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BIFURCATION ANALYSIS OF KOLMOGOROV FLOWS
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Abstract. We examine the bifurcation curves of solutions to the Kolmogorov prob-
lem and present the exact formula for the second derivatives of their components concerning
Reynolds numbers at bifurcation points. Using this formula, we show the supercriticality of
these curves in the case where the ratio of periodicities in two directions is close to one. In
order to prove this, we construct an inverse matrix of infinite order, whose elements are given
by sequences generated by continued fractions. For this purpose, we investigate some funda-
mental properties of these sequences such asquasi-monotonicity and exponential decay from
general viewpoints.

In 1959, Kolmogorov proposed the investigation of more exact periodic solutions of
Navier-Stokes equations in two-dimensional space subject to an external forcet (γ siny,0) in
order to understand the onset of turbulence (see Obukhov [4]). Then, Meshalkin and Sinai
[1] studied a related linearized operator, and constructed its eigenfunctions using continued
fractions in an explicit way (see Section 1). They proved that Reynolds numbers at bifurca-
tion points are characteristic values of the linearized problem and paved the way to further
research. Subsequently, Iudovich [2] considered the stationary problem:

(1)

uux + vuy = −Px + ν�u+ γ siny , ν > 0 , γ > 0 ,
uvx + vvy = −Py + ν�v ,

ux + vy = 0 ,

where the unknowns are the velocity vectorV (x, y) = t (u(x, y), v(x, y)) and the pressure
P(x, y). In Kolmogorov’s problem, solutions are assumed to be doubly periodic:

(2)


V (x, y) = V (x + 2π/α, y) = V (x, y + 2π) ,
P (x, y) = P(x + 2π/α, y) = P(x, y + 2π) ,∫∫

D

V (x, y)dxdy = 0 ,
∫∫

D

P(x, y)dxdy = 0 ,

whereD = {(x, y) ; |x| < π/α, |y| < π}.
As is well-known, the properties of flow depend on the Reynolds number defined by

λ ≡ γ /ν2. If we scale the unknowns byV (x, y) = νṼ (x, y) = t (νũ(x, y), νṽ(x, y)), and
P(x, y) = ν2P̃ (x, y), then the new unknowns satisfy (1) withν = 1 andγ = λ. It is not
difficult to see thatV0 = t (u0, v0) = t

(
γ ν−1 siny,0

)
andP0 = 0 is a solution for anyλ > 0,

which is called the branch of trivial solutions. Hence we are interested in whether or not there
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exists a solution of (1) and (2) other than(λ, (V0, P0)). It is known that ifα ≥ 1, then(V0, P0)

is the only solution for anyλ > 0 (see [1]).
To discuss the caseα ∈ (0,1), we assume the symmetry of solutions:

(3) V (x, y) = −V (−x,−y) , P (x, y) = P(−x,−y) .

Note that(V , P ) = (V0, P0) satisfies(3). Meshalkin-Sinai [1] and Iudovich [2] considered a
numberr of critical values for eachα ∈ (0,1), depending onα: λ1 < λ2 < · · · < λr, λk =
λ(kα),1/α − 1 ≤ r < 1/α, whereλ(β) is a strictly monotone increasing function defined
for β ∈ [0,1) satisfying limβ→0 λ(β) = √

2 and limβ→1 λ(β) = ∞ (see Subsection 1.3 and
Appendix). They then proved that in a neighborhood of(λk, (V0, P0)), k = 1, · · · , r, there
exists a sequence of nontrivial solutions{(µn, (V0 +Un, P0 +Qn))}∞n=1 of (1)–(3) satisfying
Un → 0,Qn → 0 andµn → λk asn → ∞ in a suitable topology.

The purpose of this paper is to study the structure of the solution set in a neighborhood
of bifurcation points(λk, (V0, P0)). Based on the above results, we can guess that, for each
k = 1, . . . , r, there exists a bifurcation curve:

Γ = {(µ(s), U(s)) ∈ C2((−1,1) ; R × H 3), U(0) = 0, µ(0) = λk} ,

satisfying, for eachs ∈ (−1,1),
(a) if λ = µ(s), (V0 + U(s), P (s)) is a solution to the problem(1), (2) and(3),
(b) U(s) ∈ H 3 ≡ H 3 ×H 3 andP(s) ∈ H 4,

whereHk means the set of periodic functionsHk((2π/α)Z × 2πZ). Note thatP(s) is
uniquely determined byV0 + U(s) as we see later in(1′), (2′) and(3′). Applying Crandall-
Rabinowitz’s bifurcation theorem in [3], we can verify the existence of these curves, which
satisfyµ′(0) = 0.

In this paper, we will prove the precise formula for the second derivativeµ′′(0). More-
over, from this formula, using repeatedly Abel’s criterion for summability concerning the
conditional convergence, we can prove thatµ′′(0) is positive whenβ = kα is close to 1.
In this case, whereµ(s) is called convex in the senseµ′′(0) > 0, we call the bifurcation
curveΓ supercritical. For the linear problem,µ(s) corresponds to an eigenvalueλk which
is independent of the sizes of the eigenvector. Conversely, some meaningful nonlinear phe-
nomena are expected to satisfy the supercriticality:µ′(0) = 0 andµ′′(0) > 0. As in [4],
many researchers studied, from the viewpoint of applications, various numerical approaches
and laboratory works after [2]. Recently, Okamoto and Shōji [5] showed many diagrams of
numerical analysis for the above problem, which lead us to conjecture the supercriticality
of the bifurcation curves and proceed to the mathematical treatment in this paper. From the
viewpoint of mathematical physics, Yamada [6] treated the case whereα is close to zero (see
[5]). Supercriticality means that, besides the basic flow, two more stationary states appear just
after the external force becomes larger than a critical value.

Our results can be stated as follows.
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THEOREM 1. Let α belong to (0,1) and r ∈ N satisfy 1/α − 1 ≤ r < 1/α. For each
k ∈ {1,2, . . . , r}, there exists a bifurcation curve Γ as stated above. No other solution exists
in a neighborhood of (λk, V0) except (λ, V0). Moreover, we can verify µ′(0) = 0.

THEOREM 2. Suppose that all the conditions in Theorem 1 are satisfied. Then we can
obtain the precise formula of the value µ′′(0), and verify µ′′(0) > 0 if β = kα is close to 1.

REMARK 1. The formula forµ′′(0) is represented by Fourier coefficients of the eigen-
function for the linearized operator and elements of the fundamental matrix given in Section
3 (see also Theorem 4,(13′), (16) and(19)). Formulas(16) and(19), which are described by
continued fractions that converge rapidly, give us the exact value ofµ′′(0), which is continu-
ous inβ ∈ (0,1). This implies that numerical analyses relying upon this formula will provide
us with the precise information as required.

REMARK 2. In order to prove Theorem 2, we shall verify the following facts, which
are important in their own right. Fourier coefficients of each eigenfunction for the linearized
operator have an almost monotonic property, which we call quasi-monotonicity (see(33) and
(35)). Moreover we show that Fourier coefficients decay exponentially (see(34), (34′) and
Theorem 5).

1. Reduction of the problem.
1.1. Stream function. Sinceux + vy = 0, the stream functionψ(x, y) is introduced

by the formula

ψ(x, y) ≡ d +
∫
C

udy − vdx ,

whereC is an arbitrary piecewise smooth curve from(0,0) to (x, y) andd is a constant so
chosen that it holds

∫∫
D ψdxdy = 0. From thisψ, (u, v) is reproduced by(ψy,−ψx). Then,

the problem described by(1), (2) and(3) is equivalent to the problem(1′), (2′) and(3′) (see
Proposition A-1 in Appendix):

(1′)
{
ν�2ψ + γ cosy = J (�ψ,ψ) , J (f, g ) ≡ fxg y − fyg x ,
−�P = 2(ψ2

xy − ψxxψyy) .

(2′)


ψ(x, y) = ψ(x + 2π/α, y) = ψ(x, y + 2π) ,
P (x, y) = P(x + 2π/α, y) = P(x, y + 2π) ,∫∫

D

ψ(x, y)dxdy = 0 ,
∫∫

D

P(x, y)dxdy = 0 .

(3′) ψ(x, y) = ψ(−x,−y) , P (x, y) = P(−x,−y) .
By virtue of this transformation we see that it suffices to solveψ first. As

∫∫
D
Pdxdy = 0,

P is determined by the second equation in(1′), because
∫∫
D
(ψ2

xy − ψxxψyy)dxdy = 0 is
verified to hold by integration by parts. Thus, corresponding toV = V0 + U , by putting
ψ = ψ0 + γ ν−1ϕ andψ0 ≡ −γ ν−1 cosy, we see that(1′), (2′) and(3′) are equivalent to the
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following (1′′), (2′′) and(3′′).

(1′′) �2ϕ − λ siny(�+ I)ϕx − λJ (�ϕ, ϕ) = 0 .

(2′′) ϕ(x, y) = ϕ(x + 2π/α, y) = ϕ(x, y + 2π) ,
∫∫

D

ϕ(x, y)dxdy = 0 .

(3′′) ϕ(x, y) = ϕ(−x,−y) .
1.2. Function space. Let us denote the two dimensional flat torusR2/((2π/α)Z ×

2πZ) byM. We consider the following function space defined onM:
X =

{
ϕ ∈ H 4(M) ;

∫∫
M

ϕ(x, y)dxdy = 0, ϕ(x, y) = ϕ(−x,−y)
}
,(

ϕ,ψ
)
X

≡
∫∫

M

�2ϕ �2ψdxdy .

Taking account of(2′′) and(3′′), we can expandϕ ∈ X by the Fourier series

ϕ =
∞∑
m=0

ϕ(m) , ϕ(0) =
∞∑
n=1

c0,n cosny , ϕ(m) =
∞∑

n=−∞
cm,n cos(mαx + ny) ,

wherem ≥ 1 andc0,0 = 0. Corresponding to this representation, as stated in [5], we have an
orthogonal decompositionX = X0 ⊕X1 ⊕ · · · ⊕Xm ⊕ · · · , where

X0 =
{
ϕ(0) ;

∞∑
n=1

n8|c0,n|2 < ∞
}
, Xm =

{
ϕ(m) ;

∞∑
n=−∞

(|m|+|n|)8|cm,n|2 < ∞
}
, m ∈ N .

We can operate�−2 to (1′′), since these terms contain no(0,0) factor, and then obtain

(I − λ�−2 siny(�+ I)∂x)ϕ − λ�−2J (�ϕ, ϕ) = 0 .

Forϕ ∈ X, we denote this relation by

(1′′′) f (λ, ϕ) = (I − λL)ϕ − λQ[ϕ] = 0 ,

defining operatorsL andQ by

Lϕ ≡ �−2 siny(�+ I)∂xϕ , Q[ϕ] ≡ �−2J (�ϕ, ϕ) .

Hereafter, we seek a solution(λ(s), ϕ(s)) of (1′′′) depending on the parameters ∈ (−1,1),
which is a nonlinear perturbation to the pair of characteristic valuesλ(0) and eigenfunction
space{tψ(x) ; t ∈ R, ψ(x) = lims→0(ϕ(s)/s)} of the linearized operatorL.

1.3. Linearization. Sincef (λ,0) = 0 holds,ϕ = 0 is a solution off (λ, ϕ) = 0 for
anyλ > 0. Let us now consider the linearized operator off (λ, ϕ) atϕ = 0, which we denote
by fϕ(λ,0) ≡ I − λL ≡ A. Note that we haveAXm ⊂ Xm for anym ≥ 0. Assume that
ϕ ∈ X satisfies the linearized equationAϕ = 0, which is equivalent to

(4) �2ϕ(m) − λ siny(�+ I)∂xϕ
(m) = 0 , m = 0,1,2, . . . .
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From(4), Fourier coefficientscm,n of ϕ satisfyc0,n = 0, n = 0,1,2, . . . , and

(4′) am,nbm,n + bm,n−1 − bm,n+1 = 0 , n ∈ Z , m ∈ N ,
∑

m∈N,n∈Z

(m2α2 + n2)2b2
m,n < ∞ ,

where we put

(4′′) am,n = 2(m2α2 + n2)2

λmα(m2α2 + n2 − 1)
, bm,n = (m2α2 + n2 − 1)cm,n ,

as in [1] and [2]. Now, puttingβ = mα, we set

(5) an = an(β, λ) = 2(β2 + n2)2

λβ(β2 + n2 − 1)
, bn = bn(β, λ) = (β2 + n2 − 1)cβ/α,n .

Note thata0 < 0 andan > 0 for n �= 0. Then we have that

(6) anbn + bn−1 − bn+1 = 0 , n = 0,±1,±2, . . . ,
∑
n

(β2 + n2)2b2
n < ∞ ,

which is also represented as

(6′) A(β, λ)b = 0 , A(β, λ) =


. . . . . .

