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ON CONNECTIONSBETWEEN HANKEL, LAGUERRE AND
JACOBI TRANSPLANTATIONS
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Abstract. Proved are two results showing connections between the Hankel transplanta-
tion and a transplantation for a certain kind of Laguerre and Jacobi expansions. An asymptotic
formula of Hilb’s type for Laguerre and Jacobi pobmials is used. As an application of this
link we obtain an extension of Guy'’s transplantation theorem for the Hankel transform to the
casex, y > —1 also with more weights allowed. This is done by transferring a corresponding
transplantation result for Jacobi expansions which was proved by Muckenhoupt. In the case
whene, y > —1/2 the same is obtained by using Schindler’s explicit kernel formula for the
transplantation operator.

1. Introduction and statement of results. Givena > —1 and a suitable functioyi
on (0, 00), its (non-modified) Hankel transform is defined by

Ha f(x) = /0 NY20a (0 fO)dy. x> 0.

Here J, (x) denotes the Bessel function of the first kind of ordefSz, (1.71.1)]. The ker-
nelse$(y) = (xy)Y2J.(xy), x > 0, appearing in this integral transformation satisfy the
differential equation

d?  1/4—a?
<d_yz T)%‘?(}’) = —x%%(y), y=>0.

Guy [Guy] showed that the size of the Hankel transform of any suitable function, when mea-
sured in the (weighted).”-norm, remains the same whatever the order of the Hankel trans-
form is. More precisely, given,y > —1/2, 1< p < ocoand—1 <a < p — 1, thereis a
constanC = C(«, y, p, a) such that for every appropriate functigh

CHHy fllpa < Haf lpa < CIHy fllpa-

In another way, this can be expressed as

I(Ha 0o Hy) fllpa < Clfllpa, f€CZ(0,00),
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C2°(0, co) being the space of all compactly support&tt functions on(0, co). Here, for any
p, 1< p < oo, and any real numbe,

00 1/p
lgllpa = </0 Ig(x)l”x“dx)

andL?%(dx) denotes the weighted Lebesgue space of all measurable functigdsoon for
which the above quantity is finite. Far= 0 we simplify the notation by writing ¢ ||, and
L?(dx).

Another proof of Guy’s transplantation theorem (in the last formulation) was furnished
by Schindler [Sch]. She found an explicit expression of the kernel of the transplantation
operatorH, o H,,.

Guy'’s result initiated a series of transplantation theorems for both continuous and dis-
crete orthogonal expansions. Recently, KanjiraPK proved a transplantation theorem for
Laguerre expansions. Given> —1, the Laguerre functiong?(x), n = 0,1,2,..., are
defined by

o n! vz —x/2 «a/27a
L, (x) = (m> e XLy (x),
whereL$ (x) denotes the Laguerre polynomial of orderfSz, p. 101]. This set of functions
is a complete orthonormal systemiiR((0, oo), dx). Kanjin’s result says that if, y > 0 and
1 < p < oo, then there is a constafit= C(«, y, p) such that for every in C2°(0, oo)

9]

YLy

n=0

(1.1 =Clflp-

p

In the case wher1 < T = min(e, ¥) < 0, the above inequality holds in the restricted range
(14 1t/27% < p < —2/7. Here and later on we writgf, g) = f0°° f(x)g(x)dx whenever
it makes sense.

Thangavelu [Th] gave a modification of Kjamis result by replacing the Lebesgue mea-
suredx by x?/4=1/24x (under the assumption > —1/2). This means a transplantation for
another system of Laguerre functions

2n!

1/2
e—x2/2 xotl/2fa (xz)
I'n+o+1) n ’

Yo (x) = L2V = (
which is also a complete orthonormal systenL#{((0, o), dx). In several cases the system
{2} is better suited for considerations than the systéff}, since the functiong satisfy
the Sturm-Liouville type differential equation

d?>  1/4—a?

(d—yz /T - )’Z)I/fg()’) =—(4n+20+2)y;(y), n=>0.

We remark that Thangavelu’'s result may be regarded as a special case of a more general
weighted transplantation result proved in [ST]: (1.1) holds with||, ., replacing] - | ,,
—1l<a<p-1.
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In [St1] we proved a theorem relatidg’-multipliers for Laguerre expansions with those
for the Hankel transform. Then, in [St2], we supplemented this result by showing how to relate
LP-norm maximal inequalities for Laguerre multipliers with those for the Hankel transform.
To be precise, in [St1-2] we considered the modified Hankel transform and a slightly different
system of Laguerre functions than that considered here. A close examination of the argument
we used reveals, however, that the aforetiomed results have their weighted analogues in
the setting of(y }-expansions and the (non-modified) Hankel transfétgm(see remarks in
[St2, §3]).

In short, both results say the following: let> —1, 1 < p < oo anda € R, and assume
thatm is a bounded function o0, co), which is continuous except on a set of Lebesgue
measure zero. Then, if limipf, o+ [|m(en'/?)|, . is finite, then|m|, , is also finite and

. . l 2
Im|p.a < liminf [men*?)[l,.q.
e—0t

Herelm|,.q and||m(en1/2)||p,a denote the operator norms of multipliers (for the Hankel trans-
form H,, or for the{y < }-expansion) given by the function(x) or the sequence: (enl/?),
considered on the weighted Lebesgue spaté(dx) (cf. [St2] for the precise definition of
these multipliers).

Next, letM? f(x) = sup.. |7 f (x)| be the maximal operator, whefg is the Laguerre
multiplier operator associated with the sequefieésnl/2)} (for the {y%}-expansion), and
let M f(x) = sup.ql|T: f(x)| be the maximal operator, whefg is the Hankel multiplier
operator associated with the functier(cy) (for the Hankel transforri,). Then, if M,j‘, is
bounded orL?“(dx), thenM;! is also bounded oh”-?(dx).

The main goal of this paper is to exhibit another connection between Laguerre (or Jacobi)
expansions and the Hankel transform, on the level of transplantation.

THEOREM 1.1. Letl < p <o00,a € Randa, y > —1. If the Laguerre transplanta-
tion inequality

<Clfllpa, fe€CF0O 00),
p.a

PV
0

holds, then the Hankel transplantation inequality

I(Ha o Hy) fllpa < Clfllpa, f€CZ(0,00),

is also satisfied (with the same constant C > 0).

