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DEFORMATION AND STABILITY OF SURFACES
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Abstract. For a CMC immersion from a two-dimensional compact smooth manifold
with boundary into the Euclidean three-space, we give sufficient conditions under which it
has a CMC deformation fixing the boundary. Moreover, we give a criterion of the stability for
CMC immersions. Both of these are achieved by using the properties of eigenvalues and eigen-
functions of an eigenvalue problem associatedto the second variation of the area functional.
In a certain special case, by combining these results, we obtain a ‘visible’ way of judging the
stability.

1. Introduction. An immersionX : M → R3 of a two-dimensional orientable com-
pact connectedC∞ manifoldM with boundary∂M into the Euclidean three-spaceR3 has
constant mean curvature if and only ifX is a critical point of the area functional for all volume-
preserving variations ofX that fix the boundary (cf. Barbosa-do Carmo [1, Proposition 2.7]).
When the mean curvature ofX is constant (we will say thatX is a CMC immersion),X is said
to be stable if the second variation of the area functional is nonnegative for all such variations
of X as above.

The objective of this paper includes two themes. One of them is on the possibility of (not
necessarily isometric) CMC deformation of CMC immersions that fix the boundary (Theo-
rems 1.1 and 1.2). The other is on the determination of the stability or the unstability of CMC
immersions (Theorem 1.3, Corollary 1.1). These two themes are related to each other in the
following sense. First, both of these are achieved by using the properties of eigenvalues and
eigenfunctions of an eigenvalue problem associated to the second variation of the area func-
tional (Theorems 1.1, 1.2, and 1.3). Second, in the most characteristic case as a solution of a
certain variational problem with constraint, a criterion of the stability of a CMC immersion is
represented by the property of its CMC deformation fixing the boundary (Corollary 1.1).

Given a CMC immersionX : M → R3, consider a volume-preserving variationXt of X
that fixes the boundary. Denote byA(t) the area ofXt . Then

A′′(0) = −
∫
M

(�u+ ‖B‖2u)udω ,
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whereu is the normal component of the variation vector field ofXt , � = div grad is the
Laplacian onM induced byX , ‖B‖2 is the squared norm of the second fundamental form of
X , anddω is the area element ofM induced byX .

Let us define a linear operatorL : H 1
0 (M) → L2(M) (as for the definition of the function

spacesH 1
0 (M) andL2(M), see Section 2) as

Lu = �u+ ‖B‖2u ,

and consider the eigenvalue problem

(1.1)

{
Lu = −λu ,
u|∂M = 0 ,

u ∈ H 1
0 (M)− {0} .

Regarding the existence of CMC deformations, we will prove the following Theorems
1.1 and 1.2. Letα be an arbitrary fixed number such that 0< α < 1.

THEOREM 1.1. Let X ∈ C3+α(M,R3) be an immersion with constant mean curva-
ture H0, and N : M → S2 be its Gauss map. Assume that the eigenvalue problem (1.1)
has no zero as its eigenvalue. Then there exist a neighborhood W of H0 in R and a unique
injective C1 mapping ϕ : W → C2+α

0 (M) such that ϕ(H0) = 0 and that each

X + ϕ(H)N , H ∈ W
is a C2+α immersion of M into R3 with constant mean curvature H . Moreover, in a small
neighborhood of X in C2+α(M,R3), there exists no other CMC immersion (modulo C2+α
diffeomorphisms of M) with the same boundary value as X .

When the problem (1.1) has zero eigenvalues, denote byE the eigenspace of zero eigen-
values, and byE⊥ its orthogonal complement inL2(M).

THEOREM 1.2. Let X ∈ C3+α(M,R3) be an immersion with constant mean curva-
ture H0, and N : M → S2 be its Gauss map. Assume that E is one-dimensional, and that∫
M edω is not zero for any eigenfunction e in E. Then there exist a neighborhood W of 0

in E and a unique injective C1 mapping ψ = (ξ, η) : W → (C2+α
0 ∩ E⊥) × R, such that

ψ(0) = (0,H0) and that each

X + (u+ ξ(u))N , u ∈ W
is a C2+α immersion of M into R3 with constant mean curvature η(u). Moreover, in a small
neighborhood of X in C2+α(M,R3), there exists no other CMC immersion (modulo C2+α
diffeomorphisms of M) with the same boundary value as X .

We remark thatη in Theorem 1.2 is not necessarily injective. In fact, each hemisphere is
an example thatη is not injective.