1 a−1 −1
1 a0 −1

1 a1 −1
. . . . . .

 , b =



...

b−1
b0
b1
...

 ,

where
∑
n(β

2 + n2)2b2
n < ∞. b ∈ �2 is equivalent to

∑
n(β

2 + n2)kb2
n < ∞ for anyk ∈ N

if b is the solution of(6′), as we see below (see(E1)). Concerning the uniqueness and the
solvability of (6), we have the following proposition due to [1] and [2].

PROPOSITION 1. If β ≥ 1, b = 0 is the only solution in �2 of (6′). For 0 < β < 1,
(6′) has a nonzero solution b in �2 if and only if (β, λ) = (β, λ(β)) holds.

Here, we briefly review the proof of this proposition, because we will use a similar
method. We rely upon the same continued fractions, replacingβ by 2β, to construct the
inverse matrix ofA(β, λ). First note that, as in [1] and [2],bn �= 0 holds for anyn ∈ Z.
Indeed, ifbn = 0 is zero for somen, then the system of equations in(6) are separated into
two independent groups. In this case we see that limn→∞ |bn| = ∞ is equivalent tobn+1 �= 0.
Therefore we can putρn ≡ bn/bn−1, and then look for{ρn}, which satisfies

(7)


an + 1

ρn
− ρn+1 = 0 , n ∈ Z ,

ρn −→ 0 ,
1

ρ−n
−→ 0 asn → +∞ .

Once we fixρ1, then otherρn are determined uniquely by the equations in(7).
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We now introduce the following notation by using infinite continued fractions for any
n ∈ Z.

(8)


ρ+
n = ρ+

n (β, λ) ≡ −1
an

+ 1
an+1

+ · · · ,

ρ−
n = ρ−

n (β, λ) ≡ an−1 + 1
an−2

+ · · · ,

wherean are given in(5). Regarding the convergence of continued fractions, see Lemma
A-1 in Appendix. Note thatρ+

n < 0 for n ≥ 1. Forn > 1, it follows from an = a−n
that ρ+

n (β, λ)ρ
−
−n+1(β, λ) = −1 for all n. Since limn→±∞ an = ∞, it also follows that

limn→+∞ ρ+
n = 0 and limn→−∞ 1/ρ−

n = 0. Hence, if we chooseρ1 = ρ+
1 (β, λ) (resp.

ρ1 = ρ−
1 (β, λ) ), then we haveρn = ρ+

n (β, λ) (resp. ρn = ρ−
n (β, λ)) by equations in(7).

Otherwise, it is verified that limn→+∞ |ρn| = ∞ (resp. limn→−∞ |ρn|−1 = ∞). We prove
this fact by an elementary method in Appendix. Another theoretical approach can be seen in
[1] and [8].

Therefore, the solutionρn to (7) exists if and only ifρ+
1 (β, λ) = ρ−

1 (β, λ) ≡ ρ1. By
virtue ofan = a−n and(8), this relation is equivalent to

(9) ρ−
1 (β, λ)− ρ+

1 (β, λ) = a0 + 2

(
1
a1

+ 1
a2

+ · · ·
)

= 0 .

In Appendix we give a simple proof of the following facts, (see also [1] and [2]):
(i) For β ≥ 1, equation(9) has no real solutionλ.
(ii) For β ∈ (0,1), (9) has a unique solutionλ(β) which is strictly monotone increas-

ing. Moreover, limβ→0 λ(β) = √
2 and limβ→1 λ(β) = ∞.

Moreover we have
(iii) |ρ+

k (β, λ)| < 2 for all k andλ, if β is close to 1.
Note that(iii ) follows from sup1≤n an+1/an < 4, if we apply Lemma A-3. If(9) holds, the
solution of(7) is given by

ρ+
n (β, λ(β)) = ρ−

n (β, λ(β)) ≡ ρn(β) ≡ ρn for all n ∈ Z ,

which satisfybn = ρnbn−1, (n > 0), bn = (1/ρn+1)bn+1, (n < 0) andρnρ−n+1 = −1.
Then, using theseρn, we can represent elements of a solution of(6) as

(10) bn = bn(β) =



( n∏
i=1

ρi

)
for n > 0 ,

1 for n = 0 ,(
ρn+1 · · · ρ0

)−1 = (−1)n
−n∏
i=1

ρi for n < 0 .

The kernel ofA(β, λ(β)) in �2 is given by

kerA(β, λ(β)) = {
sb ; b = t(· · · , b−n(β) · · · , bn(β), · · · ), s ∈ R}

.
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Here we remark that we can construct a fundamental matrixG(β, λ), called the Riemann
matrix, if (β, λ) �= (β, λ(β)), in such a way thatA(β, λ)b = f yields b = G(β, λ) f. In
Section 3 we consider the case whereA(β, λ) is replaced bytA(2β, λ(β)).

Now, we fix the givenα ∈ (0,1) and put

λk ≡ λ(kα) , k ∈ {1, . . . , r ; rα < 1 ≤ (r + 1)α} .
Note thatβ stands forkα in the previous argument. Since the solutionϕ of (I − λL)ϕ = 0
is decomposed as in Subsection 1.2, the set of characteristic values ofL consists of{λk ; k =
1, . . . , r}. Namely, we can find a solutionϕ �≡ 0 of (I − λL)ϕ = 0 if and only ifλ is equal
to one of{λk , k = 1, . . . , r}. More precisely, by virtue ofbn = bn(kα) in (10), the kernel
of Ak ≡ I − λkL is expressed as

kerAk =
{
tϕ(k) ; ϕ(k) =

∞∑
n=−∞

(k2α2 + n2 − 1)−1bn(kα) cos(kαx + ny), t ∈ R
}
,

whereϕ(k) ∈ Xk. The components ofϕ(k) = ∑
n ϕ

(k)
n cos(kαx + ny) are given by

(4′′′) ϕ(k)n ≡ (k2α2 + n2 − 1)−1bn(kα) , ϕ
(k)
−n = (−1)nϕ(k)n , n ∈ Z , k = 1, . . . , r .

Note thatϕ(k)n was denoted also byck,n. From the representation we have the estimate

(E1)


|ρn(β)| ≤ 1/|an(β, λ(β))| ≤ βλ(β)/2n2 , 1 ≤ n ,

|bn(β)| ≤
n∏
i=1

1/|ai(β, λ(β))| ≤ (βλ(β)/2)n(1/n!)2 , 1 ≤ n .

In the next section, we see that the estimate of the Riemann matrix follows from(E1).
Here we summarize the framework of our argument.
1) We use a suitable implicit function theorem to show the existence of bifurcation

curves and showµ′(0) = 0 by differentiating them at bifurcation points (Section 2).
2) By taking higher derivatives, we can determine an integral representation ofµ′′(0).

In order to derive a more useful expression ofµ′′(0), we need to solvez′(0) appearing in this
formula (Subsection 3.1).

3) z′(0) satisfiesAkz′(0) = w̃(0) + w̃(2k), wherew̃(0) ∈ X0 andw̃(2k) ∈ X2k (Sub-
section 3.2). Therefore it is necessary to prove thatAk has an inverse operator inX0 andX2k

(Subsection 3.3).
4) More precisely, we show a rigorous form of the inverse matrix ofA(2kα, λk) to

obtain an exact expression ofµ′′(0) (Section 4).
5) We then clarify that the main part ofµ′′(0) appears asβ = kα tends to 1. In order

to show that this part is positive, we need to prove some facts concerning continued fractions
(Section 5).

2. Existence of bifurcation curves. Here we construct bifurcation curves issuing
from each(λk,0) and prove Theorem 1.
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2.1. Bifurcation theorem. We use the following bifurcation theorem stated in a con-
venient form for our use (see [3] and [7] ).

THEOREM 3 (Crandall-Rabinowitz). Let f (λ, ϕ) be a function defined on R ×X with
continuous Fréchet derivative fϕλ = −L. For each k ∈ {1, . . . , r}, let λ = λk be a character-
istic value of L so that Ak = I − λkL has a nonzero solution in X. Suppose that f (λ,0) ≡ 0
in a neighborhood of λk . Moreover we assume that

(i) dim kerAk = 1, that is, kerAk = {tϕ(k) ; ϕ(k) �= 0 , t ∈ R},
(ii) �Ak = {Akx ; x ∈ X} is a closed subspace in X and codim(�Ak) = 1,
(iii) Lϕ(k) �∈ �Ak.

Denoting (kerAk)⊥ simply by Zk, we can find a neighborhood Vk of (λk,0) in R × X and a
set of continuous functions of a parameter s ∈ (−1,1):

µk(s) : (−1,1) → R , zk(s) : (−1,1) → Zk ,

satisfying µk(0) = λk , zk(0) = 0, such that the solutions of f (λ, ϕ) = 0 in Vk are given by

{(µk(s), sϕ(k) + szk(s)) ; |s| < 1} ∪ {(λ,0) ; (λ,0) ∈ Vk} .

The assumption (i) has been verified in the previous subsection. We can show (ii) by the
well-known Lemma 1 and Proposition 2 below.

LEMMA 1. Let A∗
k(= I − λkL

∗) be the conjugate operator of Ak. Then it holds that

�Ak = (kerA∗
k)

⊥ .

PROPOSITION 2. Let r be the integer satisfying rα < 1 ≤ (r + 1)α. For k ∈
{1, . . . , r}, it holds that dim kerA∗

k = 1, that is,

kerA∗
k =

{
tΦ(k) ; Φ(k) =

∞∑
n=−∞

(k2α2 + n2)−2(−1)nbn cos(kαx + ny), t ∈ R
}
,

where {bn} is given in (10).

(iii) follows from Lemma 1 and the following Proposition 3, since we have
(Lϕ(k),Φ(k)) = (ϕ(k),Φ(k)) �= 0.

PROPOSITION 3. For ϕ(k) ∈ kerAk and Φ(k) ∈ kerA∗
k defined by

ϕ(k) =
∑
n

(k2α2 + n2 − 1)−1bn cos(kαx + ny) ,

Φ(k) =
∑
n

(k2α2 + n2)−2(−1)nbn cos(kαx + ny) ,

we have (ϕ(k),Φ(k))X < 0.

SinceL andL∗ are compact operators, the proof of Lemma 1 is straightforward. For
convenience sake, here we prove Proposition 2 and Proposition 3.
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PROOF OFPROPOSITION 2. LetL∗ be the conjugate operator ofL, which is given by

L∗ = −�−4(�+ I) siny�2∂x ,

since, forϕ,Φ ∈ X,

(Lϕ,Φ)X =
∫∫

D

siny(�+ I)∂xϕ�
2Φdxdy =

∫∫
D

∂xϕ(�+ I)(siny�2Φ)dxdy

=
∫∫

D

�2ϕ(−1)�−2(�+ I) siny�2∂xΦdxdy ≡ (ϕ,L∗Φ)X .

SupposeA∗Φ = 0 forΦ ∈ X. Then it follows that

�2Φ + λk�
−2(�+ I) siny�2∂xΦ = 0 .

In a similar way, we now obtain the following relations between Fourier coefficientsc′m,n
of Φ: c′0,n = 0, n = 0,1,2, . . . , andA(β, λk)b′ = 0, whereβ = mα, A(β, λk) is the
matrix defined in the previous section andb′ is the column vector withn-th componentb′

n =
b′
β/α,n = (β2 + n2)2(−1)nc′β/α,n. Therefore, Proposition 2 follows in the same way as that

for Proposition 1.

PROOF OFPROPOSITION 3. It holds that

(ϕ(k),Φ(k))X =
∫∫

D

�2ϕ(k)�2Φ(k)dxdy

= 2π2

α

∞∑
n=−∞

(k2α2 + n2)2(k2α2 + n2 − 1)−1(−1)nb2
n .

On the other hand, multiplying(�+ I)ϕ(k) to�2ϕ(k) − λk siny(�+ I)∂xϕ
(k) = 0, we have∫∫

D

(�+ I)ϕ(k)�2ϕ(k)dxdy − λk

∫∫
D

(�+ I)ϕ(k) siny(�+ I)∂xϕ
(k)dxdy = 0 .

Note that the second term vanishes, since integration by parts yields

−λk
∫∫

D

(�+I)ϕ(k) siny(�+I)∂xϕ(k)dxdy = λk

∫∫
D

(�+I)∂xϕ(k) siny(�+I)ϕ(k)dxdy .

Hence we obtain ∫∫
D

(�+ I)ϕ(k)�2ϕ(k)dxdy = 0 ,

which implies
∞∑

n=−∞
(k2α2 + n2)2(k2α2 + n2 − 1)−1 b2

n = 0 ,
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since the left-hand side equals∫∫
D

( ∑
n

(−1)bn cos(kαx + ny)

)
×

( ∑
n′
(k2α2 + n′2)2(k2α2 + n′2 − 1)−1bn′ cos(kαx + n′y)

)
dxdy

= −2π2

α

∞∑
n=−∞

(k2α2 + n2)2(k2α2 + n2 − 1)−1b2
n .

