Tohoku Math. J.
53 (2001), 511-531

PARALLEL AFFINEIMMERSIONSWITH
MAXIMAL CODIMENSION

Luc VRANCKEN

(Received January 5, 2000, revised April 23, 2001)

Abstract. We study affine immersions, as introduced by Nomizu and Pinkall/6f
into R**7. We callM" linearly full if the image ofM is not contained in a lower dimensional
affine space. Typical examples of affine immersions are the Euclidean and semi-Riemannian
immersions. A classification, under an addlil assumption that the rank of the second fun-
damental form is at least two, of the hypersurfaces with parallel second fundamental form was
obtained by Nomizu and Pinkall. If we assumattthe second fundamental form is parallel
and M is linearly full, thenp < n(n 4+ 1)/2. In this paper we completely classify the affine
immersions with parallel second fundamental fornRiti”**+1/2  obtaining amongst others
the generalized Veronese immersions.

1. Introduction. We consider the standard affine sp&¥e” equipped with its stan-
dard connectiorD. Let M" be a manifold equipped with a torsion free affine connection
and¢ : (M",V) — (R"*?, D), p > 1, be an immersion af/" into R"*”. Following [10],
we callg an affine immersion if there exists a transvegsalimensional bundle such that

1) Dx¢:(Y) — ¢(VxY) € 0,

for all vector fieldsX andY which are tangent tas".

Another way of looking at the above equation is that each choice of transversal bundle
o induces a particular connection on the submanifdld It is immediately clear that if we
equip R"T” with a semi-Riemannian metric and take ferthe associated normal bundle,
then from the formula of Gauss it follows that the induced affine connection is the Levi-
Civita connection of the induced metric. Thus nondegenerate isometric immersions provide
examples of affine immersions. Also, the equiaffine immersions, in the sense of Blaschke for
hypersurfaces, and in the sense of [13], [14] or [8] for higher codimensions, provide examples
of affine immersions.

For an affine immersion it is possible to introduce a bilinear farnealled the second
fundamental form, which takes values in the transversal bundig

2) h(X,Y) = Dx¢+(Y) — $«(VxY) € 0.

SinceV is a torsion free affine connectioh,is symmetric inX andY. Note that bothh and
V depend on the choice of transversal bundld.et & be a vector field which takes values in
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o. Similarly, as for isometric immersions, we can now introduce a normal conné¢tiand
Weingarten operators by decomposin@y & into a tangential part and a part in the direction
of o, i.e., we have the Weingarten formula which states that

3) Dxt = —¢.(AeX) + VyE.

Using the Weingarten formula, it is now possible to define the covariant derivakbivee
the second fundamental forknby

4) (Vxh)(Y, Z) = Vh(Y, Z) — h(VxY, Z) — h(Y,Vx Z).

Affine immersions for whiclv i vanishes identically are called parallel immersions. VA%
andV+ all depend on the choice of transversal bundlé is easily verified that the condition

that Vi vanishes depends on the particular choicerdbo. In Euclidean geometry, these
immersions as well as their generalisatitrase been studied by many people, see amongst
others [7]. A complete classification of the Euclidean parallel submanifolds was obtained
by Ferus in [5]. As far as we know, it is still an open problem to classify the parallel semi-
Euclidean submanifolds.

In this paper, we will focus on parallel affine immersions. We will also assume that the
immersion is linearly full. In Section 2 we will show for a linearly full parallel immersion
that the dimension of the image of the second fundamental form is constant and that
nn+1)/2.

We will focus then on the two extremal cases, namebs 1 andp = n(n + 1)/2. In the
case thap = 1, and the rank of is at least 2, these were classified by Nomizu and Pinkall in
[9], thus obtaining a characterisation of quadrics. In the case that thd and the rank of
is 1, more possibilities can occur. These were described in [3].

The other extremal case which can occur is that wheg n(n + 1)/2. An example
in this case is the Veronese surfaceRR. The main purpose of this paper is to present a
complete classification in this case too.

The paper is organized as follows. In Senti® we present some basic formulas for
parallel affine immersions, together with a class of immersions which can be seen as products
of generalisations of the Veronese surface with quadratic submanifolds. In Section 3 we then
show that a parallel affine immersion which is linearly fulRi*"*+1/2 js affine congruent
to one of the examples described in Section 2. In the case thak, this result was obtained
in [6].

2. Basic equations and examples. Throughout this papeg : (M", V) — R**P
will denote a linearly full affine immersion. Whenever there is no possible confusion, we will
identify M” with its image inR"*”. Introducing the normal curvature tens®t by

RE(X,Y)E = Vi VyE — Vi Vi€ — Vix yif .
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we get, exactly as in the Euclidean case, theations of Gauss, Codazzi and Ricci, which
are the integrability conditions for an affine immersion stating that

5) R(X,Y)Z = Ay, )X — Apx,2)Y
(6) (Vxh) (Y, Z) = (Vyh)(X, Z),

(7 (VxA)eY = (VyA)e X,

(8) Rl(X, Y)e =h(X,AgY) — h(Y, Ag X)),

where(VxA)eY = Vx AgY — AV#Y — AgVx Y. In Euclidean geometry the Codazzi equa-
tions forkh and A are equivalent. This is no longer true for affine immersions.

From now on we will also assume thaf is parallel and we denote by im =
sparfh(X, Y)|X, Y are tangent vector fielglsThen, we have the following lemmas:

LEMMA 1. Let¢ : (M", V) — R""? bea paralld affineimmersion. Thenim# isa
differentiable subbundle of .

