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ON CONNECTIONS BETWEEN HANKEL, LAGUERRE AND
JACOBI TRANSPLANTATIONS
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Abstract. Proved are two results showing connections between the Hankel transplanta-
tion and a transplantation for a certain kind of Laguerre and Jacobi expansions. An asymptotic
formula of Hilb’s type for Laguerre and Jacobi polynomials is used. As an application of this
link we obtain an extension of Guy’s transplantation theorem for the Hankel transform to the
caseα, γ > −1 also with more weights allowed. This is done by transferring a corresponding
transplantation result for Jacobi expansions which was proved by Muckenhoupt. In the case
whenα, γ ≥ −1/2 the same is obtained by using Schindler’s explicit kernel formula for the
transplantation operator.

1. Introduction and statement of results. Givenα > −1 and a suitable functionf
on (0,∞), its (non-modified) Hankel transform is defined by

Hαf (x) =
∫ ∞

0
(xy)1/2Jα(xy)f (y)dy , x > 0 .

HereJα(x) denotes the Bessel function of the first kind of orderα, [Sz, (1.71.1)]. The ker-
nelsϕαx (y) = (xy)1/2Jα(xy), x > 0, appearing in this integral transformation satisfy the
differential equation(

d2

dy2 + 1/4 − α2

y2

)
ϕαx (y) = −x2ϕαx (y) , y > 0 .

Guy [Guy] showed that the size of the Hankel transform of any suitable function, when mea-
sured in the (weighted)Lp-norm, remains the same whatever the order of the Hankel trans-
form is. More precisely, givenα, γ ≥ −1/2, 1< p < ∞ and−1 < a < p − 1, there is a
constantC = C(α, γ, p, a) such that for every appropriate functionf

C−1‖Hγ f ‖p,a ≤ ‖Hαf ‖p,a ≤ C‖Hγ f ‖p,a .
In another way, this can be expressed as

‖(Hα ◦ Hγ )f ‖p,a ≤ C‖f ‖p,a , f ∈ C∞
c (0,∞) ,
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C∞
c (0,∞) being the space of all compactly supportedC∞ functions on(0,∞). Here, for any
p, 1 ≤ p < ∞, and any real numbera,

‖g ‖p,a =
( ∫ ∞

0
|g (x)|pxadx

)1/p

andLp,a(dx) denotes the weighted Lebesgue space of all measurable functions on(0,∞) for
which the above quantity is finite. Fora = 0 we simplify the notation by writing‖g ‖p and
Lp(dx).

Another proof of Guy’s transplantation theorem (in the last formulation) was furnished
by Schindler [Sch]. She found an explicit expression of the kernel of the transplantation
operatorHα ◦ Hγ .

Guy’s result initiated a series of transplantation theorems for both continuous and dis-
crete orthogonal expansions. Recently, Kanjin [Ka2] proved a transplantation theorem for
Laguerre expansions. Givenα > −1, the Laguerre functionsLαn(x), n = 0,1,2, . . . , are
defined by

Lαn(x) =
(

n!
Γ (n+ α + 1)

)1/2

e−x/2 xα/2Lαn(x) ,

whereLαn(x) denotes the Laguerre polynomial of orderα, [Sz, p. 101]. This set of functions
is a complete orthonormal system inL2((0,∞), dx). Kanjin’s result says that ifα, γ ≥ 0 and
1< p < ∞, then there is a constantC = C(α, γ, p) such that for everyf in C∞

c (0,∞)

(1.1)

∥∥∥∥
∞∑
n=0

〈f,Lγn 〉Lαn
∥∥∥∥
p

≤ C‖f ‖p .

In the case when−1< τ = min(α, γ ) < 0, the above inequality holds in the restricted range
(1 + τ/2)−1 < p < −2/τ . Here and later on we write〈f, g 〉 = ∫ ∞

0 f (x)g (x)dx whenever
it makes sense.

Thangavelu [Th] gave a modification of Kanjin’s result by replacing the Lebesgue mea-
suredx by xp/4−1/2dx (under the assumptionτ ≥ −1/2). This means a transplantation for
another system of Laguerre functions

ψαn (x) = Lαn(x2)
√

2x =
(

2n!
Γ (n+ α + 1)

)1/2

e−x2/2 xα+1/2Lαn(x
2) ,

which is also a complete orthonormal system inL2((0,∞), dx). In several cases the system
{ψαn } is better suited for considerations than the system{Lαn}, since the functionsψαn satisfy
the Sturm-Liouville type differential equation(

d2

dy2 + 1/4 − α2

y2 − y2
)
ψαn (y) = −(4n+ 2α + 2)ψαn (y) , n ≥ 0 .

We remark that Thangavelu’s result may be regarded as a special case of a more general
weighted transplantation result proved in [ST]: (1.1) holds with‖ · ‖p,a replacing‖ · ‖p ,
−1< a < p − 1.
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In [St1] we proved a theorem relatingLp-multipliers for Laguerre expansions with those
for the Hankel transform. Then, in [St2], we supplemented this result by showing how to relate
Lp-norm maximal inequalities for Laguerre multipliers with those for the Hankel transform.
To be precise, in [St1–2] we considered the modified Hankel transform and a slightly different
system of Laguerre functions than that considered here. A close examination of the argument
we used reveals, however, that the aforementioned results have their weighted analogues in
the setting of{ψαn }-expansions and the (non-modified) Hankel transformHα (see remarks in
[St2, §3]).

In short, both results say the following: letα > −1, 1< p < ∞ anda ∈ R, and assume
thatm is a bounded function on(0,∞), which is continuous except on a set of Lebesgue
measure zero. Then, if lim infε→0+ ‖m(εn1/2)‖p,a is finite, then|m|p,a is also finite and

|m|p,a ≤ lim inf
ε→0+ ‖m(εn1/2)‖p,a .

Here|m|p,a and‖m(εn1/2)‖p,a denote the operator norms of multipliers (for the Hankel trans-
form Hα or for the{ψαn }-expansion) given by the functionm(x) or the sequencem(εn1/2),
considered on the weighted Lebesgue spaceLp,a(dx) (cf. [St2] for the precise definition of
these multipliers).

Next, letM̃∗
mf (x) = supε>0 |T̃εf (x)| be the maximal operator, wherẽTε is the Laguerre

multiplier operator associated with the sequence{m(εn1/2)} (for the {ψαn }-expansion), and
letM∗

mf (x) = supε>0 |Tεf (x)| be the maximal operator, whereTε is the Hankel multiplier
operator associated with the functionm(εy) (for the Hankel transformHα). Then, if M̃∗

m is
bounded onLp,a(dx), thenM∗

m is also bounded onLp,a(dx).
The main goal of this paper is to exhibit another connection between Laguerre (or Jacobi)

expansions and the Hankel transform, on the level of transplantation.

THEOREM 1.1. Let 1 < p < ∞, a ∈ R and α, γ > −1. If the Laguerre transplanta-
tion inequality

∥∥∥∥
∞∑
0

〈f,ψγn 〉ψαn
∥∥∥∥
p,a

≤ C‖f ‖p,a , f ∈ C∞
c (0,∞) ,

holds, then the Hankel transplantation inequality

‖(Hα ◦ Hγ )f ‖p,a ≤ C‖f ‖p,a , f ∈ C∞
c (0,∞) ,

is also satisfied (with the same constant C > 0).

As already mentioned, we will also analyse aconnection between Jacobi expansions and
the Hankel transform. Givenα andβ, α > −1,β > −1, consider the orthonormalized Jacobi
functions

φ(α,β)n (x) = t(α,β)n P (α,β)n (cosx)

(
sin

x

2

)α+1/2(
cos

x

2

)β+1/2

,
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whereP (α,β)n , n = 0,1, . . . , are Jacobi polynomials, [Sz, (4.22.1)], and

t(α,β)n =
[
(2n+ α + β + 1)Γ (n+ 1)Γ (n+ α + β + 1)

Γ (n+ α + 1)Γ (n+ β + 1)

]1/2

.