Theorems 1.1 and 1.2 give deformations of CMC immersions with fixed boundary val-
ues, where the mean curvature continuouslydepends on each CMC immersion. On the other
hand, Tomi [15] obtains deformations of disk-type CMC immersions with fixed mean curva-
ture but with variable boundary values.
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Next, we turn our attention to the determination of the stability of CMC immersions.
When we consider a variational problem without constraint, for example the case of minimal
surfaces, the stability of a critical point is equivalent to the nonnegativity of the first eigenvalue
of the eigenvalue problem associated to the second variation of the considered functional.
However, for CMC immersions, the situation is different, and we can decide the stability by
the following way: Let us denote byλi = λi(M) thei-th eigenvalue of the problem (1.1).

THEOREM 1.3. Let X ∈ C3+α(M,R3) be an immersion with constant mean curva-
ture.

(I) If λ1 ≥ 0, then X is stable.
(II) If λ1 < 0 < λ2, then there exists a uniquely determined function u ∈ C3+α

0 (M)

which satisfies Lu = 1, and the following (II-1) and (II-2) hold:
(II-1) If

∫
M udω ≥ 0, then X is stable.

(II-2) If
∫
M udω < 0, then X is unstable.

(III) If λ1 < 0 = λ2, then the following (III-A) and (III-B) hold:
(III-A) If there exists an eigenfunction g belonging to λ2 which satisfies

∫
M

gdω 	=
0, then X is unstable.

(III-B) If
∫
M

gdω = 0 for any eigenfunction g belonging to λ2, then there exists a

uniquely determined function u ∈ E⊥ ∩C3+α
0 (M) which satisfies Lu = 1,

and the following (III-B1) and (III-B2) hold:
(III-B1) If

∫
M udω ≥ 0, then X is stable.

(III-B2) If
∫
M udω < 0, then X is unstable.

(IV) If λ2 < 0, then X is unstable.

The positivity of the first eigenvalue and the negativity of the second eigenvalue of (1.1)
are rather easily estimated by using the Gauss map of the considered CMC immersion (cf.
Koiso [7, Corollary 1]). Therefore, (I) and (IV) of Theorem 1.3 are often useful. On the other
hand, it is not easy to understand the geometric meaning of (II) and (III). However, for the
case (II), by using Theorem 1.1, we can prove the following result which is easier to be seen.

COROLLARY 1.1. Let X ∈ C3+α(M,R3) be an immersion with constant mean cur-
vature. Assume that λ1 < 0 < λ2. Then, in a small neighborhood U of X in C2+α(M,R3),

there exists a unique (modulo C2+α diffeomorphisms of M) one-parameter family {Xt } of
CMC immersions with the same boundary value as X such that the mean curvature H(t) of
Xt is a strictly monotone function of t . Parameter t can be chosen so that Xt is of C1 with
respect to t and thatH ′(0) 	= 0. Denote by V (t) the volume of Xt . Then the following (1) and
(2) hold:

(1) If H ′(0)V ′(0) ≥ 0, then X is stable.
(2) If H ′(0)V ′(0) < 0, then X is unstable.

In the case (III) of Theorem 1.3, consider an increasing sequence of closed domainsMs

of M with smooth boundary, each of which is a proper subset ofM and converges toM as
s → ∞. Then, by the monotonicity of eigenvalues (cf. Remark 2.1), any restrictionX |Ms
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satisfiesλ1 < 0 < λ2 for larges. Therefore, we can apply Corollary 1.1 to eachX |Ms and
decide its stability. It is clear that if all suchX |Ms are stable, thenX is also stable, and if at
least one suchX |Ms is unstable, then so isX .

We should mention works by Maddocks ([11], [12], [13]) and by Vogel ([16], [17], [18],
[19]). Maddocks gave criteria of the stability for general variational problems with constraint.
Our proofs of Theorem 1.3 (II) and Corollary 1.1 are essentially in line with Maddocks’
methods. Vogel obtained results for CMC embeddings of revolution with free boundary on
two parallel planes ([16]), for a general variational problem with constraint ([17]), and for
capillary surfaces ([19]), similar to or more stringent than (I), (II), and (IV) of our Theorem
1.3. Moreover, [16] gave a result on CMC embeddings of revolution with free boundary on
two parallel planes similar to our Corollary 1.1.

This paper consists of five sections. Section 2 is a preparatory section, where we will
give some fundamental definitions and notation, and recall basic properties of the eigenvalue
problem (1.1). Section 3 will be devoted to proofs of Theorems 1.1 and 1.2. Theorem 1.3 and
Corollary 1.1 will be proved in Section 4. Finally, in Section 5, we will give some examples
and remarks in relation to our main results.