PROOFE Letg; andg» be two points in a coordinate neighborhoodwiandy a differ-
entiable curve connecting andg,. Let X1(q1), ..., X,(q1) be a basis of the tangent space
atgy and&1(qa), ..., &,(q1) be a basis o atgi. Then it is well-known that we can extend
X1,..., X, andéy, ..., &, alongy such thatv,, X; = Vj/gk = 0. Then, if we write

p
h(Xi, X)) =Y h&,
k=1
it follows that

p
0= (Vyh)(Xi, X)) = Vyih(Xi, X;) = > _(dh;/dt)& .
k=1
This implies that alhi.‘j are constant along the curye Consequently, the fibre dimension of
im 2 remains constant too. O

LEMMA 2. Let¢ : (M", V) — R""? beaparallel affineimmersion. If ¢ islinearly
full, thenimh =o.

PrROOF Let W be any vector field infTM & imh. Thus there exist vector fields
X1, X2, X3 such thatW = X1 + h(X2, X3). Then it follows that
DyW = Dy X3+ Dyh(X2, X3)
= Vy X1+ h(Y, X1) — Ancxp.xa) Y + Vyh(X2, X3)
= Vy X1+ h(Y, X1) — Apxp,x5)Y +h(Vy X2, X3) + h(X2, Vy X3)
eTM@imh,
implying thatT M @ im h is a constant vector space alomfy Taking a pointg of M and

coordinates in a neigborhood of that point, it now follows easily ¢h@f) is contained in the
affine space determined ky(q) and7T M & im h. O
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LEMMA 3. Let¢ : (M", V) — R"P bea paralld affine immersion. Then for all
vector fields X, Y, Z, W we have

h(X, Apzw)Y) —h(Y, ApzwyX) = h(Apy, 2y X, W) — h(Apx,2)Y, W)
+h(Apy,w X, Z) — h(Apx,w)Y, Z) .

PROOFE SinceM is a parallel affine immersion, we have
V)%h(Y, Z)=h(VxY, Z)+h(Y,VxZ),
and thus also
VyVyh(Z, W) = h(VxVyZ, W) + h(Z, VxVy W)
+h(VyZ, VxW)+h(VxZ,VyW).
Consequently, we have that
RY(X,Y)h(Z,W) = h(R(X,Y)Z, W) + h(Z, R(X, Y)W).

Applying now the Gauss equation (5) and the Ricci equation (8) completes the proofl

Submanifolds satisfying the conclusion of Lemma 3 are called semi-parallel submani-
folds. Semi-parallel submanifolds of Higean spaces have been studied amongst others in
[2] and [4]. The advantage of that condition is that it is an algebraic condition valid in every
tangent space. The above lemma will also be theistapoint of our classification in the next
section.

To conclude this section, we present an example, which defines a parallel affine immer-
sion.

ExamMpPLE 1. Letr, s be integers with O< s < r < n. We denote byl .11, the
(r + 1) x (r + 1)-diagonal matrix with entrief;;] satisfying:

aij=0, i#j; ai=-1, i<s; ai=1, s<i=<r+1.

Let v, w be vectors irR"T1. We set*v = "vi; »41-5 and define an inner product e+l
by (v, w) = *vw. Then, it is well-known, see [12], that thedimensional semi-Riemannian
sphereS; (2) with indexs and radius 2 consists of the pointsatisfying
*xx =4.
Moreover, this immersion is isometric and umbilical. Identifyifig2) with its image in
R"+1, we have that
DxY = VxY — (1/4)*XYx,
whereX, Y are tangent vector fields & (2) andV is the Levi-Civita connection of the semi-
Riemannian spher§ (2).
We now denote byn = n — r and define a map from the semi-Riemannian product
manifold S’ (2) x R™ into an affine spacBR+D? x RO+TDm 5 Rm? py

F(x,y) = (x*x — (4/(r + D) 41, x"y, (1/2)y"y).
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Here the image of the first component is always a tracéles$) x (r+1)-matrix A satisfying
Is,r+lfstAIs,r+lfs =A,

which is a linear subspace of dimensient+ r(r + 1)/2. Similarly, we get that the last
component is always a symmetnc x m-matrix and therefore lies in a linear subspace of
dimensionn 4+ m(m — 1)/2. Since the middle component belongRi6™>", it follows that
the image of the map' lies in a linear subspace of dimensioA- p, where

p=r(r+1)/24+mm—-1)/2+m@r+1)
=r+m@+m+1/2=nn+1)/2.
Note that fors = 0 andr = n, we have the standard Veronese immersion. ;i 0 and
r = n, we have the generalized Veronese immersions as introduced by Blomstrom in [1].
We denote by, ..., y, the standard coordinates and dythe standard parallel basis
of R™. We denote byX, Y, Z tangent vector fields t87 (2). Then, interpreting these vector

fields in the standard way as vector fields$jii2) x R™, we can define a torsion free affine
connectionV on S} (2) x R™ by

m
VxY = VxY + (L/H*XY Y yiik,
k=1
Vxor =0, VuX =0, Vy0l=0.