Note thatt(α,β)n = (2n)1/2 + O(n−1/2). This system of functions is a complete orthonormal
system inL2((0, π), dx). For anyp, 1 ≤ p < ∞, and any real numbersa andb, we will
consider the weighted Lebesgue spaceLp,a,b(dx) of those measurable functions on(0, π) for
which the norm

‖g ‖p,a,b =
(∫ π

0
|g (x)|p

(
sin

x

2

)a(
cos

x

2

)b
dx

)1/p

is finite.
Askey [A] proved the following transplantation theorem for Jacobi expansions. Assume

1 < p < ∞, α, β, γ, δ ≥ −1/2, −1 < a < p − 1, and−1 < b < p − 1. Then there is a
constantC > 0 such that for everyf in C∞

c (0, π)∥∥∥∥
∞∑
n=0

〈f, φ(γ,δ)n 〉φ(α,β)n

∥∥∥∥
p,a,b

≤ C‖f ‖p,a,b .

This result was then generalized by Muckenhoupt [M1] by admitting, among others,α, β, γ, δ
to be greater than−1 and considerably extending the range ofa’s andb’s. Our second result
is

THEOREM 1.2. Let 1 < p < ∞, a, b ∈ R and α, β, γ, δ > −1. If the Jacobi
transplantation inequality∥∥∥∥

∞∑
0

〈f, φ(γ,δ)n 〉φ(α,β)n

∥∥∥∥
p,a,b

≤ C‖f ‖p,a,b , f ∈ C∞
c (0, π) ,

holds, then the Hankel transplantation inequality

‖(Hα ◦ Hγ )f ‖p,a ≤ C‖f ‖p,a , f ∈ C∞
c (0,∞) ,

is also satisfied (with the same constant C > 0).

This connection between Jacobi expansions and the Hankel transform, exhibited again
on the level of transplantation, has its ancessors on the levels of multipliers and maximal
multiplier operators. Historically, it was the case of Jacobi expansions where the first connec-
tion with the Hankel transform was found. Igari [I] proved de Leeuw’s type theorem linking
Jacobi and Hankel multipliers, and then Kanjin [Ka1] proved a theorem that transferredLp-
norm maximal multiplier inequalities from Jacobi to Hankel side. Actually, both of our earlier
papers, [St1] and [St2], were motivated by the results of Igari and Kanjin (needless to say,
Igari’s paper motivates the present paper, too). To be precise, the results of Igari and Kanjin
were proved in the setting of modified Hankel transform and Jacobi polynomial expansions,
but they have their (weighted) analogues in the setting we prefer: the (non-modified) Hankel
transformHα and{φ(α,β)n } Jacobi function expansions.
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The following is a simplified version of a much more general Muckenhoupt’s transplan-
tation result [M1, Theorem (1.6)].

PROPOSITION 1.3. If 1< p < ∞, 0< r < 1, α > −1, γ > −1,−p(α+1/2)−1<
a < p(γ + 3/2)− 1 and f ∈ Lp,a,0(dx), then

Trf (x) =
∞∑
n=0

rn〈f, φ(γ,−1/2)
n 〉φ(α,−1/2)

n (x)

converges for every x ∈ (0, π),
‖Trf ‖p,a,0 ≤ C‖f ‖p,a,0 ,

with C independent of f and r, and there is a function Tf (x) in Lp,a,0 such that Trf con-
verges to Tf in Lp,a,0 as r → 1− (in consequence, ‖Tf ‖p,a,0 ≤ C‖f ‖p,a,0).

Using Theorem 1.2, we generalize Guy’s result by transferring Muckenhoupt’s trans-
plantation theorem for the Jacobi expansions to the Hankel transform setting. Besides the fact
that the range of parametersα andγ is now enlarged to(−1,∞), the range of weights is also
considerably extended.

COROLLARY 1.4. Let 1 < p < ∞, α, γ > −1 and −p(α + 1/2) − 1 < a <

p(γ + 3/2)− 1. Then

‖(Hα ◦ Hγ )f ‖p,a ≤ C‖f ‖p,a , f ∈ C∞
c (0,∞) .

PROOF. Let f ∈ C∞
c (0, π) and Trf (x), Tf (x) be as in Proposition 1.3. Then

‖Tf ‖p,a,0 ≤ C‖f ‖p,a,0 with C independent off . The series

∞∑
n=0

〈f, φ(γ,−1/2)
n 〉φ(α,−1/2)

n (x)

converges for everyx ∈ (0, π) by Lemma 2.2. Therefore

lim
r→1− Trf (x) =

∞∑
n=0

〈f, φ(γ,−1/2)
n 〉φ(α,−1/2)

n (x)

for everyx ∈ (0, π). By choosing a sequencer1 < r2 < . . . , rj → 1−, such thatTf (x) =
limj→∞ Trj f (x) for almost everyx ∈ (0, π), we then get

Tf (x) =
∞∑
n=0

〈f, φ(γ,−1/2)
n 〉φ(α,−1/2)

n (x)

for almost everyx ∈ (0, π) and∥∥∥∥
∞∑
0

〈f, φ(γ,−1/2)
n 〉φ(α,−1/2)

n

∥∥∥∥
p,a,0

≤ C‖f ‖p,a,0 .

Corollary 1.4 then follows by using Theorem 1.2.
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It should be noted that in the case when the two parametersα andβ differ by an even
positive integer, only one side of the inequality restrictinga in Corollary 1.4 is needed for the
Hankel transplantation inequality to hold. Indeed, ifα = γ + 2k, k = 1,2, . . . , then

‖(Hγ+2k ◦ Hγ )f ‖p,a ≤ C‖f ‖p,a , f ∈ Lp,a(dx) ,
easily follows for 1≤ p < ∞ anda < p(γ + 3/2)− 1, by using a simple explicit integral
kernel form of the operatorHγ+2k ◦ Hγ . Considering only the casek = 1, we have

Hγ+2f (x) = 2(γ + 1)

x

∫ x

0

(
y

x

)γ+1/2

Hγ f (y)dy − Hγ f (x) .

This follows from recursion formulas for the Bessel functions. Therefore, we only need to
show the boundedness of the operator

T g (x) = 1

x

∫ x

0

(
y

x

)γ+1/2

g (y)dy

onLp,a(dx), 1 ≤ p < ∞, a < p(γ + 3/2)− 1. This leads to the inequality∫ ∞

0

∣∣∣∣
∫ x

0
h(y)dy

∣∣∣∣
p

xa−p(γ+3/2)dx ≤ Cp,a

∫ ∞

0
|h(x)|pxa−p(γ+1/2)dx ,

that follows from Hardy’s inequality (1.7), sincea − p(γ + 3/2) < −1. Also, in the case
whenγ = α + 2k, k = 1,2, . . . , the Hankel transplantation inequality

‖(Hα ◦ Hα+2k)f ‖p,a ≤ C‖f ‖p,a
easily follows for 1≤ p < ∞ and−p(α + 1/2)− 1< a, by using the formula

Hαf (x) =
∫ ∞

x

( k−1∑
j=0

cj
1

y

(
x

y

)2j+α+1/2)
Hα+2kf (y)dy + (−1)kHα+2kf (x) .

Indeed, what we need is to check the boundedness of the integral operators

Tjg (x) =
∫ ∞

x

1

y

(
x

y

)2j+α+1/2

g (y)dy ,

j = 0,1, . . . , k − 1, onLp,a(dx), 1 ≤ p < ∞, a > −p(α + 1/2) − 1. This leads to the
inequalities∫ ∞

0

∣∣∣∣
∫ ∞

x

h(y)dy

∣∣∣∣
p

xa+p(2j+α+1/2)dx ≤ Cp,a,j

∫ ∞

0
|h(x)|pxa+p(2j+α+3/2)dx ,

j = 0,1, . . . , k − 1, that follow from Hardy’s inequality (1.8), sincea + p(α + 1/2) > −1.
We will frequently use the bounds

(1.2) Jα(t) = O(tα) , t → 0+ ,

and

(1.3) Jα(t) = O(t−1/2) , t → ∞ .