Before ending this section, we would like to propose a conjecture.

CONJECTURE 1.1. If X is a stable CMC immersion, then there exists a CMC defor-
mation of X that fixes the boundary.

2. Preliminaries. Let X : M → R3 be aC3+α immersion andN : M → S2 be the
Gauss map ofX . Then the areaA(X ) and the volumeV (X ) of X are defined as follows:

A(X ) =
∫
M

dω , V (X ) = 1

3

∫
M

〈X ,N 〉dω ,

where〈 , 〉 is the usual inner product inR3.
A one-parameter family{Xt }t∈(−δ,δ) (δ > 0) of C2+α immersionsXt : M → R3 is

called a variation ofX , if X0 = X and ifXt is of C1 with respect tot . For convenience, we
often writeXt instead of{Xt }t∈(−δ,δ). ∂Xt /∂t|t=0 is called the variation vector field ofXt .

For a variationXt of X , setA(t) = A(Xt ) andV (t) = V (Xt ). We will say that a
variationXt is volume-preserving ifV (t) = V (0) for all t ∈ (−δ, δ), and that a variationXt
fixes the boundary ifXt |∂M = X |∂M for all t ∈ (−δ, δ).

LetXt be a variation that fixes the boundary. Denote byHt the mean curvature ofXt , by
Nt the Gauss map ofXt , and bydωt the volume element ofM relative to the metric induced
byXt . Set

ut (z) =
〈
∂Xt (z)
∂t

, Nt (z)

〉
.

The following first variation formulas are well-known:

(2.1) A′(t) = −2
∫
M

Htutdωt , V ′(t) =
∫
M

utdωt .
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From now on, we assume thatX : M → R3 is a CMC immersion. We would like to
consider allC2+α immersionsY : M → R3 which satisfyY|∂M = X |∂M . The following
Lemma can be observed in view of the discussion in Böhme and Tomi [2, §3].

LEMMA 2.1. Let X : M → R3 be a C3+α immersion. Then there exists a neighbor-
hood U of X in C2+α(M,R3) such that the following statement is true: For each Y ∈ U

satisfying Y|∂M = X |∂M , there exist a unique C2+α diffeomorphism τ : M → M and a
unique function u ∈ C2+α

0 (M) such that

Y ◦ τ = X + uN .

Therefore, nearX , it is sufficient to consider only immersions represented as

X + uN , u ∈ C2+α
0 (M) ,

and hence, it is sufficient to consider only normal variations. For a normal variationXt ,
the following variation formula of the corresponding mean curvatureHt is well-known (cf.
Duschek [3], Kapouleas [6]).

(2.2) 2
∂Ht

∂t

∣∣∣∣
t=0

= �u0 + ‖B‖2u0 .

Moreover, ifXt is volume-preserving and fixes the boundary, then we have

A′′(0) = −
∫
M

(�u0 + ‖B‖2u0)u0dω .

DEFINITION 2.1. LetX : M → R3 be a CMC immersion. ThenX is said to be stable
if

A′′(0) ≥ 0

for all volume-preserving variationsXt of X which fix the boundary. WhenX is not stable,
it is said to be unstable.

The following necessary and sufficient condition for the stability is known.

THEOREM A (Barbosa and do Carmo [1, Proposition 2.10]).Let X be a CMC immer-
sion. Then X is stable if and only if

I (u) := −
∫
M

(�u+ ‖B‖2u)udω ≥ 0

for all function u in

F :=
{
u ∈ C2+α

0 (M)

∣∣∣∣
∫
M

udω = 0

}
,

where C2+α
0 (M) is the set of all real-valued functions on M which are of C2+α on M and

vanish on ∂M .
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Let us define some function spaces associated withX . Denote byL2(M) the usual
Hilbert space completion ofC∞(M) with respect to the norm defined by the inner product

(u, v)L2 =
∫
M

uvdω .

We denote byH 1
0 (M) the completion ofC∞

0 (M) with respect to the norm defined by the inner
product

(u, v)H1 =
∫
M

(uv + ∇u∇v)dω ,
where∇u∇v denotes the inner product of the gradient ofu and that ofv with respect to the
Riemannian metric ofM induced byX . Let us denote bŷH(M) the pre-Hilbert spaceH 1

0 (M)

with inner product( , )L2.
Now, we consider the linear operatorL : H 1

0 (M) → L2(M) and the eigenvalue prob-
lem (1.1) both of which were defined in Section 1. When we considerL as an operator from
C3+α

0 (M) intoC1+α(M),L is strongly elliptic and self-adjoint with respect to the inner prod-
uct ( , )L2.

