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Abstract. Germs of holomorphic vector fields at the origin 0∈ C 2 and polynomial
vector fields onC 2 are studied. Our aim is to classify these vector fields whose orbits have
bounded geometry in a certain sense. Namely, we consider the following situations: (i) the
volume of orbits is an integrable function, (ii) the orbits have sub-exponential growth, (iii)
the total curvature of orbits is finite. In each case we classify these vector fields under some
generic hypothesis on singularities. Applications to questions, concerning polynomial vector
fields having closed orbits and complete polynomial vector fields, are given. We also give
some applications to the classical theory of compact foliations.

1. Introduction. Let M̄ be a manifold with a foliationF . We equipM̄ with a Rie-
mannian metricds2, and for each leafL ⊂ M̄ consider the isometric immersion given by
the inclusion. It has been shown by several authors that for nonsingular real foliations their
global behavior is often related to the geometric properties of isometrically embedded leaves
([12], [13], [28], [29]). In many cases, this global behavior depends on finiteness conditions
on the geometry of leaves. In this paper we are concerned with similar problems for complex
(possibly) singular foliations, defined for instance by a (singular) holomorphic vector field on
a manifold ([20]).

The following theorems are main results proved in this paper.

THEOREM 1. LetX be a germ of holomorphic vector field in an open neighborhoodU
of the origin 0 ∈ C2. Assume that the Euclidean volume function of X is integrable and that
the total volume of the orbits accumulating to the origin is finite. Then F has a holomorphic
first integral.

For the definition of the volume function of a vector fieldX, see Section 3.

THEOREM 2. Let X be a polynomial vector field in C2. Assume that the Fubini-Study
volume function of X is integrable in C2 and that the singularities of the corresponding pro-
jective foliation F(X) of CP(2) in L∞ are of rational type. Then F(X) admits a rational first
integral.
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For the notion ofrational type singularity, see Section 2. Theorems 1 and 2 are related
to the main result of [1], which is in a local nature.

Given a polynomial vector fieldX in C2 there is an induced foliationF = F(X) on the
complex projective planeCP(2) = C2 ∪ L∞ ([20]). Denote by singF ⊂ CP(2) the singular
set ofF . Note that theline at the infinity L∞ ∼= CP(1) must have some singularity ofF
([20]).

THEOREM 3. Let F be a foliation by curves on CP(2) whose singularities in L∞ are
of rational type. If the leaves of F |C 2 are closed in C2 \ singF , then F admits a rational first
integral.

The above result is analogous to the theorem of Mattei-Moussu for germs of foliations
([22]). For the next theorem we need the notion of growth of leaves introduced in [28].

THEOREM 4. Let F be a foliation on CP(2), whose singularities on CP(2) are hy-
perbolic and whose leaves have sub-exponential growth, for some C∞ metric g on CP(2)
which is Hermitian along the leaves. Then F is linear of the form ẋ = x, ẏ = λy, λ ∈ C \ R,
with respect to some affine coordinates (x, y) ∈ C2 ⊂ CP(2). In particular, the limit set of
F is a union of singularities and algebraic leaves.

Theorem 4 gives rise to, from the standpoint of Plante ([28]), a variant of Poincaré-
Bendixson type theorem for polynomial vector fields.

THEOREM 5. Let X be a polynomial vector field in C2, whose corresponding projec-
tive foliation F(X) has only hyperbolic singularities in CP(2). Assume that the orbits of X
have finite total curvature for the isometric immersion given by the inclusion. ThenX is linear
X = λx(∂/∂x)+ µy(∂/∂y) , λ/µ ∈ C \ R, in some affine chart.

Theorem 5 concerns a question related tominimal immersions in Euclidean spaces (see
Osserman [27]).

In the last section of the paper we considercompact foliations (that is, foliations on
compact manifolds by compact leaves), and study the basic questions in a classical framework.

It should be remarked that our global approach is based on the study of the holonomy
groups associated to some algebraic invariant curve onCP(2), to which we extend the foli-
ation induced by any polynomial vector field onC2. This algebraic curve may be the line
at the infinityL∞ = CP(2) \ C2, or some other algebraic leaf which exists depending on
the context. These holonomy groups are proved to be finite, abelian linearizable or solvable
affine groups depending on the situation we deal with, as a consequence of our hypothesis
of bounded geometry. Then the classification of these foliations is obtained by applying the
main results in [5], [8], [31] and [33].

Although the results stated above have geometric interpretations, our approach stems
from complex dynamics and geometric theory of foliations. It is interesting to exploit such
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machinery in further investigation of geometric questions such as (i) the existence of excep-
tional minimal sets for holomorphic foliations inCP(2) ([6]), (ii) polynomial vector fields
with simply connected orbits inCn ([11]), and others.

I would like to thank the referee of the original manuscript for the careful reading and
suggestions, which helped improve the final form of this paper. The first part of this work was
conceived during my visit to the IMCA-Peru. I wish to thank my hosts for their hospitality.

2. Preliminaries. In this section we introduce basic notation and relevant facts from
complex dynamics for later use. We refer to [22], [31] and [33] for further specific informa-
tion.

2.1. Groups with finite orbits ([22]). Let Diff(C,0) denote the group of germs of
holomorphic diffeomorphisms at the origin 0∈ C. We denote byC∗ = C \ {0}. For each
k ∈ N we define the group

Hk =
{
ϕ ∈ Diff (C,0); ϕ(z)k = µϕz

k

1 + aϕzk
, µϕ ∈ C∗, aϕ ∈ C

}
.

ThenHk is a solvable group and, up to formal conjugacy, any solvable nonabelian subgroupG

of Diff (C,0) is of this type ([21]) (a result by Cerveau-Moussu). If this conjugacy is analytic,
then the group is calledanalytically normalizable (see [9], [33] for the general notion of
analytic normalizable group). This analytic normalization can be carried out except for some
special cases where the group of commutator[G,G] is cyclic ([21]). Such non-analytically
normalizable groups are calledexceptional. The following is a generalization of a result in
[22].

LEMMA 1. Let G ⊂ Diff (C,0) be a finitely generated subgroup such that for almost
every pointp (with respect to the Euclidean Lebesgue measure) in a neighborhoodΩ of 0 ∈ C
the pseudo-orbit of p is finite. ThenG is finite and analytically conjugate to a cyclic group of
rational rotations.

PROOF. First we observe that by Nakai density theorem ([26]) the groupG must be
solvable. On the other hand, ifG is nonabelian, then we may take an elementg ∈ G of
the formg (z) = z + ak+1z

k+1 + h.o.t., ak+1 �= 0. According to [3] the pseudo-orbits of
this element are not finite. ThusG must be abelian and cannot contain elements of the form
g (z) = z+ ak+1z

k+1 + h.o.t., g �= Id.

CLAIM 1. Any element g ∈ G has finite order.

Indeed, assume that there existsg ∈ G with g n �= Id for anyn ∈ Z − {0}. We may
assume thatg (z) = λ · z + h.o.t. , λn �= 1 for anyn ∈ Z − {0}. If |λ| �= 1, then by Poincaré
linearization theorem we may linearizeg or g −1 as an attractor so that none of its pseudo-
orbits is finite. Thus|λ| = 1 and we haveλ = exp(2π

√−1α) for someα ∈ R \ Q. This
implies that the pseudo-orbits ofg are not finite, which is a contradiction and proves the claim.

SinceG is abelian and finitely generated, the claim implies thatG itself is finite. Ac-
cording to [22],G must be a group of rational rotations up to analytic conjugacy. �
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2.2. Singularities in dimension two ([22], [20]). Given a foliationF of dimension one
on a complex surfacēM with singular set singF , the reduction theorem of Seidenberg ([35])
(see [10] for a version in dimension three) asserts the existence of a proper holomorphic map
π : M̃ → M̄ which is a finite composition of quadratic blowing-up’s at the singular points of
F in M̄ such that the pull-back foliatioñF := π∗F of F by π satisfies:

(a) singF̃ ⊂ π−1(singF), and
(b) any singularityp̃ ∈ singF̃ belongs to one of the following categories (these are

calledirreducible singularities):
(i) xdy − λydx + h.o.t. = 0 andλ is not a positive rational number, i.e.,λ /∈ Q+

(simple singularity),
(ii) yp+1dx − [x(1+ λyp)+ h.o.t.] dy = 0,p ≥ 1. This case is called asaddle-node.

We callF̃ thedesingularization or reduction of singularities of F .

DEFINITION 1. A singularity of type (i) is calledresonant if λ is negative rational
number, i.e.,λ ∈ Q− ([23]). An isolated singularity ofF is called ageneralized curve if the
desingularizationF̃ of F admits no saddle-node singularities.

The exceptional divisor D = π−1(singF) ⊂ M̃ of the resolutionπ can be written
asD = ⋃m

j=1Dj , where eachDj is diffeomorphic to an embedded projective lineCP(1)
introduced as a divisor of the successive blowing-up’s.Dj are calledcomponents of the
divisorD. A singularityq ∈ singF is nondicritical if π−1(q) is invariant byF̃ . Any twoDi
andDj , i �= j , intersect (transversely) at at most one point, which is called acorner. There
are no triple intersection points.