CONNECTIONS BETWEEN TRANSPLANTATIONS 477

A more precise description of behaviour of the Bessel functionJα(t) at infinity is given by
the asymptotic

(1.4)
√
tJα(t) = √

2/π

(
cos(t + aα)+ bα

sin(t + cα)

t
+O(t−2)

)
, t → ∞ .

The functions defined by those series in Theorem 1.1 and Theorem 1.2 are understood
as pointwise sums of the series (they are everywhere convergent, cf. Lemma 2.2). A bit
of comment is, perhaps, necessary on the question why(Hα ◦ Hγ )f is well-defined for
f ∈ C∞

c (0,∞). If α ≥ −1/2, then a natural assumption to make the integral defining
Hαg (x) convergent is to assumeg to be Lebesgue integrable (the kernelsϕαx (y), x > 0, are
(uniformly) bounded on 0< y < ∞). Assumeα, γ > −1 andf ∈ C∞

c (0,∞). Then,
Hγ f (y) is a continuous function of 0< y < ∞ and, by using (1.2),

(1.5) Hγ f (y) = O(yγ+1/2) , y → 0+ .

Moreover, by using (1.4),

(1.6) Hγ f (y) = O(y−2) , y → ∞ ,

(using higher order asymptotics, better than (1.4), allows to getHγ f (y) = O(y−k) with
arbitrarily largek). Note that (1.5) and (1.6) ensureHγ f (y) to be integrable, and hence,
for α ≥ −1/2, Hα(Hγ f )(x), 0 < x < ∞, makes sense. In the general case,α, γ > −1,
(1.5) and (1.6) show that the functiony → (xy)1/2Jα(xy)Hγ f (y) is integrable and again the
integral definingHα(Hγ f )(x), 0< x < ∞, makes sense.

Finally, we recall the following two forms of Hardy’s inequality:
if a < −1 and 1≤ p < ∞, then

(1.7)
∫ ∞

0

∣∣∣∣
∫ x

0
f (t)dt

∣∣∣∣
p

xadx ≤ C

∫ ∞

0
|f (x)|pxa+pdx ;

if a > −1 and 1≤ p < ∞, then

(1.8)
∫ ∞

0

∣∣∣∣
∫ ∞

x

f (t)dt

∣∣∣∣
p

xadx ≤ C

∫ ∞

0
|f (x)|pxa+pdx .

Acknowledgment. The author is highly indebted to the referee for very careful reading
of the manuscript. His precise comments and remarks greatly helped the author to improve
the presentation.

2. Preliminaries. This section contains five lemmas and their proofs; the lemmas
will be used in the proofs of Theorems 1.1 and 1.2.

LEMMA 2.1. Let γ, δ > −1 and f ∈ C∞
c (0, π) or f ∈ C∞

c (0,∞). Then

(2.1) 〈f, φ(γ,δ)n 〉 = −(n(n+ γ + δ + 1))−1/2〈F, φ(γ+1,δ+1)
n−1 〉 ,

where F = f ′ +f ·ω, ω(x) = −Bγ cot(x/2)+Bδ tan(x/2) and Bγ = γ /2+1/4. Similarly,

(2.2) 〈f,ψγn 〉 = − 1

2n1/2〈F,ψγ+1
n−1 〉 ,
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where F = f ′ + f · ωγ and ωγ (x) = x − (γ + 1/2)/x.

PROOF. (2.1) is proved by applying the differential identity, [Sz, (4.9.1)],

d

dx

[
P
(γ+1,δ+1)
n−1 (cosx)

(
sin

x

2

)2γ+2(
cos

x

2

)2δ+2]

= nP
(γ,δ)
n (cosx)

(
sin

x

2

)2γ+1(
cos

x

2

)2δ+1

.

Indeed, integration by parts gives (we denotewa,b(x) = (sin(x/2))a(cos(x/2))b)

〈f, φ(γ,δ)n 〉 = t
(γ ,δ)
n

∫ π

0
f (x)P

(γ,δ)
n (cosx)wγ+1/2,δ+1/2(x)dx

= t
(γ ,δ)
n

n

∫ π

0

f (x)

wγ+1/2,δ+1/2(x)
· nP (γ,δ)n (cosx)w2γ+1,2δ+1(x)dx

= − t
(γ ,δ)
n

n

∫ π

0

(
f (x)

wγ+1/2,δ+1/2(x)

)′
P
(γ+1,δ+1)
n−1 (cosx)w2γ+2,2δ+2(x)dx

= − t
(γ ,δ)
n

nt
(γ+1,δ+1)
n−1

∫ π

0
F(x)φ

(γ+1,δ+1)
n−1 (x)dx ,

which is (2.1). Similarly, by applying the differential identity

d

dx
(L
γ+1
n−1(x

2) e−x2
x2(γ+1)) = 2nLγn (x

2)e−x2
x2γ+1 ,

which is easily verified by using well-known differential properties of Laguerre polynomials,
we get withA(n, γ ) = (

2n!/Γ (n+ γ + 1)
)1/2

〈f,ψγn 〉 = A(n, γ )

∫ ∞

0
f (x)e−x2/2L

γ
n (x

2)xγ+1/2dx

= A(n, γ )
1

2n

∫ ∞

0
f (x)ex

2/2x−(γ+1/2) · 2nLγn (x
2)e−x2

x2γ+1dx

= −A(n, γ )
2n

∫ ∞

0
(f (x)ex

2/2x−(γ+1/2))′ · Lγ+1
n−1(x

2)e−x2
x2(γ+1)dx

= − A(n, γ )

A(n− 1, γ + 1)
· 1

2n

∫ ∞

0
F(x)ψ

γ+1
n−1 (x)dx ,

which gives (2.2).

LEMMA 2.2. Let α, β, γ, δ > −1 and f ∈ C∞
c (0, π) (or f ∈ C∞

c (0,∞)). Then the
series

(2.3)
∞∑
0

〈f, φ(γ,δ)n 〉φ(α,β)n (y) ,

(
or

∞∑
0

〈f,ψγn 〉ψαn (y)
)

converges absolutely for every given y, 0< y < π (or 0< y < ∞).
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PROOF. We have (cf. [M1, (2.8)]) for arbitrarily fixed positive constantc

|φ(α,β)n (x)| ≤ C



(nx)α+1/2 , 0< x ≤ cn−1 ,

1 , cn−1 ≤ x ≤ π − cn−1 ,

(n(π − x))β+1/2 , π − cn−1 < x < π ,

(2.4)

with C > 0 independent ofn = 1,2, . . . (it follows that for α, β ≥ −1/2 the sequence
{φ(α,β)n }∞n=0 is uniformly bounded). Letk be an arbitrary positive integer. Using (2.1)k times,
we get

〈f, φ(γ,δ)n 〉 = O(n−k)〈Fk, φ(γ+k,δ+k)
n−k 〉 ,

whereFk is aC∞ function compactly supported in(0, π). Hence, by Schwarz’s inequality,
〈f, φ(γ,δ)n 〉 = O(n−k), n → ∞. By takingk = 2, the absolute convergence of the first series
in (2.3) is now clear, since, giveny, 0 < y < π , we have|φ(α,β)n (y)| ≤ C for sufficiently
largen. Similarly, for the system{ψαn }∞n=0 we have

|ψαn (x)| ≤ C



xα+1/2nα/2 , 0< x < n−1/2/2 ,

n−1/12 , n−1/2/2 ≤ x ≤ 2n−1/2 ,

exp(−τx) , 2n−1/2 ≤ x < ∞ ,

(2.5)

for a τ > 0 with C independent ofn = 1,2, . . . (it follows that forα ≥ −1/2 the sequence
{ψαn }∞n=0 is uniformly bounded; more precisely,‖ψαn ‖∞ = O(n−1/12)). This estimate is
easily implied by [M2, (2.5)]; moreover, the first interval in (2.5) can be taken as 0< x <

cn−1/2 with arbitrarily fixedc > 0, cf. [Sz, (7.6.8)]. The argument for the convergence of
the second series in (2.3) is now analogous to that just given (we use (2.2) as an equivalent of
(2.1)).