Now, in order to compute properties of the m&pve introduce the following notation.
We denote byF;, 1 < I < m, them x 1 matrix with entriesF;,, satisfyingF;, = 8, and
defineEy, = Fi'F;, 1 < k,l < m. Then, we get that

Fu(X) = (X*x +x"X, X'y, 0),  Fu(d) = (0,x" F, (1/2)(Fk'y + ' Fr)) .
Expressing that the Gauss formula (2) has to be satisfied, we deduce that

h(X, &) = Dx Fy(9k) — Fx(Vxdk) = (0, X' F},, 0) ,
h(3k, X) = Dy, Fx(X) — Fx(Var X) = (0, X' F;., 0) ,
h(0x, 01) = Dy, Fi(9)) — Fix(Vardl) = (0,0, (Ex + E)/2),
h(X,Y) = DxF.(Y) — F«(VxY)
= (Y*X + X*Y + DxY*x + x*(DxY), DxY'y, 0)

— Fu(VxY) — (I/H*XY Y yiFu(@)
k=1

= (Y*X + X*Y + (DxY — VxY)*x + x*(DxY — VxY), (DxY — VxY)'y, 0)
— (1/4*XY (0, x"y, y'y)
=Y*X +X*Y — (1/2*XYx*x, —(1/2*XYx'y, —(1/4*XYy'y).
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Let X3, ..., X, be a local orthormal basis &f (2), i.e., we have thatX; X; = ¢;6;;,
whereg; = - .- =gy = —1lande;41 = --- = ¢, = 1. Itis then easy to show, using in particu-
lar the metric on the Lie algebsa(s, r +1—s), that F. (X;), Fi(3), h(X;, o), h(dk, 9;) and
h(X;, X;), wherei < j andk <1, are linearly independent vectors. In particular, this implies
that ' is an immersion, thaf is linearly full in R*t"(*+1/2 and that the bundle spanned by
h is a transversal bundle. Consequently, we can congices an affine immersion.

Since clearly

Dy, h(dy,, d,) = Dxh(dy,, 81,) = Dy h(9;, X) =0,
it follows that
Vi h(@r. 31,) = Vh(@y. 81,) = Vich(@, X) = 0,
An(ory0,) % = An(oy, o)X = Ango,x)9 = 0.
The above formulas already imply that
(Vo h) (91, 31,) = (Vxh) (81, 1) = (Vg h) (9, X) =0.
We also have that
Dxh(Y, &) = (0, DxY'Fy,0) = (0, (VxY¥ — (1/4*XYx)' Fy, 0)

= h(VxY, 3) — (1/4)*XY (0, x' Fy, 0)

= h(VxY, %) — (L/H*XY Y yih(3r, &) — (1/4)*XY (0, x' Fy,, 0)
=1
= h(VxY, 9) — (1/H*XY O, x"Fi, (F'y + y' Fi)/2)

= h(VxY, %) — (1/H*XY F(3) ,
implying that
V)J(‘h(Y, ) =h(VxY, %) Apy,onX = 1/8*XY 0.

From the above formulas we immediately see tt\;4)(Y, dr) = 0. Therefore, by the
Codazzi equation, we also have tli®t; /) (X, Y) = 0. This can also be verified straightfor-
wardly in the following way:

Dy h(X,Y) = (0, —(1/2)*XYx' Fy, —(1/D*XY (F¢'y + y' F))
= —(1/2* XY F (%) .

implying that

Vah(Y.X) =0, Aprx)o = (1/2*XY .
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Finally, using tha®v is the Levi-Civita connection of the metric, we have that

Dzh(X,Y)=Dz(Y*X + X*Y — (1/2)*XYx*x, —(1/2*XYx'y, —(1/H*XYY'y)
= Dz(Y*X + X*7,0,0) — (1/2(*(VzX)Y + *XVz¥)(x*x,x"y, (1/2)y"y)
— (1/2*XY(Z*x +x*Z,Z'y,0)
= (DzY*X +Y*DzX + Dz X*Y + X*D2Y,0,0)
— (L/2(*(VzX)Y +*XVzY)(x*x, x'y, (1/2)y'y)
— (1/2*XY(Z*x +x*Z,Z'y,0)
= (VzY*X +Y*VzX 4+ V,X*Y 4+ X*V,Y, 0, 0)
— (1/A*ZY (x*X + X*x,0,0) — (1/4*ZX (Y*x + x*Y, 0, 0)
— /2 (*(VZX)Y +*XVzY)(x*x, x'y, (1/2)y'y)
— (1/2*XY(Z*x +x*Z,Z"y, 0)
=h(VzX,Y)+h(X,VzY) — (1/2)* XY Fy(Z)
— (1/9*ZY (x*X 4+ X*x,0,0) — (1/4)*ZX (Y*x + x*Y, 0, 0)

m
=h(VzX,Y) +h(X,VzY) — (1/H"ZX Zykh(Y, %)
k=1

— (/H*ZY Y yh(X, %) — (1/D*XY Fu(Z)
k=1
— (1/H*ZY (x*X + X*x,0,0) — (1/H*ZX (Y*x + x*Y,0,0)

=h(VzX.Y)+h(X,VzY) = (1/H*ZX Y n(0,Y'F,0)
k=1
— (1/H*2Y > 30, X' Fr., 0) — (1/2)* XY F(Z)
k=1
— (1/H*ZY (x*X 4+ X*x,0,0) — (1/4)*ZX (Y*x + x*Y, 0, 0)

=h(VzX, V) +h(X,VzY) — (1/H*ZY (x*X + X*x, X'y, 0)
— (/D ZX Y *x +x*Y,Y'y,0) — (1/2)*XY Fy(2Z)
=h(VzX,Y)+h(X,VzY)
— (Y ZYFu(X) — (/D ZXF(Y) — (1/2)* XY F(2) ,

from which it follows that

VEh(X,Y) = h(VzX,Y) + h(X,VzY)
Z
AnxyZ = (UB*ZY X + (1/H*ZXY + (1/2*XY Z .