As already mentioned, we will also analyseannection between Jacobi expansions and
the Hankel transform. Givemandg, « > —1, 8 > —1, consider the orthonormalized Jacobi
functions

+1/2 +1/2
@ (x) _t(a,ﬂ)P(a,ﬂ)(COSx)<sinf>a / (Cosiy !
n — 'n n 2 2 ’
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whereP*P) n = 0,1, ..., are Jacobi polynomials, [Sz, (4.22.1)], and

(@) _ [(2”+°‘+,3+1)F(’1+1)F(n+a+,3+1)T/2
" TntatHIn+B+1) :

Note thatt\*? = (2n)/2 + 0 (n~Y/2). This system of functions is a complete orthonormal
system inL?((0, 7), dx). Foranyp, 1 < p < oo, and any real numbets andb, we will
consider the weighted Lebesgue spaée’ (dx) of those measurable functions @ ) for

which the norm
bg x\“ ¥ b 1/p
lgllp.asb = </0 Ig(x)l”<sm§) <cos§) dx)
is finite.

Askey [A] proved the following transplantation theorem for Jacobi expansions. Assume
l<p<ooapB,y,8>-1/2,-1<a<p-—1and-1<b < p—1. Thenthereisa
constantC > 0 such that for every in C2°(0, )

(e.¢]

S (f gl P
n=0

This result was then generalized by tkenhoupt [M1] by adntting, among othersy, 8, y, §
to be greater than-1 and considerably extending the range:sfandb’s. Our second result
is

=Clflpas-

p,a,b

THEOREM 1.2. Letl < p < o0, a,b € Rand«, 8,y,8 > —1. If the Jacobi
transplantation inequality

o]

S (gl P
0

holds, then the Hankel transplantation inequality
|(Ha o Hy) fllpa < Clifllpa, [ €CZ(0,00),

is also satisfied (with the same constant C > 0).

<Clfllpasb, feCZOm),

p.a,b

This connection between Jacobi expansions and the Hankel transform, exhibited again
on the level of transplantation, has its ancessors on the levels of multipliers and maximal
multiplier operators. Historically, it was the case of Jacobi expansions where the first connec-
tion with the Hankel transform was found. lgari [I] proved de Leeuw’s type theorem linking
Jacobi and Hankel multipliers, and then Kanjin [Kal] proved a theorem that transigtred
norm maximal multiplier inequalities from Jacobi to Hankel side. Actually, both of our earlier
papers, [St1l] and [St2], were motivated by the results of Igari and Kanjin (needless to say,
Igari’s paper motivates the present paper, to@ be precise, the results of Igari and Kanijin
were proved in the setting of modified Hankel transform and Jacobi polynomial expansions,
but they have their (weighted) analogues in the setting we prefer: the (non-modified) Hankel
transform?,, and{qb,(f"'3 )} Jacobi function expansions.
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The following is a simplified version of a much more general Muckenhoupt’s transplan-
tation result [M1, Theorem (1.6)].

ProOPOSITION1.3. fl<p<o00,0<r<la>-1y>-1 —pla+1/2)—1<
a < p(y+3/2)—1and f € LP%9(dx), then

o0

Lf) =Y rfe e P ()

n=0
converges for every x € (0, ),
17 fllp,a,0 < Cllflipa,0,

with C independent of f and r, and there is a function 7' (x) in L?%9 such that 7, f con-
vergesto 7f in L7%0 asr — 1~ (in consequence, |7 £l p.a.0 < CIl £ |l p.a.0)-

Using Theorem 1.2, we generalize Guy'sukdy transferring Muckenhoupt's trans-
plantation theorem for the Jacobi expansions to the Hankel transform setting. Besides the fact
that the range of parametersandy is now enlarged t6—1, co), the range of weights is also
considerably extended.

COROLLARY 14, Letl < p <00, a,y > —land —pla+1/2) -1 < a <
p(y +3/2) — 1. Then

I(Ha o Hy) fllpa < Clfllpa, f€CZ(0,00).

PROOF Let f € CX(0,7) and T, f(x), Tf(x) be as in Proposition 1.3. Then
ITf Nl p.a,0 < Cll fllp.a,0with C independent of. The series

Z<f o e P ()

n=0
converges for every € (0, r) by Lemma 2.2. Therefore

; 62 1/2) (a -1/2)
lim 7, f(0) = Z (f. én (x)

n=0

for everyx e (0, 7). By choosing a sequeneg < r» < ...,r; — 17, such thatl' f (x) =
lim o0 T, f (x) for almost everyr € (0, ), we then get

Tf(x)= Z<f o P P ()

n=0
for almost every € (0, 7) and

—1/2 ,—1/2
HZM(V 2)) 5 1/2)

Corollary 1.4 then follows by using Theorem 1.2.

< Cllfllpa0-
p,a,0
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It should be noted that in the case when the two parametearsd g differ by an even
positive integer, only one side of the inequality restrictinig Corollary 1.4 is needed for the
Hankel transplantation inequality to hold. Indeedyi= y + 2k, k =1, 2, ..., then

I(Hy+26 0 Hy) fllp.a < Cllflipa, f€LPdx),

easily follows for 1< p < oo anda < p(y + 3/2) — 1, by using a simple explicit integral
kernel form of the operatd(, ;o o H, . Considering only the cage= 1, we have

2 1 x y+1/2
Hyraf (x) = # fo (f) H, F0dy —H, f(x).