LEMMA 2.3. Let α, β, γ, δ > −1, 1 ≤ p < ∞, f ∈ C∞
c (0, π) (or f ∈ C∞

c (0,∞))

and −p(α+1/2)−1< a,−p(β+1/2)−1< b (or −p(α+1/2)−1< a). Then the series
∞∑
0

〈f, φ(γ,δ)n 〉φ(α,β)n ,

(
or

∞∑
0

〈f,ψγn 〉ψαn
)

converges in Lp,a,b(dx) (or Lp(dx)) to the limit given by the pointwise convergent series in
(2.3).

PROOF. It follows from (2.4) that‖φ(α,β)n ‖p,a,b = O(nA) with a constantA. On

the other hand,〈f, φ(γ,δ)n 〉 = O(n−k), n → ∞, for arbitrarily largek. Hence the sum∑∞
n=0 |〈f, φ(γ,δ)n 〉|·‖φ(α,β)n ‖p,a,b is finite and this gives the convergence inLp,a,b. Choosing a

subsequence, converging almost everywhere, of the sequence of the partial sums of the series∑∞
0 〈f, φ(γ,δ)n 〉φ(α,β)n , we may identify the sum of this series with the sum of the pointwise

convergent series in (2.3) (in particular, the sum of the series in (2.3) is inLp,a,b(dx)). The
argument for the Laguerre series is analogous and uses (2.5).

LEMMA 2.4. Let α, β, γ, δ > −1 and f ∈ C∞
c (0,∞). Let fλ(x) = f (λx), λ > 0,

and, in the Jacobi case, consider λ so large that the support of fλ is contained in (0, π).
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Given N = 1,2, . . . andK > 0, there is a constant C = CN,K such that for 0< x < K and
large λ

∣∣∣∣
N[λ]∑

0

〈fλ, φ(γ,δ)n 〉φ(α,β)n

(
x

λ

)∣∣∣∣ ≤ Cxα+1/2 ,

∣∣∣∣
N[λ2]∑

0

〈fλ,ψγn 〉ψαn
(
x

λ

)∣∣∣∣ ≤ Cxα+1/2 .

PROOF. We consider only the case of Laguerre expansions (the argument for the Jacobi
expansions is analogous). We have

〈fλ,ψγn 〉 = 1

λ

∫ ∞

0
f (u)ψ

γ
n (u/λ)du .

If f is supported in(m,M), 0 < m < M < ∞, then foru ≤ M, x ≤ K andn ≤ N[λ2],
we haveu/λ ≤ cn−1/2 andx/λ ≤ cn−1/2 with c = max{M,K}N1/2. Hence, by (2.5) (cf. a
remark following (2.5)),

|〈fλ,ψγn 〉| ≤ Cλ−γ−3/2nγ/2

and ∣∣∣∣ψαn
(
x

λ

)∣∣∣∣ ≤ Cxα+1/2λ−α−1/2nα/2 .

Therefore,

∣∣∣∣
N[λ2]∑

0

〈fλ,ψγn 〉ψαn
(
x

λ

)∣∣∣∣ ≤ Cxα+1/2λ−(α+γ+2)
N[λ2]∑

0

n(α+γ )/2

≤ Cxα+1/2 .

LEMMA 2.5. Let α, β, γ, δ > −1 and f ∈ C∞
c (0,∞). Let fλ(x) = f (λx), λ > 0,

and consider λ so large that the support of fλ is contained in (0, π). GivenN = 1,2, . . . and
0< r < s < ∞, there is a constant C = CN,r,s such that for r < x < s and large λ

(2.6)

∣∣∣∣
∞∑

N[λ]+1

〈fλ, φ(γ,δ)n 〉φ(α,β)n

(
x

λ

)∣∣∣∣ ≤ C .

PROOF. Considerλ so large thats/λ < π/2. If n ≥ N[λ] + 1 andr < x < s, then
cn−1 < x/λ < π/2, wherec = rN . Hence, by (2.4),|φ(α,β)n (x/λ)| ≤ C and, by using (2.1)
twice,

〈fλ, φ(γ,δ)n 〉 = O(n−2)〈Gλ, φ(γ+2,δ+2)
n−2 〉 ,

whereGλ(x) = λ2f ′′(λx)+ 2λf ′(λx)ω(x)+ f (λx)ω′(x)+ f (λx)ω(x)2 = G1
λ(x)+ · · · +

G4
λ(x). We have, assuming again thatf is supported in(m,M),

|〈G1
λ, φ

(γ+2,δ+2)
n−2 〉| ≤ C‖G1

λ‖1‖φ(γ+2,δ+2)
n−2 ‖∞ ≤ Cλ

∫ M

m

|f ′′(u)|du ≤ Cλ .
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Similarly, for i = 2,3,4, by using the bounds

ω(x) ≤ C

(
1

x
+ 1

π − x

)
, ω′(x) ≤ C

(
1

x2 + 1

(π − x)2

)
, ω(x)2 ≤ C

(
1

x2 + 1

(π − x)2

)
,

we obtain|〈Giλ, φ(γ+2,δ+2)
n−2 〉| ≤ Cλ for i = 2,3,4. Therefore, the left side of (2.6) is bounded

by

C

4∑
i=1

∞∑
n=N[λ]+1

1

n2 |〈Giλ, φ(γ+2,δ+2)
n−2 〉| ≤ Cλ

∞∑
n=N[λ]+1

1

n2 ≤ CN−1 .

3. Proof of Theorem 1.1. Choose any functionf in C∞
c (0,∞) and assume its sup-

port is contained in the interval(m,M), 0< m < M < ∞. Let fλ(x) = f (λx), λ > 0. By
the assumption, we have ∥∥∥∥

∞∑
0

〈fλ,ψγn 〉ψαn
∥∥∥∥
p,a

≤ C‖fλ‖p,a .

Sinceλ(a+1)/p‖fλ‖p,a = ‖f ‖p,a, by multiplying the above inequality byλ(a+1)/p, we obtain
‖Fλ‖p,a ≤ C‖f ‖p,a, where we denote

Fλ(x) =
∞∑
0

〈fλ,ψγn 〉ψαn
(
x

λ

)
.

By using Parseval’s identity, we also easily obtain‖Fλ‖2 = ‖f ‖2. Hence, we can choose a
sequenceλ1 < λ2 < · · · , λj → ∞, such thatFλj is weakly convergent inLp,a(dx) to anF in

Lp,a(dx), and is also weakly convergent inL2(dx) to anF̃ in L2(dx). In fact,F(x) = F̃ (x)

a. e. since, by the weak convergence in bothL2 andLp,a, 〈F, χ(r,s)〉 = 〈F̃ , χ(r,s)〉 for every
interval (r, s), 0 < r < s < ∞. Clearly, ‖F‖p,a ≤ C‖f ‖p,a . To finish the proof of
Theorem 1.1, we shall show that

(3.1) F (x) = (Hα ◦ Hγ )f (x)

for almost everyx in (0,∞).
GivenN , N = 1,2, . . . , separating the series

∑∞
0 〈fλ,ψγn 〉ψαn (x/λ) at the pointN[λ2],

we write

GN(x, λ) =
N[λ2]∑
n=0

〈fλ,ψγn 〉ψαn
(
x

λ

)
, HN(x, λ) =

∞∑
n=N[λ2]+1

〈fλ,ψγn 〉ψαn
(
x

λ

)
.

