, 2.28]). At the end we get one of the following:

Case 1. $\rho(X)=1$. Then $\sum d_{i}-\rho(X)-2 \leq 0$ by [4, 18.24], [1, 5.1].
Case 2. There is an extremal contraction onto a curve $\varphi: X \rightarrow Z$ (in particular, $\rho(X)=2)$. Let ℓ be a general fiber. Then

$$
\begin{equation*}
2=-K_{X} \cdot \ell \geq D \cdot \ell=\sum_{\text {hor }} d_{i} D_{i} \cdot \ell \geq \sum_{\text {hor }} d_{i} \tag{2.2}
\end{equation*}
$$

Hence $\sum_{\text {ver }} d_{i} \geq 2$ and $K_{X}+D^{\text {hor }}$ is not nef. Let $\phi: X \rightarrow W$ is a contraction of ($\left.K+D^{\mathrm{hor}}\right)$ negative extremal ray. If ϕ is birational, we replace X with W and obtain Case 1 above. Thus we may assume that W is a curve, so φ and ϕ are symmetric. As above, $\sum_{\text {ver }} d_{i} \leq 2$, so $\sum d_{i}=4$.

Now assume that (X, D) is klt and $\sum d_{i}-\rho(X)-2=0$. Then after each divisorial contraction $\sum d_{i}-\rho(X)-2$ increases. Hence we are only in cases 1 or 2 above. In Case 1 , $X \simeq \boldsymbol{P}^{2}$ by Lemma 3.1 below. In Case 2 the contraction ϕ cannot be divisorial. Hence W is a curve. We have the equality in (2.2), so $\sum_{\text {hor }} d_{i}=\sum_{\text {ver }} d_{i}=2$ and $D_{i} \cdot \ell=1$ for any component of $D^{\text {hor }}$. Considering the inequality similar to (2.2) for the contraction ϕ, one can obtain that $D^{\text {hor }}$ is vertical with respect to ϕ. In particular, the components of $D^{\text {hor }}$ are disjoint sections of φ. Now let ℓ_{0} be any fiber of φ. It is known (see, e.g., [9, 7.2]) that φ has at most two singular points on ℓ_{0}. Since $\sum_{\mathrm{hor}} d_{i}=2$, there is a component of $D^{\text {hor }}$ intersecting ℓ_{0} at a (single) smooth point. Therefore ℓ_{0} is not a multiple fiber of φ and X is smooth along ℓ_{0}. We proved that X is smooth. Taking into account that $\rho(X)=2$ and that both extremal rays on X are nef, we obtain $X \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.

The local version of Conjecture 1.1 was proved in [4, 18.22]:
THEOREM 2.3. Let $\left(X, D=\sum d_{i} D_{i}\right)$ be a log pair which is log canonical at a point $P \in \cap D_{i}$. Assume that K_{X} and all D_{i} 's are \boldsymbol{Q}-Cartier at P. Then $\sum d_{i} \leq \operatorname{dim}(X)$. Moreover, if the equality holds, then $(X \ni P, D)$ is an abelian quotient of a smooth point and (X, D) is not plt at P.

Recall that for any plt pair (X, D) of dimension ≤ 3 there is a small birational contraction $q: X^{q} \rightarrow X$ such that X^{q} is \boldsymbol{Q}-factorial and ($X^{q}, D^{q}:=q_{*}^{-1} D$) is plt (see [4, 6.11.1], [4, 17.10]). Such q is called a \boldsymbol{Q}-factorialization of (X, D). Applying a \boldsymbol{Q}-factorialization in our situation and taking into account that

$$
\operatorname{rank}(\operatorname{Weil}(X) / \approx)=\left(\operatorname{rank} \operatorname{Weil}\left(X^{q}\right) / \approx\right) \geq \rho\left(X^{q}\right),
$$

we obtain that for Theorem 1.2 it is sufficient to prove the following
Proposition 2.4. Let $\left(X, D=\sum d_{i} D_{i}\right)$ be a three-dimensional projective plt pair such that $K_{X}+D \equiv 0$ and X is \boldsymbol{Q}-factorial. Then

$$
\begin{equation*}
\sum d_{i} \leq \rho(X)+3 \tag{2.5}
\end{equation*}
$$

Moreover, if the equality holds, then for $(X,\lfloor D\rfloor)$ there are only possibilities (i)-(iv) of Theorem 1.2.
3. Lemmas. In this section we prove several facts related to Conjecture 1.1.

LEMMA 3.1 (cf. [4, 18.24], [1]). Let $\left(X, D=\sum_{i=1}^{r} d_{i} D_{i}\right)$ be a projective n-dimensional log pair such that all D_{i} 's are \boldsymbol{Q}-Cartier, $\rho(X)=1,(X, D)$ is plt and $-\left(K_{X}+D\right)$ is nef. Then

$$
\begin{equation*}
\sum d_{i} \leq n+1 \tag{3.2}
\end{equation*}
$$

Moreover, if the equality holds, then $X \simeq \boldsymbol{P}^{n}$ and D_{1}, \ldots, D_{r} are hyperplanes.
Note that in the two-dimensional case any plt pair is automatically \boldsymbol{Q}-factorial.
Proof. We will prove this lemma in the case when $\lfloor D\rfloor=0$ (i.e., $K_{X}+D$ is klt). The case when $\lfloor D\rfloor$ is non-trivial (and irreducible) can be treated in a similar way. The inequality (3.2) was proved in $[4,18.24]$, so we prove the second part of our lemma.

Since $-K_{X}$ is ample, $\operatorname{Pic}(X) \simeq \boldsymbol{Z}$ (see, e.g., [8, 2.1.2]). Let H be an ample generator of $\operatorname{Pic}(X)$ and let $D_{i} \equiv a_{i} H, a_{i} \in \boldsymbol{Q}, a_{i} \geq 0$. Assume that $a_{i}<a_{j}$ for $i \neq j$ or $K_{X}+D \not \equiv 0$. For $0<\varepsilon \ll 1$, consider

$$
D^{(\varepsilon)}:=\varepsilon D_{i}+D-\varepsilon D_{j} .
$$

Then $K_{X}+D^{(\varepsilon)}$ is again klt (because the klt property is an open condition) and $-\left(K_{X}+\right.$ $\left.D^{(\varepsilon)}\right)$ is ample. Take $N \in N$ so that $-N\left(K_{X}+D^{(\varepsilon)}\right)$ is integral and very ample, and let $M \in\left|-N\left(K_{X}+D^{(\varepsilon)}\right)\right|$ be a general member. By a Bertini type theorem [3, Sect. 4], $\left(X, D^{(\varepsilon)}+(1 / N) M\right)$ is klt (and numerically trivial). Moreover, the sum of coefficients of $D^{(\varepsilon)}+(1 / N) M$ is equal to $n+1+1 / N$. This contradicts (3.2). Hence $K_{X}+D \equiv 0$ and $D_{i} \equiv D_{j}$ for all i, j. Thus, for any pair D_{i} and D_{j} there exists $n_{i, j} \in N$ such that $n_{i, j}\left(D_{i}-D_{j}\right) \sim 0$.