This follows from recursion formulas for the Bessel functions. Therefore, we only need to
show the boundedness of the operator

1 /X y y+1/2
To@ =" /0 (;) gdy

onL”%dx),1< p < oo,a < p(y +3/2) — 1. This leads to the inequality

/ / h(y)dy
0 0

that follows from Hardy's inequality (1.7), sinee— p(y + 3/2) < —1. Also, in the case
wheny = o + 2k, k=1, 2,..., the Hankel transplantation inequality

[(Ha o Hav2t) flip.a = Cllf lIpa

easily follows for 1< p < co and—p(a + 1/2) — 1 < a, by using the formula

p 00
x4—P+3/2) 4 < Cp,a/ |h(x)|an*P(V+l/2)dx’
0

oo k=l g s\ 2iFatl)2
Ho f (x) = / (Zc,;(;) )Ha+2kf(y>dy+(—1)"Ha+2kf(x).
X =0

Indeed, what we need is to check the boundedness of the integral operators

00 1 /x\2itatl/2
Tjg(x) =/ —<—) g(ydy,
x  Y\Y

j=01 ..., k=1, 0onLP%dx), 1< p <o0,a > —p(a +1/2) — 1. This leads to the
inequalities

/ / h(y)dy
0 x

j=0,1,...,k— 1, that follow from Hardy’s inequality (1.8), sinee+ p(x + 1/2) > —1.
We will frequently use the bounds

p . m .
XHP@Ri+at1/2) g < Cp,a,j/ () [P P Ritat3/2) g,
0

(1.2) J,)=0@1%, t— 0",
and

(1.3 J,O)=0¢Y%, 1> co.
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A more precise description of behaviour of the Bessel funciign) at infinity is given by
the asymptotic

(1.4) Vil (1) = a/Z/n(COS(t +ay) + baw + O(t_z)) , 1> 00.

The functions defined by those series in Theorem 1.1 and Theorem 1.2 are understood
as pointwise sums of the series (they arergwbere convergent, cf. Lemma 2.2). A bit
of comment is, perhaps, necessary on the question (o H,)f is well-defined for
f € CX(0,00). If « = —1/2, then a natural assumption to make the integral defining
Hq g (x) convergent is to assumeto be Lebesgue integrable (the kerngfy), x > 0, are
(uniformly) bounded on O< y < 00). Assumew,y > —1andf € CZ°(0,00). Then,
H, f(y) is a continuous function of & y < oo and, by using (1.2),

(15) Hy f() = 0’3, y—o0F.
Moreover, by using (1.4),
(1.6) Hy f() =072, y— oo,

(using higher order asymptotics, better than (1.4), allows tolgef (y) = 0 (y~%) with
arbitrarily largek). Note that (1.5) and (1.6) ensufé, f(y) to be integrable, and hence,
foro > —1/2, Ho(H, f)(x), 0 < x < oo, makes sense. In the general casey > —1,
(1.5) and (1.6) show that the functign— (xy)l/zJa(xy)'Hyf(y) is integrable and again the
integral definingH (H, f)(x), 0 < x < oo, makes sense.

Finally, we recall the following two forms of Hardy’s inequality:
ifa<—1and 1< p < oo, then

(1.7) /Oo /x f(tdt
0 0

ifa>—1and 1< p < oo, then

(1.8) /Oo /Oo f@)dt
0 X

Acknowledgment. The author is highly indebted to theferee for very careful reading
of the manuscript. His precise comments and remarks greatly helped the author to improve
the presentation.

p [e%e}
x%dx < C/ | f(x)|PxtPdx ;
0

P 00
x%dx < C/ | f(x)|PxtPdx .
0

2. Preliminaries. This section contains five lemmas and their proofs; the lemmas
will be used in the proofs of Theorems 1.1 and 1.2.

LEMMA 2.1. Lety,§> —land f € C°(0,m) or f € CX(0, 00). Then
2.1 Ty = —(n(n +y + 6 + 1) V(F, g THTY)
where F = f'+ f -, w(x) = —B,, cot(x/2)+ Bstan(x/2) and B, = y/2+1/4. Smilarly,

(2.2) (fow)) = (F,y'Th,

T oul2



478 K. STEMPAK

where F = f'+ f - w, andw, (x) =x — (y + 1/2)/x.
PROOFE (2.1) is proved by applying the differential identity, [Sz, (4.9.1)],

AT aisin C\2 L\ 22
—_— ’ CcO n— COS—
dx[ -1 (cosa{sing 2

2
.5) X y+1 X 25+1
=nkP, (cosx)| sin E COSE .

Indeed, integration by parts gives (we denetg, (x) = (sin(x/2))*(cosx/2))?)
b4
(o) =170 fo F@ PV (€osx)wy 41/2,541/2(x)dx

A /” fx)
0

0
-n PP (Cosx)wy 41,2541(x)dx
n Wy 41/2,5+1/2(x)

.8 m /
17
- ( L0 ) YT (coswz, 2.2542(0dx
noJo \wyt1/2,5+1/2(x)

I’EM)

T
= (y+1,6+1)
o m(y+l,5+1)/0 F(x)¢,_1 (x)dx ,

n—1

which is (2.1). Similarly, by applying the differential identity
di(L,y,fll(xz) e x20 D) = o LY (x2)e ¥ x 2 HL
X

which is easily verified by using well-known differential properties of Laguerre polynomials,
we getwith A(n, y) = (2n!/T'(n + y + 1)"/?

(L)) = A(n, y) /OOO f(X)e"‘z/zL}l’(xz)x”“/zdx

1 o0
= A(}’l, V)Z /(; f(x)exz/fo(y+l/2) . an'): (x2)67x2x2y+1dx

- Ay / T (Fe 2Dy (2 2 g
2n 0 n-

___ Amy) Y y+1
T Am—-1y+1) 2 /0 Fey,— (xdx,
which gives (2.2).

LEMMA 2.2. Letw,B,y,8 > —1and f € C°(0, ) (or f € C(0, 00)). Then the
Series
2.3) Y (.o P (), (orZ(f, v (y))

0 0

converges absolutely for every giveny, 0 <y < (or 0 < y < o0).
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PROOF We have (cf. [M1, (2.8)]) for arbitrarily fixed positive constant