We claim that, repeating a fairly general functional analysis argument from [I], in order to
prove (3.1) it is sufficient to establish the following: For every fixedN = 1,2, . . . andx > 0

(3.2) lim
λ→∞

N[λ2]∑
n=0

〈fλ,ψγn 〉ψαn
(
x

λ

)
=

∫ 2
√
N

0

√
xuJα(xu)Hγ f (u)du
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and

(3.3)
∫ ∞

0
|HN(u, λ)|2du = O(N−1)

uniformly in λ → ∞.
For the sake of completeness we now recall Igari’s argument. Using (3.3) and the diago-

nal method of choice, we choose a subsequence of{λj } (call it again{λj }) such that for every
N = 1,2, . . . , HN(·, λj ) converges weakly inL2(dx), say to anHN , HN ∈ L2(dx). Again
by (3.3) we have‖HN‖2 = O(N−1/2). SinceFλj → F andHN(·, λj ) → HN weakly in
L2(dx),GN(·, λj ) = Fλj −HN(·, λj ) converges weakly inL2, say to aGN ,GN ∈ L2(dx).
Therefore

F = GN +HN , N = 1,2, . . . .

By using‖HN‖2 = O(N−1/2), from the sequence{HN } we choose a subsequence{HN(k)}
such thatHN(k)(x) → 0 a. e. ask → ∞. Therefore,F(x) = limk→∞GN(k)(x) a. e. and for
everyN(k), k = 1,2, . . . , we have:GN(k)(·, λj ) → GN(k) weakly inL2(dx) asj → ∞
and, by (3.2),GN(k)(x, λj ) converges for everyx asj → ∞, to

Bk(x) =
∫ 2

√
N(k)

0

√
xuJα(xu)Hγ f (u)du .

The dominated convergence theorem is now used (this is possible by Lemma 2.4) to show that
〈GN(k), χ(r,s)〉 = 〈Bk, χ(r,s)〉 for every 0< r < s < ∞. This givesGN(k)(x) = Bk(x) a. e. It
is now clear thatF(x) = limk→∞ Bk(x) = (Hα ◦ Hγ )(x) a. e.

To prove (3.2) we will use Hilb’s asymptotic formula, [Sz, Theorem 8.22.4], written in
the form (cf. comments in Section 5)

ψαn (t) = √
2t Jα(2n1/2t)+


O(tn

−3/4) , cn−1/2 ≤ t ≤ ω ,

O(tα+1/2nα/2−1) , 0< t < cn−1/2 .
(3.4)

Hereα > −1 andC andω are arbitrarily fixed positive constants. In the caseα = 0, the last
bound is to be replaced byO(tα+1/2nα/2−1) + O(t4(1 + | log(t−2n−1)|)). We remark that
in the caseα, γ > −1/2, the analysis is slightly easier, since Hilb’s formula then takes the
simpler form (5.5). In what follows, the case when at least one of the parametersα, γ is zero
requires separate argument; we will not discuss it here.

Fix N = 1,2, . . . andx > 0. Since the first summand ofGN(x, λ) (corresponding to
n = 0) tends to zero asλ → 0, we drop it below. If 0< n ≤ N[λ2] and 0< y < M, then
y/λ ≤ cn−1/2 with c = MN−1/2. Hence, using the last line of (3.4) gives for 0< n ≤ N[λ2]
and largeλ

〈fλ,ψγn 〉 = 1

λ

∫ M

0
f (y)

[√
2y

λ
Jγ

(
2n1/2y

λ

)
+O

((
y

λ

)γ+1/2

nγ/2−1
)]
dy

= 1

n1/4λ
Hγ f

((
4n

λ2

)1/2)
+O(λ−γ−3/2nγ/2−1)

(3.5)
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and

(3.6) ψαn

(
x

λ

)
= 1

n1/4

((
4n

λ2

)1/2

x

)1/2

Jα

((
4n

λ2

)1/2

x

)
+O(λ−α−1/2nα/2−1) .

Summing the terms that come from the product of the main parts of (3.5) and (3.6), we obtain

N[λ2]∑
n=1

((
4n

λ2

)1/2

x

)1/2

Jα

((
4n

λ2

)1/2

x

)
· Hγ f

((
4n

λ2

)1/2)
· 1

n1/2λ

= 1

2

N[λ2]∑
n=1

((
4n

λ2

)1/2

x

)1/2

Jα

((
4n

λ2

)1/2

x

)
· Hγ f

((
4n

λ2

)1/2)
·
(

4n

λ2

)−1/2

· 4

λ2 ,

and this, whenλ → ∞, approaches

1

2

∫ 4N

0

√
t1/2xJα(t

1/2x)Hγ f (t
1/2)t−1/2dt ,

which, after a change of variable, becomes the right side of (3.2).
It remains to check that the sum of products of any other combinations of summands in

(3.5) and (3.6) iso(1) asλ → ∞. We first take remainders in both (3.5) and (3.6). Their
combination gives a sum which is bounded by (here and for the next cases we choose 0<

η < 1 such that(α + γ )/2 + 1 − η > 0; in places where we can do it, we use the estimate∑A
1 n

τ = O(Aτ+1), τ > −1)

C

N[λ2]∑
n=1

λ−(α+γ )−2n(α+γ )/2−2 ≤ C

λ2η

N[λ2]∑
n=1

(
n

λ2

)(α+γ )/2+1−η
· 1

n3−η ≤ CNλ
−2η .

We now consider combinations of a main part and a remainder. Taking the main part in (3.6)
and the remainder in (3.5) and using (1.2) give the bound

C

N[λ2]∑
n=1

((
4n

λ2

)1/2

x

)1/2∣∣∣∣Jα
((

4n

λ2

)1/2

x

)∣∣∣∣ · λ−γ−3/2nγ/2−5/4

≤ C

N[λ2]∑
n=1

λ−(α+γ )−2n(α+γ )/2−1

≤ C
1

λ2η

N[λ2]∑
n=1

(
n

λ2

)(α+γ )/2+1−η 1

n2−η

≤ CNλ
−2η .

Taking the main part in (3.5) and the remainder in (3.6) and using (1.5) give the bound

C

N[λ2]∑
n=1

∣∣∣∣Hγ f

((
4n

λ2

)1/2)∣∣∣∣ · λ−α−3/2nα/2−1−1/4 ≤ C

N[λ2]∑
n=1

λ−(α+γ )−2n(α+γ )/2−1 ,

and this type of sum has been just treated. All possible sums occured to beo(1) asλ → ∞.
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To prove (3.3), we use (2.2) to get

〈fλ,ψγn 〉 = − 1

2n1/2〈Fλ,ψγ+1
n−1 〉 ,

whereFλ(x) = λf ′(λx) + f (λx)(x − (γ + 1/2)/x). Next, Lemma 2.3 forp = 2 and
Parseval’s identity give

∫ ∞

0
|HN(u, λ)|2du = λ

∫ ∞

0

∣∣∣∣
∞∑

N[λ2]+1

〈fλ,ψγn 〉ψαn (u)
∣∣∣∣
2

du

= λ

∞∑
N[λ2]+1

|〈fλ,ψγn 〉|2

= λ

∞∑
N[λ2]+1

1

4n
|〈Fλ,ψγ+1

n−1 〉|2

≤ C
1

λN

∞∑
0

|〈Fλ,ψγ+1
n−1 〉|2

= C

N

∫ ∞

0

∣∣∣∣λuf ′(λu)+ f (λu)u2 − (γ + 1/2)f (λu)

λu

∣∣∣∣
2

λdu

= C

N

∫ ∞

0

∣∣∣∣yf ′(y)+ f (y)y2/λ2 − (γ + 1/2)f (y)

y

∣∣∣∣
2

dy .