Given any analytic curveΓ ⊂ M̄ we denote byΓ̃ := π−1(Γ \ singF) ⊂ M̃ the strict
transform of Γ . Let nowp be a singularity of a germ of foliation admitting a germ of smooth
separatrixS. A linear chain atp (with respect toS) is a sequence of blowing-up’s constructed
in the following way: Letπ1 be a blowing-up atp andP1 = π−1

1 (p). If p1 = π∗(S) ∩ P1 is
reduced (whereπ∗(S) denotes the strict transform ofS underπ1), then the linear chain atp1

is π1. If p1 is not reduced, then we consider another blowing-upπ2 atp1, and if necessary,
successive blowing-up’s at the corners, until all of them are reduced. Thelinear chain at p
consists of the compositionπr ◦ · · · ◦ π1 of all these blowing-up’s (see [7], [25] for further
information).

A dicritical singularityq ∈ singF ∩ S (whereS is as above) will be calledordinary
dicritical (with respect toS) if only one component ofπ−1(q) is noninvariant and appears in
the first linear chain ofq (with respect toS).

We will mainly consider nondicritical singularities. However we do admit dicritical sin-
gularities of the following type:

DEFINITION 2 (rational singularity [25]). LetF be a foliation onCP(2). Given a
smooth algebraic curveΛ ⊂ CP(2) we say that the singularities ofF in Λ are ofrational
type if:
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(i) eitherΛ is not invariant byF , or the complement of the resolution divisorD of
singF ∩Λ is pseudo-convex (see [9] for sufficient conditions for pseudo-convexity).

(ii) the singularities singF ∩Λ are generalized curves (see Definition 1 above) and one
of the following conditions is satisfied:

(ii.1) singF ∩Λ has a nondicritical singularity.
(ii.2) singF ∩Λ = {q} andq is ordinary dicritical (with respect toΛ).
(ii.3) singF ∩ Λ contains at leastn + 1 ordinary dicritical singularities, wheren ≥ 0

is the self-intersection number ofΛ ⊂ CP(2).

Conditions (ii.2) and (ii.3) are assumed when all singularities inΛ are dicritical. If
Λ = L∞, the conditions above exclude the case where singF ∩Λ consists of more than two
dicritical singularities but only one of them is ordinary dicritical. One of the main results in
[25] is the following

THEOREM 6. Let F be a singular holomorphic foliation by curves on a complex sur-
face M, S ⊂ M an invariant analytic (irreducible) compact curve. Then the foliation F has
some separatrix transverse to S provided that one of the following conditions is satisfied:

(i) Some singularity p ∈ singF ∩ S is a non-dicritical generalized curve.
(ii) S is smooth with negative self-intersection number and each p ∈ singF ∩ S is a

generalized curve.
(iii) S is smooth with self-intersection number n ≥ 0, each p ∈ singF ∩ S is a gener-

alized curve, and at least n+ 1 of them are ordinary dicritical.
In particular, if F admits a meromorphic first integral ξ : M \ S → C̄, then ξ extends to

a meromorphic first integral on M provided that one of the conditions above is satisfied.

We apply this result in the proof of Theorem 2 as well as Proposition 4 to find some sep-
aratrix transverse toL∞ in CP(2) or to extend some meromorphic first integral to a rational
function.

Examples of ordinary dicritical singularities include singularities admitting a local mero-
morphic first integral of the formxn/ym. Note that singularities admitting holomorphic first
integrals are always nondicritical ([22]).

2.3. Adjunction of holonomy groups ([33]). We consider the following situation mo-
tivated by the above reduction theorem:F̃ is a foliation on a compact complex surfacẽM,
andD ⊂ M̃ is a compact (codimension one) invariant divisor with normal crossing and no
triple points. We writeD = ⋃m

j=1Dj , where eachDj is an irreducible smooth component,

and fix local transverse sectionsSj such thatSj ∩Dj = pj /∈ singF̃ , and(Sj , pj ) ∼= (C,0).
Denote byGj theholonomy group Hol(F̃ ,Dj,Sj ) of Dj (we refer to [22] for the definition
and properties of the holonomy group). Denote byL̃z the leaf ofF̃ that contains the point
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z ∈ M̃. Thevirtual holonomy group Ĝj of F̃ relative to the componentDj at the sectionSj
is defined to be ([5])

Ĝj = Ĥol(F̃,Dj ,Sj ) = {f ∈ Diff (Sj , pj )
∣∣L̃z = L̃f (z), for any z ∈ (Sj , pj )} .

Clearly, this virtual holonomy group̂Gj contains the holonomy groupGj . Now we fix
a cornerq = Di ∩Dj , and make the following assumption:

ASSUMPTION 1. The virtual holonomy group̂Gi is solvable and the group̂Gj is fi-
nite.

Thus, in the nonabelian case we haveĜi ⊂ Hki for some formal embedding. We now de-
fine theGi toGj , which is, roughly speaking, a consequence of passing one holonomy group
to the other adjacent transverse section, by using theDulac correspondence, as follows (see
also [9], [11] and [33] for more details and the original construction): Choose a neighborhood
U of q, whereF̃ can be written in thenormal form. In U , we take small transverse sections
Σi,Σj ⊂ U to F̃ such thatΣi ∩Di = qi andΣj ∩Dj = qj . Denote byF(Σi) the collection
of subsetsE ⊂ Σi such thatE is contained in some leaf of̃F ∣∣

U
. DefineF(Σj ) in a similar

way. The Dulac correspondence is a multivalued correspondenceDq : F(Σi) → F(Σj ),
which is obtained by tracing the local leaves ofF̃ ∣∣

U
. Given anyx ∈ Σi the set of intersec-

tions of the local leaf ofF̃ ∣∣
U

that containsx, with the transverse sectionΣi , is denoted by

L̃x ∩ Σi ∈ F(Σi). The correspondenceDq associates to any pointz ∈ L̃x ∩ Σi , a subset
Dq(z) ⊂ L̃x ∩Σj ∈ F(Σj ), that is defined by the local normal form ofF̃ in U .

Given an elementh ∈ Hol(F̃ ,Di,Σi), we associateh with a collection of elements
{hD} ⊂ Diff (Σj , qj ), each of which satisfies the following relation

hD ◦ Dq = Dq ◦ h ,
called theadjunction equation. Remark that the adjunction equation is not exactly an equa-
tion but an equality of sets or correspondences. More precisely, given any elementh ∈
Hol(F̃ ,Di,Σi), each diffeomorphismhD ∈ Diff (Σj , qj ) must satisfy, for everyx ∈ Σi , the
equality of setshD(Dq (x)) = Dq(h(x)), whereDq(x) ⊂ L̃x ∩Σi andDq(h(x)) ⊂ L̃x ∩Σj
are subsets as above. This adjunction is adequately defined for the special case of singularities
{q} = Di ∩Dj we consider below.

Up to a conjugacy induced by a simple path inDi \singF̃ joining pi to qi, we can
assume thatGi = Hol(F̃ ,Di,Σi) andGj = Hol(F̃ ,Dj ,Σj ). Therefore, the adjunction
equation induces a subgroupGj ∗ (Dq∗Gi) ⊂ Diff (Sj , pj ) which is generated byGj and all
elementshDq , h ∈ Gi . This subgroup is unique up to above conjugacies. We observe that
the subgroupGj ∗ (Dq∗Gi) is not necessarily finitely generated.

For our purpose we may assume the following:

ASSUMPTION 2. The cornerq is a singularity with a holomorphic first integral.

Therefore there are local holomorphic coordinates(x, y) ∈ U such thatDi ∩ U = {x =
0},Dj ∩ U = {y = 0}, and such that̃F ∣∣

U
is given in thenormal form asnxdy +mydx = 0
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andq : x = y = 0, wheren/m ∈ Q+ and〈n,m〉 = 1. We fix the local transverse sections
asΣj = {x = 1} andΣi = {y = 1}, such thatΣi ∩ Di = qi �= q andΣj ∩ Dj = qj �=
q. Denote byho ∈ Hol(F̃ ,Di,Σi) the element corresponding to the cornerq. Then we
haveho(x) = exp(−2

√−1πn/m)x. The local leaves are given byxmyn =cte. The Dulac
correspondence is therefore given by (all branches are considered)

Dq : F(Σi) → F(Σj ) , Dq(x) = {xm/n} .
Case 1. Gi is abelian: Take any elementh ∈ Gi . SinceGi is abelian, we haveh(x) =

µxh̃(xm) for someh̃ ∈ O1, h̃(0) = 1. We takeµ1 = µm/n andh1 = h̃m/n to be one
of then-roots ofµm and h̃m, respectively. Then we definehDq : (Σj , qj ) → (Σj , qj ) by
hDq (y) = µ1yh1(y

n). We consider the collection{hD} of all these elements.
Case 2. Gi ⊂ Hki is nonabelian, analytically normalizable andnki/m = kj ∈ N: In

this case we have an analytic embeddingGi ⊂ Hki . Take an element

h(x) = λx/(1 + axki )1/ki ∈ Gi ,
and consider the collection{hD} of all branches of

hDq : y �→ λm/ny/(1 + aynki/m)m/nki .