Proposition 3 directly follows from this relation, since only negative valued terms remain in
the expansion of(ϕ(k),Φ(k))X.

2.2. Differentiation of a bifurcation curve. Here we restrict ourselves to the solution
of

f (λ, ϕ) = (I − λL)ϕ − λQ[ϕ] = Akϕ − (λ− λk)Lϕ − λQ[ϕ] = 0

in a neighborhoodVk of (λk,0) for any fixedk. Each solution(λ, ϕ) ∈ R × X has the
following form with a parameters: (λ(s), ϕ(s)) ≡ (µk(s), sϕ

(k) + szk(s)) for |s| < 1, satis-
fying µk(0) = λk , zk(0) = 0 and(zk(s), ϕ(k))X = 0. Then, we can rewritef (λ(s), ϕ(s)) =
ϕ(s)− µk(s)Lϕ(s)− µk(s)Q[ϕ(s)] = 0 into the following form

(11) Akϕ(s) = µ̃k(s)Lϕ(s)+ µk(s)Q[ϕ(s)] , µ̃k(s) ≡ µk(s)− λk .

Differentiating(11) by s, we have that

Akϕ
′(s) = µ̃′

k(s)Lϕ(s)+ µ̃(s)Lϕ′(s)+ µ′
k(s)Q[ϕ(s)] + µk(s)(Q[ϕ(s)])′ .

The second differentiation of(11) gives

Akϕ
′′(s) = µ̃′′

k(s)Lϕ(s)+ 2µ̃′
k(s)Lϕ

′(s)+ µ̃(s)Lϕ′′(s)
+ µ′′

k(s)Q[ϕ(s)] + 2µ′
k(s)(Q[ϕ(s)])′ + µk(s)(Q[ϕ(s)])′′ .

Puttings = 0, we have that̃µ(0) = 0, µk(0) = λk, ϕ(0) = 0, Lϕ(0) = 0,Q[ϕ(0)] = 0,
(Q[ϕ(s)])′|s=0 = 0 and(Q[ϕ(s)])′′|s=0 = 2Q[ϕ(k)], from which it follows

(11′) Akz
′
k(0) = µ′

k(0)Lϕ
(k) + λkQ[ϕ(k)] .

Taking inner-product withΦ(k) ∈ kerA∗
k ⊂ Xk, we obtainµ′

k(0) = 0, if we take account of
Q[ϕ(k)] ∈ X0 ∪X2k and Proposition 3. Thus we have Theorem 1.

3. Some analysis at bifurcation points.
3.1. Integral representation ofµ′′

k(0). It follows from (11′) that

(12) Akz
′
k(0) = λkQ[ϕ(k)] , Q[ϕ(k)] = �−2J (�ϕ(k), ϕ(k)) ,

which is equivalent to

(12′) Ãkz
′
k(0) ≡ �Akz

′
k(0) = (

�2 − λk siny(�+ I)∂x
)
z′k(0) = λkJ (�ϕ

(k), ϕ(k)) ≡ w .

Differentiate(11) once more, puts = 0, and divide by three. Then we have that

Akz
′′
k(0) = µ′′

k(0)Lϕ
(k) + 2λk�−2[J (�z′k(0), ϕ(k))+ J (�ϕ(k), z′k(0))] .
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Taking inner-product withΦ(k), we have

(13) µ′′
k (0) = −2λ2

k

(ϕ(k),Φ(k))X

∫∫
D

(J (�z′k(0), ϕ(k))+ J (�ϕ(k), z′k(0)))�2Φ(k)dxdy .

Now, Proposition 3 implies that−2λ2
k/(ϕ

(k),Φ(k))X > 0. In order to determine the value of
µ′′
k(0), it is necessary to solvez′k(0) in the equation(12).

3.2. Equations forz′k(0). Let us determine the valuez′k(0) given in (12). First we
see that the right-hand sidew of (12) can be written asw = w(0) + w(2k), wherew(0) and
w(2k) belong to�2X0 and�2X2k, respectively. Namely, let us note

(14) w ≡ λkJ (�ϕ
(k), ϕ(k)) ≡ w(0) +w(2k) , w(0) ∈ �2X0 , w(2k) ∈ �2X2k .

The components ofw(0) andw(2k) are written explicitly as follows.

PROPOSITION 4. Put w(0) = tw(0)c(0), w(2k) = tw(2k)c(2kα), where c(0) and c(2kα)
are column vectors with n-th components cosny and cos(2kαx + ny), respectively. Then we
obtain the l-th components of the column vectors w(0) and w(2k) as

(w(0))l = λkkα

2
tϕ(k)K1(S

lN − NSl)ϕ(k) ,

(w(2k))l = λkkα

2
tϕ(k)K1(NRSl − RSlN)ϕ(k) ,

where ϕ(k) is the column vector with n-th component (k2α2 + n2 − 1)−1bn and K1, N are
diagonal matrices with n-th diagonal elements

(K1)n = −(k2α2 + n2) ≡ −kn , (N)n = n ,

respectively. Sl and R are matrices with (i, j) elements as follows:

(Sl)i,j ≡
{

1 for j − i = l ,

0 otherwise ,
(R)i,j ≡

{
1 for i + j = 0 ,
0 otherwise .

In order to simplify the result, we prove the following proposition.

PROPOSITION 5. The matrices S, N and R defined in Proposition 4 satisfy the follow-
ing relations :

(i) SlN − NSl = lSl,

(ii) NRSl − RSlN = (2N − lI)RSl .

Now, (w(0))l and(w(2k))l in Proposition 4 can be written as

(14′)


(w(0))l = λkkα

2
tϕ(k)K1lS

lϕ(k) ,

(w(2k))l = λkkα

2
tϕ(k)K1(2N − lI)RSlϕ(k) .

Corresponding to the decompositionw = w(0)+w(2k), we write the solution of linear equation
(12′) asz′k(0) = z(0) + z(2k). Denotez(0) = tz(0)c(0) andz(2k) = tz(2k)c(2kα). Then we see
thatÃkz(0) = w(0) is equivalent totz(0)(ÃkI)c(0) = tw(0)c(0). Since(ÃkI)c(0) = N4c(0), we
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havetz(0)N4 = tw(0). From(w(0))0 = 0 due to(14′), we can writetz(0) = tw(0)N−4, where
N−1 stands for a diagonal matrix withn-th element

(N−1)n =
{

1/n for n �= 0 ,
0 for n = 0 .

Similarly, Ãkz(2k) = w(2k) means thattz(2k)(ÃkI)c(2kα) = tw(2k)c(2kα). A direct calculation
then gives us(ÃkI)c(2kα) = ΛDc(2kα), where

D ≡A(2kα, λk)≡



. . .
. . .

−1 ã−1 1
−1 ã0 1

−1 ã1 1
. . .

. . .

 , Λ≡



. . .

ä−1
ä0

ä1
. . .

 ,

än ≡ λkkα(4k2α2 + n2 − 1) , ãn ≡ an(2kα, λk) ,

an(β, λ) being given in(5). Here we have assumed thatkα �= 1/2. Note that̃a0 is not defined
if kα = 1/2. We consider the case wherekα = 1/2 later. If kα �= 1/2, then we have
tz(2k)ΛD = tw(2k).

We now give proofs of Propositions 4 and 5.

PROOF OFPROPOSITION 4. From the representation of the eigenfunctions of the lin-
earized operatorϕ(k)=tϕ(k)c(kα), it holds that�ϕ(k)=tϕ(k)K1c(kα). Also, λkJ (�ϕ(k), ϕ(k))
becomes

λk{(tϕ(k)K1(−kα)s(kα))(tϕ(k)(−N)s(kα))−(tϕ(k)K1(−N)s(kα))(tϕ(k)(−kα)s(kα)}
=λkkαtϕ(k)K1{s(kα)ts(kα)N−Ns(kα)ts(kα)}ϕ(k) .

Note that the(n, n′) element of the matrixs(kα)ts(kα) is given by

(
s(kα)ts(kα)

)
n,n′ = 1

2
cos(n− n′)y − 1

2
cos(2kαx + (n+ n′)y) .

In general, the matrixM− with (n, n′) elementmn n′ = a(n − n′) is given by M− =∑
a(l)S−l, andM+ with (n, n′) elementmn n′ = b(n+ n′) equalsM+ = ∑

b(l)RSl . Let us
write

C(m) ≡
∞∑

l=−∞
cos(mx+ly)S−l, C(m)R ≡

∞∑
l=−∞

cos(mx+ly)S−lR =
∞∑

l=−∞
cos(mx+ly)RSl,

where we useRS = S−1R. In other words, we put

(C(m))n,n′ = cos(mx + (n− n′)y) , (C(m)R)n,n′ = cos(mx + (n+ n′)y) .
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Thens(kα)ts(kα) is equal to(C(0)− C(2kα)R)/2, and we obtain

λkJ (�ϕ
(k), ϕ(k))= 1

2
λkkα

tϕ(k)K1{(C(0)−C(2kα)R)N − N(C(0)−C(2kα)R)}ϕ(k)

=
∞∑

l=−∞

λkkα

2
tϕ(k)K1(S

lN − NSl)ϕ(k) cosly

+
∞∑

l=−∞

λkkα

2
tϕ(k)K1(NRSl−RSlN)ϕ(k)cos(2kαx + ly) .

This completes the proof of Proposition 4.

PROOF OFPROPOSITION 5. If l = 0, then the both sides of (i) become zero. We use
the mathematical induction forl > 0. If l = 1, thenSN − NS = S follows from a direct
calculation. Suppose thatSlN − NSl = lSl . Then it follows that

Sl+1N − NSl+1 = S(SlN)− NSl+1 = S(NSl + lSl)− NSl+1

= lSl+1 + (SN − NS)Sl = lSl+1 + Sl+1 = (l + 1)Sl+1 .

Thus the identity holds for alll > 0. For l < 0, put l = −l′ (l′ > 0). The transposition of
Sl

′
N−NSl

′ = l′Sl′ equalsNS−l′ −S−l′N = l′S−l′ , becausetS = S−1 andtSl
′ = S−l′ . Hence

we obtain (i). As for (ii), first note thatNR = −RN. Using this relation and (i), we obtain
that

NRSl − RSlN = NRSl − R(lSl + NSl) = (2N − lI)RSl ,

which completes the proof of Proposition 5.
3.3. Determination ofz′k(0) by the fundamental matrix. The inverse matrix ofΛ is

a diagonal matrix withn-th element(Λ−1)n = ä−1
n . The existence of the right inverse matrix

of D, which we call the fundamental matrix, is given as follows.

PROPOSITION 6. Let kα �= 1/2. Put D−1 = (· · · d (m) · · · ), where d (m) are column
vectors with n-th component (d (m))n = d

(m)
n . Then we have that

d(m)n =



( n∏
i=m+1

η+
i

)
N−1
m+1 for n > m ,

N−1
m+1 for n = m ,( m∏
i=n+1

η−
i

)−1

N−1
m+1 for n < m ,

where

η+
n ≡ −ρ+

n (2kα, λk) = 1
ãn

+ 1
ãn+1

+ · · · ,

η−
n ≡ −ρ−

n (2kα, λk) = −ãn−1 + −1
ãn−2

+ · · · , ãn = an(2kα, λk) ,

Nm+1 ≡ η+
m+1 − η−

m+1 .
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Moreover, it holds that

d(m)n = (−1)m+nd(−m)−n for all n,m ∈ Z .

Furthermore, we have another representation ofd
(m)
n for kα �= 1/2.

COROLLARY 1. For kα �= 1/2, we can represent d(m)n as follows.
(i) For n ≥ 0, m ≥ 0,

d(m)n = (−1)m
M∏
i=1

η+
i

N∏
i=1

η−
i N

−1
1 ,

where M ≡ max{|m|, |n|}, N ≡ min{|m|, |n|}, and
∏0
i=1 η

±
i ≡ 1.

(ii) For n ≤ 0, m ≥ 0,

d(m)n = (−1)m+n
m∏
i=1

η+
i

|n|∏
i=1

η+
i N

−1
1 .

Note that we have

N−1
m+1 = (η+

m+1 − η−
m+1)

−1 = (−1)m
|m|∏
i=1

η+
i η

−
i N

−1
1 .

Incidentally, we notice the following slightly general result, whose proof is essentially the
same as that of the above proposition.