This completes the proof thdt is a parallel affine immersion.
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In the next section we will prove that a linearly full parallel affine immersiom#f
into R"*t"(+1/2 has to satisfy some further properties which will be helpfull in obtaining a
classification. Since the immersion described in the example is a linearly full parallel affine
immersion, it has to satisfy these properties too.

3. A classification theorem. In this section we are going to show that the immersion
described in the previous section is the only parallel affine immersion efdimensional
affine manifold which is linearly full irR***®+/2_|n order to do so, we first introduce
some notation. We denote b, ..., X, a local basis of tangent vector fields and define
&; = h(X;, X;). Clearly, we have tha§;; = &;; and becaus@/ is linearly full, we also
have thag;;, i < j, are linearly independent vectors belonging-towe denote by V)* the
component of a vector fieldl in the direction ofX;. Then, we have the following lemma.

LEMMA 4. Let¢ : (M", V) — R'71+D/2 he g parallel linearly full affine immer-
sionand {X1, ..., X, } a tangent frame defined on a neighborhood of a point ¢ of M". Then
thereexist functions b;;, 1 < i, j < n, withb;; = b;; such that

Ag; Xi = biiXi ,

Ag; Xj = 2/3)bijXi + (1/2)bii X,

Ag; Xi = bij Xi + (1/B)bii X,

Ag Xk = (1/3)bjXi + (1/3bix X j + (2/3)bij X ,

wherei, j, k are mutually different indices.

PROOFE Letg € Mandlet{X;, ..., X,} beatangentframe defined on a neighborhood
of ¢g. We introduce local functions;; as follows:
(i) bi; is the component aflg, X; in the direction ofX;,
(i) b;; is the component O/ﬁgij X; in the direction ofX;,
wherei andj are different indices. Putting noW = X;, Y = Z = X; andW = X;, where
i, j andk are mutually different indices, into Lemma 3 and looking atgheomponent, we
deduce thati¢,, X ; has no component in the direction Bf, wherei is different from; and
k.
Next, we consecutively put
() X=X;,Y=X,Z=W =X;,the§;; component,
(i) X=X;,Y=X,;,Z=W = X;, theg;; component,
(i) X=X;,,Y=X;,Z =X, W= X;; the&;; component,
in order to find that
(i) Ag, X has no component in the direction ¥f with j different fromi andk,
(i) Ag, X; has no component in the direction ¥f with j different fromi,
(i)  Ag, X; has no component in the direction ®f with j different fromk, / andi.
The above already implies that

Ag; Xi =bii X; .
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Now, we takeX = X; = Z = W andY = X;. Then, using the above equation, we find
that

9 —bii&ij + 3h(Ag,; Xj, Xi) — 2h(Ag; Xi, Xi) = 0.
Looking at thet;; component of the above equation gives that
3(Ag, X)) = 2(Ag, X)) = 2bjj .

Hence

(10) (Ag, X))' = (2/3)by; .

Whereas, looking at thig;-component of (9) yields that

(11) 3(Ag; X)) — 2(Ag,; X)) — by = 0.

TakingX = X; = Z andY = X; = W next, we find that

(12) 2h(Ag, X, Xi) — 2h(Ag,; Xi, Xj) = h(Ag,; Xi. Xi) — h(Ag, X, X)) .

Looking at the;; component of (12), using the definition &f and (10), we get that
2bj; — 2bjj = (2/3)bji — (2/3)bjj .
Henceb;; = bj;. It also follows from (12) that
2(Ag, X)) = (Ag X)) .
Combining this with (11), we obtain that
(Ag; X)) =bii/4, (Ag; X)) = bii/2.
Finally, we still have to computeAE,_/Xk)" and(Agink)k. Since&;; = &j;, it follows
that we can introduce functiorsg;; andd;;x such that
(13) Ag, Xk = cijeXi + cjix X j + diji Xx .
We takeX = X; = W, Y = X; andZ = X. Then, we obtain that
2h(Ag, Xj, Xi) — h(Ag;, Xi, Xi) = bir&ij + (1/3)bijik -
Looking at the different components of the above equation, we deduce that
djri = 2cixj, 2crij —ckji = (1/3)bij,  2dikj = cji + bix .
Combining the first and the last of the above equations, it follows that
Cjki + bik = 2dixj = 4cjki -
Hencecj; = (1/3)bix anddixj = (2/3)bjx. O

We recall that the Ricci tensor Ric associated with the curvature téhsdran affine
connection is defined by

(14) Ric(Y, Z) = tracdX — R(X,Y)Z}.

Using Lemma 4 we compute in the following lemma the Ricci tensor in terms of the
functionsb;;.
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LEMMA 5. Let¢ : (M", V) — R*01+D/2 he 3 parallel linearly full affine immer-
sonand {X1, ..., X, } atangent frame defined on a neighborhood of a point g of M". Then,
using the notation of the previous lemma, we have that

Ric(X;, X;) = —-1b;;j/3, i#]j,
Ric(X;, X;) = (n — L)b;; /4.