By taking repeated cyclic covers (which are étale in codimension one) $\pi: X^{\prime} \rightarrow \cdots \rightarrow$ X, we obtain a new plt pair $\left(X^{\prime}, D^{\prime}=\sum_{i=1}^{r} d_{i} D_{i}^{\prime}\right)[4,20.4]$ such that $D_{i}^{\prime} \sim D_{j}^{\prime}$, where $D_{i}^{\prime}=\pi^{*} D_{i}$. On this step, we do not assume that D_{i}^{\prime} is irreducible. Then $D_{1}^{\prime}, \ldots, D_{r}^{\prime}$ generate a linear system \mathcal{M} of Weil divisors. If $\operatorname{Bs}(\mathcal{M})$ is not empty, then we pick a point $P^{\prime} \in D_{1}^{\prime} \cap \cdots \cap D_{r}^{\prime}$. By construction, $\left(X^{\prime}, D^{\prime}\right)$ is klt at P^{\prime} and $\sum_{i=1}^{r} d_{i} \geq n+1$, a contradiction with Theorem 2.3. Therefore $\operatorname{Bs}(\mathcal{M})=\varnothing$. In particular, $D_{1}^{\prime}, \ldots, D_{r}^{\prime}$ are ample Cartier divisors and $-K_{X^{\prime}} \equiv D^{\prime}$ is ample (i.e., X^{\prime} is a \log Fano variety). This also shows that the Fano index of X^{\prime} is $r\left(X^{\prime}\right) \geq \sum_{i=1}^{r} d_{i} \geq n+1$. It is well-known (see, e.g., [8, 3.1.14]) that in this case we have $r\left(X^{\prime}\right)=\sum_{i=1}^{r} d_{i}=n+1, X^{\prime} \simeq \boldsymbol{P}^{n}$ and $D_{1}^{\prime}, \ldots, D_{r}^{\prime}$ are hyperplanes. Since $\pi: X^{\prime} \rightarrow X$ is étale outside of $\operatorname{Sing}(X)$ and X^{\prime} is smooth, the restriction $X^{\prime} \backslash \pi^{-1}(\operatorname{Sing}(X)) \rightarrow X \backslash \operatorname{Sing}(X)$ is the universal covering. This gives us that $\pi: X^{\prime} \rightarrow X$ is Galois. Hence $X=\boldsymbol{P}^{n} / G$, where $G \subset P G L_{n+1}$ is a finite subgroup. Furthermore, the group G does not permute $D_{1}^{\prime}, \ldots, D_{r}^{\prime}$. Thus G has $r>n+1$ invariant hyperplanes $D_{1}^{\prime}, \ldots, D_{r}^{\prime}$ in \boldsymbol{P}^{n}. By Theorem 2.3 we have $\bigcap_{i \neq k} D_{i}^{\prime}=\varnothing$ for $k=1, \ldots, r$.

Finally, the lemma follows by the following simple fact which can be proved by induction on n.

Sublemma. Let $G \subset P G L_{n+1}$ be a finite subgroup. Assume that there are $r \geq n+2$ invariant hyperplanes $H_{1}, \ldots, H_{r} \subset \boldsymbol{P}^{n}$ such that $\bigcap_{i \neq k} H_{i}=\varnothing$ for all $k=1, \ldots, r$. Then $G=\{1\}$.

LEMMA 3.3. Let $\varphi: X \rightarrow Z \ni$ o be a three-dimensional flipping contraction and let $D=\sum d_{i} D_{i}$ be a boundary on X such that (X, D) is plt, $\rho(X / Z)=1,-\left(K_{X}+D\right)$ is φ-nef and all D_{i} 's are φ-ample. Assume that X is \boldsymbol{Q}-factorial. Then $\sum d_{i}<2$.

Proof. Let $\chi: X \xrightarrow{\varphi} Z \stackrel{\varphi^{+}}{\leftrightarrows} X^{+}$be the flip with respect to K_{X} and let $D^{+}=$ $\sum d_{i} D_{i}^{+}$be the proper transform of D. Then all D_{i}^{+}s are anti-ample over Z. Hence $\varphi^{+-1}(o)$ is contained in $\cap D_{i}^{+}$. Consider a general hyperplane section $H \subset X^{+}$. Then $\left(H,\left.D\right|_{H}\right)$ is plt [3, Sect. 4]. Applying Theorem 2.3 to H we obtain $\sum d_{i}<2$.

LEMMA 3.4. Let $\varphi: X \rightarrow Z$ be a contraction from a projective \boldsymbol{Q}-factorial three-fold onto a surface such that $\rho(X / Z)=1$. Let $D=\sum d_{i} D_{i}$ be a boundary on X such that (X, D) is lc, $(X, D-\lfloor D\rfloor)$ is klt and $-\left(K_{X}+D\right)$ is nef. Assume that $\lfloor D\rfloor$ has a component S which is generically a section of φ. Then $\sum_{i} d_{i} \leq \rho(X)+3$. Moreover, if the equality holds and (X, D) is plt, then X is smooth, φ is a \boldsymbol{P}^{1}-bundle, $\left.\varphi\right|_{S}: S \rightarrow Z$ is an isomorphism and $Z \simeq \boldsymbol{P}^{2}$ or $Z \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.

Proof. Assume that $\sum_{i} d_{i} \geq \rho(X)+3$. Since $-K_{X}$ is φ-ample, a general fiber ℓ of φ is isomorphic to \boldsymbol{P}^{1}. We have

$$
\begin{equation*}
2=-K_{X} \cdot \ell=D^{\mathrm{hor}} \cdot \ell \geq \sum_{\text {hor }} d_{i}, \quad \sum_{\text {ver }} d_{i} \geq \rho(X)+1=\rho(Z)+2 \tag{3.5}
\end{equation*}
$$