(nx O<x<cn?,

(2.4) P () < C {1, enl<x<m—ent,
nx —xNPY2 g _enl<x<nm,

)ot+l/2

with C > 0 independent o = 1, 2,... (it follows that fora, 8 > —1/2 the sequence
{q),(l“’ﬂ) o2 o is uniformly bounded). Lek be an arbitrary positive integer. Using (2kjimes,
we get

oty = 0T ) (B, g7 110

whereFj is aC® function compactly supported if®, 7). Hence, by Schwarz’s inequality,
(f, qb,ﬁ”"”) = 0 %), n — oo. By takingk = 2, the absolute convergence of the first series
in (2.3) is now clear, since, given 0 < y < =, we havelp\>? (y)| < € for sufficiently

largen. Similarly, for the systenfy*}°° ; we have

x@t/2p0/2 0 < x <n Y22,
(2.5) [y ()| < C {n~ 12, nY2/2 < x <2n712,
exp(—tx), 2n Y2 < x < 0,

forat > 0 with C independent of = 1, 2, ... (it follows that fora > —1/2 the sequence
{Y}°° 4 is uniformly bounded; more preciselfy¢ |l = O(n~Y1?). This estimate is

easily implied by [M2, (2.5)]; moreover, the first interval in (2.5) can be taken as.0 <

cn~Y2 with arbitrarily fixede > 0, cf. [Sz, (7.6.8)]. The argument for the convergence of
the second series in (2.3) is now analogous to that just given (we use (2.2) as an equivalent of

(2.1)).
LEMMA 2.3. Leto,B,y,8 > -1, 1<p <oo, f e CX0O,mx) (or f e CO,c0))
and—pa+1/2)—1<a,—p(B+1/2)—1< b (or —p(a+1/2) —1 < a). Thenthe series

S (f T )gleP) (or A >wf:>
0 0

convergesin LP%?(dx) (or L?(dx)) to the limit given by the pointwise convergent series in
(2.3).

ProoFE It follows from (2.4) that||¢,§“’ﬁ)||p,a,b = O(n?) with a constantd. On
the other hand{ f, q),ﬁ”’”) = 0(n %), n - oo, for arbitrarily largek. Hence the sum
Yool ¢,§V’8))| . ||¢,(,°‘”3) | p,a,» is finite and this gives the convergencdif®?. Choosing a
subsequence, converging almost everywhere, of the sequence of the partial sums of the series
YU 0N ¢ P \we may identify the sum of this series with the sum of the pointwise
convergent series in (2.3) (in particular, the sum of the series in (2.3)li& ¥ (dx)). The
argument for the Laguerre series is analogous and uses (2.5).

LEMMA 2.4. Leta,B,y,8 > —land f € C®(0,00). Let fi(x) = f(hx), A > 0,
and, in the Jacobi case, consider A so large that the support of f; is contained in (0, ).
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GivenN =1,2,... and K > 0, thereisa constant C = Cy g suchthatfor 0 < x < K and

large A
N[ .
V.ol
0( wm(A)

N[A] X
8
> (f i ypleP (X)
0

PROOFE We consider only the case of Laguerre expansions (the argument for the Jacobi
expansions is analogous). We have

S C.xa+l/2, S Cxa+l/2.

(fir¥i) = / F@yy /r)du.

If f is supported inm, M), 0 <m < M < oo, then foru < M, x < K andn < N[A2],
we haveu/r < ecn~Y2 andx/x < en=Y2 with ¢ = max{ M, K}NY/2. Hence, by (2.5) (cf. a
remark following (2.5)),

[(fo. ¥ )| < CATY %2112
and
< Ox¥ Y2y —a=1/2,0/2

Therefore,

N[A2]
< Cx@+L/2) —(aty+2) Z n(@+y)/2

0

N[A2] .
> (s wnyw,‘i‘(;)
0
< Cxa+l/2‘
LEMMA 2.5. Letw,B,y,8 > —1and f € C°(0, 00). Let fi(x) = f(Ax), A > 0,

and consider A so largethat the support of f; iscontainedin (0, 7). GivenN = 1,2, ... and
0<r <s < oo, thereisaconstant C = Cy ., suchthat for r < x < s andlarge A

(VS) (a,s) X
Z (for bn (A>

N[MJ+1

(2.6) <C.

PROOF Considera so large that /A < /2. If n > N[A]+ 1 andr < x < s, then
cn~! < x/x < /2, wherec = rN. Hence, by (2. 4)|,¢(°‘ ﬁ)(x/x)| < C and, by using (2.1)
twice,

(fas ¢,(,y’5)) = o(n—2)< ¢(y+2 5+2)>
whereG; (x) = A2 f” (Ax) 4+ 20f' (Ax)w(x) + fFOx)@ (x) + f(Ax)w(x)? = G%(x) I
G1(x). We have, assuming again thats supported irgm, M),

M
2,6+2 2,6+2
(GE, 752 < Cl1GHI1I9 522l scx/ | (u)ldu < Ch.
m

n
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Similarly, fori = 2, 3, 4, by using the bounds

w(x) < C(}+i> o' (x) < C(i+;) w(x)? < C(i+;>
~ \x w—x/)’ = \x2 (r—x)?)’ =\ - n2)

we obtain|(G!, ¢(V+2 %2y < Cafori = 2, 3, 4. Therefore, the left side of (2.6) is bounded
by

C i i 1 |< ¢(V+2 5+2) i i CN—l
n2 —
=N[x

I’l
i=1n=N[A]+1

3. Proof of Theorem 1.1. Choose any functiorf in C2°(0, oo) and assume its sup-
port is contained in the intervailn, M), 0 < m < M < oo. Let fi(x) = f(Ax), A > 0. By
the assumption, we have

o
‘ Z fA ‘ﬁn
0

Sincex @t/ fillp.a = Il f |l p.a, Y multiplying the above inequality by*+/7, we obtain
I Follp.a < CIflp,ar Wwhere we denote

< C”f)u”p,a .
p.a

oo

Fo@) = (o w08 (;)

0
By using Parseval’s identity, we also easily obtii. |2 = || fll2. Hence, we can choose a
sequence; < iz < ---,A; — 00, suchthaﬂj is weakly convergent i % (dx) to anF in
LP%(dx), and is also weakly convergentirf(dx) to anF in L2(dx). In fact, F(x) = F(x)
a.e. since, by the weak convergence in bbftand 74, (F, X(rs)) = (F, X.s)) for every
interval (r,5), 0 < r < s < oco. Clearly, |Fllp.a < Clfllpa. To finish the proof of
Theorem 1.1, we shall show that

(CCX) F(x) = (Ha o Hy) f(x)

for almost every in (0, 00).
GivenN, N = 1,2, ..., separating the seri€s g’ ( fi, ¥ )¢ (x/A) at the poinNtV[A2],
we write
N[Z?) . oo .
GNx. =D (i M)w,‘i‘(;) o H G = ) (v (X) :
n=0 n=N[»2]+1

We claim that, repeating a fairly general functional analysis argument from [l], in order to
prove (3.1) it is sufficient to establish the following: For every fixéd= 1,2, ... andx > 0

N[A?] . 2JN
(3.2) A|Lmoo ZO (frs w,Z)w;;‘(X) =/, VxuJy(xuyH, f (u)du
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and
(3.3 /oo |HY (u, )|°du = O(N™Y)
0

uniformly in A — oo.