PrROOF We consider two cases. i~ j, we have that

Ric(X;, X;) = Z(R(Xk, X)X~
k=1

= Y ((2/3)bij — (1/3)bij) + (R(Xj, X)) X ;)

k=1
kil

= (n—2)b;j/3+bij — (2/3)b;j = (n — 1)b;; /3.
Finally, we have that

RiC(X;. Xi) = ) (R(Xx, X)X =) (R(Xx, X)X

k=1 k=1
k#£i

n
= (bii/2 = bii /%) = (n — D)bii /4.
k=1
ki
O
Note that it follows from the previous lemmas that the Ricci tensov a§ symmetric.

Letg € M. Since, starting with three linearly independent tangent veetorsw at the point
g, we can always construct a tangent basis at the pgimte find by combining Lemma 4
with Lemma 5 that

(15) A,V = (4/(n — 1)) Ric(v, v)v,

(16) Apwnu = (2/(n — 1)) Ricu, v)v + (2/(n — 1)) Ric(v, v)u ,
a7) Ahu,mv = (3/(n — D) Ric(u, v)v + (1/(n — 1)) Ric(v, v)u,,
(18) Apupyw = (1/(n — 1) Ric(u, w)v + (1/(n — 1)) Ric(v, w)u

+ (2/(n — 1) Ric(u, v)w .

Taking the appropriate limits, it is clear that the above formulas remain valid for linearly
dependent, v, w too. Therefore, we have shown the following lemma:
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LEMMA 6. Let M be asin the previous lemmas and let u, v, w be arbitrary tangent
vectors. Then

Anumyw = (1/(n — 1)) Ricu, w)v + (1/(n — 1)) Ric(v, w)u + (2/(n — 1)) Ric(u, v)w .

Remark that in the special case thdtis an isometric immersion into a Euclidean space,
the formula (15) implies that the immersion is isotropic in the sense of O’'Neill, see [11]. In
that respect, it makes sense to define an affine immersion isotropic if there exists a symmetric
bilinear forma such that

(29) A,V = a(v, v)v.
It is clear that every Euclidean isotropic immersion is also an affine isotropic immersion.

The previous lemma then states that every semi-parallel affine immefsiofM”, V) —

R +1r(1+D/2 g affine isotropic. It also follows easily that a codimension one nondegenerate
affine immersion is affine isotropic if and only4f; is proportional to the identity, i.e., if and
only if it is an affine sphere.

So far, we have only worked at the tangent space at one point. Up to this point all
results would remain valid for semi-parallel immersions too, providedfdatd im(k) was
n+n(n+1)/2-dimensional. In the next steps we will explicitly use the fact et parallel
together with the Codazzi equation farin order to show that the Ricci tensor is parallel and
that the rank of it is constant a¥. This is done in the following lemmas:

LEMMA 7. Let M beasbefore. Then (Vx Ric)(Y, Z) = 0 for all tangent vector fields
X,YandZ.

PROOF We take linearly independent vector fiellsandY . Then, we have that

(20) (VxAnx,x)Y = (VyA)x, X .
Computing the left-hand side of (20), we find that

(VxA)nx,x)Y = VxApx,x)Y — AV?h(X,X)Y — Anx,x)VxY

= Vx(2/(n — D)) Ric(X,Y)X + (2/(n — 1)) Ric(X, X)Y)
—2Apvyx,x)Y — Ancx,x)VxY

= Vx(2/(n — D) Ric(X,Y)X + (2/(n — 1)) Ric(X, X)Y)
—2((1/(n — 1)) Ric(Vx X, Y)X + (1/(n — 1)) Ric(X, Y)Vx X
+(2/(n — 1) Ric(Vx X, X)Y)
—((2/(n — D) Ric(Vyx Y, X)X + (2/(n — 1)) Ric(X, X)VxY)

= (2/(n — 1) (Vx RiO)(X, V)X + (2/(n — 1))(Vx Ric)(X, X)Y,

whereas the right-hand side of (20) gives that
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(VyDnx, )X = VrApx, X — Avinx. X = Anx, ) Vr X
= Vy(4/(n — D) Ric(X, X)X — 2Apvyx.x)X — Anx.x)Vr X
= Vy(4/(n — D) Ric(X, X)X — 2((3/(n — 1)) Ric(Vy X, X)X
+ (1/(n — 1)) Ric(X, X)Vy X)
—((2/(n — 1)) Ric(Vy X, X)X + (2/(n — 1)) Ric(X, X)Vy X)
= (4/(n — 1))(Vy Ric)(X, X)X .
Comparing both sides of (20), it follows that for linearly independérindY, we have that
(21) (Vx Ric)(X, X) =0,
(22) 2(Vy Ric)(X, X) — (Vx Ric)(X,Y) = 0.
Since (21) remains valid for all vectops, it follows that
(Vax4py RiC)(@X +bY,aX +bY) =0

for all values ofa andb. The above equation can be seen as a polynomial equatioarid
b which vanishes identically. Therefore every coefficient has to vanish. Using that Ric is
symmetric and computing the coefficienta?, we find that

(Vy Ric)(X, X) + 2(Vx Ric)(X,Y) = 0.
Combining this with (22), it follows that
(23) (Vy Ric)(X, X) =0,
(24) (Vx Ric)(X,Y) =0.
As (23) remains valid for all vector¥ andY, we also have
(VyRiO)(X +Z,X + Z) =0.
Since Ric is symmetric, this last equation implies tthg Ric)(X, Z) = 0. O
Letr, denote the rank of the Ricci tensor at the pginThen, we have:

LEMMA 8. Let¢ : (M", V) — R +1/2 he 3 parallel affine immersion. Then the
rank r, of the Ricci tensor at the point ¢ isindependent of ¢.