THEOREM 4. Suppose that {a(n)}∞−∞ satisfies a(0) > 0 and c|n|2 < a(n), c > 0,
for any integer n �= 0. Also, assume that a(k) ≤ a(k + 1)(1 + c1/k

2) and a(−k) ≤ a(−k −
1)(1 + c1/k

2) for k ≥ 1. Define {ρ+(n)}∞−∞ and {ρ−(n)}∞−∞ respectively by the above
{η+
n }∞−∞ and {η−

n }∞−∞ with ãn replaced by a(n). Then the matrix D with ãn replaced by a(n)
has a right inverse D−1. All the components of D−1 are expressed by {ρ+

n }∞−∞ and {ρ−
n }∞−∞.

Moreover there exists a positive constant C depending on c and c1 so that the absolute values
of all components d(m)n are uniformly less than C.

We give a proof of this theorem in Appendix. Note that it suffices for us to verify the
uniform estimate ford(m)n . By virtue of this theorem and the estimate(E1) in Section 1, all
series under consideration in this paper are absolutely convergent.

Now, let us return to the problemtz(2k)ΛD = tw(2k). By virtue of Proposition 6, we have
tz(2k) = tw(2k)D−1Λ−1. Thusz′k(0) = z(0) + z(2k) is reprsented by

z′k(0) = tw(0)N−4c(0)+ tw(2k)D−1Λ−1c(2kα) .
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We now consider the case ofkα = 1/2. Note that(ÃkI)c(2kα) = D′c(2kα), where

D′ ≡



. . .
. . .

−ä−1 ȧ−1 ä−1
−ä0 ȧ0 ä0

−ä1 ȧ1 ä1
. . .

. . .

 ,

ȧn ≡ (4k2α2 + n2)2 , än ≡ λkkα(4k2α2 + n2 − 1) ,

and thaṫan/än is equal toãn ≡ an(2kα, λk), if (n, kα) �= (0,1/2). Remark that, ifkα = 1/2,
ã0 cannot be defined. However, from

tz(2k)D′ = tw(2k) ,

we can solvetz(2k), if the right inverse matrix ofD′ exists.

COROLLARY 2. There exists the inverse D′−1 = (· · · d ′(m) · · · ), where d ′(m) are col-
umn vectors with n-th component (d ′(m))n = d ′(m)

n . As for m = 0,1, we have

d ′(0)
n =



( n∏
i=1

η+
i

)
for n > 0 ,

1 for n = 0 ,( 0∏
i=n+1

η−
i

)−1

for n < 0 ,

d ′(1)
n =



( n∏
i=2

η+
i

)
d ′(1)

1 for n > 1 ,(
ȧ1 + ä1η

+
2

)−1
for n = 1 ,

0 for n < 1 ,

and for m ≥ 2

d ′(m)
n =



0 for n < 1 ,{
(ȧm + ämη

+
m+1)

(m−1∏
i=1

g i

)
− äm

(m−2∏
i=1

g i

)}−1

for n = 1 ,(n−1∏
i=1

g i

)
d ′(m)

1 for 1< n ≤ m ,( n∏
i=m+1

η+
i

)
d ′(m)
m for n > m ,

where

g n ≡
−ãn + −1

ãn−1
+ · · · + 1

ã2
+ 1

ã1
for n > 1 ,

−ã1 for n = 1 .

If we regard
∏0
i=1g i ≡ 1 and

∏−1
i=1g i ≡ 0, then the notation for d ′(m)

n is also valid for
m = 1. We have similar results when m < 0 in above proposition. Indeed, it suffices to
replace m, n, η+

i and am by −m, −n, η−
−i+1 and a−m, respectively.

Now we are in a position to give the proof of Proposition 6.
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PROOF OFPROPOSITION 6. We fixm and solve

Dd (m) = δm ,

whereδm is the column vector whose component is 1 ifn = m, and 0 otherwise. It then holds
that

ãnd
(m)
n − d

(m)
n−1 + d

(m)
n+1 = 0 for n �= m .

Put

η(m)n ≡ d(m)n /d
(m)
n−1 .

Thenη(m)n satisfies

ãn − (η(m)n )−1 + η
(m)
n+1 = 0 for n �= m .

As in the proof of Proposition 1, we see that−η(m)n = ρ+
n (2kα, λk) = −η+

n form < n, (resp.
ρ−
n (2kα, λk) = −η−

n for m > n), which satisfies

ãn + (ρn)
−1 − ρn+1 = 0 .

Indeed, if we putη(m)m+1 = η+
m+1, then it holds thatη(m)n = η+

n for n ≥ m + 1 and

limn→+∞ η
(m)
n = 0. For n ≤ m − 1, it also holds, with the notationη(m)m = η−

m, that

η
(m)
n = η−

n and limn→−∞ 1/η(m)n = 0. Note thatη+
n are positive andη−

n are negative

for all n, since allãn are positive in this case. Hence we haved(m)m+1 = η+
m+1d

(m)
m , d(m)m+2 =

η+
m+2η

+
m+1d

(m)
m , . . . , and

d(m)n =
( n∏
i=m+1

η+
i

)
d(m)m for n > m .

Similarly,d(m)m−1 = (η−
m)

−1d
(m)
m , d(m)m−2 = (η−

mη
−
m−1)

−1d
(m)
m , . . . , and

d(m)n =
( m∏
i=n+1

η−
i

)−1

d(m)m for n < m .

Forn = m, it holds thatãmd
(m)
m − d

(m)
m−1 + d

(m)
m+1 = 1, which is equal to

d(m)m (ãm − (η(m)m )−1 + η
(m)
m+1) = 1 .

Taking account ofη(m)m = η−
m, η(m)m+1 = η+

m+1 andãm − 1/η−
m = −η−

m+1, we obtain

d(m)m (η+
m+1 − η−

m+1) = 1 .

DenoteNm+1 ≡ η+
m+1 − η−

m+1. Then we obtaind(m)m = N−1
m+1. Hence all the otherd(m)n

can be determined. Now note that it followsN−m+1 = Nm+1 from the above equations and
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η−
i η

+
−i+1 = −1. This relation yields forn > m ∈ Z that

d(m)n =
( n∏
i=m+1

η+
i

)
N−1
m+1 =

( −m∏
i=−n+1

−η−
i

)−1

N−1
−m+1

= (−1)m+n
( −m∏
i=−n+1

η−
i

)−1

N−1
−m+1 = (−1)m+nd(−m)−n .

This completes the proof of Proposition 6.

4. Precise representation of µ′′
k(0). As mentioned before, in order to know the sign

of µ′′
k(0), it suffices to consider the sign of the right hand side of(13). Noting z′k(0) =

z(0) + z(2k), we rewrite(13) as

(13′) µ′′
k(0) = 1

pk
(D

(k)
1 +D

(k)
2 ) , pk ≡ (ϕ(k),Φ(k))X

−2λ2
k

> 0 ,

whereD(k)1 andD(k)2 are given by
D
(k)
1 ≡

∫∫
D

{J (�z(0), ϕ(k))+ J (�ϕ(k), z(0))}�2Φ(k)dxdy ,

D
(k)
2 ≡

∫∫
D

{J (�z(2k), ϕ(k))+ J (�ϕ(k), z(2k))}�2Φ(k)dxdy .

In this section we describe the formula forD(k)1 +D
(k)
2 more precisely and estimate its value

asβ tends to 1.
4.1. D

(k)
1 and its positiveness. First, let us describeD(k)1 by substituting Fourier ex-

pansions of

z(0) = tw(0)N −4c(0) , ϕ(k) = tϕ(k)c(kα) , Φ(k) = tΦ(k)c(kα) ,

wherew(0), N andc(·) are given in Proposition 4, andϕ(k) andΦ(k) are column vectors with
n-th component(k2α2 + n2 − 1)−1bn and(k2α2 + n2)−2(−1)nbn, respectively. Recall that
bn is given in (10). Now we have

J (�z(0), ϕ(k)) = −(−tw(0)N−2(−N)s(0))(−kαtϕ(k)s(kα)) = kαtw(0)N−1s(0)ts(kα)ϕ(k) .

Since the(n, n′) element of the matrixs(0)ts(kα) is

(s(0)ts(kα))n,n′ = sinny sin(kαx + n′y)

= 1

2
cos(−kαx + (n− n′)y)− 1

2
cos(kαx + (n+ n′)y) ,

it holds thats(0)ts(kα) = (C(−kα)−C(kα)R)/2, whereC(−β) andC(β)R are given respec-
tively by C(−β) = ∑∞

l=−∞ cos(−βx + ly)S−l = ∑∞
l=−∞ cos(βx + ly)Sl andC(β)R =
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l=−∞ cos(βx + ly)RSl. Note thatS−lR = RSl . Then it follows that

J (�z(0), ϕ(k)) = kαtw(0)N −1 1

2
(C(−kα)− C(kα)R)ϕ(k)

= kα

2
tw(0)N −1

∞∑
l=−∞

cos(kαx + ly)(I − R)Slϕ(k) ≡ tJ1c(kα) ,

where then-th component ofJ1 is (J1)n ≡ (kα)/2tw(0)N−1(I − R)Snϕ(k). Now it holds

J (�z(0), ϕ(k))�2Φ(k) = tJ1c(kα)tΦ(k)K 2
1c(kα) = tJ1c(kα)tc(kα)K 2

1Φ
(k) ,

whereK1 is given in Proposition 4. Since the(n, n′) element of the matrixc(kα)tc(kα) is
given by

(c(kα)tc(kα))n,n′ = cos(kαx + ny) cos(kαx + n′y)

= 1

2
cos(2kαx + (n+ n′)y)+ 1

2
cos(n− n′)y ,

we havec(kα)tc(kα) = (C ′(2kα)+ C(0))/2 and obtain

J (�z(0), ϕ(k))�2Φ(k) = 1

2
tJ1(C ′(2kα)+ C(0))K 2

1Φ
(k)

= 1

2
tJ1

∞∑
l=−∞

cos(2kαx+ly)RSlK2
1Φ

(k)+ 1

2
tJ1

∞∑
l=−∞

coslyS−lK 2
1Φ

(k) .

Therefore it holds that

(15)
∫∫

D

J (�z(0), ϕ(k))�2Φ(k)dxdy = 2π2

α

tJ1K 2
1Φ

(k) .

In the same way, we have that

J (�ϕ(k), z(0)) = (−kαtϕ(k)K1s(kα))(tw(0)N−4(−N)s(0))

= kαtw(0)N −3s(0)ts(kα)K1ϕ
(k)

= kαtw(0)N −31

2
(C(−kα)− C ′(kα))K1ϕ

(k)

= kα

2

∞∑
l=−∞

cos(kαx + ly)tw(0)N−3(I − R)SlK1ϕ
(k) ≡ tJ2c(kα) ,

where

(J2)n ≡ kα

2
tw(0)N −3(I − R)SnK1ϕ

(k) .

We obtain also that

J (�ϕ(k), z(0))�2Φ(k) = tJ2c(kα)tc(kα)K 2
1Φ

(k) = 1

2
tJ2(C ′(2kα)+ C(0))K 2

1Φ
(k)

= 1

2
tJ2

∞∑
l=−∞

cos(2kαx + ly)RSlK 2
1Φ

(k) + 1

2
tJ2

∞∑
l=−∞

coslySlK 2
1Φ

(k).



BIFURCATION ANALYSIS OF KOLMOGOROV FLOWS 347

Hence it holds that

(15′)
∫∫

D

J (�ϕ(k), z(0))�2Φ(k)dxdy = 2π2

α

tJ2K 2
1Φ

(k),

Proposition 2,(14′), (15) and(15′) then yield

D
(k)
1 = 2π2

α
(tJ1 + tJ2)K2

1Φ
(k)

= kπ2
∞∑

m=−∞
tw(0){N −1(I − R)Smϕ(k) + N −3(I − R)SmK1ϕ

(k)}(−1)mbm

= k2π2αλk

2

∞∑
m=−∞

∞∑
n=−∞

tϕ(k)K1nS
nϕ(k)(N −1(I − R)Smϕ(k)

+ N −3(I − R)SmK1ϕ
(k))nb̃m ,

where(M)n stands for then-th row vector of the matrixM. Hence we can rewrite

D
(k)
1 = k2π2αλk

2

∞∑
m=−∞

∞∑
n=−∞

wnAnmb̃m ,

where

wn ≡ tϕ(k)K1nS
nϕ(k) = n

∞∑
j=−∞

(−kj )ϕjϕn+j ,

b̃m ≡ (−1)mbm = (−1)m(k2α2 +m2 − 1)ϕm , b̃m > 0 if m ≥ 0 ,

An,m ≡ (N−1(I − R)Smϕ(k))n + (N−3(I − R)SmK1ϕ
(k))n .