Let $\mu:=\left.\varphi\right|_{s}$. Write $\operatorname{Diff}_{S}(D-S)=\sum_{i} \beta_{i} \Theta_{i}$. Then

$$
\begin{equation*}
\beta_{i}=1-\frac{1}{m_{i}}+\frac{1}{m_{i}} \sum_{j \in \mathfrak{M}_{i}} d_{j} k_{i, j} \tag{3.6}
\end{equation*}
$$

where $m_{i} \in N \cup\{\infty\}, k_{i, j} \in N$ and the sum runs through the set \mathfrak{M}_{i} of all components D_{j} containing Θ_{i} (see [11, 3.10]). Here $m_{i}=\infty$ when (X, D) is not plt along Θ_{i}. It is easy to see that $\beta_{i} \geq \sum_{j \in \mathfrak{M}_{i}} d_{j}$. Put $\Xi:=\mu_{*} \operatorname{Diff}_{S}(D-S)$ and let $\Xi=\sum \gamma_{i} \Xi_{i}$. Since $-\left(K_{S}+\Theta\right)$ is nef, (Z, Ξ) is lc [4, 2.28]. For any component D_{i} of $D^{\text {ver }}$ we have at least one component $\Theta_{j} \subset D_{i} \cap S$ such that $\mu\left(\Theta_{j}\right) \neq \mathrm{pt}$. This yields

$$
\sum_{i} \gamma_{i}=\sum_{\mu\left(\Theta_{i}\right) \neq \mathrm{pt}} \beta_{i} \geq \sum_{\mathrm{ver}} d_{j} \geq \rho(Z)+2
$$

Applying Proposition 2.1 to (Z, Ξ), we obtain equalities

$$
\begin{equation*}
\sum_{i} \gamma_{i}=\sum_{\mu\left(\Theta_{i}\right) \neq \mathrm{pt}} \beta_{i}=\sum_{\mathrm{ver}} d_{j}=\rho(Z)+2 \tag{3.7}
\end{equation*}
$$

Hence $\sum_{\text {hor }} d_{i}=2$ and $\sum_{i} d_{i}=\rho(X)+3$. This shows the first part of the lemma.

Now assume that (X, D) is plt. By Adjunction [4, 17.6], $\left(S, \operatorname{Diff}_{S}(D-S)\right)$ is klt and so is ($Z, \boldsymbol{\Xi}$). Again, by Proposition 2.1 we have either $Z \simeq \boldsymbol{P}^{2}$ or $Z \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. There exists a standard form of φ (see [10]), i.e., the commutative diagram

$$
\begin{array}{ccc}
\widetilde{X} & \cdots & X \\
\downarrow & & \downarrow \\
\widetilde{Z} & \xrightarrow{\sigma} & Z
\end{array}
$$

where $\sigma: \widetilde{Z} \rightarrow Z$ is a birational morphism of smooth surfaces, $\widetilde{X} \rightarrow X$ is a birational map and $\widetilde{\varphi}: \widetilde{X} \rightarrow \widetilde{Z}$ is a standard conic bundle (in particular, \widetilde{X} is smooth and $\rho(\widetilde{X} / X)=1$). Take the proper transform \widetilde{S} of S on \widetilde{X}. For a general fiber $\widetilde{\ell}$ of $\widetilde{\varphi}$ we have $\widetilde{S} \cdot \widetilde{\ell}=1$. Since $\rho(\widetilde{X} / \widetilde{Z})=1, \widetilde{S}$ is $\widetilde{\varphi}$-ample. It gives us that each fiber of $\widetilde{\varphi}$ is reduced and irreducible, i.e., the morphism $\widetilde{\varphi}$ is smooth. By [7], there exists a standard conic bundle $\hat{\varphi}: \hat{X} \rightarrow Z$ and a birational map $\hat{X} \rightarrow X$ over Z. This map indices an isomorphism $\left(\hat{X} / \hat{\varphi}^{-1}(\mathfrak{M})\right) \simeq$ $\left(X / \varphi^{-1}(\mathfrak{M})\right)$, where $\mathfrak{M} \subset Z$ is a finite number of points. Since both $\varphi, \hat{\varphi}$ are projective and $\rho(X / Z)=\rho(\hat{X} / Z)=1$, we have $\hat{X} \simeq X$. But then $\varphi: X \rightarrow Z$ is smooth, i.e., φ is a \boldsymbol{P}^{1}-bundle.

Now we claim that μ is an isomorphism. Indeed, otherwise S contains a fiber, say ℓ_{0}. Then S intersects all irreducible components of $D^{\text {hor }}-S$. If some component D_{k} of $D^{\text {hor }}-S$ does not contain ℓ_{0}, then $\varphi\left(S \cap D_{k}\right)$ is a component of Ξ. By (3.7) we have

$$
\rho(Z)+2=\sum_{i} \gamma_{i}=\sum_{\mu\left(\Theta_{i}\right) \neq \mathrm{pt}} \beta_{i} \geq d_{k}+\sum_{\text {ver }} d_{j}>\rho(Z)+2,
$$

which is impossible. Therefore all components of $D^{\text {hor }}$ contain ℓ_{0}. Taking a general hyperplane section as in the proof of Lemma 3.3, we derive a contradiction.

Corollary 3.7.1. S does not intersects $\operatorname{Supp}\left(D^{\text {hor }}-S\right)$ and all components of $D^{\text {hor }}-S$ are sections of φ.

LEMMA 3.8. Let $\varphi: X \rightarrow Z$ be a contraction from a \boldsymbol{Q}-factorial three-fold onto a curve and let $D=\sum d_{i} D_{i}$ be a boundary on X such that (X, D) is lc, $(X, D-\lfloor D\rfloor)$ is klt. Let F be a general fiber. Assume that $-\left(K_{X}+D\right)$ is φ-nef and $\rho(X / Z)=1$. Then $\sum_{\text {hor }} d_{i} \leq 3$. Moreover, if the equality holds and (X, D) is plt, then $F \simeq \boldsymbol{P}^{2}$ and for any component D_{i} of $D^{\text {hor }}$ the scheme-theoretic restriction $\left.D_{i}\right|_{F}$ is a line.