PROOF Letg; andgz be two points in a coordinate neighborhoodMfandy be a
differentiable curve connectingg andg,. Let X1(q1), ..., X, (q1) be a basis of the tangent
space af. Then itis well-known that we can extend, . .., X, alongy such thav, X; =
0. Then, it follows that

0= (V, Rio)(X;, X ;) = (d/d1)(Ric(X;, X)) .

This implies that Ri¢X;, X ;) remains constant along the curyve Consequently, the rank of
the Ricci tensor is constant. O
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We denote the rank of the Ricci tensor hySince it is constant oi, we can define a
distributionTp on M by

To = {Z| Ric(Y, Z) = 0 for all vector fieldst'} .

The dimension of this distribution equals wherem = n — r. Let Z € Tp, and letX and
Y be arbitrary vector fields. Since€ (Vx Ric)(Y, Z) = —Ric(Y, VxZ), it follows that
VxZ € Tp for Z € Tp. This shows that the distributicFy is parallel with respect t§'.

The next lemmas will then show how to construct a suitable basis of the distritfgtion
and how to define a suitable complementary distribution. However, before doing this, we need
the following lemma about the solution of differentiable equations on affine differentiable
manifolds:

LEMMA 9. Letm beapositiveinteger ande;; and g;,i, j = 1,..., m, one-formson
M. Then, if those one-forms satisfy

dgi(X,Y) — Z(Olij (X)B;j(Y) —a;j(V)B;(X)) =0,
j=1
doij(X,Y) — Z(aijz(x)ajzj(y) —aijp(Naji(X) =0,
Jj2=1

then the system of partial differential equations given by:

X(f) =) aij(X)fj + Bi(X),

j=1
has a solution.

PrROOFE By introducing a functionf,,+1 = 1 and formsw,,+1; = O, @p+1m+1 = O
anda;,,+1 = Bi, we see that it is sufficient to prove the lemma in the case thg athnish

identically. Using local coordinatgsy, ..., x,}, we see that it is then sufficent to prove that
a system

af=Aif,
whered; = (9/9x;), f ="(f1,..., fm) andA; is anm x m-matrix, has a solution provided
that

0i(Aj) —0;(A) —[Ai, Aj]1=0.

We now show the above claim by induction on the number of variable n = 1, the
condition becomes trivial and the claim follows immediately from the existence theorem for
solutions of ordinary differential equations.

Therefore assume that> 1 and letA; be a matrix solution of

MA1L = A1A1,
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with initial condition A1(po) = I. We then try to find a solution of the forgh = A1 g, where
g="g1,...,g,) depends only on the variables, ..., x,. Clearly, we have that

01f = A1A1g= A1f .
We also have that
U f =Aif = AiAyg,
& f = (3A)g+ A1dig.
As the matrixA1 is locally invertible, it follows that the functiop has to satisfy
dig= Big,
whereB; = —A71(3;A1) + A7 *A; A1 Using thatA; A1 = I and therefore
B At =AY @ ADATT
we get that
01B; = AT H(91A1) A (0 A1) — AT (9;01A1)
— AN (01A) AT A Ay + ATH 1A Ay + AT A (9149)
= ATt A1(3;A1) — AT10;(A141)
— ATYA1A; A + ATY (1A AL + AT A A1A4
= —A7 (3 A1 — 01A; + A1A; — A;ADAL =0,
Similarly, we also obtain that
9B —9;B; —[Bi, Bjl= A7 (8;Aj — 9;A; — [Ai, Aj)A1 = 0.
Applying the induction hypothesis how completes the proof. O
LEMMA 10. Letg € M. Thenthereexist vector fields Z1, ..., Z,, defined on a neigh-
borhood of ¢, which forma basis of Ty satisfying that
VxZr, =0

for any vector field X.

PROOF  We start with an arbitrary local basis, . .., Z,,. Any other basi<s, . .., Z,,
can then be written ag;, = Y /L1bkiZ;. SinceTy is parallel, we can also introduce 1-forms
Bl onM by VxZi = 311, BL(X)Z;. SinceZ; € To, it follows from the Gauss equation that

R(X,Y)Zy = Apir,z) X — Anx,zo)Y
=(1/(n - 1)) Ric(X,Y)Zy — (1/(n — D)) Ric(Y, X)Z;,
=0.
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Therefore, we get that
0=R(X,Y)Z
=VxVyZi — VyVxZi — Vix.y1Zk

= vx(Zﬁ,imzz) - vy(Zﬁi(X)zl) - BUX.YDZ
=1 =1 =1

=Y dB(X. Zi+ Y (BB (X) — BB (V) Zs,

=1 I,s=1
from which it follows that

m
(25) ABL (X, Y)+ Y (BL(V)BLUX) — BL(X)BL(Y)) = 0.
s=1
Now, expressing that the new badis, . . ., Z,, is parallel, we obtain that

m

0=VxZi =Y (X(bu)Zi +buVxZ)
=1

m m
=Y X Zi+ Y bupi(X)Zs .
=1 ls=1
Hence in order to obtain the desired basis, the functigndiave to satisfy the following
system of differential equations:

m
(26) X (bi) = — Y BL(X)bys .
s=1
Notice that this is a system of differential equations as treated in Lemma 9. From Lemma 9,
we get that a sufficient condition for the existence of a solution is that