Case 3. Gi is solvable, nonabelian and not analytically normalizable: In this case it
follows from [21] that the group of commutators[Gi,Gi ] is cyclic, that is,[Gi,Gi ] = 〈h1〉
for someh1 ∈ Gi andGi is generated by some power or root of local holonomy mapho

(associated to the singularityq = Di ∩ Dj ) and some powerhl1, l ∈ Z. Notice that if
n = m = 1, then the local leaves are given byxy =cte and we haveDq(x) = {xn/m} = {x}.
Thus, in this case,Dq is a mapDq : Σi → Σj . Given anyh ∈ Gi , we may therefore define
hDq ∈ Ĝj ashDq (y) = h(y) in the coordinates defined above. Hence we may assumen �= m.

First, consider the case where the virtual holonomy groupĜj is abelian. Then all el-
ements ofĜj commute with the local holonomyg o aroundq, associated to the separatrix
contained inDj . Therefore, using the same construction as in Case 1 above, we may con-
sider the adjunction of̂Gj to the holonomy groupGi , as a subgroup of the virtual holonomy
groupĜi . If Ĝj contains some elementg of infinite order, then we have two possibilities to
consider:

(3.a) g has nonperiodic linear part. In this case,g induces an elementh in the ad-
junction holonomy and therefore in the virtual holonomyh ∈ Ĝi , which also has nonperiodic
linear part. This implies that̂Gi (which is solvable by hypothesis) is analytically normalizable
[21]. Therefore we may exclude this case.

(3.b) Every elementg in Ĝj has periodic linear part. In this case, we may find some
nontrivial elementg ∈ Ĝj , which is tangent to the identityg (y) = y + ayl+1 + h.o.t.,a �= 0.
Then,g induces an elementh in the virtual holonomyĜi , which has infinite order and some
power tangent to the identity. Moreover, sinceĜj is analytically normalizable, it follows
thatg andh are analytically normalizable. This implies that the powers ofh are analytically
normalizable and therefore, since the group of flat elements inĜi is cyclic,Ĝi is analytically
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normalizable. Hence we exclude this case, and conclude that all elements inĜj have finite
order. It follows thatĜj is a group whose elements are rational rotations, and that each
finitely generated subgroup is in fact a finite analytically linearizable group. In particular,Gj

is a finite linearizable group.
Now we consider the case thatĜj is solvable nonabelian, and analytically normalizable.

In this case, once again we may use the same procedure as in Case 2 above to induce nontrivial
analytically normalizable flat elements in the virtual holonomyĜi , and conclude that this is
in fact analytically normalizable. Thus we exclude this case, too.

Summing up, we obtain the following:

CONCLUSION. Under our assumptions above, if Gi is exceptional (that is, solvable
nonabelian and not analytically normalizable), then Ĝj is either a group of rational rotations
and hence with a finite number of finitely generated subgroups, or an exceptional group.

In this last (exceptional) case, it follows from [21] thatĜj is generated by some root
of the local holonomyg o associated toq (we may haveg o = Id), and some flat element
g 1. Moreover each flat element in̂Gj is some power ofg 1. Then ideas in [26] and [9]
conclude that certain power ofh1 corresponds to some power ofg 1 by means of the Dulac
correspondence. Indeed, it is possible to use the Dulac correspondence given byDq(x) =
{xm/n}, in order to consider the sets of “pseudo-orbits"

{g kr1 ◦ Dq ◦ hlr1 ◦ D−1
q ◦ · · · ◦ g k2

1 ◦ Dq ◦ hl21 ◦ D−1
q ◦ g k1

1 ◦ Dq ◦ hl11 (x)} ⊂ Σi ,

wherex ∈ Σi , lt andkt are integers, andD−1
q is the correspondenceF(Σj ) → F(Σi) , y �→

{yn/m}. These sets are contained in the same leaf ofF for each fixedx, and as in [26], if
the powersg l1 andhk1 are never related by the conjugacy equation (adjunction equation), then
we have accumulations for the leaves ofF , outside the origin inΣi . On the other hand, in
the case we are interested in, we have discrete intersections of the leaves with the transverse
sections, outside the origin, so that some powerhl1 passes to the virtual holonomŷGj , as some
powerg k1.

3. Vector fields with integrable volume function. In this section we prove Theo-
rems 1, 2 and 3. We consider the following situation: LetX be a meromorphic vector field
in a complex manifoldM̄, with polar set(X)∞ of codimension≥ 1, and discrete singular
set singX. ThusX induces a (singular) holomorphic foliationF(X) of dimension one on
M̄, whose leaves are integral curves ofX in M̄ \ singX ([20]). The singular set singF(X)
of F(X) is an analytic subset of codimension≥ 2. For each pointx ∈ M̄ we denote by
Lx ⊂ M̄ \ singF(X) the corresponding leaf, and byOx ⊂ Lx the associated orbit ofX in
M̄ \ (X)∞. Let M̄ be equipped with a Riemannian metricds2, which is Hermitian along the
leaves ofF(X). Thevolume function ofX (with respect to the metricds2) is therefore defined
by

VolX : M̄ → [0,+∞] , VolX(x) =
∫
Lx

i∗x (ds2) ,
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whereix : Lx → M̄ is the inclusion map. We assume that VolX is an integrable function
or that some open leaf ofF(X) has finite volume. For technical reasons we avoid some
exceptional singularities and work only with rational type singularities.

Let us now recall some basic facts on the geometry of the complex projective plane
CP(2). The Fubini-Study metric ofCP(2) is defined as

ds2 = 4(|dx|2 + |dy|2 + |xdy − ydx|2)/(1 + |x|2 + |y|2)2 ,
and the associated quadratic 2-form is written as

Ω = −4
√−1∂∂̄ log(1 + |x|2 + |y|2) .

Given a foliationF by curves inCP(2) and a leafL ⊂ CP(2) \ singF , the area of a regular
domainD ⊂ L is given by

A(D) = 1

2π

∫
D

Ω
∣∣
L
.

For any local parametrizationϕ(z) = (x(z), y(z)) : D ⊂ C → L of L, by settingψ(z) =
1 + |x(z)|2 + |y(z)|2, we find that

4∂̄∂ logψ = � logψ = [ψ�ψ − |gradψ|2]/ψ2 .

Before proving Theorems 1 and 2, some examples illustrating these results are in order.

EXAMPLE 1. LetR : C2 ⊂ CP(2) → CP(1) be a (nonconstant) rational function.
The levels ofR define a foliationF by algebraic curves inCP(2). Given any affine space
C2 ⊂ CP(2), there exists a polynomial vector field whose orbits are punctured leaves ofF in
C2. The rational vector fieldX = (−Ry,Rx) definesF outside its polar set. For any leafL,
the induced metric is written as

µ2 = 4(|x ′(z)|2 + |y ′(z)|2 + |x(z)y ′(z)− x ′(z)y(z)|2)/(1 + |x(z)|2 + |y(z)|2)2|dz|2
= 4(|x ′(z)|2 + |y ′(z)|2)/(1 + |x(z)|2 + |y(z)|2)2|dz|2 .

Since the leaves are algebraic subvarieties ofCP(2), theleaf space (CP(2) \ singF)/F
is a nonsingular orbifold (a compact analytic space) and therefore (as in [1]) by Fubini’s
theorem the integral of the volumes of leaves (fibers ofR) is integrable overCP(2).

EXAMPLE 2. Let us take a linear vector fieldX(x, y) = x(∂/∂x) + λy(∂/∂y), λ ∈
C∗, where(x, y) are affine coordinates inC2. The orbitO(x,y) through a point(x, y) is
parametrized byϕ(x,y)(z) = (xez, yeλz) , z ∈ D(λ) ⊂ C , whereD(λ) ⊂ C is R2 if λ �∈ Q.
If λ = ±n/m ∈ Q with n,m ∈ N, 〈n,m〉 = 1, then we haveD(λ) = R × [0,2πm]. Again
we consider the Fubini-Study metric ofCP(2). The metric induced byϕ(x,y) on C is written
as

µ2(x, y) = ϕ∗
(x,y)(ds

2) = 4
e2Re(z)|x|2 + |λ|2|y|2e2Re(λz) + |λ− 1|2|xy|2e2Re[(λ+1)z]

(1 + |x|2e2Re(z) + |y|2e2Re(λz))2
|dz|2 .

The area form induced byϕ is then given by

dσ(x, y) = 4
[|x|2e2Re(z) + |yλ|2e2Re(λz) + |xy|2|λ− 1|2e2Re[(λ+1)z]]

(1 + |x|2e2Re(z) + |y|2e2Re(λz))2
dV ,
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which yields

dσ(x, y) = 4
[|x|2e2u + |λy|2e2(αu−βv) + |xy|2|λ− 1|2e2(αu−βv+u)]

(1 + |x|2e2u + |y|2e2(αu−βv))2
dudv ,

where we writeλ = α + √−1β andz = u + √−1v. Performing the change of variables
s = e2u , t = e−2v, we obtain

dσ(x, y) = |x|2t−1 + |y|2|λ|2sα−1tβ−1 + |x|2|y|2|λ− 1|2sαtβ−1

(1 + |x|2s + |y|2sαtβ)2 dsdt .

PROPOSITION 1. If λ ∈ C \ Q then VolX(x0, y0) = +∞, provided that x0, y0 �= 0 in
C2. Moreover, if λ ∈ Q, then VolX is integrable in C2.

PROOF. If λ ∈ Q, then the volume function is given by

VolX(x0, y0) =
∫ t=1

t=e−4πm

∫ s=+∞

s=0
dσ(x0, y0) .