For the sake of completeness we now recall Igari's argument. Using (3.3) and the diago-
nal method of choice, we choose a subsequen¢k;¢f(call it again{x;}) such that for every
N =1,2,..., HV(, 1;) converges weakly ih?(dx), say to anH", HN € L?(dx). Again
by (3.3) we have| HV |2 = O(N~Y2). SinceF,; — F andH" (-, »;) — HY weakly in
L?(dx), GV (-, Aj) = Fy; — HY (-, 1j) converges weakly i, say to aG", GV € L?(dx).
Therefore

F=GN4+HN, N=12....

By using||HV |2 = O(N~1/2), from the sequencgd "} we choose a subsequerde™ ©)}
such thatH¥® (x) — 0 a.e. a% — oco. Therefore,F(x) = limi_o GY® (x) a. e. and for
everyN(k), k = 1,2,..., we have:GN® (., 1;) — GN¥® weakly in L?(dx) asj — oo
and, by (3.2)G¥®(x, 1) converges for every asj — oo, to

/Z/W

Bi(x) = \/ﬁJa(xu)Hyf(u)du .

The dominated convergence theorem is now used (this is possible by Lemma 2.4) to show that
(GNO) xr.5)) = (Br, x(r.s)) Tor every 0< r < s < oco. This givesG¥® (x) = By(x) a.e. It
is now clear thaf (x) = im0 Bk (x) = (Ho o Hy ) (x) a.e.

To prove (3.2) we will use Hilb’s asymptotic formula, [Sz, Theorem 8.22.4], written in
the form (cf. comments in Section 5)

O(tn~34%, en 2 <t<w,
O tV2p®/2-1y 0 <t <cn V2,

(3.4) Yo (1) = N2t Jy (2nY?r) +[

Herea > —1 andC andw are arbitrarily fixed positive constants. In the case 0, the last
bound is to be replaced b9 (r*+t1/2n*/2=1) 1 0 (t*(1 + |log(t=?n~1)|)). We remark that
in the caser, y > —1/2, the analysis is slightly easier, since Hilb’'s formula then takes the
simpler form (5.5). In what follows, the case when at least one of the parameteiis zero
requires separate argument; we will not discuss it here.

Fix N = 1,2,... andx > 0. Since the first summand 6" (x, 1) (corresponding to
n = 0) tends to zero as — 0, we drop it below. If O< n < N[x?]and O< y < M, then
y/x < en~ Y2 with c = MN~Y2, Hence, using the last line of (3.4) gives forOn < N[12]

and large
yo_ 1M 2y  (2n/?y y\ T2 y/2—1
<fks¢n>=X/(; f()’)[ TJ;/( . )+0((X) n ):|dy

1 4n\Y? 3/2 y/2-1
— mHyf((ﬁ) > + 0()\._)/_ / l’ly/ - )

(3.5)
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and

1 an\ /2 \1/2 an\ 12
w0 ()<t (2) ) (1)) rou e

Summing the terms that come from the product of the main parts of (3.5) and (3.6), we obtain

N[A2]

I\ 2 \ 12 4\ /2 A\ /2 1
Y () 7)) o) () )
n=1
1N[AZ] an\ Y2 \1/2 an\ /2 A\ 12 Y2 4
=32 ((G5) o) wl(Ga) o) () )-(2)
n=1

and this, wherk. — oo, approaches

1 4N
5 Vit 2x g, (Y2 H,, f (V)Y 2dr
0

which, after a change of variable, becomes the right side of (3.2).

It remains to check that the sum of products of any other combinations of summands in
(3.5) and (3.6) i®»(1) asi. — oo. We first take remainders in both (3.5) and (3.6). Their
combination gives a sum which is bounded by (here and for the next cases we chaose 0
n < 1suchthafe + y)/2+ 1 —n > 0; in places where we can do it, we use the estimate

tnt=0(A™Y), r > 1)

N[A2] c N\ ern)/2il-n g
—(a+y)—2, (a+y)/2-2 < _ . < -2
c Y s <5 L (ﬂ) s,
n= n=

We now consider combinations of a main part and a remainder. Taking the main partin (3.6)
and the remainder in (3.5) and using (1.2) give the bound

N[»2) 1/2 \ 1/2 1/2
4n 4n oy —
C E ((_)2) x> Ja((_ﬂ) x)‘ . A"Y—3/2,v/2-5/4
n=1

N[’
<C Z A (@ ty)=2, (at+y)/2-1
n=1
2
e 1 NI N\ @tn)/2+l-n g
<Cm 2 5z e
n=1
< CyA™2.

Taking the main part in (3.5) and the remainder in (3.6) and using (1.5) give the bound
N[A?]
cX
n=1

and this type of sum has been just treated. All possible sums occuredtd)tsr — oco.

an\ 12 N[22
Hyf((_Z) >‘ oy me—3/2,0/2-1-1/4 _ A (@ty)=2, (a+y)/2-1
A’ —_— 9

n=1
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To prove (3.3), we use (2.2) to get

(o) = —5 1 (Fr 01,

where F*(x) = Af'(Ax) + fOx)(x — (y + 1/2)/x). Next, Lemma 2.3 fopp = 2 and

Parseval’s identity give
00 00 00

/ |HN (u, 3)Pdu = x/ S v w)

0 0 N[A2]+1

=1 > WA v

Nmﬁ+1

=X Z (F* 9 )P

Nmﬁ+1

Z F)‘ l//)/Jrl

0

2
du

B g/ auf' Gun) + fau? = (v +1/2) f ) |?
N 0 Au

_C /°° ‘yf’(y) + YA = (v +
=~ .