Here we have denotedϕ(k)j in (4′′′) simply byϕj . Note thatkj , ϕ(k), K1,N−1 andR are given
in Proposition 4. We can easily seew0 = 0. We also remark thatAn,m = A−n,m. In fact,
since

An,m = 1

n
(−ϕ−n+m + ϕn+m)+ 1

n3 (k−n+mϕ−n+m − kn+mϕn+m)

= 1

n3 {(−n2 + k−n+m)ϕ−n+m + (n2 − kn+m)ϕn+m} ,

we have that

A−n,m = −1

n3 {(−n2 + kn+m)ϕn+m + (n2 − k−n+m)ϕ−n+m}

= 1

n3
{(−n2 + k−n+m)ϕ−n+m + (n2 − kn+m)ϕn+m} = An,m .
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Note thatA00 = 0. Hereafter we putn > 0. Sinceϕ−m = (−1)mϕm, b̃−m = (−1)mb̃m and
k−m = km, we also have the following form �= 0:

An,mb̃m + An,−mb̃−m

= 1

n3
b̃m{(−n2 + k−n+m)ϕ−n+m + (n2 − kn+m)ϕn+m}{1 − (−1)n}

=


0 if n is even ,
2

n3 b̃m{(−n2 + k−n+m)ϕ−n+m + (n2 − kn+m)ϕn+m} if n is odd .

Also, form = 0, it holds that

An,0b̃0 = 1

n3
{(−n2 + k−n)ϕ−n + (n2 − kn)ϕn}

= 1

n3
{(−n2 + kn)(−1)nϕn + (n2 − kn)ϕn} = 1

n3
(n2 − kn)ϕn{1 − (−1)n}

=


0 if n is even ,
2

n3
(n2 − kn)ϕn if n is odd .

Therefore we can rewriteD(k)1 as

(16) D
(k)
1 = k2π2αλk

2

∑
n=1,3,5,...

(wn + w−n)
{
An,0b̃0 +

∞∑
m=1

(An,mb̃m + An,−mb̃−m)
}
.

Now, let us investigate the term for each oddn ≥ 1. We first have

An,0b̃0 = 2

n3 (n
2 − kn)ϕn = −2(kα)2

n3 ϕn > 0 .

Also, in the sum

∞∑
m=1

(An,mb̃m + An,−mb̃−m) = 2

n3

∞∑
m=1

b̃m{(−n2 + k−n+m)ϕ−n+m + (n2 − kn+m)ϕn+m} ,

the term containingϕ0 is given by

2b̃n(−n2 + k0)ϕ0

n3
> 0 .

If β = kα tends to 1, only this term diverges to+∞, sinceϕ0 = 1/(β2 − 1) < 0 diverges and
the sum of other terms is uniformly bounded. Hence we have

∑∞
m=1(An,mb̃m+An,−mb̃−m) >

0 if β is close to 1.
In the case thatβ → 0,ϕm = (β2 +m2 − 1)−1bm are very small ifm �= 0, since

|ρm| < 1

am
= λkβ(β

2 +m2 − 1)

2(β2 +m2)2
→ 0 as β → 0 ,
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but |ϕ0| = |β2 − 1| tends to 1. So in this case the term withϕ0 is dominant, and we have
∞∑
m=1

(An,mb̃m + An,−mb̃−m) > 0 .

On the other hand, it follows from(4′′′) that for each odd numbern ≥ 1

wn +w−n = n

∞∑
j=−∞

(−kj )ϕjϕn+j + (−n)
∞∑

j=−∞
(−kj )ϕjϕ−n+j

= n

∞∑
j=−∞

(−kj )ϕjϕn+j + n

∞∑
j=−∞

kj+nϕj+nϕj

= n

∞∑
j=−∞

(kj+n − kj )ϕjϕn+j

= n

{
2(kn − k0)ϕ0ϕn +

∑
j �=0,−n

(kj+n − kj )ϕjϕn+j
}
.

If β tends to 1, only the first term 2n3ϕ0ϕn diverges to+∞ and the other terms are bounded.
Thenwn + w−n > 0 holds asβ → 1. Note that, in the case whereβ is close to 0,wn +
w−n > 0 follows directly, sinceϕj (j �= 0) are very small. Consequently, summing up above

estimates, we haveD(k)1 > 0 whenβ is close to 1 or 0.

4.2.D(k)2 and its estimates. Next we investigateD(k)2 by using the Fourier expansion of
each component function. First,J (�z(2k), ϕ(k)) turns out to be

(−2kαtz(2k)K2s(2kα))(tϕ(k)(−N)s(kα))−(tz(2k)K2(−N)s(2kα))(−kαtϕ(k)s(kα))
= 2kαtz(2k)K2s(2kα)ts(kα)Nϕ(k) − kαtz(2k)K2Ns(2kα)ts(kα)ϕ(k)

= kαtz(2k)K2(2s(2kα)ts(kα)N − Ns(2kα)ts(kα))ϕ(k) ,

whereK2 is a diagonal matrix withn-th element(K2)n ≡ −(4k2α2+n2) = −k̃n. In a manner
similar toJ (�ϕ(k), z(0)), J (�ϕ(k), z(2k)) becomes

(−kαtϕ(k)K1s(kα))(tz(2k)(−N)s(2kα))−(tϕ(k)K1(−N)s(kα))(−2kαtz(2k)s(2kα))

= kαtz(2k)(Ns(2kα)ts(kα)− 2s(2kα)ts(kα)N)K1ϕ
(k) ,

whereK1 is a diagonal matrix withn-th element−(k2α2 + n2) = −kn. Substituting

s(2kα)ts(kα) ≡ 1

2
(C(kα)− C(3kα)R)

= 1

2

{ ∞∑
l=−∞

cos(kαx + ly)S−l −
∞∑

l=−∞
cos(3kαx + ly)RSl

}
,

we obtain

J (�z(2k), ϕ(k)) = tJ3c(kα)+ tJ ′
3c(3kα) ,
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where

(J3)n ≡ 1

2
kαtz(2k)K2(2S−nN − NS−n)ϕ(k)

(J ′
3)n ≡ 1

2
kαtz(2k)K2(−2RSnN + NRSn)ϕ(k) .

Similarly, we also have

J (�ϕ(k), z(2k)) = tJ4c(kα)+ tJ ′
4c(3kα) ,

where

(J4)n ≡ 1

2
kαtz(2k)(NS−n − 2S−nN)K1ϕ

(k) ,

(J ′
4)n ≡ 1

2
kαtz(2k)(−NRSn + 2RSnN)K1ϕ

(k) .

Thus we have

(17)
∫∫

D

J (�z(2k), ϕ(k))�2Φ(k)dxdy = 2π2

α

tJ3K2
1Φ

(k) ,

(18)
∫∫

D

J (�ϕ(k), z(2k))�2Φ(k)dxdy = 2π2

α

tJ4K2
1Φ

(k) .

Moreover, rewriting(J3)n and(J4)n by using Proposition 5, we have

(J3)n = 1

2
kαtz(2k)K2S

−n(N − nI)ϕ(k) ,

(J4)n = 1

2
kαtz(2k)S−n(−N + nI)K1ϕ

(k) .

From Proposition 2,(12′′), (14′), (17) and(18), it then follows that

D
(k)
2 = 2π2

α
(tJ3 + tJ4)K2

1Φ
(k)

= 2π2

α

∞∑
m=−∞

{
k

2
αtz(2k)K2S

−m(N −mI)ϕ(k) + k

2
αtz(2k)S−m(−N +mI)K1ϕ

(k)

}
b̃m

= kπ2
∞∑

m=−∞
tz(2k)(K2S

−m − S−mK1)(N −mI)ϕ(k)b̃m

= k2π2αλk

2

∞∑
m,n=−∞

tϕ(k)K1(2N − nI)RSnϕ(k)

× (D−1Λ−1(K2S
−m − S−mK1)(N −mI)ϕ(k))nb̃m .

Hence we obtain

(19) D
(k)
2 = k2π2αλk

2

∞∑
m=−∞

∞∑
n=−∞

w̃nÃnmb̃m ,
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where we put

w̃n ≡ tϕ(k)K1(2N − nI)RSnϕ(k) =
∞∑

j=−∞
kj (n− 2j)ϕjϕn−j ,

Ãnm ≡ (D−1Λ−1(K2S
−m − S−mK1)(N −mI)ϕ(k))n

=
∞∑

j=−∞
d
(j)
n ä−1

j (−k̃j + kj−m)(−2m+ j)ϕj−m .

Note thatd(j)n is given in Proposition 6 and̈a−1
j is equal toλkkα(4k2α2+n2−1). InD(k)2 , the

term containingϕ2
0 is given by

(19′) D̃
(k)
2 = k2π2αλk

2

∞∑
m=−∞

∞∑
n=−∞

−n3ϕnmd
(m)
n ä−1

m (3β2 +m2)b̃mϕ
2
0 ,

while we already know the corresponding term inD(k)1 is given by

(16′) D̃
(k)
1 = k2π2αλk

2

∑
n=1,3,5,...

4(n2 − β2)ϕnbnϕ
2
0 > 0 .

First, we compare these values asβ tends to 1. Hereafter we neglect(k2π2αλk/2)ϕ2
0,

which is a positive factor involved in both(19′) and (16′). Now, recall the relationϕn =
(β2 + n2 − 1)−1bn and note the following limits asβ → 1:

(20)
n3

β2 + n2 − 1
→ n ,

3β2 +m2

β(4β2 +m2 − 1)
→ 1 .

Then we can regard that̃D(k)2 /{(k2π2αλk/2)ϕ2
0} is close to

(21)
∞∑

m=−∞

∞∑
n=−∞

(−1)m+1nm
d
(m)
n

λ
bnbm ≡

∞∑
m=−∞

∞∑
n=−∞

c̃m,n ,

where

(22) c̃m,n ≡ (−1)m+1nm
d
(m)
n

λ
bnbm ,

with λ = λk = λ(kα) = λ(β), d(m)n = d
(m)
n (β) andbn = bn(β). Note also thatβ is a

monotone increasing function ofλ, andc̃m,n has the symmetric properties such as

(23) c̃m,n = c̃−m,−n , c̃m,n = c̃n,m .
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In fact, we have

c̃−m,−n = (−1)−m+1(−n)(−m)d
(−m)
−n
λ

b−nb−m

= (−1)−m+1nm(−1)n+m d
(m)
n

λ
(−1)nbn(−1)mbm = c̃m,n,

c̃n,m = (−1)n+1mn
d
(n)
m

λ
bmbn = (−1)n+1mn(−1)n+m d

(m)
n

λ
bnbm = c̃m,n .

Here we have usedd(−m)−n = (−1)n+md(m)n andd(n)m = (−1)n+md(m)n .
Therefore it suffices to deal with the terms withm ≥ |n|. Then(21) becomes

∞∑
m=−∞

∞∑
n=−∞

c̃m,n = 2
∞∑
m=1

c̃m,m + 4
∞∑
n=1

∞∑
m=n+1

c̃m,n

+ 2
∞∑
m=1

c̃m,−m + 4
∞∑
n=1

∞∑
m=n+1

c̃m,−n ,
(24)

since this series is absolutely convergent. Now note that the sign ofc̃m,n is alternating with
respect tom, since

(25) c̃m,n = (−1)m+1mn
1

λ

m∏
i=n+1

η+
i N

−1
n+1|bm||bn| .

For our convenience of calculation, we rewrite(24) as follows:

(26) D̄(k)2 ≡
∞∑

m,n=−∞
c̃m,n = 2

∞∑
n=1

{ ∞∑
m=n

c̃m,n +
∞∑

m=n+1

c̃m,n +
∞∑
m=n

c̃m,−n +
∞∑

m=n+1

c̃m,−n
}
.

Our aim now is to show that the absolute value of(26) is smaller than the following sum

(27) D̄
(k)
1 ≡

∑
n=1,3,5,...

n2 − 1

n2
b2
n =

∑
n=3,5,...

n2 − 1

n2
b2
n ,

which corresponds tõD(k)1 /{(k2π2αλk/2)ϕ2
0} asβ tends to 1. To this end, we investigate

continued fractions and related sequences in detail in the next section.

5. Quasi-monotonicity and supercriticality.
5.1. Sequences generated by continued fractions. In this section we consider, in a

general situation, properties of continued fractions related to a sequence{a(n)}∞1 of positive
numbers, which is supposed to have a parameterλ ∈ (λ0,∞),λ0 > 0. More precisely, we
puta(n) = a(n, λ). The continued fractionρ(n) = ρ(n, λ) defined by

ρ(n, λ) = 1

a(n)+ ρ(n+ 1, λ)
= 1

a(n)
+ 1

a(n+ 1)
+ · · ·

becomes a positive valued sequence satisfyingρ(n, λ) < 1/a(n, λ). We are interested in the
behavior ofρ(n, λ) asλ tends to infinity. As seen before,{ρ(n, λ)}∞1 gives rise to a new
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sequence{b(n)}∞1 ={b(n, λ)}∞1 defined byb(n, λ) ≡ ∏n
i=1 ρ(i, λ) for n ≥ 1. Note that

b(n+ 1) = b(n)ρ(n+ 1) for n ∈ N andb(0) = 1. On the other hand, we can see that{ρ(n)}
satisfies, for alln ∈ N,

(1 + a(n)a(n+ 1)+ (an/an+2))
−1 < ρ(n)ρ(n+ 1) < (1 + a(n)a(n+ 1))−1 < 1 .