Now we recall the fact that
∫ +∞

0 1/(1 + uν)du converges forν > 1. Note that, for
λ < 1, the termuν is given by(|x0|2u)2 in the denominator. Forλ ∈ (1,+∞), it is given by
(|y0|2uλ)2. The caseλ = 1 gives(λ− 1)2|x0y0|2uλ = 0 in the numerator, for which we take
ν given by(|x0|2u)2 for instance. Thus we conclude that the volume is integrable in the case
λ ∈ Q.

Assume now thatλ ∈ C \ Q. In this case, we consider the integral

I (α, β) :=
∫∫

R2

|x0|2t−1

(1 + |x0|2s + |y0|2sαtβ)2dsdt
and use the following fact, which completes the proof of the proposition.

CLAIM 2. The value of the integral
∫ +∞

0 t−1/(1 + tβ)2dt is infinite for any β ∈ R.

Indeed, assume thatβ ≥ 0. For 0 ≤ t ≤ 1, we have 1+ tβ ≤ 2 and therefore
1/(1 + tβ)2 ≥ 1/4, which yields

∫ 1
0 [t−1/(1 + tβ )2]dt ≥ (1/4)

∫ 1
0 dt/t = +∞. Assume

now thatβ = −γ < 0. Then

t−1

(1 + t−γ )2
= 1

t + 2t1−γ + t1−2γ >
1

t +K

for some constantK > 0 and sufficiently larget > M. Hence
∫ +∞

0 t−1/(1 + tβ )2dt ≥∫ +∞
M 1/(t +K) dt = +∞. �

LEMMA 2. Let X be a meromorphic vector field in a complex manifold M̄ equipped
with a C2 Riemannian metric which is Hermitian along the leaves of the induced foliation
F(X). Assume that VolX(x) < +∞ for a certain x ∈ M \ singF(X). Then the leaf L = Lx

is closed outside singF(X).
PROOF. Fix a pointp ∈ L̄\singF(X). By the flow-box theorem there exists a complex

diffeomorphismϕ from a small neighborhoodW of p onto a polydisc� in Cn, which takes
F(X)∣∣

W
into the horizontal foliationH. The mapϕ is locally Lipschitz so that the sum of the
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volumes of the plaques ofL in W is finite if and only if there are only finitely many plaques
of H in � that correspond to the intersectionL ∩ W . This implies thatL ∩ W consists of
finitely many plaques and thereforep ∈ L. This shows thatL is closed inM̄ \ singF(X). �

A consequence of this lemma is the following

PROPOSITION 2. Let X be a polynomial vector field on C2 such that (i) the singular-
ities of F(X) are hyperbolic, and (ii) there exists a nonsingular orbit Ox ⊂ Lx which has
finite volume for the Fubini-Study metric in duced on C2. Then L̄x is an algebraic curve.

PROOF. The orbitOx is closed inC2 \ singF(X) by Lemma 2. If there existsp ∈
Ōx ∩ singF(X), then, by the local structure of hyperbolic singularities in the complex case,
it follows that Ōx must be locally contained in the two separatrices ofX at p. ThusŌx is
analytic of dimension one inC2.

Now we considerF(X) in a neighborhood of the lineL∞ = CP(2) \ C2. Then there
are two possibilities:

Case 1. L∞ is not invariant byF(X). In this case, given any pointp∈L∞ \singF(X),
by the flow-box theorem the leafLx is locally closed aroundp and therefore analytic around
p. Let nowp ∈ L∞ ∩ singF(X) ∩ Ōx . Sincep is hyperbolic andLx is closed inC2, it
follows again that̄Lx is contained in the set of separatrices ofF(X) atp. ThusL̄x is analytic
in CP(2).

Case 2. L∞ is invariant byF(X). By the maximum principle,Ox accumulatesL∞
and, since it is invariant, it follows thatLx accumulates some singularityp ∈ singF(X)∩L∞.
As above, the hyperbolic type ofp implies thatL̄x is contained in the separatrix transverse to
L∞ atp. Thus again we conclude thatL̄x is analytic of dimension one inCP(2).

Consequently, it is implied by Remmert-Stein theorem [16] thatL̄x = Ōx is analytic in
CP(2) and by Chow theorem [16] it is an algebraic curve. �

PROOF OFTHEOREM 1. The proof is now reduced to a mimic of the original proof of
Mattei-Moussu theorem ([22]) if one remarks the following: (1) Almost every leaf has finite
Euclidean volume and is therefore closed outside the origin 0∈ C2 (Lemma 2). (2) All virtual
holonomy groups arising in the reduction process of singF(X) are finite and therefore each
one is conjugate to a cyclic group of rational rotations (Lemma 1). �

PROOF OFTHEOREM 2. If L∞ = CP(2)\C 2 is not invariant by the foliation, then the
leaves ofF(X) are also closed inCP(2)\singF(X). As above, this implies that the leaves are
contained in algebraic curves. By Darboux theorem ([20]) the foliation admits a rational first
integral. We may therefore assume thatL∞ is invariant and by Theorem 6 conclude thatF(X)
has some separatrixΓ transverse toL∞, with Γ ∩ L∞ = p ∈ singF(X). After performing
the reduction of singularities forF(X)∣∣

L∞ , we then obtain a strict transform̃Γ transverse to

the divisorD = ⋃m
j=1Dj , which cutsD at a singularityp̃ = Γ̃ ∩D = Γ̃ ∩ Pjo . The local

holonomy associated tõΓ ∗ = Γ̃ \ {p̃} has finite pseudo-orbits and is therefore finite. By a
result of Mattei-Moussu ([22]),̃F is linearizable around̃p asnxdy +mydx = 0, n,m ∈ N
andΓ̃ : {x = 0}, Pjo : {y = 0}. The virtual holonomy group associated to a small transverse
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section diskΣj ,Σj ∩ Pj = qj �∈ singF̃(X), has discrete pseudo-orbits outside the originqj

and hence is solvable ([26]). This holds for any componentPj of the divisorD.
Sincep̃ is of typed(xmyn) = 0, we may consider the adjunction of the holonomy group

Hol(F̃(X),Pjo ) to the local holonomyho of Γ̃ ∗ and obtain a subgroupDq∗Hol(F̃(X),Pjo )∗
〈ho〉 ⊂ Ĥol(F̃(X),Σ), whereΣ is a transverse section{y = cte} at a point inΓ̃ ∗, and
Ĥol(F̃(X),Σ) denotes the virtual holonomy at this section. This adjunction group has also
finite pseudo-orbits (as well as the virtual holonomŷHol(F̃(X),Σ)) and is therefore finite.
Thus, using the construction given in Section 2 for the groupDq∗Hol(F̃(X),Pjo) ∗ 〈ho〉,
we conclude that Hol(F̃(X),Pjo) is also finite (recall the construction in Section 2: In fact,
each elementg ∈ Hol(F̃(X),Pjo ) induces an elementgDq in the adjunction group, which
is a periodic rotation. Using the explicit formulae forgDq given by the possible cases (i.e.,
Hol(F̃(X),Pjo ) is abelian or solvable, nonabelian isomorphic to a finite ramified covering
of a group of homographies, and in this last casegDq is also a finite ramified covering of
a homography and cannot be finite) we see thatg is also a rational rotation. Alternatively,
one may prove that Hol(F̃(X),Pjo ) has finite pseudo-orbits, using the fact that the Dulac
correspondence associated to the cornerp̃ is a finite-to-finite correspondence (see Section 2).

At this stage we know that̃F has a holomorphic first integral in a neighborhood of
Pjo ∪ Γ̃ . Given any cornerpj = Pjo ∩ Pj , we may iterate the above process: Indeed,pj is
necessarily of typed(xnym) = 0, n,m ∈ N ([22]) and, as above, we may perform the adjunc-
tion of the holonomy ofPj to the holonomy ofPjo . This gives a new group that by its turn will
constitute a groupDp̃ ∗(Dpj ∗Hol(F̃(X),Pj )∗Hol(F̃(X),Pjo ))∗〈ho〉 ⊂ Ĥol(F̃(X),Σ). As

above, the new adjunction group is finite and therefore Hol(F̃(X),Pj ) must be finite. Since
the groupDp̃ ∗ (Dpj ∗ Hol(F̃(X),Pj ) ∗ Hol(F̃(X),Pjo )) ∗ 〈ho〉 ⊂ Ĥol(F̃(X),Σ) is finite,

we may construct a holomorphic first integral forF̃(X) in a neighborhood of̃Γ ∪ Pjo ∪ Pj .
A standard induction argument then shows that we may construct a holomorphic first integral
for F̃(X) in a neighborhood of the invariant part of the divisorD = ⋃

j Pj . Since, by hy-
pothesis, the complement of the invariant part of the resolution divisor of singF(X) ∩ L∞ is
pseudo-convex, we may extend this function to a rational function ([36]) which blows-down
to a rational first integralR for F(X) in CP(2) (see [9]). �

PROOF OF THEOREM 3. The proof for Theorem 2 also works here, since we only
need to use the facts that̂Hol(F̃(X),Σ) is finite andĤol(F̃(X),Pj ) is solvable with discrete
pseudo-orbits off the origin, which also hold provided that the leaves ofF |C 2 are closed in
C2 \ singF(X). �

3.1. Applications. In this paragraph we give some applications of the preceding re-
sults.

PROPOSITION 3. Let F be a foliation with rational first integral on CP(2) and C2 ⊂
CP(2) an affine space such that all singularities of F in L∞ are of rational type. Let F1 be
any foliation on CP(2) which is topologically conjugate to F on C2 and have also rational
type singularities in L∞. Then F1 admits a rational first integral.
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PROOF. First we notice that by topological equivalence the leaves ofF1 are closed in
C2 \ singF1. Since the singularities ofF1 in L∞ are also rational, it follows from Theorem 3
thatF1 admits a rational first integral. �

The hypothesis on singF ∩L∞ may not be omitted as illustrated by the following exam-
ple.