This finishes the proof of (3.3). The proof of Theorem 1.1 is now complete.

4. Proof of Theorem 1.2. Letf, fλ be as in the proof of Theorem 1.1. From now on,
we assumeλ to be sufficiently large, so large that the support offλ is contained in(0, π). By
the assumption ∥∥∥∥

∞∑
0

〈fλ, φ(γ,δ)n 〉φ(α,β)n

∥∥∥∥
p,a,b

≤ C‖fλ‖p,a,b .

Multiplying the above by 2a/pλ(a+1)/p and changing variable give

( ∫ λπ

0

∣∣∣∣
∞∑
0

〈fλ, φ(γ,δ)n 〉φ(α,β)n

(
y

λ

)∣∣∣∣
p

va,b,λ(y)y
ady

)1/p

≤ C

( ∫ M

0
|f (y)|pva,b,λ(y)yady

)1/p

,

(4.1)

where we denote

va,b,λ(y) =
((

sin
y

2λ

)/
(y/2λ)

)a(
cos

y

2λ

)b
.



CONNECTIONS BETWEEN TRANSPLANTATIONS 485

If p = 2 anda = b = 0, then we have∥∥∥∥
∞∑
0

〈fλ, φ(γ,δ)n 〉φ(α,β)n

∥∥∥∥
2

= ‖fλ‖2 ,

‖ · ‖2 denoting theL2-norm inL2((0, π), dx), which gives( ∫ λπ

0

∣∣∣∣
∞∑
0

〈fλ, φ(γ,δ)n 〉φ(α,β)n

(
y

λ

)∣∣∣∣
2

dy

)1/2

=
( ∫ M

0
|f (y)|2dy

)1/2

.

Let

Fλ(y) =
∞∑
0

〈fλ, φ(γ,δ)n 〉φ(α,β)n

(
y

λ

)

and F̃λ(y) = Fλ(y)va,b,λ(y)
1/p when 0< y < λπ , andF̃λ(y) = Fλ(y) = 0 otherwise.

Choose a sequenceλ1 < λ2 < . . . , λj → ∞, such thatFλj is weakly convergent inL2(dy).
LetF be its weak limit. To complete the proof of Theorem 1.2, we shall show that

(4.2) ‖F‖p,a ≤ C‖f ‖p,a
and

(4.3) F (y) = (Hα ◦ Hγ )(y)

for almost everyy, 0< y < ∞. Choose anyε > 0. For sufficiently largeλj and 0< y < M,
we haveva,b,λ(y) ≤ (1 + ε)p. Hence, from (4.1),

‖F̃λj ‖p,a ≤ C(1 + ε)‖f ‖p,a .
Therefore, from the sequence{λj } we can choose a subsequence (call it again{λj }) such that
F̃λj is weakly convergent inLp,a . Let F̃ be its weak limit. Clearly,‖F̃‖p,a ≤ C(1+ε)‖f ‖p,a ,
and arbitrariness ofε gives‖F̃‖p,a ≤ C‖f ‖p,a . To finish the proof of (4.2), it is now sufficient
to note thatF̃ (y) = F(y) a. e., and this is implied by〈F̃ , χ(r,s)〉 = 〈F, χ(r,s)〉 for every
0< r < s < ∞. The last identity is proved by using the fact that

lim
j→∞〈F̃λj , χ(r,s)〉 = lim

j→∞〈Fλj , χ(r,s)〉 ,
which is a consequence of Lemma 2.4, Lemma 2.5 and the dominated convergence theorem.
The rest of the argument will concern the proof of (4.3).

GivenN , N = 1,2, . . . , we now separate the series
∑∞

0 〈fλ, φ(γ,δ)n 〉φ(α,β)n (x/λ) at the
pointN[λ], and write

GN(x, λ) =
N[λ]∑
n=0

〈fλ, φ(γ,δ)n 〉φ(α,β)n

(
x

λ

)

and

HN(x, λ) =
∞∑

n=N[λ]+1

〈fλ, φ(γ,δ)n 〉φ(α,β)n

(
x

λ

)
.
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As in the proof of Theorem 1.1 it is now sufficient to show that

(4.4) lim
λ→∞GN(x, λ) =

∫ N

0

√
xuJα(xu)Hγ f (u)du

for every fixedN = 1,2, . . . andx > 0, and

(4.5)
∫ π

0
|HN(u, λ)|2du = O(N−2)

uniformly in λ → ∞.
To prove (4.4) we will use Hilb’s asymptotic formula, [Sz, Theorem 8.21.12], written in

the form (cf. comments in Section 5)

φ(α,β)n (t) = (nt)1/2Jα(nt)+

O(t) , cn−1 ≤ t ≤ π − ε ,

O(tα+1/2nα−1/2) , 0< t < cn−1 ,
(4.6)

wherec andε < π are arbitrarily fixed positive constants.
Fix N = 1,2, . . . and 0< x < K, whereK is given and large. Neglectingn = 0 (for

the same reasons as explained in the proof of Theorem 1.1) and using the second line in (4.6)
give, for 0< n ≤ N[λ],

〈fλ, φ(γ,δ)n 〉 =1

λ

∫ M

0
f (y)

[(
n
y

λ

)1/2

Jγ

(
n
y

λ

)
+O

((
y

λ

)γ+1/2

nγ−1/2
)]
dy

=1

λ
Hγ f

(
n

λ

)
+O(λ−γ−3/2nγ−1/2)

(4.7)

and

(4.8) φ(α,β)n

(
x

λ

)
=

(
n
x

λ

)1/2

Jα

(
n
x

λ

)
+O(λ−α−1/2nα−1/2) .

Summing the terms that come from the product of the main parts of (4.7) and (4.8), we obtain
N[λ]∑
n=1

(
x
n

λ

)1/2

Jα

(
x
n

λ

)
Hγ f

(
n

λ

)
· 1

λ
,

and this, whenλ → ∞, approaches the right side of (4.4). We now claim that summing any
other products of summands in (4.7) and (4.8) gives a quantity that approaches zero when
λ → ∞. We start with considering the remainders in (4.7) and (4.8). We take 0< η < 2
such thatα + γ + 2 − η > 0. Then, for the relevant sum, we have the bound

C

N[λ]∑
n=1

λ−(α+γ )−2nα+γ−1 ≤ C
1

λη

N[λ]∑
n=1

(
n

λ

)α+γ+2−η 1

n3−η ≤ CNλ
−η .

We now consider sums that occur by taking a main part and a remainder. Taking the
main part in (4.7) and the remainder in (4.8) gives a sum which is bounded by (again we use
anη such that 0< η < 2 andα + γ + 2 − η > 0)

C

N[λ]∑
n=1

∣∣∣∣Hγ f

(
n

λ

)∣∣∣∣λ−α−3/2nα−1/2 = C

λη

N[λ]∑
n=1

(
n

λ

)α+γ+2−η 1

n2−η ≤ CNλ
−η .
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Taking the main part in (4.8) and the remainder in (4.7) leads to a similar estimate. This
finishes the proof of (3.2).