Proof. Put $\Delta:=\left.D\right|_{F}$. Then (F, Δ) is lc, $(F, \Delta-\lfloor\Delta\rfloor)$ is klt (see [3, Sect. 4]) and $-\left(K_{F}+\Delta\right)$ is nef. Moreover, if (X, D) is plt, then so is (F, Δ). Write $\Delta=\sum \delta_{i} \Delta_{i}$, where all Δ_{i} 's are irreducible curves on F. Clearly $\left.D^{\text {ver }}\right|_{F}=0$ and $\sum \delta_{i} \geq \sum_{\text {hor }} d_{i}$. If $\rho(F)=1$, then the assertion of 3.8 follows by Proposition 2.1. Assume that $\rho(F)>1$. Let C be an extremal K_{F}-negative curve on F (note that K_{F} is not nef). Then C intersects all components of Δ (because $\rho(X / Z)=1$). Let $v: F \rightarrow F^{\prime}$ be the contraction of C. If F^{\prime} is a curve, then we take C to be a general fiber of v. By Adjunction, $2=-\operatorname{deg} K_{C} \geq\left.\operatorname{deg} \Delta\right|_{C}$. This gives us $2 \geq \sum \delta_{i} \geq \sum_{\text {hor }} d_{i}$. If v is birational, then $\left(F^{\prime}, v(\Delta)\right)$ is lc and all components of $v(\Delta)$ pass through the point $v(C)$. By Theorem 2.3, the sum of coefficients of $v(\Delta)$ is ≤ 2. Hence $\sum_{\text {hor }} d_{i} \leq \sum \delta_{i} \leq 3$. If (F, Δ) is klt, then so is $\left(F^{\prime}, v(\Delta)\right)$ and the inequality above is
strict. Finally, if (F, Δ) is plt and $\lfloor\Delta\rfloor \neq 0$, then we take C to be ($K_{F}+\Delta-\lfloor\Delta\rfloor$)-negative extremal curve. Then C is not a component of $\lfloor\Delta\rfloor$. By [3,3.10], $\left(F^{\prime}, v(\Delta)\right)$ is plt. Again, by Theorem 2.3 the sum of coefficients of $v(\Delta)$ is strictly less than 2 . So, $\sum_{\text {hor }} d_{i} \leq \sum \delta_{i}<3$. This proves Lemma 3.8.

Corollary 3.8.1. Notation being as in Lemma 3.8, assume additionally that X is projective, $-\left(K_{X}+D\right)$ is nef (not only over Z), $\sum_{\text {hor }} d_{i}=3, \sum_{\text {ver }} d_{i}=2$ and (X, D) is plt. If $\left\lfloor D^{\mathrm{hor}}\right\rfloor \neq \varnothing$, then $\left\lfloor D^{\mathrm{hor}}\right\rfloor=\lfloor D\rfloor \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and X is smooth along $\lfloor D\rfloor$. In particular, X has at most isolated singularities.

Proof. Put $S:=\lfloor D\rfloor$. By $[4,17.5], S$ is normal. Since $\rho(X / Z)=1, S$ is irreducible and all components of $D-S$ meet S. Let $\operatorname{Diff}_{S}(D-S)=\sum \beta_{i} \Theta_{i}$. Clearly, $-\left(K_{S}+\right.$ $\operatorname{Diff}_{S}(D-S)$) is nef. By [4, 17.6], (S, Θ) is klt. As in the proof of Lemma 3.4, we see $\sum \beta_{i} \geq \sum d_{i}-1 \geq 4$. If $\rho(S)=2$, then equalities $\sum \beta_{i}=\sum d_{i}-1=4$ and Proposition 2.1 give us the assertion. Assume that $\rho(S)>2$. Then some fiber of $\left.\varphi\right|_{S}: S \rightarrow Z$ is not irreducible. Let Γ be its irreducible component and $v: S \rightarrow S^{\prime}$ be the contraction of Γ. Taking into account that Γ intersects all components of $D^{\text {hor }}$, as in Lemma 3.4 we get a contradiction.

Lemma 3.9 (cf. [11, 6.9]). Let $\varphi: X \rightarrow Z \ni$ o be a K_{X}-negative contraction from a \boldsymbol{Q}-factorial variety X such that $\rho(X / Z)=1$ and every fiber has dimension one. Let D be a boundary on X such that $(X, D-\lfloor D\rfloor)$ is klt and $K_{X}+D$ is φ-numerically trivial. Assume that $\lfloor D\rfloor$ is disconnected near $\varphi^{-1}(o)$. Then $K_{X}+D$ is plt near $\varphi^{-1}(o)$.

Proof. Regard $\varphi: X \rightarrow Z \ni o$ as a germ near $\varphi^{-1}(o)$. Put $S:=\lfloor D\rfloor$. Clearly, for a general fiber ℓ of φ we have $-K_{X} \cdot \ell=D \cdot \ell=2$. If S^{\prime} is an irreducible component of S such that $S^{\prime} \cdot \ell=0$, then $S^{\prime}=\varphi^{-1}(C)$ for a curve $C \subset Z$. In this case, S^{\prime} contains $\varphi^{-1}(o)$ and S is connected near $\varphi^{-1}(o)$. Therefore S has exactly two connected components S_{1} and S_{2}, which are irreducible and $S_{1} \cdot \ell=S_{2} \cdot \ell=1$. Then $S_{i}, i=1,2$, meets all components of $\varphi^{-1}(o)$. Hence $S_{i} \cap \varphi^{-1}(o)$ is 0 -dimensional. Since Z is normal and $\left.\varphi\right|_{S_{i}}: S_{i} \rightarrow Z$ is birational, $S_{i} \simeq Z$ and $S_{i} \cap \varphi^{-1}(o)$ is a single point. In particular, $\varphi^{-1}(o)$ is irreducible. Clearly, $\operatorname{LCS}(X, D) \subset S=S_{1} \cup S_{2}$. Assume that (X, D) is not plt. Then there is a divisor $E \neq S_{1}, S_{2}$ of the function field $K(X)$ with discrepancy $a(E, D) \leq-1$. Let $V \subset X$ be its center. Then $V \subset S$ and we may assume that $V \subset S_{1}$ (and $V \neq S_{1}$). Let $L \subset Z$ be any effective prime divisor containing $\varphi(V)$ and let $F:=\varphi^{-1}(L)$. Clearly, $(X, D+F)$ is not lc near V. For sufficiently small positive ε the \log pair $\left(X, D+F-\varepsilon S_{1}\right)$ is not lc near V and not klt near S_{2}. This contradicts Connectedness Lemma [4, 17.4].

4. Proof of Theorem 1.2. In this section we prove Proposition 2.4.

4.1. Inductive hypothesis. Notation and assumption in Proposition 2.4 are preserved. Our proof is by induction on $\rho(X)$. In the case $\rho(X)=1$, the assertion is a consequence of Lemma 3.1. To prove Proposition 2.4 for $\rho(X) \geq 2$ we fix $\rho \in N, \rho>1$. Assume that the
inequality (2.5) holds if $\rho(X)<\rho$ and for $\rho(X)=\rho$ we have

$$
\begin{equation*}
\sum d_{i}-\rho(X)-3 \geq 0 \tag{4.2}
\end{equation*}
$$

4.3. If (X, D) is klt, then we run K_{X}-MMP. On each step $K \equiv-D$ cannot be nef. Obviously, all steps preserve our assumptions (see [4, 2.28]) and the left hand side of (4.2) does not decrease. Moreover, by our assumptions we have no divisorial contractions on X (because after any divisorial contraction the left hand side of (4.2) decreases). Therefore after a number of flips, we obtain a fiber type contraction $\varphi: X \rightarrow Z$. Since $\rho(X)=\rho \geq 2$, $\operatorname{dim}(Z)=1$ or 2 . Note that all varieties from Theorem 1.2 have no small contractions. Thus, it is sufficient to prove Proposition 2.4 on our new model (X, D).