EXAMPLE 3. LetF : dy − ydx = 0. ThenF admits no rational first integral, for
it admits the (primitive) algebroide first integralye−x . In particular, its leaves are closed in
C2. On the other hand, the homeomorphismφ : C2 → C2 defined byφ(x, y) = (x, xe−xy)
conjugatesF to the radial foliationR : xdy − ydx = 0, which has the rational first integral
R = x/y. We have singR ∩ L∞ = ∅ with L∞ transverse toR, but the same does not hold
for F ; there is a saddle-node singularityu̇ = u2 , v̇ = v(u− 1) in L∞.

In what follows we refer to [34] and [37] for the notion ofgeneric type of the orbits of a
holomorphic flow on a Stein surface.

PROPOSITION 4. Let X be a complete polynomial vector field in C2. Assume that
(i) the generic type of the orbit of X is C∗, and
(ii) the singularities of F(X) in L∞ are of rational type.

Then F(X) admits a rational first integral and one of the following occurs:
(a) X has no dicritical singularity in C2 and there exists a (non-constant) polynomial

first integral F : C2 → C.
(b) X has a dicritical singularity in C2 and there exists an entire automorphism ψ ∈

Aut(C2),which linearizesX, that is, ψ∗X = nx(∂/∂x)+my(∂/∂y), n,m ∈ N. In particular,
there exists only one dicritical singularity in C2.

PROOF. According to [37], there exists a meromorphic first integral onCP(2). Since
singF(X) ∩ L∞ consists of rational singularities, Theorem 6 assures the existence of a
rational first integral. Using now [11], we find (a) and (b) as the only possibilities. �

COROLLARY 1. Let F1 and F2 be germs of holomorphic foliations at 0 ∈ C2 such
that there exists a germ of measure isomorphism T : C2,0 → C2,0 conjugating F1 to F2.
Then F1 admits a holomorphic first integral if and only if F2 admits a holomorphic first
integral.

PROOF. In fact, a measure isomorphism conjugating the foliations preserves the vol-
ume functions of the foliations, so that it suffices to use Theorem 1. �

4. Sub-exponential growth. Our goal here is to show another approach to the study
of the behavior of foliations onCP(2), with geometric features. We refer to [28] and [29] for
the notion of sub-exponential growth of a leaf.

Let F be a foliation with hyperbolic singularities onCP(2), andg a C∞ Riemann-
ian metric onCP(2), which is Hermitian along the leaves ofF . Suppose that singF =
{p1, . . . , pr }, and for eachj ∈ {1, . . . , r} choose a small closed ball centered atpj , say,
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B̄(pj ) � pj . Sincepj is hyperbolic,F is transverse to the spheres∂B̄(pj ) and hence we
may consider the double ofF as in [2] and [34]. This is aC∞ regular codimension-two real
foliationFd on a compact real 4-manifold̄Md , which contains two copies of the foliated pair(

CP(2) \
r⋃
j=1

B̄(pj ),F
∣∣
CP(2)\⋃r

j=1 B̄(pj )

)
.

The leaves ofFd have also natural structures of Riemann surfaces and the metricg induces
aC∞ Riemannian metricg d in M̄d , that can be chosen to be Hermitian along the leaves of
Fd . The corresponding leavesLd of Fd have sub-exponential growth forg d so that, using
Theorem 4.1 of [29], we obtain

PROPOSITION 5. Let F , g be as in Theorem 4. Then there exists a non-trivial ho-
lonomy invariant transverse measure µ for Fd , which is finite on compact sets and whose
support is contained in the closure L̄d of some leaf Ld of Fd .

Now we takeK = supp(µ) ⊂ M̄d the support ofµ. We have a compactF -saturated
non-empty set. According to [6], we know that a non-trivial minimal set onCP(2) cannot
support an invariant transverse measure. Hence one may conclude.

LEMMA 3. K ∩ ∂B(pj ) �= ∅ for some j ∈ {1, . . . , r} .

As in [2] and [34], this implies that ifL is a leaf ofF such thatL \ ⋃r
j=1 B̄(pj ) ⊂ K,

thenL̄ = L∪{pj1, . . . , pjl } for somepjν ∈ singF , and therefore by Remmert-Stein theorem
and Chow theorem [16],̄L is an algebraic curve onCP(2). Hence we obtain.

LEMMA 4. Let F , g be as in Theorem 4. Then F has some algebraic invariant curve
S ⊂ CP(2).

We consider the algebraic leafS ⊂ CP(2), given by Lemma 4, and take a pointq ∈
S \ singF , and a small transverse diskΣ ⊂ CP(2) withΣ ∩ S = {q}. Thus we may consider
the holonomy group Hol(F , S,Σ) as a subgroup of Diff(Σ, q) ≈ Diff (C,0) ([8]).

LEMMA 5. Hol(F , S,Σ) is a solvable group.

PROOF. This is proved in [32]. The idea is as follows. Denote byΛ the set of algebraic
leaves ofF in CP(2). We haveS ⊂ Λ. According to [32] acompact total transverse section
to F is a compact (realC∞) submanifoldN ⊂ CP(2) \ singF (possibly with boundary), of
dimension two, such that every leaf ofF intersects the interior ofN andF is transverse to
N \ ∂N (see the Remark after Corollary 4.2 in page 340 of [29]). It is not difficult to prove
that, as a consequence of the compactness ofCP(2) together with the maximum principle,
the foliationF admits a compact total transverse section; indeed,N is a finite union of closed
disks whose interiors are transverse toF ([32]). Therefore, again according to the Remark in
page 340 of [29], it follows that, forM = CP(2) \Λ, the restrictionF ∣∣

M
admits a non-trivial

holonomy invariant transverse measureµ. To get a contradiction assume that Hol(F , S,Σ)
is non-solvable. Any non-algebraic leafLo must accumulate the pointq = Σ ∩ S in Σ
and therefore, as it follows from [26], the leafLo is dense in a neighborhoodV ⊂ Σ of q
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and Hol(F , S,Σ) has a dense set of hyperbolic periodic pseudo-orbits onV (i.e., a dense
set of hyperbolic fixed points). Given such a fixed pointzo ∈ V we consider the wordf ∈
Hol(F , S,Σ) such thatf (zo) = zo, with |f ′(zo)| �= 1. This mapf may be linearized in
a small diskD(zo, ε) ⊂ V asf (z) = λz with λ ∈ C∗ \ S1. Notice that this local map
corresponds to the local holonomy map of some cycleγzo in the leafLzo ⊂ M and therefore,
sinceµ is Hol(F ∣∣

M
,Lzo)-invariant, it follows thatµ

∣∣
D(zo,ε)

is the Dirac measure with atom
atzo. In particular, supp(µ) ∩D(zo, ε) = {zo}. On the other hand, sinceLx is dense inV we
haveLx ∩ D(zo, ε) = D(zo, ε) which gives supp(µ) ∩ D(zo, ε) = D(zo, ε), contradiction.
This contradiction proves Lemma 5. �

PROOF OFTHEOREM 4. We consider an affine chart(x, y) ∈ C2 ⊂ CP(2), and a
polynomial 1-formω = Pdx +Qdy with isolated singularities, which definesF ∣∣

C 2. Since
Hol(F , S,Σ) is solvable, andF has hyperbolic singularities, it follows from [31] that there
exists a closed rational 1-formη on CP(2), with simple poles, such thatdω = η ∧ ω. In
particular,F is transversely affine outside some algebraic invariant set (given by(η)∞ ∩ C2

[31]). SinceF has hyperbolic singularities, this implies thatF is a Darboux (logarithmic)
foliation ([33], [34]), and hence must be linear(because of the hyperbolic singularities [2]),
as in Theorem 4. �

5. Orbits having finite total curvature. Let ψ : M → M̄ = Rn be a minimal iso-
metric immersion of a two-dimensional real manifoldM into an-dimensional Euclidean space
Rn. WhenM is orientable, we have a natural conformal structure given by the isothermal co-
ordinates, and consider a local conformal coordinatez = u + √−1v : U ⊂ C → M onM.
Sinceψ is conformal, the metric induced byψ is written asds2 = 2F |dz|2, whereF = |ϕ|2,
andϕ = (ϕ1, . . . , ϕn) : U → Cn defined by

ϕj = ∂ψj

∂z
= 1

2

(
∂

∂u
− √−1

∂

∂v

)
(ψj ) , j = 1,2, . . . , n ,

is holomorphic. The fact thatψ is conformal also impliesϕ2 = ∑n
j=1 ϕ

2
j = 0. The Laplace-

Beltrami operator induced byψ is given by

� = 2

F

∂

∂z

∂

∂z̄
,

where

∂

∂z
:= 1

2

(
∂

∂u
− √−1

∂

∂v

)

andz = u+√−1v ∈ U ⊂ C. The Gaussian curvature of the isometric immersion is therefore
given by

K = − 1

F

∂

∂z

∂

∂z̄
logF = −1

2
� logF ,
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which can be also written as
K = −|ϕ ∧ ϕ′|2/|ϕ|6 .