To prove (4.5) we use (2.1) to get

〈fλ, φ(γ,δ)n 〉 = −(n(n+ γ + δ + 1))−1/2〈Fλ, φ(γ+1,δ+1)
n−1 〉 ,

whereFλ(x) = λf ′(λx) + f (λx)(−Bγ cot(x/2)+ Bδ tan(x/2)), Bγ = γ /2 + 1/4. Conse-
quently, by Parseval’s identity,∫ π

0
|HN(u, λ)|2du = λ

∫ π

0

∣∣∣∣
∞∑

N[λ]+1

〈fλ, φ(γ,δ)n 〉φ(γ,δ)n (u)

∣∣∣∣
2

du

= λ

∞∑
N[λ]+1

|〈fλ, φ(γ,δ)n 〉|2

≤ λ

n2

∞∑
N[λ]+1

|〈Fλ, φ(γ+1,δ+1)
n−1 〉|2

≤ C

λN2

∞∑
0

|〈Fλ, φ(γ+1,δ+1)
n−1 〉|2

= C

N2

∫ π

0

∣∣∣∣f ′(λu)− 1

λ
Bγ f (λu) cot

u

2
+ 1

λ
Bδf (λu) tan

u

2

∣∣∣∣
2

λdu

= C

N2

∫ ∞

0

∣∣∣∣f ′(y)− 1

λ
Bγ f (y) cot

y

2λ
+ 1

λ
Bδf (y) tan

y

2λ

∣∣∣∣
2

dy .

This finishes the proof of (4.5) and hence the proof of Theorem 1.2.

5. Asymptotic formulas of Hilb’s type. Hilb’s asymptotic formula for Laguerre
polynomials, as stated in Szegö’s monograph [Sz, 8.22.4], is

e−t2/2 tα Lαn(t2) =N−α/2Γ (n+ α + 1)

n! Jα(2N1/2t)

+

O(t

5/2nα/2−3/4) , cn−1/2 ≤ t ≤ ω ,

O(tα+4nα) , 0< t < cn−1/2 .

(5.1)

Hereα > −1,N = n+ (α+ 1)/2, c andω are arbitrarily fixed positive constants. In the case
α = 0, the last bound is to be replaced byO(t4(1 + | log(t2n)|)).

Rewriting (5.1) gives

ψαn (t) =N−α/2
(
Γ (n+ α + 1)

n!
)1/2√

2t Jα(2N1/2t)

+

O(t

3n−3/4) , cn−1/2 ≤ t ≤ ω ,

O(tα+9/2nα/2) , 0< t < cn−1/2 .

(5.2)

In the caseα = 0, the last bound is to be replaced byO(t9/2(1 + | log(t2n)|)).
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We have ∣∣∣∣N−α/2
(
Γ (n+ α + 1)

Γ (n+ 1)

)1/2

− 1

∣∣∣∣ ≤ Cn−2 .

This easily follows by using

(5.3)
Γ (n+ α + 1)

nαΓ (n+ 1)
= 1 + α(α + 1)

2n
+O(n−2) ,

cf. [Le, p. 15] (note that the above also givesΓ (n+ α + 1)/Γ (n+ 1) ∼ nα), and(
1 + α + 1

2n

)α
= 1 + α(α + 1)

2n
+O(n−2) .

Hence, forn1/2t ≥ c, by using (1.3) we obtain(
N−α/2

(
Γ (n+ α + 1)

Γ (n+ 1)

)1/2

− 1

)√
2tJα(2N1/2t) = O(n−2t1/2(n1/2t)−1/2)

= O(n−9/4) .

Similarly, for 0< n1/2t ≤ c, by using (1.2) we get(
N−α/2

(
Γ (n+ α + 1)

Γ (n+ 1)

)1/2

− 1

)√
2tJα(2N1/2t) = O(n−2t1/2(n1/2t)α)

= O(tα+1/2nα/2−2) .

Therefore, (5.2) becomes

ψαn (t) =√
2t Jα(2N

1/2t)+

O(t

3n−3/4) , cn−1/2 ≤ t ≤ ω ,

O(tα+1/2nα/2−2) , 0< t < cn−1/2 .
(5.4)

(Note that O(n−9/4) is absorbed byO(t3n−3/4) while O(tα+9/2nα/2) is included in
O(tα+1/2nα/2−2)). In the caseα = 0, the last bound is to be replaced byO(t9/2(1 +
| log(t2n)|)) (the process of changingN−α/2(Γ (n + α + 1)/n!)1/2 onto 1 does not concern
the caseα = 0).

In the second step, forn1/2t ≥ c, by using the mean value theorem and(d/ds)Jα(s) =
O(s−1/2) for s large, we obtain

√
2t(Jα(2N1/2t)− Jα(2n1/2t)) = O(t1/2 · tn−1/2 · (n1/2t)−1/2)

= O(tn−3/4) ,

and, for 0< n1/2t ≤ c, by using(d/ds)Jα(s) = O(sα−1) for s → 0+, we obtain
√

2t(Jα(2N1/2t)− Jα(2n1/2t)) = O(t1/2 · tn−1/2 · (n1/2t)α−1)

= O(tα+1/2nα/2−1) .

In conclusion, we now change (5.4) into the form (note thatO(tα+1/2nα/2−2) is better
thanO(tα+1/2nα/2−1),O(t3n−3/4) is absorbed byO(tn−3/4) whileO(t9/2(1 + | log(t2n)|))
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is included inO(t1/2n−1))

ψαn (t) = √
2t Jα(2n

1/2t)+

O(tn

−3/4) , cn−1/2 ≤ t ≤ ω ,

O(tα+1/2nα/2−1) , 0< t < cn−1/2 .

This is (3.4), the asymptotics we used in Section 3. Ifα ≥ −1/2, then the above asymptotics
simplifies to

(5.5) ψαn (t) = √
2tJα(2n1/2t)+O(n−3/4)

with theO-bound uniform in 0≤ t ≤ ω, for any givenω > 0.
Hilb’s asymptotic formula for Jacobi polynomials, as stated in Szegö’s monograph [Sz,

8.21.17], is(
sin

t

2

)α(
cos

t

2

)β
P (α,β)n (cost) = N−α Γ (n+ α + 1)

n!
(

t

sint

)1/2

Jα(Nt)

+
{
O(t1/2n−3/2) , cn−1 ≤ t ≤ π − ε ,

O(tα+2nα) , 0< t < cn−1 .

Hereα > −1, β is any real number,N = n + (α + β + 1)/2, c > 0, and 0< ε < π are
arbitrarily fixed constants. Rewriting the above gives

φ(α,β)n (t) =N
−(α+1/2)

√
2

(
(2n+ α + β + 1)Γ (n+ α + 1)Γ (n+ α + β + 1)

Γ (n+ 1)Γ (n+ β + 1)

)1/2

× (Nt)1/2Jα(Nt) +

O(tn

−1) , cn−1 ≤ t ≤ π − ε ,

O(tα+5/2nα+1/2) , 0< t < cn−1 .

(5.6)

We have∣∣∣∣ 1√
2
N−(α+1/2)

(
(2n+ α + β + 1)Γ (n+ α + 1)Γ (n+ α + β + 1)

Γ (n+ 1)Γ (n+ β + 1)

)1/2

− 1

∣∣∣∣ ≤ Cn−2 .

As in the case of a similar estimate in the beginning of this section, the above inequality is
easily checked by using the asymptotics: (5.3),

Γ (n+ α + β + 1)

nαΓ (n+ β + 1)
= 1 + α(α + 2β + 1)

2n
+O(n−2) ,

(
1 + α + β + 1

2n

)2α+1

= 1 + (2α + 1)(α + β + 1)

2n
+O(n−2) ,

and the identity(2n+ α + β + 1)/(2n) = 1 + (α + β + 1)/(2n).
Hence, fornt ≥ c, by using (1.3) we obtain(

1√
2
N−(α+1/2)

(
(2n+ α + β + 1)Γ (n+ α + 1)Γ (n+ α + β + 1)

Γ (n+ 1)Γ (n+ β + 1)

)1/2

− 1

)
× (Nt)1/2Jα(Nt) = O(n−2) .
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Similarly, for 0< nt ≤ c, using (1.2) gives(
1√
2
N−(α+1/2)

(
(2n+ α + β + 1)Γ (n+ α + 1)Γ (n+ α + β + 1)

Γ (n+ 1)Γ (n+ β + 1)

)1/2

− 1

)
× (Nt)1/2Jα(Nt) = O(tα+1/2nα−3/2) .