This procedure does not work if (X, D) is not klt. The difference is that contractions of components of D do not contradict the inductive hypothesis. If (X, D) is not klt, then we run $\left(K_{X}+D-\lfloor D\rfloor\right)$-MMP. Note that $\lfloor D\rfloor$ is normal and irreducible $[4,17.5]$. For every extremal ray R we have $\lfloor D\rfloor \cdot R>0$, so we cannot contract an irreducible component of $\lfloor D\rfloor$. Therefore after every divisorial contraction $\sum d_{i}-\rho(X)$ decrease, a contradiction with our assumption. Thus, all steps of the MMP are flips. By [4, 2.28], they preserve the plt property of $K+D$. At the end we get a fiber type contraction $\varphi: X \rightarrow Z$, where $\operatorname{dim}(Z)<3$ and $\lfloor D\rfloor$ is φ-ample (i.e., $\left\lfloor D^{\mathrm{hor}}\right\rfloor \neq 0$). Since $\left\lfloor D^{\mathrm{hor}}\right\rfloor$ has a component which intersects all components of $D^{\text {ver }},\left\lfloor D^{\mathrm{ver}}\right\rfloor=0$.
4.4. Case: $\operatorname{dim}(Z)=1$. Then $\rho(X)=2$. By Lemma 3.8 and our assumption (4.2), we have $\sum_{\text {hor }} d_{i} \leq 3$ and $\sum_{\text {ver }} d_{i} \geq 2$. In particular, $D^{\text {ver }} \neq 0$. Components of $D^{\text {ver }}$ are fibers of φ, so they are numerically proportional. Clearly, the log divisor $K_{X}+D^{\text {hor }} \equiv-D^{\text {ver }}$ is not nef and curves in fibers of φ are trivial with respect to it. Let Q be the extremal ($K_{X}+D^{\text {hor }}$)negative ray of $\overline{N E}(X) \subset \boldsymbol{R}^{2}$ and $\phi: X \rightarrow W$ be its contraction. It follows by Lemma 3.3 that ϕ cannot be a flipping contraction. Let ℓ be a general curve such that $\phi(\ell)=\mathrm{pt}$. Then ℓ dominates Z and $\ell \simeq \boldsymbol{P}^{1}$. Hence $Z \simeq \boldsymbol{P}^{1}$.
4.4.1. Subcase: $\lfloor D\rfloor=0$. We will prove that $X \simeq \boldsymbol{P}^{2} \times \boldsymbol{P}^{1}$. By our inductive hypothesis, ϕ cannot be divisorial. Therefore $\operatorname{dim}(W)=2$. Further, $D^{\text {ver }} \cdot \ell \leq D \cdot \ell=-K_{X}$. $\ell=2$. Since ℓ intersects all components of $D^{\mathrm{ver}}, \sum_{\mathrm{ver}} d_{i} \leq 2$. This yields $\sum_{\mathrm{ver}} d_{i}=2$ and $\sum_{\text {hor }} d_{i}=3$. In particular, this proves inequality (2.5). Moreover, $\ell \cdot D^{\text {ver }}=2, \ell \cdot D^{\mathrm{hor}}=0$ and for any component D_{i} of $D^{\text {ver }}$ we have $D_{i} \cdot \ell=1$. Fix two components of $D^{\text {ver }}$, say D_{0} and D_{1}. Then $K_{X}+D_{0}+D_{1}+D^{\text {hor }} \equiv K_{X}+D \equiv 0$, so ($X, D_{0}+D_{1}+D^{\text {hor }}$) is plt by Lemma 3.9. Applying Lemma 3.4, we obtain $D_{0} \simeq D_{1} \simeq Z \simeq \boldsymbol{P}^{2}, X$ is smooth and ϕ is a \boldsymbol{P}^{1}-bundle. By [6, 3.5], φ is a \boldsymbol{P}^{2}-bundle. We have a finite morphism $\varphi \times \phi: X \rightarrow Z \times W=\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}$. Clearly, $\operatorname{deg}(\varphi \times \phi)=\varphi^{-1}(\mathrm{pt}) \cdot \ell=1$. Hence $\varphi \times \phi$ is an isomorphism.
4.4.2. Subcase: $\lfloor D\rfloor \neq 0$. Since $\rho(X / Z)=1,\lfloor D\rfloor$ is irreducible. Put $S:=\lfloor D\rfloor$. Let F be a general fiber of φ. By construction, $-K_{X}$ is φ-ample. First, assume that $\operatorname{dim}(W)=2$. Then $D^{\text {ver }} \cdot \ell \leq D \cdot \ell=-K_{X} \cdot \ell=2$. Since ℓ intersects all components of $D^{\text {ver }}, \sum_{\text {ver }} d_{i} \leq 2$. This yields $\sum_{\text {ver }} d_{i}=2, \sum_{\text {hor }} d_{i}=3$ and $\sum d_{i}=5$. Moreover, $D^{\text {hor }} \cdot \ell=0$. By Lemma 3.8, $F \simeq \boldsymbol{P}^{2}, X$ is smooth along F and for any component D_{i} of $D^{\text {hor }}$ the scheme-theoretic restriction $\left.D_{i}\right|_{F}$ is a line. Hence components of $D^{\text {hor }}$ are numerically equivalent. Let D_{1} be a
component of $D^{\text {hor }}-S$. Consider the new boundary $D^{\prime}:=D+\varepsilon D_{0}-\varepsilon S$. If $0<\varepsilon \ll 1$, then $\left(X, D^{\prime}\right)$ is klt and $K_{X}+D^{\prime} \equiv 0$. Applying Case 4.4.1, we get $W \simeq \boldsymbol{P}^{2}$ and $X \simeq \boldsymbol{P}^{2} \times \boldsymbol{P}^{1}$.