This finishes the proof of (3.3). The proof of Theorem 1.1 is now complete.

4. Proof of Theorem 1.2. Let f, f, be as in the proof of Theorem 1.1. From now on,
we assume to be sufficiently large, so large that the supporipfs contained in0, ). By
the assumption

o0
,6
> (o))
0

< Clfallp.a.b-
p.a.b

Multiplying the above by 2/71(+D/P and changing variable give

( / " i(fx,rzﬁf,y’s))rzﬁ(“’ﬁ)@) ’
0 5 " A

M 1/p
SC(/O If(y)l”va,b,x(y)yady> )

a b
Va,b 1 (y) = ((Sin%)/(yﬂk)) <cos%) .

1/p
Ua,b,A(Y)yadY>

(4.1)

where we denote
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If p =2 anda = b =0, then we have

o0

,6
S (o))
0

= fill2,
2

| - l2 denoting thel.2-norm in L2((0, ), dx), which gives

A 0 5 y 2 1/2 M 1/2
( f Y (b )>¢£,“>ﬁ><;) dy) = ( f |f<y>|2dy> .
0 0

(
0
Fy) =)t ,ﬁa’m(%)

0
andﬁ;\(y) = Fk(y)va,b,;\(y)l/p when 0 < y < Am, andﬁ)\(y) = F,(y) = 0 otherwise.
Choose a sequenég < A2 < ..., A; — 0o, such thatr ; is weakly convergent in2(dy).
Let F be its weak limit. To complete the proof of Theorem 1.2, we shall show that

Let

4.2 1 FNp.a <Clflpa
and
4.3 F(y) = (Hq o Hy) ()

for almost every, 0 < y < co. Choose any > 0. For sufficiently large.; and 0< y < M,
we havev, » . (y) < (1+ ¢)?. Hence, from (4.1),

1Fx;llpa < CA+ ) fllpa-

Therefore, from the sequenge;} we can choose a subsequence (call it agajh) such that
F), is weakly convergent i.”-“. Let F be its weak limit. Clearly| F || ,.o < C(1+&)| £l p.a,
and arbitrariness afgives|| 15||p,a < C|lfllp,a- Tofinish the proof of (4.2), itis now sufficient
to note thatF(y) = F(y) a.e., and this is implied byF, x.s)) = (F, x¢.s)) for every
0 < r < s < oco. The last identity is proved by using the fact that

,lim (FAJ-: X(r,s)) = ,Iim <F)L_,'v X(r,s)) ,

Jj—00 Jj—>00
which is a consequence of Lemma 2.4, Lemma 2.5 and the dominated convergence theorem.
The rest of the argument will concern the proof of (4.3).

GivenN, N = 1,2,..., we now separate the seri@sy’(fi, 7Dy 5By /1) at the

point N[1], and write

N W .0y 4 (@B *
_ Y, a, -
GV (x, ) = n§:0<fx,¢n Mol (A)

and

HY (0= Y <fx,¢,$V’5>>¢£,“’ﬁ>(f>.

A
n=N[A]+1
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As in the proof of Theorem 1.1 it is now sufficient to show that

N
(4.4) A|im GN(x, 1) = / Vxudy (xu)H,, f(u)du
—> 00 0
forevery fixedV = 1,2, ... andx > 0, and
g
(4.5) / |HY (u, 1)|°du = O(N~?)
0

uniformly in A — oo.
To prove (4.4) we will use Hilb's asymptotic formula, [Sz, Theorem 8.21.12], written in
the form (cf. comments in Section 5)

o), enl<t<m—se,
0 t2p2=1/2y " 0 <t <cnl,
wherec ande <  are arbitrarily fixed positive constants.
Fix N =1,2,... and O< x < K, whereK is given and large. Neglecting= 0 (for

the same reasons as explained in the proof of Theorem 1.1) and using the second line in (4.6)
give, for0< n < N[A],

M 12 +1/2
Bt = [Trol(n3) a(nd) + o((2) 7 =2)
(4.7) 0

1 n —y—3/2 y—1/2
:xHyf(X)JFO(A v=3/2yr=1/2)

4.6) ¢ @P (1) = (n)Y2Jy(nr) +’

and
X L\ l2 X
(4.8) ¢f,°"ﬁ)(i) B <"X> Ja ("X> + OO Y2pe12),
Summing the terms that come from the product of the main parts of (4.7) and (4.8), we obtain
N[A]

n 1/2J n " n 1
,;(xﬁ (i ros(5) 5

and this, when. — oo, approaches the right side of (4.4). We now claim that summing any
other products of summands in (4.7) and (4.8) gives a quantity that approaches zero when
A — oo. We start with considering the remainders in (4.7) and (4.8). We takei0< 2

such thatr + y + 2 — n > 0. Then, for the relevant sum, we have the bound

NI[A] 1 N[A] n a+y+2—n 1
—(a+y)—2, a+y—1 il =z = -
c;)\ n §CM;(A> — = OnAT

We now consider sums that occur by taking a main part and a remainder. Taking the
main part in (4.7) and the remainder in (4.8) gives a sum which is bounded by (again we use
annpsuchthatO< n <2anda +y +2—1n > 0)

N[A]

€2
n=1

n a+y+2—n 1 -
< CnyA7".

n c W
_ )Lf()l73/2 0571/2 — s
L0 B P

n=1

n2=n
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Taking the main part in (4.8) and the remaindte (4.7) leads to a similar estimate. This
finishes the proof of (3.2).
To prove (4.5) we use (2.1) to get

oo @) =~ +y + 8+ D) VAFR @),

whereF*(x) = Af'(Ax) + f(Ax)(—B, cot(x/2) + Bstan(x/2)), B, = y/2+ 1/4. Conse-
guently, by Parseval’s identity,
2
Z (1, ¢(y ,8) ¢(V>5)(u) du

T o
/ [HY (u, M) °du = x/
0 0O I NG+

DRIV elk
N[x

I{
1+1
)\’ o0
+1,6+1
_2 Z FA ¢(y )>|

I A

A1+
— 1,64+1
8
Z F)\. ¢(V+ + )>|
0
\/‘T[
C o
=y

This finishes the proof of (4.5) and hence the proof of Theorem 1.2.