0=—dpL(X,Y)+ Y (BLY)BI(X) — BLOOBLY))
s=1
which is satisfied because of (25). O

Letg be a point ofM and assume thafy, ..., X, form a local basis of a complementary
distribution 71 to Tp. Since the Ricci tensor restricted to the spdgds a nondegenerate
symmetric bilinear form, we may assume that, . .., X, form a pseudo-orthonormal basis,
i.e., we may assume that

Ric(X;, X;) = ((n — 1) /d)&iéi; ,
whereg; = +1. We also take a basls,, ..., Z,, of Ty as constructed before. We introduce
one formsw/ andvk, 1<i,j <r, 1<k <m, by

r m
(27) VxXi =Y ol X0X;+ Y vFX)Z.
j=1 k=1
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Then, taking arbitiry vector fieldsX andY, it follows that
R(X,Y)X; = VxVyX; — VyVxX; — Vix r1Xi

= Vx<2wij(Y)Xj + Zv{‘(Y)Zk) - Vy(Za);.j(X)Xj + va(x)zk)
j=1 k=1 j=1 k=1
3ol (X YDX; = Y X YD Z

j=1 k=1

r m r
- Zda){ X, V)X; + Zdu{‘(x, Y)Zi + Z(wy (Y)VxX; — o) (X)VyX;)

j=1 k=1 j=1
(28) =Y do! X. )X+ Y (o] (Y)wjfl(X) o (X)wjl(y))x i
j=1 jor=t

+ X Zi+ YD @] ) — ol OV () Z

k=1 j=lk=1

= > o (X, Y) + Y (] Mo (X) — o] (XD (V)X ),
j1=1 j=1

+ ) @EX Y+ Y (@ O — o] V) Z.
k=1 j=1

On the other hand, using the Gauss equation, it follows that

(29)  RX.NX; = Apy.xnX — Anx,xp¥Y =0, X, Y eTp,

(30) =0, YeTo,X=X;,j#i,
(32) =—Y/4, YeTo, X=X,

(32) =0, X=X;,Y=X;,, i, ji j2aremutually different,
(33) =—6X;/4, X=X, Y=Xji#],

(34) =0, X=7Y.

Next we will try to construct a more suitable local complementary distribution. It is clear
that any other complementary disuiion can be spanned by vector fiellfs, 1 < i < r,
which are given byX; = X; + Y ieqaikZk, where thea;; are arbitrary local functions.
The next lemma then shows how to define these functions to obtain a unique complementary
distribution.

LEMMA 11. Letg € M andlet Z4,..., Z, bealocal basis of Ty as constructed in
Lemma 10. Then on a neighborhood U of ¢ there exists a complementary distribution 71 such
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that
(35) VxY — 1/ n—D)Ric(X,Y)Z* € Th, X,Y €Ty,
(36) VzXeT, XeT,Zely,

where Z* = Y"1 g Zx € To isa vector field satisfying

X(g) =0, XeTi; Zi(g)="bu.

PROOF  We introduce a vector field* = Y ;" ; g, Zx. We get that

m
Vz Xi =Vz, X + Z Zi(aiZ;
=1

r m m
=Y 0l 20X+ Y (ZOZi+ Y Zilan) Z
j=1 =1 I=1
r

r m m m
=Y ! Z0X; =Y > ol ZapZi+ Y vi(ZOZi+ Y Zilai)Zi
j=1 =1 =1

j=11=1

m
Vx, Xi=Vx, Xi+ Y X;(ai)Zi

J

=1
r . m m
=Y ol X)X+ Y VX Zi+ Y Xjy(ain)Z
j=1 =1 =1
r . r m . m m
=Y o] XX; =YY ol XpauZi+ Y viXDZi+ Y Xjy(aiNZi .
j=1 j=1i=1 =1 =1

Therefore we see that the connecti@mas the form as described in the lemma if and only if
the functionsy;;, satisfy the following system of differential equations:

,
Zilair) = —vj(Z) + Y _ ol (Zoaji,
j=1

,
Xjpain) = —vi(X;0) + Y0 Xjpaj + 1/ Aeibjuig
j=1
The second part of the lemma now reduces to the following system of differential equations:
Xi(g) =—aji, Zi(g) = .

Therefore, in order to complete the proof of the lemma, we notice that this is again a system
of differential equations as treated in Lemma 9 (with functi@nsndg,). Using the notation
of Lemma 9, we see that it is sufficient to show that the following system of differential
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equations:
n
X(f) =) ey fj+4(X), i=01....n
j=0
has a solution, where for some fixedndi, j =1, ..., r, we have that
fo=yg,
Ji =air,
aoo =0,
aoi (X)) = =6, aoi (Zy) =0,
aio(X;) = (1/4)¢idij @io(Zx) =0,
aij (X) = o] (X)),
Po(X;) =0, Bo(Zk) = bur »
Bi(X) = —v(X).

Using the above definitions and (28), we see that fgr> 0, we have that:

daij(X,Y) — Z (@ijp (Xt jp; (Y) — ajj, (Y, (X))
J2=0
= do](X.Y) = ) (@ (X)0],(¥) - 0 (1)), (X))
Jj2=1
— ;0(X)ag; (Y) + a;jo(Y)ap; (X)

X j-component X ;-component X j-component
= (R(X, Y)Xi) + ajo(X)Y i COMPONeNL_ o, (y) X */7C0MP

Using now (29) up to (33) it follows that the righthandside vanishes identically and therefore

.
daij(X,Y) — Z(aijz(x)ajzj(y) —aijp(Naji(X)) =0.
J2=0
The other equations can be verified in a similar way. O
Next, we introduce a metrigon U by

(37) 9X,Y)=(@4/n—-1)Ric(X,Y), X, YeT,
(38) 9X,2)=0, XeT,Zelp,
(39) 9(Zk, Z)) =8, 1<k/il<m.
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LEMMA 12. The Levi-Civita connection V of the metric ¢ is given by

(40) VxY = VxY — 1/H¢(X,Y)Z*, X,Y €Ty,
(41) VzX=VzX, XeT,ZeTo,

(42) VxZi =0, XeT,l<k<m,

(43) V2,21 =0, 1<k/l<m.