In particular, we see thatK ≤ 0, and (sinceϕ is holomorphic) eitherK ≡ 0 or the
set {K = 0} is discrete. This allows us to define thetotal curvature of the immersion as
C(ψ) = ∫

M Kdσ
2 ∈ [−∞,0], wheredσ 2 is the induced area element inM. A well-known

result due to Huber ([18]) asserts the following

THEOREM 7 ([18], [38]). Let ψ : M → Rn, n ≥ 3, be a minimal immersion, which
is complete and has finite total curvature. Then M is conformally equivalent to a finitely
punctured compact Riemann surface.

Subsequently, Osserman ([27]) showed that the Gauss map of such an embedding ex-
tends meromorphically to the ends ofM. This result is one of the main tools in the study of
complete finitely curved minimal immersions into Euclidean spaces. In this section we study
this problem for the orbits of a vector field on a complex manifold: LetX be a holomorphic
vector field on a complex manifold̄M equipped with a Kaehlerian metric. The orbits ofX are
complex immersed submanifolds of̄M so that the inclusion gives minimal isometric immer-
sionsψ : M → M̄. Examples of this situation arēM = Cn with its Euclidean structure, and
M̄ = CP(n) with the Fubini-Study metric.

EXAMPLE 4. LetXλ = x(∂/∂x) + λy(∂/∂y) be a linear vector field inC2 ∼= R4.
Then we have a local parametrizationψ(z) = (xez, yeλz) for the orbitM = O(x,y) and
ds2 = (|x|2e2Re(z) + |λy|2e2Re(λz))|dz|2. We writeλ = α + √−1β , z = u + √−1v, and
obtain

ds2 = (|x|2e2u + |y|2(α2 + β2)e2(αu−βv))(du2 + dv2) .

Now we recall that for anyC2 real functionf we have

� logf = �f/f − |gradf |2/f 2 ,

where gradf = (fu, fv) is the gradient off . Thus forf = |x|2e2u+ |y|2(α2 + β2)e2(αu−βv)
we find

�f = 4[|x|2e2u + |y|2(α2 + β2)2e2(αu−βv)]
and

|gradf |2 = 4[|x|4e4u + (α2 + β2)3|y|4e4(αu−βv) + 2α|x|2|y|2(α2 + β2)e2(αu−βv+u)] .
Therefore

f�f − |gradf |2 = 4|x|2|y|2(α2 + β2)[(α − 1)2 + β2]e2(αu−βv+u) ,

which gives

K = −8|x|2|y|2(α2 + β2)[(α − 1)2 + β2]e2(αu−βv+u)/(|x|2e2u + |y|2e2(αu−βv))3 .

PROPOSITION 6. For an orbit ψ : M → R4 of a linear vector field Xλ = x(∂/∂x) +
λy(∂/∂y) in C2, which is not contained in one of the complex axis, we have the following:

(i) If λ ∈ R \ Q, then C(ψ) = −∞.
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(ii) If λ ∈ (C \ R) ∪ Q, then C(ψ) > −∞.

PROOF. Indeed, we have

C(ψ) = −8|x|2|y|2(α2+β2)[(α−1)2+β2]
∫∫

M

e2((α+1)u−βv)

(|x|2e2u + |y|2(α2 + β2)e2(αu−βv))3
dudv .

Hence, changing coordinates fors = e2u, t = e−2v, we obtain

C(ψ) = −2|x|2|y|2(α2 + β2)[(α − 1)2 + β2]
∫∫

W

sαtβ−1

(|x|2s2 + (α2 + β2)|y|2sαtβ)3dsdt
for a suitable domainW = W(λ) ⊂ R+ × R+ (see Example 2). This proves the proposition.

�

Theorem 5 is therefore a kind of converse of the above example. Next we show that
Theorem 5 is not true if we omit the hyperbolicity hypothesis on the singularities.

EXAMPLE 5. LetX = ∂/∂x + y(∂/∂y) be a non-singular vector field inC2. The
foliationF(X) onCP(2) has a saddle-node singularity onL∞ : u2(∂/∂u)+ v(u−1)(∂/∂v).
The orbit with an initial point(x, y) is given byϕ(z) = (z + x, yez) , z ∈ C, so thatds2 =
(1 + |y|2e2Re(z))|dz|2 and therefore

K = −8|y|2e2Re(z)/(1 + |y|2e2Re(z))3 .

The foliation has the first integralf = ye−x , so that the leaves are closed inC2. However the
total curvature of any leafL �⊂ (y = 0) is −∞.

In order to prove Theorem 5 we shall employ the following well-known lemma.

LEMMA 6. Let L ⊂ CP(2) be an orbit of X such that the total curvature C(L) of L
is zero. Then L̄ is a straight line in CP(2).

PROOF. We use the fact thatK = −|ϕ ∧ ϕ′|2/|ϕ|6 to conclude thatϕ(z) ∧ ϕ′(z) ≡ 0
and thereforeϕ′(z) = λ(z)ϕ(z). Hence, by complex integration, we obtain

ϕ(z) = exp

(∫ z

o

λ(z)dz

)
w

for some holomorphic functionλ(z) and some complex vectorw ∈ Cn. This implies that
ψ(L) ⊂ Rn is contained in a complex line. �

DEFINITION 3. A flat orbit is the one whose curvature is identically zero.

COROLLARY 2. Assume that X is a polynomial vector field on C2 and has infinitely
many flat orbits. Then, up to some affine change of coordinates, we have

(i) X = λ(∂/∂x),
(ii) X = λ(x(∂/∂x)+ y(∂/∂y)).

PROOF. SinceX has infinitely many algebraic leaves, it follows from Darboux theorem
[19] that it admits a rational first integral. According to Stein fatorization theorem ([14]), we
may take such aprimitive first integral, say,R : C2 ⊂ CP(2) → CP(1). Thus if we write
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on C2, R = P/Q, whereP andQ are polynomials without nontrivial common factors, then
the leaves ofF are given by{αP + βQ = 0} asα andβ vary onC. Since infinitely many of
these leaves are straight lines, it follows that max{degP,degQ} = 1. We have therefore two
distinct cases:

(a) 0∈ C2 is a dicritical singularity. In this case, 0∈ {P = 0} ∩ {Q = 0} and we can
find an affine change of coordinates which takesF into the foliationd(x/y) = 0.

(b) There exists no dicritical singularity inC2. In this case, we conclude that{P =
0} ∩ {Q = 0} = ∅ and therefore we may find an affine change of coordinates which takesF
into the foliationdy = 0. �

LEMMA 7. LetM ⊂ M̄ be an orbit ofX having finite (negative) total curvature. Then
M is closed in M̄ \ (singF(X) ∪Σ), where Σ ⊂ M̄ is the union of the flat orbits of X.

PROOF. Indeed, letp ∈ M̄ \ singF(X) be an accumulation point ofM and denote by
Lp the leaf ofF(X) containingp. Assume thatLp �⊂ Σ. Then{K = 0} ∩ Lp is discrete
and (sinceM is invariant) we may assume thatK(p) < 0. By continuity, there exists a small
neighborhoodV � p such thatK(q) < −ε for anyq ∈ V for someε > 0. By the flow-
box theorem we may choose a neighborhoodp ∈ W ⊂ V where the flow ofX is trivial.
This shows that eitherp ∈ M or M ∩ W contains infinitely many plaques and therefore
C(M) = −∞. SinceC(M) is finite,M is closed inM̄ \ (singF(X) ∪Σ). �

The following is a local version of Theorem 5.

PROPOSITION 7. Let F be a germ of holomorphic singular foliation at 0 ∈ C2.
Assume that for some neighborhood V of 0, the total curvature of the leaves is uniformly
bounded, that there are no separatrices contained in straight lines in C2 and that the number
of separatrices of F is finite. Then F admits a holomorphic first integral.

PROOF. We denote byΣ the union of flat leaves. According to Lemma 6, each leafL ⊂
Σ is contained in a straight line inC2. Thus, according to our hypothesis on the separatrices,
we conclude thatΣ = ∅. Lemma 7 now implies that the leaves are closed outside the origin.
Therefore, by Mattei-Moussu theorem ([22]), the foliation admits a holomorphic first integral.

�

PROOF OFTHEOREM 5. First we consider the case where there are no affine orbits
having total curvature equal to zero. In this case, according to Lemma 7 above, the leaves
of F(X) are closed inC2 and therefore by Theorem 3 the foliation admits a rational first
integral, which is absurd because it has hyperbolic singularities. Thus there are some orbits
having Gaussian curvature identically zero. By Lemma 6, these orbits give some invariant
complex line, say,S ⊂ CP(2).