Now assume that ϕ is divisorial. By the inductive hypothesis, ϕ contract S. Since the contraction is extremal, $\phi(S)$ is a curve (otherwise curves $S \cap \varphi^{-1}(\mathrm{pt})$ is contracted by ϕ and φ). All components of $\phi\left(D^{\text {ver }}\right)$ pass through $\phi(S)$. By taking a general hyperplane section as in the proof of Lemma 3.3, we obtain $\sum_{\mathrm{ver}} d_{i} \leq 2$. By Corollary 3.8.1, we obtain that $S \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}, X$ has only isolated singularities and X is smooth along S. By Lemma 3.8, $F \simeq \boldsymbol{P}^{2}$ and X is smooth along F. The curve $F \cap S$ is ample on F, so it is connected and smooth by the Bertini theorem. Therefore $F \cap S$ is a generator of $S=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. Since $\left.\varphi\right|_{S}$ is flat, the same holds for arbitrary fiber F_{0}. Hence all fibers of φ are numerically equivalent and any fiber F_{0} contains an ample smooth rational curve. Moreover, this also means that F_{0} is not multiple. Thus it is a normal surface. Now as in Case 4.4.1, $K_{X}+F_{0}+F_{1}+D^{\text {hor }} \equiv 0$ and by Lemma 3.9, $\left(X, F_{0}+F_{1}+D^{\text {hor }}\right)$ is plt for any fibers F_{0} and F_{1}. By Adjunction, $\left(F_{0},\left.D^{\text {hor }}\right|_{F_{0}}\right)$ is klt. Clearly, $\left.K_{F_{0}} \equiv K_{X}\right|_{F_{0}}$ and $\left.S\right|_{F_{0}}$ are numerically proportional. Hence F_{0} is a \log del Pezzo surface of Fano index >1. Since φ is flat, $\left(K_{F_{0}}\right)^{2}=\left(K_{F}\right)^{2}=9$. Therefore, $F_{0} \simeq \boldsymbol{P}^{2}$ and X is smooth. By [6,3.5], φ is a \boldsymbol{P}^{2}-bundle, so $X \simeq \boldsymbol{P}_{\boldsymbol{P}^{1}}(\mathcal{E})$, where $\mathcal{E}=\mathcal{O}_{\boldsymbol{P}^{1}} \oplus \mathcal{O}_{\boldsymbol{P}^{1}}(a) \oplus \mathcal{O}_{\boldsymbol{P}^{1}}(b), 0 \leq a \leq b$. The Grothendiek tautological bundle $\mathcal{O}_{\boldsymbol{P}(\mathcal{E})}(1)$ is generated by global sections and not ample. Therefore $\mathcal{O}_{\boldsymbol{P}(\mathcal{E})}(1)$ gives us a supporting function for the extremal ray Q. Since ϕ is birational, $\mathcal{O}_{\boldsymbol{P}(\mathcal{E})}(1)^{3}=a+b>0$. Finally, X contains $S=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. Hence $a=0$. This proves Proposition 2.4 in the case when Z is a curve.
4.5. Case: $\operatorname{dim}(Z)=2$. Note that Z has only \log terminal singularities (see, e.g., [4, 15.11]). Since $-K_{X}$ is φ-ample, a general fiber ℓ of φ is \boldsymbol{P}^{1}. Hence $2=-K_{X} \cdot \ell=D \cdot \ell=$ $D^{\text {hor }} \cdot \ell \geq \sum_{\text {hor }} d_{i}$. By our assumption, $\sum_{\text {ver }} d_{i} \geq \rho(X)+1$. If (X, D) is not plt, then $\lfloor D\rfloor$ is φ-ample. Clearly, $\left\lfloor D^{\text {ver }}\right\rfloor=0$.

Claim 4.5.1. Notation being as above, K_{Z} is not nef.
Proof. Run ($\left.K_{X}+D^{\text {ver }}\right)$-MMP. After a number of flips we get either a divisorial contraction (of the proper transform of a component of $\lfloor D\rfloor$), or a fiber type contraction. In both cases Z is dominated by a family of rational curves [2, 5-1-4, 5-1-8]. Therefore K_{Z} is not nef by [5].

CLAIM 4.5.2. Notation being as in $4.5, Z$ contains no contractible curves. In particular, $\rho(Z) \leq 2$.

Proof. Assume the converse. Namely, there is an irreducible curve $\Gamma \subset Z$ and a birational contraction $\mu: Z \rightarrow Z^{\prime \prime}$ such that $\mu(\Gamma)=\mathrm{pt}$ and $\rho\left(Z / Z^{\prime \prime}\right)=1$. Denote $F:=$ $\varphi^{-1}(\Gamma)$. Since $F \not \subset\lfloor D\rfloor,(X, D+\varepsilon F)$ is plt for $0<\varepsilon \ll 1[4,2.17]$.

Run ($K+D+\varepsilon F$)-MMP over $Z^{\prime \prime}$. By our inductive hypothesis, there are no divisorial contractions (because such a contraction must contract F). At the end we cannot get a fiber type contraction (because $K+D+\varepsilon F \equiv \varepsilon F$ cannot be anti-ample over a lower-dimensional variety). Thus after a number of flips $X \rightarrow X^{\prime}$, we get a model X^{\prime} over $Z^{\prime \prime}$ such that
$K_{X^{\prime}}+D^{\prime}+\varepsilon F^{\prime} \equiv \varepsilon F^{\prime}$ is nef over $Z^{\prime \prime}$, where D^{\prime} and F^{\prime} are proper transforms of D and F, respectively. Then $F^{\prime} \not \equiv 0$ (because $F \not \equiv 0$). Let ℓ^{\prime} be the proper transform of a general fiber of φ. Since F^{\prime} is nef over $Z^{\prime \prime}, F^{\prime} \cdot \ell^{\prime}=0$ and $\rho\left(X^{\prime} / Z^{\prime \prime}\right)=2$, we obtain that ℓ^{\prime} generates an extremal ray of $\overline{N E}\left(X^{\prime} / Z^{\prime \prime}\right)$. Let $\varphi^{\prime}: X^{\prime} \rightarrow Z^{\prime}$ be its contraction and $\mu^{\prime}: Z^{\prime} \rightarrow Z^{\prime \prime}$ be the natural map. Then $\operatorname{dim}\left(Z^{\prime}\right)=2, \Gamma^{\prime}:=\varphi^{\prime}\left(F^{\prime}\right)$ is a curve and $\mu^{\prime}\left(\Gamma^{\prime}\right)=\mu(\varphi(F))=\mu(\Gamma)=$ pt. Therefore $\left(\Gamma^{\prime}\right)^{2}<0$. On the other hand, $\left(\Gamma^{\prime}\right)^{2} \geq 0$, which is a contradiction. Indeed, let $C^{\prime} \subset F^{\prime}$ be any curve such that $\varphi^{\prime}\left(C^{\prime}\right)=\Gamma^{\prime}$. Then $C^{\prime} \cdot F^{\prime} \geq 0$. By the projection formula, $\left(\Gamma^{\prime}\right)^{2} \geq 0$.

Since K_{Z} is not nef, there is an extremal contraction $\psi: Z \rightarrow V$. By the above it is not birational. Therefore $\operatorname{dim}(V)=1$ and $\rho(Z)=2$.