The above inequality shows that the sequence of even terms and that of odd terms are strictly
monotone decreasing, respectively. In the previous sections, we considered the above se-
quences witha(n), ρ(n) and b(n) replaced respectively byan = an(β(λ), λ), |ρn| and
(−1)nbn. We note that the inverse functionβ = β(λ) of λ(β) is a monotone increasing
continuous function defined on(

√
2,∞). Therefore we can regardan(β(λ), λ) = a(n, λ) as

a sequence having one parameterλ.
In our analysis, which is closely related to Abel’s criterion for summability, we are con-

cerned whether {b(n)} = {b(n, λ)} is a monotone decreasing sequence or not, that is, if
ρ(n) < 1 holds for alln ∈ N. Although this is not true in general,b(n) = b(n, λ) has a
property which is close to monotonicity for sufficiently largeλ, which we call later quasi-
monotonicity.

In order to prove this property, we generalizeρ(n, λ), which is defined first onN ×
(λ0,∞), to a continuous functionρ(t, λ) defined on[1,∞)× (λ0,∞), and use infinitesimal
calculus. For this purpose, we assume that the extended functiona(t, λ) is a smooth function
defined on[1,∞)× (λ0,∞) satisfying

(28)


t2

M2
≤ a(t, λ) ≤ ct2

M2
,

d

dt
a(t, λ) ≤ ct

M2
,

0 ≤ d2

dt2
a(t, λ) , 1 ≤ t , t ∈ [1,∞) , λ ∈ (λ0,∞)

for some positive constantc, whereM = [√λ] + 1. Now, we remark two examples:{
a(+1)(t, λ) = 2(β(λ)2+(t + 1)2)2/(λβ(λ)(β(λ)2 + (t + 1)2 − 1)) ,

ã(t, λ) = (4β(λ)2 + t2)2/(λβ(λ)(4β(λ)2 + t2 − 1)) .

In particular, for alln ∈ N, we havea(+1)(n, λ) = an+1(β(λ), λ), ã(n, λ) = ãn(β(λ), λ) =
an(2β(λ), λ). Note thata(+1)(t, λ) corresponds to{an(β(λ), λ)}∞n=2, where we can takec =
2 for largeλ0. Remark that, for{an(β(λ), λ)}∞n=1, the extended functiona(t, λ) does not
satisfies the third condition in(28). Therefore the term concerned withn = 1 must be treated
separately.

Now, we can define the extensionρ(t) = ρ(t, λ) of ρ(n, λ) by

(29) ρ(t) ≡ 1
a(t)

+ 1
a(t + 1)

+ · · · .

Then fromρ(t) = (a(t)+ρ(t+1))−1 it follows thatρ(t) < 1 for t > M andρ(t)ρ(t+1) ≤
(1 + a(t)a(t + 1))−1 < 1 for any(t, λ) ∈ [1,∞)× (λ0,∞).

First, let us prove thatρ(t) is continuous. Namely, settingµ(t, h) ≡ ρ(t + h) − ρ(t),

we prove that limh→0µ(t, h) = 0. Using the formulaρ(t) = 1/{a(t) + ρ(t + 1)} and the
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notationd(t, h) ≡ a(t + h)− a(t), we obtain

|µ(t, h)| = |− {d(t, h)+ µ(t + 1, h)}ρ(t + h)ρ(t)|
= |− d(t, h)ρ(t + h)ρ(t)

+ {d(t + 1, h)+ µ(t + 2, h)}ρ(t + h)ρ(t)ρ(t + h+ 1)ρ(t + 1)|

≤
∣∣∣∣2N−1∑
j=0

(−1)j+1{d(t + j, h)

j∏
i=0

ρ(t + h+ i)ρ(t + i)}
∣∣∣∣

+
∣∣∣∣µ(t + 2N,h)

2N−1∏
i=0

ρ(t + h+ i)ρ(t + i)

∣∣∣∣ .
(30)

Here we note that, fork ∈ N,

(31) νj (t, h) ≡
j∏
i=0

ρ(t + h+ i)ρ(t + i) ≤
{
ρ(t + h+ j)ρ(t + j) if j = 2k ,
1 if j = 2k − 1 .

Then, since limt→∞ ρ(t) = 0, the second term of(30) converges to zero asN tends
to ∞. In consequence, by a standardε-δ method, limh→0 |µ(t, h)| = 0 follows from
limh→0 d(t + j, h) = 0 for finite j .

We now define the sequence{b(n)} = {b(n, λ)} by (10) with ρn = ρ(n, λ). Denoting
{b(n)} by |bn| as before, we see that it has exponential decay as follows:

(32) |bn| < |bn′ | exp{−M−4(n− n′)5/20} for even positive integersn′ < n ≤ M .

Similarly, for any even positive integersr ′M < rM ≤ M, we have

(32′) |brM | < |br ′M | exp

{
−M

2

∫ r

r ′
log(1 + s4)ds

}
, |brM | = b(rM, λ) .

Let us prove(32). First, from(28) and(29), the following relation holds:

(33)
|bn+2|
|bn| = |ρn+1ρn+2| < 1

1 + an+1an+2
<

1

1 + ((n+ 1)/M)4
, n ≥ 0 .

If n = rM is even, then

|brM | < |b0|{1/(1+ (1/M)4)}{1/(1 + (3/M)4)} · · · {1/(1 + {(rM − 1)/M}4)} .
Sinceb0 = 1, we have

log |brM | < −
rM/2∑
k=1

log{1 + ((2k − 1)/M)4} < −M
2

∫ r

0
log(1 + s4)ds .

Since we have(log(1 + s4))′ > 2s3 and log(1 + s4) > s4/2 for 0 < s < 1, it follows that∫ r
0 log(1 + s4)ds > r5/10 for 0< r < 1. Therefore we have

(34) |brM | < exp(−Mr5/20) for even rM = n ≤ M .

Also, in a manner similar to(34), it holds that ifn− n′ = rM − r ′M is even,

(34′) |brM | < |br ′M | exp{−M(r − r ′)5/20} .
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We have(32) immediately from(34′). Therefore, for oddn = rM, we have likewise

log |brM | < log |b1| − M

2

∫ r

1/M
log(1 + s4)ds < log |b1| − Mr5

20
+ 1

20M4 .

Hence, we have the estimate of exponential decay

|brM | < |b1| exp
(
1/20M4

)
exp

(
−Mr5/20

)
for odd n = rM .

Note that it follows from Lemma A-3 that|b1| = |ρ(1, λ)| < (1 + 2c)1/2, since it holds that
a(n+ 1, λ)/a(n, λ) < 1 + 2c for all t andλ. Now we state the following theorem.

THEOREM 5. Under the assumption (28), {b(n, λ)}∞n=1 defined by (10) with ρn =
ρ(n, λ) satisfies b(t, λ) > b(t + 2, λ) and has the exponential decay property:

b(n, λ) < C1 exp

{
− λ−2n5

20

}
, n ≥ 1

for some C1 > 0. Moreover, there exists a constant C > 0, such that ρ(t, λ) satisfies the
estimate

(35) lim sup
λ→∞

S(λ)λ1/3 ≤ C ,

where S(λ) ≡ sup1≤t<∞(ρ(t, λ)− 1). Incidentally it holds that

max{ρ(t, λ); t ≥ 1, λ ∈ (λ0,∞)} < (1 + 2c)1/2 .

The proof for the exponential decay is similar to the proof above. In order to show(35),
we first consider the open regionI = {t ∈ [1,∞); ρ(t) > 1}, which is divided into the
countable union of open intervalsI = ∑

k=1 Ik, eachIk being a connected component ofI .
Note that the number ofIk satisfying|Ik| > 1/j > 0 does not exceedj (M−1) for any integer
j ≥ 1, sinceI is contained in[1,M). The length|Ik| of eachIk satisfies|Ik | < 1. Indeed, if
|Ik| ≥ 1, then we have a pointt1 satisfyingρ(t1)ρ(t1 + 1) ≥ 1, which is a contradiction.

Let us first study the values ofλ such thatS(λ) > 0. Sinceρ(t, λ) is continuous and
ρ(t, λ) tends to zero ast → ∞, we examine theρ(t, λ) − 1 in (t0,M), supposing that
ρ(t ′0, λ) − 1 > 0 is the maximum. For simplicity, let us denotet ′0 by t0 and omitλ. There
exists a positive numberh = h(λ) < 1 such thatρ(t0 + h) = 1. We first consider the value
|ρ(t0)− 1| = |µ(t0, h)| = |ρ(t0 + h)− ρ(t0)|. Then(30) yields

(36) |ρ(t0)− 1| <
∣∣∣∣N−1∑
j=0

(−1)jd(t0 + j, h)νj (t0, h)

∣∣∣∣ + |µ(t0 +N,h)||νN−1(t0, h)| .

Now we defineN to beN = min{2k ∈ 2N; 2k > M1+δ}, whereδ > 0 is determined later.
Then, from|νN−1(t0, h)| < 1 it follows that

(36′) |µ(t0 +N,h)||νN−1(t0, h)| ≤ 1

a(t0 +N)
< M2/N2 < M−2δ .
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In order to estimate the first term in(36), modifying νj = νj (t0, h), we define a monotone
decreasing sequence{ν̃j }:

ν̃0 ≡ ν0 = ρ(t0) > 1, ν̃1 ≡ ν1 = ρ(t0)ρ(t0 + h)ρ(t0 + 1)ρ(t0 + h+ 1) < 1 ,

ν̃j ≡
{
νj−1 if ρ(t0 + j)ρ(t0 + h+ j) > 1 ,
νj otherwise.

Sinceρ(t0 + j) < 1 for t0 + j ≥ M, we haveν̃j = νj in this case. Moreover, it follows from
the definition ofS(λ) that νj − ν̃j ≤ {(1 + S(λ))2 − 1}ν̃j . Note also thatνj > ν̃j implies
ν̃j+1 = νj+1 , sinceρ(t)ρ(t + 1) < 1 holds. Hence we obtain

(37)

∣∣∣∣N−1∑
j=0

(−1)jd(t0 + j, h)νj

∣∣∣∣
≤

∣∣∣∣N−1∑
j=0

(−1)j d(t0 + j, h)ν̃j

∣∣∣∣ +
∣∣∣∣M−t0∑
j=2

(−1)j d(t0 + j, h)(ν̃j − νj )

∣∣∣∣ .
Note that fort > M, 1 ≤ a(t), ρ(t) < 1 andν̃j − νj = 0. For the first term of(37) we use
Abel’s criterion for summability:

(38)

(
inf
k

k∑
j=1

aj

)
b1 ≤

n∑
j=1

ajbj ≤
(

sup
k

k∑
j=1

aj

)
b1 ,

where{bj } is a monotone decreasing positive sequence. If{bj } is increasing, we have(38)
with aj andb1 replaced byan−j+1 andbn, respectively.

Now, by the mean value theorem,d(t0 + j, h) = a′(t0 + j + θh)h for someθ = θ(j) ∈
(0,1). Thus the monotonicity ofa′(t) implies that{d(t0 + j, h)} is a monotone increasing
sequence, since 0< h < 1. Then the following estimate follows from(38)

(39)

∣∣∣∣ k∑
j=0

(−1)jd(t0 + j, h)

∣∣∣∣ ≤ d(t0 + k, h), k ≤ N − 1 .

Applying again Abel’s criterion to the first term of(37), sincet0 ≤ M, it follows from (28)
and(39) that

(40)

∣∣∣∣N−1∑
j=0

(−1)jd(t0 + j, h)ν̃j

∣∣∣∣ ≤ |d(t0 +N − 1, h)|ν0 = |a′(t0 +N − 1 + hθ)|hρ(t0)

<
c

M2
(t0 +N − 1 + hθ)ρ(t0) < c(M−1 +M−1+δ +M−2)(S(λ, t0)+ 1) .