I A

2

AN?Z
C
— Adu

N2

) — LB £ cot + By £Gun) tan’
f(u)—x yf(”)coi'f'x Sf(”)ani

2

1p, rycot + 1B rontanl| a
5y Ry TR P R Y

5. Asymptotic formulas of Hilb’s type. Hilb’s asymptotic formula for Laguerre
polynomials, as stated in Szeg®’s monograph [Sz, 8.22.4], is

r 1
o2 o2y -2l Ot D f‘ D N2y
n!
(5.1) O5/2n/2-3%  cy=Y2 <y < .
O (1%, O<t<cn 12,

Herea > —1,N = n+ (¢ +1)/2,c andw are arbitrarily fixed positive constants. In the case
« = 0, the last bound is to be replaced byr*(1 + | log(r2n)))).
Rewriting (5.1) gives

12
v (t) :N“/Z(M> \/Z—IJa(ZNl/Zt)

n!
5.2
(5-2) ’0(¢3n3/4), en <t <w,

02t92,2/2)  0<t <cen 12,

In the casex = 0, the last bound is to be replaced 6y:%/2(1 + | log(r2n)|)).
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We have

1/2
N“/2<7F(” ret 1)) —1|<cn2.

'n+1)

This easily follows by using

I'n+a+1 14 ala+1)
n*l(n—+1) 2n
cf. [Le, p. 15] (note that the above also givE&r + « + 1)/’ (n + 1) ~ n%), and

o+ 1\° ala+1) D)
1 =1+ — .
<+ - ) + IS = 0w

(5.3) +0@mn?,

Hence, fom!/%t > ¢, by using (1.3) we obtain
r 1)\ Y?
y-wz( Ea Tt DATE ) o oNY2y = 022 Y212
'n+1)
=0mn %%,

Similarly, for 0 < n%/?t < ¢, by using (1.2) we get

1/2
<N‘“/2<%) _ 1>x/2tJa(2N1/2t) — O~ 2Y2 (/21
n

— 0(t0!+l/2n0[/272) .
Therefore, (5.2) becomes

0(t3n*3/4), cen~1/2 <t<w,

oy 1/2
(5.4) Yy (1) _\/Z_t Jo (2N51) +l0(ta+1/2na/2—2) . O0<t< en~1V2

(Note that O(n=9%) is absorbed byO(:32=3/%) while 0(**+%2,%/2) is included in
0 (1911/2,9/2-2)) " |n the casex = 0, the last bound is to be replaced By:%2(1 +
|log(z2n)|)) (the process of changin ~*/2(I"(n + « + 1)/n!)Y/2 onto 1 does not concern
the casex = 0).
In the second step, fart/?s > ¢, by using the mean value theorem a@dds) J, (s) =
O (s~1/?) for s large, we obtain
V21 (Jo@NY?1) — 1, 2nY%1)) = 0 (Y2 - tn= Y2 . (n1?%) 7172

=0@n"%%,
and, for 0< n?t < ¢, by using(d/ds)Jy(s) = O(s*~1) for s — 0, we obtain
V21 (Je @NY?1) — I, 2nY%t)) = 0 (Y% - tn™ V% . (2L

— O(ta+1/2na/2—l) )

In conclusion, we now change (5.4) into the form (note that*+1/2,2/2-2) is better
than 0 (1*+1/2p2/2-1) 0 (3n—3/%) is absorbed by (rn=3/%) while 0 (:%2(1 + | log(r2n)|))
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is included inO (121~ 1))

0 (tn=3/%, en P <t<w,

o _ 1/2
Yo (t) = N2 Jy(2nY?1) + O Y22y 0 <t < en 2,

This is (3.4), the asymptotics we used in Section 3 ¥ —1/2, then the above asymptotics
simplifies to

(5.5) Yo (1) = V2t 1o (2nY%1) + 0 (3%

with the O-bound uniform in 0< ¢t < w, for any givenw > 0.

Hilb’s asymptotic formula for Jacobi polynomials, as stated in Szegé’s monograph [Sz,
8.21.17],is

« \# r 1/ ot \Y?
<sin£> (cosé) P,ﬁ“’ﬁ)(cost)zN‘“M(—> Jo(N1)

2 n! sint
02,32 o l<i<m—e,
0 (t*+2n®) O<t<ecnl.

Herea > —1, Bis any real numbetN =n+ (¢ + 8+ 1)/2,¢ > 0,and O< ¢ < 7 are
arbitrarily fixed constants. Rewriting the above gives

#@B) (1) Nt ((Zn +a+B+DIn+a+D)In+a+p+ 1))1/2
(5.6) " V2 T+ DI+ B +1)
' oY, enl<i<m—e,
1/2
X (Nt)~“Jo(Nt) +[0(ta+5/2na+1/2)’ 0<t<cn-l
We have

< Ccn2.

iN—(aH/Z)((Z” +a+B+DIn+a+DIn+a+B+ 1))1/2 _
V2 I'mh+LHI'n+B+1)

As in the case of a similar estimate in the beginning of this section, the above inequality is
easily checked by using the asymptotics: (5.3),

I'n+a+p+1) ala+28+1) 9
nfn+p+1) 2n +o@™),
20+1
<1+a+,3+1) :1+(20£+1)(01+,3+1)+0(n72)’
2n 2n

and the identity2n + o« + g+ 1)/(2n) = 1+ (@ + g+ 1)/(2n).
Hence, fomr > ¢, by using (1.3) we obtain
(iNmm(@n tatB DI ta+ DI tatft 1>>1/2_ 1)
V2 I'm+LHI'n+p+1)
x (ND)Y2Jy(Nt) = 0(n™?).
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Similarly, for 0 < nt < ¢, using (1.2) gives
<iN(a+1/2)((2n t+a+B8+DIn+a+H)I'n+a+ B+ 1)>1/2 B 1)
V2 Trn+LHI'(n+B+1)

Therefore, in the first step, (5.6) can be replaced by

O(In_l), en~1 <t<m-—¢g,

(@.8) () — 1/2
Gn - e O =00 J“(Nt)+|0(ta+1/2na—3/2), O<t<cnt,

In the second step, fort > ¢, by using the mean value theorem af@dds)Jy(s) =
0 (s~ Y2 for s large, we obtain
(NDY2(Jo (ND) = Jo(n1)) = O(1),
and, for O< nt < ¢, by using(d/ds) Jy(s) = O(s*~1) for s — 0, we obtain
(NOY2(Jo(ND) = Jy(n1)) = O+ 2012
This allows to change (5.7) into the form

o), cn_lftfrr—s,

(a,B8) — 1/2
On 0 = (NDT () + O@*t/2p2=1/2y  0<t<cnl.