COROLLARY 4.5.3. Notation being as in 4.5, one of the following holds:
(i) $\rho(Z)=1$ and $-K_{Z}$ is ample;
(ii) $\rho(Z)=2$ and there is a K_{Z}-negative extremal contraction $\psi: Z \rightarrow V$ onto a curve.
4.5.4. Subcase: $\lfloor D\rfloor=0$. Let D_{i} be a component of $D^{\text {ver. }}$. Run $\left(K+D-d_{i} D_{i}\right)$ MMP:

$$
\chi_{(i)}: X \rightarrow X^{(i)} .
$$

As above we get a fiber type contraction $\varphi_{(i)}: X^{(i)} \rightarrow Z^{(i)}$. Notations $D^{\text {ver }}$ and $D^{\text {hor }}$ will be fixed with respect to our original φ. If $\operatorname{dim}\left(Z^{(i)}\right)=1$, then replacing X with $X^{(i)}$, we get the case $\operatorname{dim}(Z)=1$ above. Thus we can assume that $\operatorname{dim}\left(Z^{(i)}\right)=2$ for any choise of D_{i}. Let $\ell^{(i)} \subset X^{(i)}$ be a general fiber of $\varphi_{(i)}$ and let $L^{(i)} \subset X$ be its proper transform. Clearly, $\chi_{(i)}$ is an isomorphism along $L^{(i)}$. Hence $-K_{X} \cdot L^{(i)}=2, L^{(i)}$ is nef and $D_{i} \cdot L^{(i)}>0$. For $i=1, \ldots, r$ we get rational curves $L^{(1)}, \ldots, L^{(r)}$. We shift indexing so that $X=X^{(0)}$ and put $Z=Z^{(0)}$ and $\varphi=\varphi_{(0)}$.

Up to permutations we can take $L^{(0)}, \ldots, L^{(s)}, s+1 \leq r$ to be linearly independent in $N_{1}(X)$. Then for any D_{i} there exists $L^{(j)}$ such that $D_{i} \cdot L^{(j)}>0$. Thus we have

$$
2(s+1)=-K_{X} \cdot \sum_{j=0}^{s} L^{(j)}=D \cdot \sum_{j=0}^{s} L^{(j)}=\sum_{i=1}^{r} d_{i}\left(D_{i} \cdot \sum_{j=0}^{s} L^{(j)}\right) \geq \sum_{i=1}^{r} d_{i} \geq \rho(X)+3 .
$$

Since $3 \geq \rho(Z)+1=\rho(X) \geq s+1$, this yields $\rho(X)=s+1=3$. Thus,

$$
\begin{equation*}
D_{i} \cdot \sum_{j=0}^{2} L^{(j)}=1 \tag{4.6}
\end{equation*}
$$

holds for all i. Moreover, $L^{(0)}, L^{(1)}, L^{(2)}$ generate $N_{1}(X)$ and components of D generate $N^{1}(X)$.

Taking into account that $2=-K_{X} \cdot L^{(j)}=D \cdot L^{(j)}$, we decompose D into the sum $D=D^{(0)}+D^{(1)}+D^{(2)}$ of effective \boldsymbol{Q}-divisors without common components so that

$$
D^{(i)} \cdot L^{(j)}= \begin{cases}0 & \text { if } i \neq j \tag{4.7}\\ 2 & \text { otherwise }\end{cases}
$$

Then $D^{(i)}=\varphi^{*} \Delta^{(i)}$ for $i=1,2$, where $\Delta^{(1)}, \Delta^{(2)}$ are effective Q-divisors on Z. Put $C^{(i)}:=\varphi\left(L^{(i)}\right), i=1,2$. Since families $L^{(j)}$ are dense on $X, C^{(j)}$ are nef and $\not \equiv 0$. By the projection formula,

$$
\Delta^{(i)} \cdot C^{(j)} \quad \begin{cases}=0 & \text { if } 1 \leq i \neq j \leq 2 \\ >0 & \text { if } 1 \leq i=j \leq 2\end{cases}
$$

Hence $\Delta^{(1)}$ and $\Delta^{(2)}$ generate extremal rays of $\overline{N E}(Z) \subset \boldsymbol{R}^{2}$. By (4.7), these \boldsymbol{Q}-divisors have more than one component, so they are nef and $\left(\Delta^{(1)}\right)^{2}=\left(\Delta^{(2)}\right)^{2}=0$. This gives us that $C^{(1)}$ and $C^{(2)}$ also generate extremal rays. Therefore $C^{(i)}$ and $\Delta^{(j)}$ are numerically proportional whenever $i \neq j$ and $\left(C^{(1)}\right)^{2}=\left(C^{(2)}\right)^{2}=0$. In particular, $C^{(i)}, i=1,2$ generate an onedimensional base point free linear system which defines a contraction $Z \rightarrow \boldsymbol{P}^{1}$. This also shows that $D^{(i)}=\varphi^{*} \Delta^{(i)}, i=1,2$ are nef on X.

Now we claim that $D^{(0)}$ is nef. Assume the opposite. Then for small $\varepsilon>0,(X, D+$ $\varepsilon D^{(0)}$) is klt [4, 2.17]. There is a ($K_{X}+D+\varepsilon D^{(0)}$)-negative extremal ray, say R. By our inductive hypothesis, the contraction of R must be of flipping type. Since $\Delta^{(1)}, \Delta^{(2)}$ generate $N^{1}(Z)$, we have $D^{(i)} \cdot R>0$ for $i=1$ or 2 . By (4.7), $\sum_{j}^{(i)} d_{j}=2$, where $\sum_{j}^{(i)}$ runs through all components D_{j} of $D^{(i)}$. Since components of $D^{(i)}=\varphi^{*}\left(\Delta^{(i)}\right)$ are numerically proportional, this contradicts Lemma 3.3. Therefore $D^{(i)}$ are nef for $i=0,1,2$.

We claim that $L^{(i)}, i=0,1,2$ generate $\overline{N E}(X)$. Indeed, let $z \in \overline{N E}(X)$ be any element. Then $z \equiv \sum \alpha_{i}\left[L^{(i)}\right]$ for $\alpha_{i} \in \boldsymbol{R}$. By (4.7), $0 \leq D^{(j)} \cdot z=\alpha_{j}$. This shows that $L^{(i)}$ generate $\overline{N E}(X)$. From (4.6) we see that components of $D^{(0)}$ are numerically equivalent.