Here we used the increasing order ofa′(t) assumed in(28) and put S(λ, t0) ≡
supt0≤t<∞(ρ(t, λ) − 1). Suppose thatt0 satisfies 2c(1 + p)(M − t0)/M = 1/3, wherep =
(1+2c)1/2. Then it follows from(28) and the inequalityνj − ν̃j ≤ {(1+S(λ, t0))2 −1}ν̃j <
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3S(λ, t0)ν̃j < 6S(λ, t0) that

(41)

∣∣∣∣M−t0∑
j=2

(−1)ja′(t0 + j + hθj )h(ν̃j − νj )

∣∣∣∣
< (M − t0)

2c

M
({(1 + S(λ, t0))

2 − 1}) < 1

3
S(λ, t0) .

Note that, sinceS(λ) < p−1, we haveνj − ν̃j < ({(1+S(λ, t0))2−1})ν̃j < (1+p)S(λ, t0).
Combining(36), (36′), (37), (40), (41) and the above inequality, we obtain

S(λ, t0) < M−2δ + 2c

M1−δ (S(λ, t0)+ 1)+ 1

3
S(λ, t0) .

Here putδ = 1/3 and suppose that 2c/M1−δ < 1/3 for largeλ. Then there exists a positive
constantM0 such that forM > M0

S(λ, t0) < 3(1 + 2c)M−2/3 , M = M(λ) = {[√λ] + 1}−2/3 ,

from which we obtain, forM > M0,

S(λ, t1) < M
−2δ + 2c

M1−δ (S(λ, t1)+ 1)+ S(λ, t1)/3 + S(λ, t0)/3 , t1 = t0 − (M − t0) .

Therefore we have

S(λ, t1) ≤ 3(1 + 2c)M−2/3(1 + (1/3)) , for M > M0 .

Repeating this process[M/(M − t0)] + 1 times, we obtain(35) with

(42) C = 3(1 + 2c)

(
1 + 1

3

)k0

, k0 = [6c{1 + (1 + 2c)1/2}] + 1 .

5.2. Positiveness ofµ′′
k (0). Now we return to the proof of Theorem 2. From(25),

c̃m,n change signs alternately inm. The series
∑∞
n=−∞

∑∞
m=−∞ c̃m,n converge absolutely.

Hence, by(26), we obtain

(43)

∣∣∣∣ ∞∑
n=−∞

∞∑
m=−∞

c̃m,n

∣∣∣∣ ≤ 2
∞∑
n=1

∣∣∣∣ ∞∑
m=n

c̃m,n

∣∣∣∣ + 2
∞∑
n=1

∣∣∣∣ ∞∑
m=n+1

c̃m,n

∣∣∣∣
+2

∞∑
n=1

∣∣∣∣ ∞∑
m=n

c̃m,−n
∣∣∣∣ + 2

∞∑
n=1

∣∣∣∣ ∞∑
m=n+1

c̃m,−n
∣∣∣∣ .

We decompose the first term in the right-hand side into
∞∑
n=1

∣∣∣∣ ∞∑
m=n

c̃m,n

∣∣∣∣ ≤ |c̃1,1| +
∣∣∣∣ ∞∑
m=2

c̃m,1

∣∣∣∣ +
∞∑
n=2

∣∣∣∣ ∞∑
m=n

c̃m,n

∣∣∣∣ .
First, let us consider

(44)
∞∑
m=n

c̃m,n = n
1

λ
N−1
n+1|bn|Pn , Pn =

∞∑
m=n

(−1)m+1m

m∏
i=n+1

η+
i |bm| ,
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where
∏m
i=n+1 η

+
i = 1 form = n. Note that fork = 1,2, . . . , ak+1 = ak+1(λ) = a(+1)(k, λ)

satisfies the conditions(28). Therefore we consider the case wheren ≥ 2. The termc̃1,1 can
be estimated separately at the final part of this section.

Now, we verify

0< max−∞<n<∞N−1
n+1 < C ,

in the following way. First note thatNn+1 ≡ η+
n+1−η−

n+1 > max{η+
n+1, ãn}. Then, forn ≥ M

it holds thatNn+1 ≥ ãn ≥ 1. For 0≤ n < M we haveη+
n+1 > 1/6 , sinceη+

n+2 < 2 and
η+
n+1η

+
n+2 > (1 + ãn+1ãn+2 + (ãn+1/ãn+3))

−1 > 1/3. It follows from sup̃an+1/ãn < 4 and
Lemma A-3 thatη+

n+2 < 2. Thus we can takeC = 6. For negativen we have the same result.

ThusN−1
n+1 is uniformly bounded inn andλ.

Here, we decompose the main part of(44) into

(45) |Pn| ≤
∣∣∣∣ M∑
m=n

m

{
(−1)m+1

m∏
i=n+1

η+
i |bm|

}∣∣∣∣ +
∣∣∣∣ ∞∑
m=M+1

(−1)m+1m

m∏
i=n+1

η+
i |bm|

∣∣∣∣ .
Note that only the second term remains forn > M. If we suppose that

∏m
i=n+1 η

+
i and|bm|

are monotone decreasing, then both terms in(45) are estimated byM|bn|. Indeed, Abel’s
criterion for summability is applicable to the first term. In the second term we can verify that
mη+

i |bm| is monotone decreasing. Now defineb̄m by

b̄m ≡ bm if |ρm| ≤ 1 , bm−1 if |ρm| > 1 .

We see, from(33), that the sequence{|b̄m|} is monotone decreasing. Note thatη+
i has a

property similar to quasi-monotonicity. So let us use the same notationS(λ) also for{η+
i }.

We now consider the modification ofB(n,m) ≡ ∏m
i=n+1 η

+
i defined by

B̄(n,m) ≡ B(n,m) if η+
m ≤ 1 , B(n,m − 1) if η+

m > 1 .

Then it follows that

(45′)
∣∣∣∣ M∑
m=n

(−1)m+1mB̄(n,m)|b̄m|
∣∣∣∣ ≤ 2M|bn| .

Note thatB̄(n,m) = B(n,m) holds ifm > M.
Now, we need to consider

(46)

∣∣∣∣ M∑
m=n

(−1)m+1mB(n,m)(|bm|−|b̄m|)
∣∣∣∣+∣∣∣∣ M∑

m=n
(−1)m+1m(B(n,m)−B̄(n,m))|b̄m|

∣∣∣∣ .
Here, by virtue of monotonicity of|b̄m| andB̄(n,m), Abel’s criterion for summability can be
applied to each term of(46). Since|bm| − |b̄m| = (max{|ρm| − 1,0})|b̄m|, using the notation
Sm(λ) ≡ (max{|ρm| − 1,0}) ≤ S(λ) = maxm Sm(λ), we may rewrite the first term of(46) as
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follows.∣∣∣∣ M∑
m=n

(−1)m+1mB(n,m)(|bm| − |b̄m|)
∣∣∣∣

≤ |b̄n|
∣∣∣∣ sup
n≤k≤M

k∑
m=n

(−1)m+1mB(n,m)Sm(λ)

∣∣∣∣
≤ |b̄n|

∣∣∣∣ sup
k=n,n+1

k∑
m=n

(−1)m+1mB(n,m)Sm(λ)

∣∣∣∣ + |b̄n|
{
S(λ)

M∑
m=n+2

mB(n,m)

}
.

(47)

Let us now recall the argument in the proof of(34′). Then, replacingρk by η+
k , we obtain

(48) B(n,m) ≤ (1 + S(λ))B̄(n,m) , B̄(n,m) ≤ exp{−M−4(2[(m− n)/2])5/20} .
From(48) and exp{−M−4(2[(m− n)/2])5/20} ≤ exp{−M−4(m− n− 1)5/20}, we have

M∑
m=n+2

m B̄(n,m) <

∫ M+1

n+2
t exp{−(M−4(t − n− 2)5)/20}dt

=
∫ M−n−1

0
s exp(−M−4 s5/20)ds +

∫ M−n−1

0
(n+ 2) exp(−M−4 s5/20)ds

< M2
∫ 1

0
r exp(−Mr5/20)dr + (n+ 2)M

∫ 1

0
exp(−Mr5/20)dr

= 1

5
M2

∫ 1

0
y−3/5 exp(−My/20)dy + 1

5
(n+ 2)M

∫ 1

0
y−4/5 exp(−My/20)dy

= 1

5
M8/5

∫ M

0
x−3/5 exp(−x/20)dx + 1

5
(n+ 2)M4/5

∫ M

0
x−4/5 exp(−x/20)dx

< (24/53)1/5Γ (2/5)M8/5 + (22/54)1/5Γ (1/5)M4/5(n+ 2) ≡ C′
1M

8/5 + C′
2M

4/5(n+ 2) .

Thus the second term of(47) is bounded by

2|b̄n|{3(2c + 1)M−2/3}{C′
1M

8/5 + C′
2M

4/5(n+ 2)} ≡ |b̄n|{C′′
1M

14/15 + C′′
2M

2/15(n+ 2)} .
The first term of(47), which is the sum of terms with different sign, is smaller than
|b̄n|{2(CM−2/3)}(n+ 1). Hence for some positive constantsC1 andC2 we have

(49)

∣∣∣∣ M∑
m=n

(−1)m+1mB(n,m)(|bm| − |b̄m|)
∣∣∣∣ < |b̄n|{C1M

14/15 + C2M
2/15(n+ 2)} .

As for the second term of(46), we can obtain the same estimate as in(49), that is,

(49′)
∣∣∣∣ M∑
m=n

(−1)m+1m(B(n,m) − B̄(n,m))|b̄m|
∣∣∣∣ < |b̄n|{C1M

14/15 + C2M
2/15(n+ 2)} ,
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since we haveB(n,m)− B̄(n,m) ≤ Sm(λ)B̄(n,m). From(45), (45′), (46), (49) and(49′) it
follows that∣∣∣∣ ∞∑

m=n
(−1)m+1m

m∏
i=n+1

η+
i |bm|

∣∣∣∣ < |b̄n|(c1M + c2M
2/15n) , n ≥ 2 .

We want to show that the right hand side of(43) is much smaller, by ratio, than the
quantity given by(27), for sufficiently largeM. Since the terms in the right hand side of(43)
are estimated in the same way, we only remark on the first term of(43) (see Proposition 6
and Corollary 1). Then, from(44) and limM→∞M2/λ = 1, we have

(50) 2
∞∑
n=2

∣∣∣∣ ∞∑
m=n

c̃m,n

∣∣∣∣ < ∞∑
n=2

|bn|2(cM−1n+ c′M−28/15n2) ,

wherec andc′ are some constants. Now we can see that for each finiten the term in(50) is
evidently small, whenM is large. In order to see(50), we divideN into two parts{n; 1 ≤
n ≤ k0} and{n; n > k0}, and takek0 = δM14/15 with small positive constantδ which is
determined later. Then the terms in(50) for n ≤ k0 are smaller than the corresponding terms
in (27), and forn > k0 we obtain the following inequality using(32) with n′ = 0 and(35):

∞∑
n=k0

|bn|2(cM−1n+ c′M−28/15n2)

≤
∫ ∞

k0

(1 + S(λ))2 exp(−M−4t5/10) (cM−1t + c′M−28/15t2)dt

< (1 + S(λ))2
{
c

∫ ∞

δ

s exp(−M2/3s5/10)M13/15ds

+ c′
∫ ∞

δ

s2 exp(−M2/3s5/10)M14/15ds

}
,

which converges to zero for any fixed positive numberδ asM tends to∞.
Let us now return to the terms|c̃1,1| and

∣∣∑∞
n=2 c̃m,1

∣∣. Since they are represented re-
spectively by(N2/λ)|b1|2 and (N2/λ)|b1|

∣∣∑∞
m=2(−1)m+1m

∏m
i=2+1 η

+
i |bm|∣∣, these values

are also much smaller than the value given by(27). Note that(27) contains only the terms
for oddn. However, we remark that the quasi-monotonicity(35) plays an important role in
compensating the even terms. Now note that the first and the second terms in(27) are positive
asM tends to∞. Indeed, it is verified by showing that lim infM→∞ |bn| > (25/34)n, n < M,

which are derived from the formula

lim inf
M→∞ |ρj | > 1

1 + (aj/aj+1)
= 1

1 + f (j)
,

f (j) = (j + (1/j))2

(j + 2 + (1/(j + 2)))2
, j ≥ 1 .

(51)

The inequality(51) follows from (35) and(1 + ajaj+1 + (aj/aj+2))
−1 < ρjρj+1, j ≥ 1.

Here we see that the{f (j)}∞j=2 is a monotone increasing sequence satisfyingf (2) = 102/172
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and limj→∞ f (j) = 1. Since 1> f (1) = 32/52 > 102/172, we have lim infM→∞ |ρj | ≥
(1 + (102/172))−1 for j ≥ 1. Thus we can show thatb2

1/λ in D̄(k)2 is much smaller than

the first term ofD̄(k)1 for largeλ. To see this, it suffices to note((32 − 1)/32)b2
3 = ((32 −

1)/32)b2
1(ρ2ρ3)

2 andρ2ρ3 ≥ (1+ a2a3 + (a2/a4))
−1 = (1+ a1a2 + (10/17)2)−1. Therefore

we obtain thatD̄(k)1 > |D̄(k)2 | if β = kα < 1 is sufficiently close to 1. Hence in this case we
have

(52) D
(k)
1 > |D(k)2 | .