Now we consider the holonomy group of this line. By Lemma 7 we may assume that
Σ ⊂ C2 is transversely discrete. Therefore, given a transverse discD to F(X) centered
at a pointo ∈ S \ singF(X) and a generic pointz ∈ D, the pseudo-orbit of this point in
the holonomy group Hol(F(X), S,D) is discrete outside the origin. According to [5], since
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the holonomy group contains hyperbolic attractors (coming from the hyperbolic singularities
of F(X) in S), this group must be abelian linearizable. This shows thatF(X) is a linear
logarithmic foliation onCP(2) ([5]). Using again the fact that the singularities are hyperbolic,
we conclude thatF(X) is linear in some affine chart ([2]). �

Next we give a partial generalization of Theorem 5.

PROPOSITION 8. Let X be a polynomial vector field on C2 such that F(X) has only
rational singularities. If some open orbit (by open orbit we mean one whose closure is not
an algebraic curve in CP(2)) of X has finite total curvature, then F(X) is given by a closed
rational 1-form on CP(2).

PROOF. First we claim thatX has some algebraic orbits. Indeed, if otherwise the leaves
of F(X) are closed inC2 \ singF(X) (Lemma 6) and therefore, by Theorem 3,F(X) has a
rational first integral, which implies that all leaves are algebraic.

Let thereforeS ⊂ CP(2) be an algebraic leaf ofF(X) with S ∩ C2 �= ∅. We may
assume thatF(X) has no rational first integral. Then, by Corollary 3, the setΣ ⊂ C2 of flat
orbits consists of a finite number of orbits, so that given a small discD ⊂ C2 transverse to
F with D ∩ S = q ∈ S \ singF(X), the virtual holonomy groupĤol(F ,D, q) has discrete
pseudo-orbits outside the originq ∈ D. Thus, this group is solvable ([26]).

LEMMA 8. The 1-form ω = iX(dV ) (which is a polynomial 1-form with isolated sin-
gularities that defines F(X) in C2) admits a rational logarithmic derivative η, with simple
poles: dω = η∧ω, dη = 0. If all the virtual holonomy groups are abelian, then we may take
η with entire residues.

PROOF. The 1-formη is given by the main results in [8] and [33]. We explain here the
main ideas, additional details can be found in [33], [9] and [11]. LetΛ ⊂ D be an irreducible
component of the divisor arising in the reduction of singularities forF(X)∣∣

S
. Let ω̃ := π∗(ω).

We first construct atransversely formal 1-formη = η̂ over the divisorΛ (we refer to [11] and
[17] for the notion of transversely formalq-form over a divisor on a projective surface): Recall
that, according to [22] and [23], a nondegenerate nondicritical singularity always admits a
formal integrating factor. Moreover, ifq is such a singularity, and̂hq is such an integrating
factor (defined as a formal expression atq), with respect toω̃ (that is, ω̃/ĥq is closed as a
formal 1-form), then we can extend̂hq as a transversely formal integrating factor forω̃, over
a small diskDq ⊂ Λ centered atq, using the resummation properties of the integrating factors
along the separatrices for nondegenerate singularities. This is done by means of choosing a
local system of coordinates(x, y), centered atq and such thatΛ : {y = 0}. Then, in these
coordinates, we consider formal expressionsĥ(x, y) = ∑+∞

j=0 aj (x)y
j , whereaj (x) are also

formal positive series in the variablex. Now, if we impose that̂h is an integrating factor for
ω̃, then we obtain a differential equation which has a formal solution as remarked above, and
the coefficientsaj (x) are in fact analytic functions ofx, in a fixed small disk centered at the
origin, which is a consequence of Briot-Bouquet theorem type argument ([11]).
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Now we proceed as follows. First we assume that Hol(Λ) is abelian. According to [33],
[9] and [11], there exists a transversely formal integrating factorĥ for ω̃, defined over the
open curveΛo = Λ\sing(F̃(X)). We show that̂h may extend formally to singF(X) ∩ Λ.
Indeed, given a (nondegenerate) singularityq ∈ Λ, we have the following three possibilities:

(1) If ω̃ atq is formally linearizable with a holomorphic local first integral. In this case,
according to [22],̃ω admits a holomorphic first integral in a neighborhood ofq, and therefore
we may assume thatĥq is in fact holomorphic in a neighborhood ofq. Thusĥ extends toq,
since it is already defined over the separatrix throughq tangent toΛo. In fact, we can find
analytic coordinates(x, y) centered atq such that{y = 0} corresponds toΛ, andF is given
in these coordinates bynxdy +mydx = 0, withn,m ∈ Z+, 〈n,m〉 = 1. We takeĥo = xyg ,
whereg is the meromorphic function defined byω̃(x, y) = g (nxdy +mydx). Then we have
d(ω̃/ĥo) = 0.

Now, the fact thatd(ω̃/ĥ) = 0, outside{x = 0}, implies thatd(ĥo/ĥ) ∧ ω̃ = 0. Thus
f̂ = ĥo/ĥ is a meromorphic first integral forF along {x �= 0} and {y = 0}. Sinceq is
nondicritical, it follows that eitherf̂ is constant or we havêf = ϕ̂(f̂o) for some holomorphic
one variable functionϕ ∈ C{z}, wheref̂o = xmyn is a primitive holomorphic formal first
integral forF at q. Therefore we havêf = ϕ(xmyn). Sincef̂ is holomorphic formal along
{y = 0} ⊂ Λ except atq, andy = 0 impliesxmyn = 0, it follows thatϕ̂ is holomorphic and
thereforef̂ extends holomorphically asϕ(f̂o) to q. This shows that̂h extends in a transversely
formal way toq in the casef̂ is nonconstant. Iff̂ is constant, then the extension ofĥ to q is
immediate.

(2) ω̃ at q is formally linearizable but admits no formal holomorphic first integral. In
this case we claim that̂h extends toq as a transversely formal integrating factor. Indeed, first
we observe that̃ω admits no transversely formal first integral defined over a punctured disk
D \ {q} for a diskD ⊂ Λ. This is a consequence of [22] and [23] (see also [9]). On the other
hand, the formal linearization of̃ω atq gives a transversely formal integrating factorĥ1 for ω̃
defined over a diskDq ⊂ Λ and centered atq. The quotientf̂ := ĥ/ĥ1 of two transversely
formal integrating factors for̃ω over the punctured diskDq \ {q} inΛ is a transversely formal
first integral forω̃ and therefore it must be constant. This proves the extension ofĥ.

(3) If ω̃ at q is a resonant singularity but not formally linearizable (see [23]), then we
havekxdy + lydx + h.o.t. = 0 andk, l ∈ N, 〈k, l〉 = 1. It follows thatĥo/ĥ is a formal
meromorphic first integral for̃ω at q. But, sinceω̃ at q is supposed to be nonlinearizable,
it follows that no transversely formal first integral exists and thereforeĥo = cte ĥ, so thatĥ
extends formally toq.

Now we assume that Hol(Λ) is solvable nonabelian. Using the techniques of [11] and
[34], it is not difficult to obtain a transversely formal closed meromorphic 1-formη̂, defined
overΛo, which satisfiesdω̃ = η̂ ∧ ω̃. Moreover, according to [21], we have a formal embed-
ding Hol(Λ) ⊂ Hk. The construction of the 1-form̂η gives ResΛo η̂ = k + 1 + l, wherel is
the order ofΛ as a zero of the 1-form̃ω ([8], [33]).

Fix a singularityq ∈ Λ. Once again we have the following three possibilities:
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(1) ω̃ at q is formally linearizable and admits a formal holomorphic first integral. In
this case the extension follows as above.

(2) ω̃ at q is formally linearizable and does not admit a formal holomorphic first inte-
gral. The formal linearization gives a transversely formal integrating factorĥ1 defined over
some diskDq ⊂ Λ centered atq. Define η̂1 = dĥ1/ĥ1. The differenceΩ̂ := η̂ − η̂1 is
a transversely formal closed 1-form defined over the punctured diskDq \ {q} and satisfying
Ω̂ ∧ ω̃ = 0. Sinceω̃ at q is formally linearizable but non-resonant, it follows thatΩ̂ extends
as a transversely formal closed 1-form toDq . This shows that̂η extends toq.

(3) ω̃ at q is resonant but not formally linearizable. Here we notice that the local
holonomy associated to the separatrixS atq is (tangent to 1) of the form

ϕ(z) = z/(1 + azk)1/k

for some formal coordinatez. In fact, we know that any homography which is not tangent to
1 is linearizable, and on the other hand, the linearization on the local holonomy implies the
linearization of the formω̃ at the singularity ([22]). Therefore, this holonomy coincides with
the holonomy of the germ ofωk,l at singularity

ωk,l = lxdy + ky[1+ (
√−1/2π)xkyl]dx = 0 .

Thus (see [23], [9], [33]) the foliatioñω = 0 at the singularityq is formally conjugate to the
foliation ωk,l = 0. Therefore there are formal coordinates(x̂, ŷ) centered atq such that for
some formal meromorphic function̂g we haveω̃(x̂, ŷ) = ĝωk,l(x̂, ŷ). Moreover, if we define

η̂o = (k + 1)dŷ/ŷ + (l + 1)dx̂/x̂ + d ĝ /ĝ ,

then we obtaindω̃ = η̂o ∧ ω̃. We haveη̂ − η̂o = ĥω̃ for some formal expression̂h, which
satisfiesd(ĥω̃) = 0. On the other hand, we know that by construction, ResΛoη = k + 1,
so thatĥω̃ is closed, and holomorphic alongΛo\{q}. Sinceω̃ at the singularityq is of the
(nonlinearizable) formal normal form above, it follows thatĥω̃ = 0. Therefore we extend̂η
asη̂o to q.