Finally, the very lastV may be replaced by by writing (N2 — (n)¥/2 = n=1/2(NV/2 4
nY/2)=Y(N — n)(nr)*? and then using (1.2) and (1.3). This gives (4.6), the asymptotics we
used in Section 4.

6. Estimatesbased on explicit kernel formula. Inthe caser, y > —1/2, Schindler
[Sch] found an explicit integral kernel representation of the transplantation opé&trater
He o Hy 2 forany f € H, (C)

Tr() = /0 K, 9) f()dy + Cory (),
whereC,,, = co(«¢ — y)r/2) and, for O< y < x,
K(x,y)=

or 2)/2 2 y-at? ’
(a+y+2)/2) x~ 3D yy+1/2 g ety , yoof sy + 1L .
Ty + DI (@ —y)/2) 2 2

while, forx < y < oo,

K(x,y)=

2
2Ma+y +2/2) a1z -@+32) | 2F1<0l tyt2e-y+2 <x> ) .
Fla+ DI —a)/2) 2 2
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The above integral is understood in the principal value sense. Moreover, it was shown that
the singularity along the diagonal is of the following form: For the constagt =
4/(I((a =)/ (y —)/2)(y —a))

2

X 1
K(x,y):Da,ym-i—O —Iog

, x/2<y<ux,
x x2—y2> / Y

and
2

1
We use these results to furnish another proof of Corollary 1.4 in the restricted parameter range
a,y > -—1/2.
To show the bound

©.0) / / K, y) f()dy
0 0

forl < p <ocoand—p(a+1/2) — 1 < a < p(y +3/2) — 1, split the inner integration on
the left side of (6.1) onto the interval®, x/2), (x/2, 3x/2), (3x/2, o), and consider each
integral separately. On the first interval, using the assumptienp(y + 3/2) < —1 and
Hardy’s inequality (1.7) gives

00 x/2 P 00 x/2 P
/ ‘ f K(x,y)f()dy| xdx < C f ( f x(y+3/2>yy+l/2|f(y>|dy) xdx
0 0 0 0
00 x/2 p
<C / ( / Iy”l/zf(y)ldy) xITPr 2 gy
0 0

< c/ |/ (OIPx4dx.
0

Similarly, on(3x /2, c0), using the assumptian+ p(x + 1/2) > —1 and Hardy’s inequality
(1.8) shows

r

p o0
x%dx < C/ | f(x)|Px%dx
0

/3 K(x. y)f(5)dy

x /2

P 00 00 p
x%dx < C/ (/ xa+l/2y(a+3/2)|f(y)|dy> x%dx
0 3x/2
%) %) p
< C/ (/ |y—(a+3/2)f(y)|dy) xa+p(a+l/2)dx
0 3x/2

< c/ £ (OIPx4dx.
0

The integration over the intervdk /2, 3x/2) requires additional lemmas. We will use the
following local version of the Hardy-Littlewood maximal operator and the Hilbert transform.

Forx > 0, let
1 y
Mf(x)= sup ——— / Ol

x—yl<x/2Y — X
and

3x/2
H,f(x) = / Mdt.

x/2 X—1I
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The following is a version of Lemma (9.6) in [M1].

LEMMA 6.1. Letl < p < oco. Assume that the non-negative weight w(x) on (0, co)
satisfies

v 1/p v , 1/p
(6.2) (/ w(x)pdx> (/ wx)"? dx) <k(v—u)

for 0 < u < v < 8u with k independent of « and v (in particular, one can take w(x) = x?,
a € R). If T, iseither M, or H,, then

00 1/p 00 1/p
(/ ITof(x)w(x)I”dx) < C(/ If(x)w(x)l”dx>
0 0

with C depending only on k.

The proof of this lemma is a straightforward modification of Muckenhoupt’s argument
in [M1, p. 31]. We use the diadic decomposition (6f co) onto the union of the intervals
I, = (2"=3,2"), n € Z. Then we define a weight, (x) onR to be equalv(x) on I,, periodic
with period 21,,| and symmetric around = 2", and check that (6.2) holds with replaced
by w, andk by 2k for —oo < u < v < oo. Then we apply classicdl”-bounds for the
Hardy-Littlewood maximal operator and the Hilbert transform.

The next lemma is a version of Theorem (9.9) in [M1].

LEMMA 6.2. Assume that k(x, y) is a nonnegative kernel such that for any x > 0,
k(x, y) isnondecreasing for 0 < y < x and nonincreasing for x < y < oo, and

3x/2
/ k(x,y)dy <C
x/2

with C independent of x > 0. Then

3x/2
//2 k(x, MIfWldy = CM, f(x)

with the same constant C.

Using the asymptotics oK (x, y) along the diagonal, the identities/(x2 — y?) =
[1/(x + y) + 1/(x — »1/2, y/(x? — y?) = [1/(x — y) — 1/(x + y)]/2 combined with

Lemma 6.2 imply
3x/2 1 3x/2
5C</ ﬁ@dﬂ+—f )l
x X Jx/2
2

3x/2
/ K(x,y)f(y)dy
x /2 X—=Y
1 r* x2 3x/2 y
1 [ roieg a4 1 [ |ﬂmmm7—7@)
X Jx/2 X Jx ye—=x

/2

x2 - y2
=< C(Mof(x) + Hof(x)) .
Hence, by Lemma 6.1, the bound
o
J

3x/2 14 00
/ K(x,y)f(y)dy| x%dx < C/ | f(x)|Px%dx
X 0

/2




CONNECTIONS BETWEEN TRANSPLANTATIONS 493

follows. This finishes the proof of (6.1).
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