PrROOF We define a connection by the above formulas. SWide symmetric, it fol-
lows from the definition tha¥’ is symmetric too. So we have only to check tRais compat-
ible with the metricg. Let X be an arbitrary tangent vector field. First we takeY,> € T1.
Then, since Ric is parallel with respect¥q it follows that

(Vxg)(Y1, Y2) = Xg(Y1, Y2) — g(Vx Y1, Y2) — g(Y1, Vx Y2)
= (4/(n — 1))X Ric(Y1, Y2) — g(VxY1, Y2) — g(Y1, VxY2)
=@4/(n—1)X Ric(Y1, Y2) — Ric(Vx Yy, Y2) — Ric(Y1, VxY2))
=0.

Next we compute fo € Ty andZ € Ty that
(Vxg (Y, Z) = Xg(Y, Z) — g(VxY, Z) — g(¥, Vx Z)

since by constructioVy Y does not have & component. The fact that@xg)(zk, ZH) =0
follows trivially.

As a consequence, we have

THEOREM 1. Let¢ : M — R +D/2 he g parallel linearly full affine immersion
and let g € M. Then there exists a metric g on a neighborhood V of ¢ in M such that V is
isometric to an open set of S7(2) x R™. Moreover, the affine connection V is related to the
Levi-Civita connection of S} (2) x R™ by

m

VxY = VxY + (/49X V) > 2k,
k=1

Vxor =0, VuX =0, Vui=0,

where X, Y aretangent to S7 (2) (and we consider themas tangent vectors of the product man-
ifold in the standard way) and o, k = 1, ..., m, isthe standard basis of R” with coordinates
denoted by z1, ..., zk.

PROOF Letg € M. It follows from the previous lemmas that both distributicfis
and Ty are parallel with respect t§. Consequently, applying the results of [15] and [16],
we get that a neighborhodd of the pointg is congruent with the semi-Riemannian product
manifold M1 x Mp. Here, we interpret&; as tangent td/; andTp as tangent td/o.
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From the definition ofV it follows that Z4, ..., Z,, are parallel vector fields of unit
length onMp, implying thatMg is congruent withR™ and that we can interprete the vector
fields Z; as coordinate vector fieldg, = 9y = 9/dzx. Writing now the vector fieldZ* =
Y i1 9 Zx and recalling that the functions depended only on/o and were determined
there by the following system of differential equations:

NGk = O,
we get that, after applying a translation of the coordinates, if necessary thatx.
Now, we still have to show thaW/; is locally isometric toS] (2). Since all one-dimen-
sional manifolds are locally isometric, we may assume that2. In that case, we have for
Y1 andY> tangent toM that

g(R(Y1, Y2)Y2, Y1) = g(Vy, Vi, Y2 — Vy, Vy, Y2 — Viy, v, Y2, Y1)
= 9(Vy, (Vy,Y2 — (1/8) g(Y2, Y2) Z¥) — Vy,(Vy, Y2 — (1/4) g(Y1, Y2) Z¥)
— Vv, vo1Y2, Y1)
= g(R(Y1, Y2)Y2, Y1)
= 9(Anv.v) Y1, Y1) — 9(An(ry. vy Y2, Y1)
= (1/2)9(Y1, Y2)* + (1/2)g(Y2, Y2) g(Y1, Y1) — (3/4)g(Y1, Y2)?
= (1/4)(g(Y2, Y2)g(Y1, Y1) — g(Y1, ¥2)?) .
ConsequentlyM1 has constant sectional curvaturgland is therefore congruent with the
semi-Riemannian sphere of radius 2 and index
The remaining formulas now follow from the previous lemmas together with the fact that
X andY are tangent tg? (2). O
We are now in a position to prove the main classification result of the paper.
THEOREM 2. Let¢ : M — R™(+D/2 he g parallel linearly full affine immersion.
Then M is affine congruent with one of the affine immersions described in Section 2.

PROOF Letg € M. By Theorem 1, we have that a neighborhood @ isometric to
an open set of7 (2) x R™. We consider the corresponding immersiBn We indicate the
immersion under consideration by adding an appropriate superscript. By constructian both
and¢ have the same induced affine connection. Itis also clear that by an affine transformation
we may assume that(q) = ¢(q), Fx(v) = ¢«(v) andh (v, w) = h? (v, w), wherev andw
are tangent vectors at the point

Lety be a geodesic, with respect¥qin V. We denote byy = ¢ (y) and byy, = F(y).
Then, using the previous lemmas we have that
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V]/_ = Py (7//) s
v =00y,
v = —¢*(Ah¢(y/,y/))//) =—4/(n— D) Ricty’, y")y; .

Similarly, we obtain thay,)” = —(4/(n — 1)) Ric(y’, y)y,. By the initial conditions and the
unigueness of solutions it follows thatand¢ coincide. i
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