Therefore, in the first step, (5.6) can be replaced by

φ(α,β)n (t) = (Nt)1/2Jα(Nt) +

O(tn

−1) , cn−1 ≤ t ≤ π − ε ,

O(tα+1/2nα−3/2) , 0< t < cn−1 .
(5.7)

In the second step, fornt ≥ c, by using the mean value theorem and(d/ds)Jα(s) =
O(s−1/2) for s large, we obtain

(Nt)1/2(Jα(Nt)− Jα(nt)) = O(t) ,

and, for 0< nt ≤ c, by using(d/ds)Jα(s) = O(sα−1) for s → 0+, we obtain

(Nt)1/2(Jα(Nt)− Jα(nt)) = O(tα+1/2nα−1/2) .

This allows to change (5.7) into the form

φ(α,β)n (t) = (Nt)1/2Jα(nt)+

O(t) , cn−1 ≤ t ≤ π − ε ,

O(tα+1/2nα−1/2) , 0< t < cn−1 .

Finally, the very lastN may be replaced byn by writing (Nt)1/2 − (nt)1/2 = n−1/2(N1/2 +
n1/2)−1(N − n)(nt)1/2 and then using (1.2) and (1.3). This gives (4.6), the asymptotics we
used in Section 4.

6. Estimates based on explicit kernel formula. In the caseα, γ ≥ −1/2, Schindler
[Sch] found an explicit integral kernel representation of the transplantation operatorT =
Hα ◦ Hγ : for anyf ∈ Hγ (C

∞
c )

Tf (x) =
∫ ∞

0
K(x, y)f (y)dy + Cα,γ f (x) ,

whereCα,γ = cos((α − γ )π/2) and, for 0< y < x,

K(x, y) =
2Γ ((α + γ + 2)/2)

Γ (γ + 1)Γ ((α − γ )/2)
x−(γ+3/2)yγ+1/2 · 2F1

(
α + γ + 2

2
,
γ − α + 2

2
; γ + 1;

(
y

x

)2)

while, forx < y < ∞,

K(x, y) =
2Γ ((α + γ + 2)/2)

Γ (α + 1)Γ ((γ − α)/2)
xα+1/2y−(α+3/2) · 2F1

(
α + γ + 2

2
,
α − γ + 2

2
; α + 1;

(
x

y

)2)
.
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The above integral is understood in the principal value sense. Moreover, it was shown that
the singularity along the diagonal is of the following form: For the constantDα,γ =
4/(Γ ((α − γ )/2)Γ ((γ − α)/2)(γ − α))

K(x, y) = Dα,γ
x

x2 − y2 +O

(
1

x
log

x2

x2 − y2

)
, x/2 ≤ y < x ,

and

K(x, y) = Dγ,α
y

y2 − x2 +O

(
1

y
log

y2

y2 − x2

)
, x < y ≤ 2x .

We use these results to furnish another proof of Corollary 1.4 in the restricted parameter range
α, γ ≥ −1/2.

To show the bound

(6.1)
∫ ∞

0

∣∣∣∣
∫ ∞

0
K(x, y)f (y)dy

∣∣∣∣
p

xadx ≤ C

∫ ∞

0
|f (x)|pxadx

for 1 < p < ∞ and−p(α + 1/2)− 1 < a < p(γ + 3/2)− 1, split the inner integration on
the left side of (6.1) onto the intervals(0, x/2), (x/2,3x/2), (3x/2,∞), and consider each
integral separately. On the first interval, using the assumptiona − p(γ + 3/2) < −1 and
Hardy’s inequality (1.7) gives∫ ∞

0

∣∣∣∣
∫ x/2

0
K(x, y)f (y)dy

∣∣∣∣
p

xadx ≤ C

∫ ∞

0

(∫ x/2

0
x−(γ+3/2)yγ+1/2|f (y)|dy

)p
xadx

≤ C

∫ ∞

0

(∫ x/2

0
|yγ+1/2f (y)|dy

)p
xa−p(γ+3/2)dx

≤ C

∫ ∞

0
|f (x)|pxadx.

Similarly, on(3x/2,∞), using the assumptiona + p(α + 1/2) > −1 and Hardy’s inequality
(1.8) shows∫ ∞

0

∣∣∣∣
∫ ∞

3x/2
K(x, y)f (y)dy

∣∣∣∣
p

xadx ≤ C

∫ ∞

0

(∫ ∞

3x/2
xα+1/2y−(α+3/2)|f (y)|dy

)p
xadx

≤ C

∫ ∞

0

(∫ ∞

3x/2
|y−(α+3/2)f (y)|dy

)p
xa+p(α+1/2)dx

≤ C

∫ ∞

0
|f (x)|pxadx.

The integration over the interval(x/2,3x/2) requires additional lemmas. We will use the
following local version of the Hardy-Littlewood maximal operator and the Hilbert transform.
Forx > 0, let

Mof (x) = sup
|x−y|≤x/2

1

y − x

∫ y

x

|f (t)|dt
and

Hof (x) =
∫ 3x/2

x/2

f (t)

x − t
dt .
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The following is a version of Lemma (9.6) in [M1].

LEMMA 6.1. Let 1 < p < ∞. Assume that the non-negative weight w(x) on (0,∞)

satisfies

(6.2)

( ∫ v

u

w(x)pdx

)1/p( ∫ v

u

w(x)−p′
dx

)1/p′

≤ k(v − u)

for 0 < u < v < 8u with k independent of u and v (in particular, one can take w(x) = xa,

a ∈ R). If To is eitherMo or Ho, then( ∫ ∞

0
|Tof (x)w(x)|pdx

)1/p

≤ C

( ∫ ∞

0
|f (x)w(x)|pdx

)1/p

with C depending only on k.

The proof of this lemma is a straightforward modification of Muckenhoupt’s argument
in [M1, p. 31]. We use the diadic decomposition of(0,∞) onto the union of the intervals
In = (2n−3,2n), n ∈ Z. Then we define a weightwn(x) onR to be equalw(x) onIn, periodic
with period 2|In| and symmetric aroundx = 2n, and check that (6.2) holds withw replaced
by wn andk by 2k for −∞ < u < v < ∞. Then we apply classicalLp-bounds for the
Hardy-Littlewood maximal operator and the Hilbert transform.

The next lemma is a version of Theorem (9.9) in [M1].

LEMMA 6.2. Assume that k(x, y) is a nonnegative kernel such that for any x > 0,
k(x, y) is nondecreasing for 0< y < x and nonincreasing for x < y < ∞, and∫ 3x/2

x/2
k(x, y)dy ≤ C

with C independent of x > 0. Then∫ 3x/2

x/2
k(x, y)|f (y)|dy ≤ CMof (x)

with the same constant C.

Using the asymptotics ofK(x, y) along the diagonal, the identitiesx/(x2 − y2) =
[1/(x + y) + 1/(x − y)]/2, y/(x2 − y2) = [1/(x − y) − 1/(x + y)]/2 combined with
Lemma 6.2 imply∣∣∣∣
∫ 3x/2

x/2
K(x, y)f (y)dy

∣∣∣∣ ≤ C

(∣∣∣∣
∫ 3x/2

x/2

f (y)

x − y
dy

∣∣∣∣ + 1

x

∫ 3x/2

x/2
|f (y)|dy

+ 1

x

∫ x

x/2
|f (y)| log

x2

x2 − y2
dy + 1

x

∫ 3x/2

x

|f (y)| log
y2

y2 − x2
dy

)
≤ C

(
Mof (x)+Hof (x)

)
.

Hence, by Lemma 6.1, the bound∫ ∞

0

∣∣∣∣
∫ 3x/2

x/2
K(x, y)f (y)dy

∣∣∣∣
p

xadx ≤ C

∫ ∞

0
|f (x)|pxadx
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follows. This finishes the proof of (6.1).
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