Thus we have constructed a transversely formalη̂ over the curveΛ. In the same way,
we may construct̂η over the divisorD ([8], [33]). Now, Hironaka-Matsumura theorem ([17])
asserts that botĥh andη̂, constructed in the lemma above, extend meromorphically toCP(2)
([11], [9]). This proves Lemma 8. �

Finally, we use the following

LEMMA 9. If all singularities are resonant, then η has entire residues. If there is some
nonresonant singularity, then each virtual holonomy group is abelian.

PROOF. If all singularities are resonant, then using the construction given forη̂ above,
we conclude that it has entire residues. Now we use the following

CLAIM 3. Assume that there exists some nonresonant singularity q ∈ D. Then each
virtual holonomy group associated to a component ofD contains some diffeomorphism whose
linear part is nonperiodic. In particular, all virtual holonomy groups are abelian.
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Indeed, letq ∈ Djo andDj be such thatqj = Dj ∩ Djo �= ∅. Then we have two
possibilities forqj . If qj is nonresonant, then its local holonomy associated toDj induces
the desired diffeomorphism forDj . If qj is resonant, then we may use the adjunction process
to “pass" the nonresonant diffeomorphism given byq from the virtual holonomy ofDjo to
the virtual holonomy ofDj . This induced element is still nonresonant by the construction of
the adjunction given in Section 2. Thus we may reach all the components that are adjacent
toDjo ∪Dj and so on. Using the fact that the invariant part ofD is connected, we conclude
that all virtual holonomy groups contain elements with nonperiodic linear part. According to
[20], a subgroup of Diff(C,0) with discrete pseudo-orbits off the origin and containing such
nonresonant elements must be abelian. �

Using Lemma 9 and the first part of the Lemma 8, we may assume that all singularities
q ∈ Λ are resonant so thatη̂ has simple poles and entire residues, all of which are alongΛ

and the separatrices through these pointsq are transverse toΛ. According to the integration
lemma ([31]), this implies thatη = dH/H for some rational functionH and thereforeF̃(X)
is given by the closed rational 1-form̃Ω = ω̃/H. The proof of Proposition 8 is now complete.

�

6. Compact foliations with singularities. One of the basic questions concerning
compact foliations in the classical framework is:If a compact manifold is foliated by compact
submanifolds in a smooth way, is there any upper bound on the volume of the leaves? The
positive answer to this question was given by Sullivan and Edwards-Millett-Sullivan ([12])
under some mild orientability hypothesis on the foliation for the real (nonsingular) case. In
this last section we consider several related problems motivated by our results and some clas-
sical results of the theory of foliations.

PROPOSITION 9. Let F be a C2 codimension one (real nonsingular) foliation on a
compact connected manifold M of dimension three with π1(M) finite. Assume that for some
C2 metric on M the leaves are nonpositively curved minimal surfaces with finite total curva-
ture. Then the following hold:

(1) There exists a compact leaf.
(2) The unionΣ of the flat leaves is compact and invariant.
(3) The leaves are closed outsideΣ .
(4) If Σ is empty, then all leaves are compact and with finite holonomy groups.
(5) If there exists some nonflat compact leaf Lo, then all leaves are compact with finite

holonomy groups.

PROOF. (1) follows from Novikov theorem ([4]). According to Lemma 7, the leaves
having finite total curvature are closed outside flat leaves. Therefore,Σ is closed, and hence
compact, proving (2) and (3). IfΣ = ∅, then by (3) the leaves are closed and hence compact.
Using [12], we conclude that all the holonomy groups are finite, proving (4).

Let nowLo be a compact nonflat leaf. Then sinceΣ is closed, it follows that there exists
a certain relatively compact open neighborhoodV of Lo such thatV ∩ Σ = ∅. SinceΣ is



COMPLEX VECTOR FIELDS 389

invariant, we can takeV to be invariant and choose an invariant subneighborhoodLo ⊂ W ⊂
W̄ ⊂ V . In particular, for anyx ∈ W the leafLx � x is closed and contained in̄W . ThusLx
is compact for allx ∈ W . Therefore, sinceF has codimension one, it follows from a result of
Reeb ([30]) that all the volume of the leaves meetingW̄ is uniformly bounded and therefore
the holonomy groups of these leaves are finite. In particular,Lo has a finite holonomy group.
Using now Reeb stability theorem ([4]) for codimension one foliations, we conclude that all
the leaves are compact and with finite holonomy groups. �

If we take a complex Kaehlerian surfaceM equipped with a singular holomorphic folia-
tion F , then all leaves ofF are minimal immersed submanifolds and therefore nonpositively
curved. Examples are given by rational 1-forms defining algebraic foliations on complex
projective surfaces. On the other hand, the additional restriction of finite curvature is quite
restrictive as seen by our next result.

PROPOSITION 10. Let F be a dimension one singular holomorphic foliation on a
complex manifold M of dimension two, equipped with a Hermitian metric g which makes
the leaves nonpositively and finitely curved. Denote by Σ ⊂ M \ singF the union of flat
leaves, and assume that F has some nonflat leaf. Then we have two possibilities:

(i) The holonomy groups of the leaves are solvable with discrete pseudo-orbits outside
the origin.

(ii) Σ is not transversely discrete. If moreover the metric g is real analytic, then all
the leaves are flat.

PROOF. Assume thatΣ is transversely discrete. LetLo be a leaf ofF . If Lo �⊂ Σ,
thenLo ∩Σ = ∅, and given any sufficiently small transverse discD ∩Lo = {q} /∈ singF we
haveD ∩ Σ = ∅. This implies, by Lemma 7, that the holonomy group Hol(F , Lo,D) has
finite orbits and therefore it is a finite group as we have already seen. IfLo ⊂ Σ, then, since
Σ is transversely discrete, given a small transverse discD as above we haveΣ∩D = Σ∩Lo,
which is a point. Therefore, again Hol(F , Lo,D) has finite orbits and is therefore finite.

Assume now thatΣ is not transversely discrete, and letLo be some leaf with nonsolvable
holonomy group. IfLo is accumulated byΣ, then using Nakai density theorem ([26]), we
conclude thatΣ is locally dense aroundLo. In this case, if we also assume that the metric
g is real analytic, thenΣ is transversely real analytic and thereforeΣ = M \ singF . If Lo
is not accumulated byΣ, then we may choose as above a small discD transverse toF with
D ∩Σ ⊂ D ∩Lo. This implies that Hol(F , Lo,D) has finite orbits and is therefore finite.�

The following proposition is proved in a similar way to Proposition 10.

PROPOSITION 11. Let F be a real analytic codimension one singular foliation on a
connected (real) manifoldM of dimension three, such that there exists an analytic Riemannian
metric for which the leaves are nonpositively curved and with finite total curvature. If F has
some nonflat leaf, then all leaves have solvable holonomy groups (with discrete pseudo-orbits
outside the origin). Moreover, if M is compact, F is nonsingular and without flat leaves,
then all leaves are compact with finite holonomy groups.
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PROOF. Let Lo be a leaf ofF . If Lo is not accumulated byΣ, then we may choose
a small transverse sectionI ≈ (−1,1) with I ∩ Σ = Lo ∩ Σ. Denote by Diffw(R,0) the
group of germs of one dimensional real analytic diffeomorphisms fixing the origin. Therefore,
the holonomy group Hol(F , Lo, I) ⊂ Diff w(R,0) has some orbits which are discrete and it
must be a solvable group ([26]). IfLo is accumulated byΣ and Hol(F , Lo, I) is not solvable
for some small transverse sectionI , thenΣ ∩ I is dense inI and thereforeΣ ∩ I = I .
Since the metric is real analytic,Σ is transversely real analytic andΣ ∩ I = I implies that
Σ = M \ singF , a contradiction.

Assume now thatM is compact,F is nonsingular andΣ is empty. Then any leafLo of
F is compact, because it is closed by Lemma 7. ThereforeF is nonsingular real analytic and
all its leaves are compact. This implies that the holonomy groups are finite, since they have
finite orbits. �

The following result gives a characterization of compact complex foliations with singu-
larities in terms of the total curvature.

PROPOSITION 12. Let F be a holomorphic (singular) foliation by curves on a com-
pact complex manifold M of dimension two equipped with a C2 Riemannian metric g of
nonpositive curvature. Then the following conditions are equivalent:

(i) There exist δ > 0 and C > 0 with −δ > ∫
L Kdσ > −C for all leaves L.

(ii) Every leaf is nonflat, with compact analytic closure of complex dimension one, and
finite holonomy group.

PROOF. We only prove that (ii) implies (i). LetLo be a leaf ofF . There are no flat
leaves so thatLo is closed outside the singular set singF (Lemma 7). According to Remmert-
Stein theorem ([16]), the closureLo is an analytic curve and, sinceM is compact,Lo is a
compact curve. Therefore all leaves have compact closures. Given any leafL and a small
transverse discD with D ∩ L = p, the holonomy group Hol(F , L,D, p) is a subgroup
of Diff (D, p) ∼= Diff (C,0) with finite pseudo-orbits (for the leaves are compact), and this
implies by [22] that this group is finite. The converse is left to the reader. �
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