Fix two components D^{\prime} and $D^{\prime \prime}$ of $D^{(0)}$. Then $K_{X}+D^{\prime}+D^{\prime \prime}+D^{(1)}+D^{(2)} \equiv 0$. By Lemma 3.9, $\left(X, D^{\prime}+D^{\prime \prime}+D^{(1)}+D^{(2)}\right)$ is plt. Lemma 3.4 implies that $D^{\prime} \simeq D^{\prime \prime} \simeq$ $S \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}, X$ is smooth and φ is a \boldsymbol{P}^{1}-bundle. As in the case $\operatorname{dim}(Z)=1$, we have $X \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.
4.7.5. Subcase: $\lfloor D\rfloor \neq 0$. Let S be a component of $\lfloor D\rfloor$. Clearly, $S \cdot \ell \leq 2$. If S is generically a section of φ, then by Lemma 3.4, X is smooth, φ is a \boldsymbol{P}^{1}-bundle and $S \simeq \boldsymbol{P}^{2}$ or $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. Therefore $X \simeq \boldsymbol{P}(\mathcal{E})$, where \mathcal{E} is a rank two vector bundle on Z. Since φ has disjoint sections, \mathcal{E} is decomposable. So we may assume that $\mathcal{E}=\mathcal{O}_{Z}+\mathcal{L}$, where \mathcal{L} is a line bundle. By the projection formula, all components of $D^{\text {ver }}$ are nef. Let R be a ($K_{X}+D^{\text {hor }}$)-negative extremal curve and let $\phi: X \rightarrow W$ be its contraction. Assume that ϕ is of flipping type. By [6], $K_{X} \cdot R \geq 0$. Hence $D^{\text {hor }} \cdot R<0$, so R is contained in a section of φ. But all curves on \boldsymbol{P}^{2} and $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ are movable, a contradiction. If ϕ is of fiber type, then as in the case $\lfloor D\rfloor=0$ we get $X \simeq Z \times \boldsymbol{P}^{1}$. Assume that ϕ is of divisorial type. By inductive hypothesis, ϕ contracts a component of $\lfloor D\rfloor$.

Finally, consider the case when $\left.\varphi\right|_{S}: S \rightarrow Z$ is generically finite of degree 2 . Obviously, $D^{\text {hor }}=S$. If $\rho(Z)=1$, then all components of $D^{\text {ver }}$ are numerically proportional and $\sum_{\text {ver }} d_{i} \geq 4$. If additionally $\operatorname{dim}(W)=2$, then $D^{\text {ver }} \cdot \phi^{-1}(w) \leq 2$ for general $w \in W$. Hence $\sum_{\text {ver }} d_{i} \leq 2$, a contradiction. Then by Lemmas 3.3 and 3.8, ϕ is divisorial and ϕ must contract S. We derive a contradiction with Theorem 2.3 for ($W, \phi\left(D^{\text {ver }}\right)$) near $\phi(S)$.

Therefore $\rho(Z)=2$ and there is a K_{Z}-negative extremal contraction $\psi: Z \rightarrow V$ onto a curve (see Corollary 4.5.3). Let $\pi: X \xrightarrow{\varphi} Z \xrightarrow{\psi} V$ be the composition map. Clearly, all fibers of π are irreducible. Write $D=\sum^{\prime} d_{i} D_{i}+\sum^{\prime \prime} d_{i} D_{i}=D^{\prime}+D^{\prime \prime}$, where \sum^{\prime} (respectively $\sum^{\prime \prime}$) runs through all components D_{i} such that $\pi\left(D_{i}\right)=\mathrm{pt}$ (respectively $\phi\left(D_{i}\right)=V$). Thus, S is a component of $D^{\prime \prime}$ and components of D^{\prime} are numerically proportional. Let F be a general fiber. Then $\rho(F)=2$. Consider the contraction $\left.\varphi\right|_{F}: F \rightarrow \varphi(F)$ and denote $\left.D^{\prime \prime}\right|_{F}=\left.D\right|_{F}$ by $\Phi=\sum \alpha_{i} \Phi_{i}$. Then (F, Φ) is plt and $K_{F}+\Phi \equiv 0$. Clearly, the curve $\left.S\right|_{F}=\lfloor\Phi\rfloor$ is a 2-section and components of $\Phi-\lfloor\Phi\rfloor$ are fibers of $\left.\varphi\right|_{F}$. As in the proof of Lemma 3.8, using the fact that $\left.S\right|_{F}$ intersects components of $\Phi-\lfloor\Phi\rfloor$ twice, one can check $\sum \alpha_{i}<3$. This yields $\sum^{\prime \prime} d_{i}<3$ and $\sum^{\prime} d_{i}>2$. Let R be a ($K_{X}+D^{\prime \prime}$)-negative extremal ray. Since $\sum^{\prime} d_{i}>2$ and $\rho(X)>2, R$ cannot be an extremal ray of fiber type. According to Lemma 3.3, R also cannot be of flipping type. Therefore R is divisorial and contracts S to a point. Since S intersects all components of $D^{\text {ver }}$, this contradicts Theorem 2.3. The proof of Proposition 2.4 is finished.

Concluding Remark. In contrast with the purely log terminal case we have no complete results in the log canonical case. The reason is that the steps of MMP are not so simple. In particular, we can have divisorial contractions which contract components of $\lfloor D\rfloor$.

REFERENCES

[1] V. Alexeev, Two two-dimensional terminations, Duke Math. J. 69 (1992), 527-545.
[2] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model program, Adv. Stud. Pure Math. 10 (1987), 283-360.
[3] J. Kollár, Singularities of pairs, Proc. Sympos. Pure Math. 62 (1995), 221-287.
[4] J. Kollár et al., Flips and abundance for algebraic threefolds, A summer seminar at the University of Utah (Salt Lake City, 1991), Astérisque 211, 1992.
[5] Y. Miyaoka and S. Mori, A numerical criterion for uniruledness, Ann. of Math. (2) 124 (1986), 65-69.
[6] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 115 (1982), 133-176.
[7] V. A. IsкоVSкiкh, On the rationality problem for conic bundles, Math. USSR-Sb. 72 (1992), 105-111.
[8] V. A. ISKOVSKikh and Y U.G. Prokhorov, Fano Varieties, Encyclopaedia Math. Sci. 47, Springer-Verlag, Berlin, 1999.
[9] Yu.G. Prokhorov, Lectures on complements on log surfaces, MSJ Mem. 10, Mathematical Society of Japan, Tokyo, 2001.
[10] V. G. SaRKISOV, On conic bundle structures, Math. USSR, Izv. 20 (1983), 355-390.
[11] V. V. Shokurov, 3-fold log flips, Russian Acad. Sci. Izv. Math. 40 (1993), 93-202.
[12] V. V. Shokurov, Complements on surfaces, J. Math. Sci. 102 (2000), 3876-3932.

Department of Mathematics (Algebra Section)
Moscow Lomonosov University
117234 Moscow
RUSSIA
E-mail address: prokhoro@mech.math.msu.su

[^0]: 2000 Mathematics Subject Classification. Primary 14E30; Secondary 14M25, 14J17.