Thus the proof of Theorem 2 is complete.
Now we note that, as remarked before for sufficiently smallβ > 0, we obtain(52)

from the representationsD(k)1 andD(k)2 . It is desirable to verify(52) for closed interval ofβ in
(0,1), that is, forλ belonging to a compact region[√2+δ′,1/δ′] with small positiveδ′, using
the explicit formula forD(k)1 + D

(k)
2 given rigorously. In this region, since all the terms are

uniformly bounded and all the series are rapidly and absolutely convergent,D
(k)
1 andD(k)2 are

uniformly continuous. So the numerical computation is possible by choosing finite numbers
of points. Incidentally, we remark thatλ is a solution of(9) which is resolved by a successive
approximation method for the implicit function.

APPENDIX. Continued fractions are used by many authors to analyze delicate prob-
lems (see for example [9]). For the convenienceof readers we collect some basic results on
which our arguments are based.

PROPOSITION A-1. The problem (1), (2) and (3) is equivalent to the problem (1′),
(2′) and (3′).

PROOF. The first equation in(1′) is verified by taking the rotation and the divergence
of (1). Conversely, from(1′) by the same process we have(1) operated by�. Note that the
inverse operator of� exists on the subspace consisting of functions with mean value zero. As
for the periodicity, for example,ψ(x, y) = ψ(x, y + 2π), we note the relations

ψ(x, y + 2π)− ψ(x, y) =
( ∫ (s,y)

(x,y)

+
∫ (s,y+2π)

(s,y)

+
∫ (x,y+2π)

(s,y+2π)

)
udy − vdx

=
∫ (s,y+2π)

(s,y)

udy − vdx =
∫ (s,y+2π)

(s,y)

udy , s ∈ (0,2π/α) ,

∫ π/α

−π/α

(∫ (s,y+2π)

(s,y)

udy

)
ds =

∫∫
D

udxdy = 0 .

Hence it holds thatψ(x, y + 2π) − ψ(x, y) = 0, and similarly followsψ(x + 2π/α, y) −
ψ(x, y) = 0. The mean value ofvuy = (−ψx)(ψyy), for example, is equal to that of
ψxyψy = (1/2)(∂ψ2

y /∂x), which is zero by the periodicity ofψ.
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LEMMA A-1. Suppose that a sequence of positive numbers {ak}∞k=1 satisfies the rela-
tion 0< infi∈N aiai+1 = 1/p, and put

ρ1,n ≡ 1
a1

+ 1
a2

+ · · · + 1
an

, n ∈ N .

Then the limit ρ1 ≡ limn→∞ ρ1,n exists and satisfies

|ρ1,n − ρ1| ≤ max{1,1/a2
1}p1/2(1 + (1/p))−1 (p/(1 + p))n−2 , 2< n , n ∈ N .

PROOF. Put

ρi,n ≡ 1
ai

+ 1
ai+1

+ · · · + 1
an

, i ≤ n .

For fixedi ∈ N and anyk > i, we can verifyρi,i > ρi,k, ρi,i+1 < ρi,k+1, . . . , and

ρi,i+2j > ρi,k+2j , ρi,i+2j+1 < ρi,k+2j+1 , i < k , j ∈ N .

From this inequality we have

ρi,i+2(j−1) > ρi,i+2j , ρi,i+2j−1 < ρi,i+2j+1 , ρi,i+2(j−1) > ρi,i+2j−1 , j ∈ N .

Note that|ρi,n − ρi,n+1| is monotone decreasing inn. Therefore the limitρi ≡ limn→∞ ρi,n

exists if and only if limn→∞ |ρi,n − ρi,n+1| = 0, which means that{ρi,n}∞n=i+1 is a Cauchy
sequence in this case. On the other hand, by definition, it holds that, forj = 1,2 andm > 2,

|ρj,m − ρj,m+1|=|ρj,mρj,m+1| |ρj+1,m − ρj+1,m+1| =
m−1∏
i=j

|ρi,mρi,m+1| |ρm,m − ρm,m+1| .

Here note that form ∈ N, we have

|ρm,m − ρm,m+1| = |(am)−1 − (am + (1/am+1))
−1|

= (am(1 + amam+1))
−1 < (am(1 + (1/p)))−1 .

Since the assumption 0< infm∈N amam+1 = 1/p yields that supm∈N min{1/am,1/am+1} ≤
p1/2, we have|ρm,m − ρm,m+1| < p1/2/(1 + (1/p)) for m = n or m = n − 1, which we
denote bym = m(n). On the other hand, sinceρi,k = 1/(ai + ρi+1,k) for anyi < k, we have

|ρi,kρi+1,k | = 1−aiρi,k < 1−ai(ai+(1/ai+1))
−1 ≤ 1−(1 + p)−1 = p(1+p)−1 , i < k .

Hence, forj satisfying(m− j)/2 ∈ N it follows that

m−1∏
i=j

|ρi,mρi,m+1| =
(m−j)/2∏
k=0

|ρj+2k,mρj+2k+1,m| |ρj+2k,m+1ρj+2k+1,m+1| ≤ (p/(1 + p))m−j .

If m− 1 is even, then we have

|ρ1,n − ρ1,n+1| ≤ |ρ1,m − ρ1,m+1| ≤ p1/2(1 + (1/p))−1 (p/(1 + p))m−1 .



BIFURCATION ANALYSIS OF KOLMOGOROV FLOWS 363

If m− 1 is odd, then we have

|ρ1,n − ρ1,n+1| ≤ |(a1 + ρ2,n)
−1 − (a1 + ρ2,n+1)

−1| < 1

a2
1

|ρ2,n − ρ2,n+1|

≤ 1

a2
1

|ρ2,m − ρ2,m+1| ≤ a−2
1 p1/2(1 + (1/p))−1 (p/(1 + p))m−2 .

In general, we have that|ρ1,n−ρ1,n+1| ≤ max{1,1/a2
1}p1/2/(1+ (1/p))−1 {p/(1 + p)}n−1 .

Hence the limit limm→∞ ρ1,m exists and satisfies the above estimate.

PROPOSITION A-2. If we take ρ1 different from ρ+
1 , then the solution ρn,

n = 2,3, . . . , of (7) satisfies limn→+∞ |ρn| = ∞.

PROOF. Since limn→+∞ ρ+
n = 0, there existsn0 ∈ N such that|ρ+

n | < 1/3 holds
for all n ≥ n0. Now suppose that{ρn} satisfies the system of equations in(7) with given
ρ1 �= ρ+

1 . Forn ≥ n0, it holds that

|ρn − ρ+
n | = |(an−1 + (1/ρn−1))− (an−1 + (1/ρ+

n−1))| = |ρ+
n−1 − ρn−1|/|ρn−1ρ

+
n−1|

= |ρ+
n0

− ρn0|/|ρn−1ρn−2 · · · ρn0ρ
+
n−1ρ

+
n−2 · · ·ρ+

n0
| .

Since |ρn−1 · · · ρn0||ρn − ρ+
n | > 3n−n0|ρ+

n0
− ρn0| for any n ≥ n0, we see that

lim supn→∞ |ρn| ≥ 3. On the other hand, fromρn − ρ+
n = 1/ρn−1 − 1/ρ+

n−1, we have

|ρn| ≥ |1/ρ+
n−1| − {|ρ+

n | + |1/ρn−1|} .
If |ρn−1| > 2, then|ρn| > 2 + 1/6 for n ≥ n0 + 1. Hence lim supn→∞ |ρn| ≥ 3 implies that
lim supn→∞ |1/ρn| < 2. Thus limn→∞ ρ+

n = 0 yields limn→+∞ |ρn| = ∞.

LEMMA A-2. Suppose that each ak(s) is a continuous function of a parameter s ∈
(s0, s1) and satisfies the condition in Lemma A-1 uniformly in s. Then ρn(s) defined in Lemma
A-1 is a continuous function of s. Moreover, assume that each ak(s) is a continuously differ-
entiable function satisfying da2k−1/ds(s) > 0 for k ∈ N and da2k/ds(s) < 0 for k ∈ N.
Then ρ1(s) is a monotone decreasing function of s.

PROOF. As ρ1(s) is the uniform limit of continuous functions{ρ1,m(s)}, ρ1(s) is con-
tinuous ins. Supposes1 < s2. Then we have

ρ1,2j+1(s1)− ρ1,2j (s2) = (ρ1,2j+1(s1)− ρ1,2j+1(s2))+ (ρ1,2j+1(s2)− ρ1,2j (s2)) .

Note that the second term converges to 0 asj tends to zero. Remark that we can show

dρ1,2j+1

ds
(s) < − a′

1(s)

(a1(s)+ (1/a2(s)))2
< 0

for anyj ∈ N and anys. Hence it follows thatρ1(s1)− ρ1(s2) < 0.

LEMMA A-3. Assume that a positive sequence {an}∞n=1 satisfies sup1≤n an+1/an <

p2. Put ρn = 1
an

+ 1
an+1

+ · · · + 1
ak

+ · · · , n = 1,2, . . . . If limn→∞ ρn = 0, then

sup1≤n ρn < p.
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PROOF. We see thatρk = ρk(β, λ) ≥ p implies that{ρk+2j }∞j=0 is an increasing
sequence. Indeed,ρk = 1/(ak+ρk+1) andρk+1 = 1/(ak+1+ρk+2) yield thatρk+2/ρk = {1−
akρk(ak+1ρk+1/akρk)}/(1 − akρk), where(ak+1ρk+1/akρk) < (ak+1/ak)(1/(ρk)2) follows
from ρkρk+1 = 1− akρk < 1. Therefore,ρk ≥ p implies thatρk < ρk+2. Similarly, we have
thatρk+2 < ρk+4 < · · · , which contradicts limn→∞ ρn = 0.

PROOFS OF(i) AND (ii) IN SUBSECTION 1.3. First note thatan > 0, n = 1,2, . . . ,
for β > 1 anda0 = ∞ for β = 1. Therefore (i) follows. To verify (ii) we note

g (β, λ) = λβ−3(ρ−
1 (β, λ)− ρ+

1 (β, λ)) = ã0 + 2

(
1
ã1

+ 1
ã2

+ · · ·
)

= 0 ,

where {
ãn = 2(β2 + n2)2/(β4(β2 + n2 − 1)) , n = 2k, k = 0,1,2, . . . ,
ãn = 2(β2 + n2)2β2/(λ2(β2 + n2 − 1)) , n = 2k + 1, k = 0,1,2, . . . .

Then, by considering logarithmic derivatives, we can show∂ãn/∂β < 0 for all evenn and
∂ãn/∂β > 0 for all oddn. This implies thatg (β, λ) is a decreasing function inβ, namely,
g (β1, λ) > g (β2, λ) holds for 0< β1 < β2 < 1 (see Lemma A-2). Similarly, we can show
thatg (β, λ) is an increasing function with respect toλ.

Note that we have limλ→0 g (β, λ) = ã0 < 0 and limλ→∞ g (β, λ) = ∞. Hence the
solutionλ = λ(β) of g (β, λ) = 0 exists uniquely forβ ∈ (0,1). Moreover,λ(β) is a
monotone increasing function. Indeed, 0< β1 < β2 < 1 yields that 0= g (β1, λ(β1)) >

g (β2, λ(β1)) and g (β2, λ(β1)) < g (β2, λ(β2)) = 0, which implies thatλ(β1) < λ(β2).
Since 0≡ limβ→0 g (β, λ(β)) = limβ→0(ã0 + (1/ã1)) = −2 + (limβ→0 λ(β))

2, we have
limβ→0 λ(β) = √

2. 1/6< ρ+
1 < 2 follows from(iii ) and 1/3< ρ+

1 ρ
+
2 , Therefore, we have

(ii), since|a0| = 2|ρ+
1 |.

PROOF OFTHEOREM 4. Here we give the proof of Theorem 4, compared with Propo-
sition 6. The(m,m) element ofD−1 is equal toN−1

m+1. By an argument similar to that for

Proposition 6, we can verify that{N−1
m+1} is bounded inm ∈ Z. Other(m, n) elements of

D−1 are also described byN−1
m+1 andρ+

i , i = m + 1, . . . , n, if n > m. If m > n, we use

N−1
m+1 and 1/ρ−

j , j = n + 1, . . . ,m. Therefore, sinceρ+
i , i = m + 1, . . . , n and 1/ρ−

j ,
j = n + 1, . . . ,m are bounded, we have the uniform estimate stated in Theorem 4, since
ρ+
i ρ

+
i+1 < 1, etc.
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