REMARK 2.1. The eigenvalue problem (1.1) has countably many eigenvalues (Smale
[14, Lemma 1]):

λ1 < λ2 ≤ · · · , λn → +∞ (n → +∞) .

Each eigenfunction of (1.1) is ofC3+α
0 (M) (cf. Gilbarg-Trudinger [4, Theorem 8.13]

and Ladyzhenskaya-Ural’tseva [9, Chap. 3, Theorem 12.1]). Denote byϕi an eigenfunction
of (1.1) belonging toλi . {ϕi} can be chosen so that they form an orthonormal basis forL2(M)

(Smale [14, Lemma 2]). Moreover, eachλi has the following minimum property on the pre-
Hilbert spaceĤ (M) (Smale [14, Lemma 4]).

λ1 = I (ϕ1) = min

{
I (u)

∣∣∣∣ u ∈ H 1
0 (M) and

∫
M

u2dω = 1

}
,(2.3)

λi = I (ϕi) = min

{
I (u)

∣∣∣∣ u ∈ H 1
0 (M),

∫
M

u2dω = 1 and

∫
M

uϕjdω = 0 for j ∈ {1, . . . , i − 1}
}
, i = 2,3, . . . .

(2.4)

Also, the monotonicity of eigenvalues is verified (cf. Smale [14, Lemma 2]) by virtue of the
property thatL has uniqueness in the Cauchy problem (cf. Hörmander [5, Chap. VIII]), that
is, if M1 is a proper subset ofM such that∂M1 is ofC3+α , thenλi(M1) > λi(M).

By using the Riesz-Schauder alternative theorem combined with the regularity theorem
for solutions of strictly elliptic partial differential equations and the regularity of the CMC
immersionX , we obtain the following

LEMMA 2.2. Let λ be a real number. We assume that ∂M ∈ Ck+2+α (k ∈ Z, k ≥
0, 0< α < 1).
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(a) Assume that λ is not an eigenvalue of (1.1). Then, for any function f ∈ L2(M), the
equation

λu− Lu = f

has a uniquely determined solution u ∈ H 1
0 (M). Moreover, if f ∈ Ck+α(M), then the

solution u is in Ck+2+α
0 (M).

(b) Assume that λ is an eigenvalue of (1.1). Then, for each function f ∈ L2(M), the
equation

λu− Lu = f

has a solution u ∈ H 1
0 (M) if and only if∫

M

fvdω = 0

for all eigenfunctions v belonging to λ. Moreover, if f ∈ Ck+α(M), then the solution u is in
Ck+2+α

0 (M).

3. Proofs of Theorems 1.1 and 1.2. Let us assume thatX : M → R3 is aC3+α
immersion with constant mean curvatureH0. Choose a neighborhoodV of 0 inC2+α

0 (M) so
that, for anyu ∈ V , X + uN : M → R3 is an immersion. For anyu ∈ V , denote byHu the
mean curvature ofX + uN .

Define a mapping

Φ : V × R → Cα(M)

by

(3.1) Φ(u,H) = 2(H −Hu) .

Then we first note the following

CLAIM 3.1.

(3.2) Φ(0,H0) = 0 .

The mean curvature of X + uN (u ∈ V ) is constant if and only if

Φ(u,H) = 0

for some H ∈ R.

LEMMA 3.1. Φ(u,H) is Fréchet differentiable with respect to u and H, and

DuΦ(0,H)v = −(�v + ‖B‖2v) , H ∈ R , v ∈ C2+α
0 (M) ,(3.3)

DHΦ(u,H)K = 2K, H,K ∈ R ,(3.4)

D(u,H)Φ(0,H)(v,K) = 2K − (�v + ‖B‖2v) ,(3.5)

H ∈ R , (v,K) ∈ C2+α
0 (M)× R .
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PROOF. Since

lim
t→0

Φ(u+ tv,H)−Φ(u,H)

t
= −2

∂Hu+tv
∂t

∣∣∣∣
t=0

,

the Gâteau derivative ofΦ(u,H) with respect tou is

−2
∂Hu+tv
∂t

∣∣∣∣
t=0

,

and this operator is continuous inv. Therefore,Φ(u,H) is Fréchet differentiable with respect
to u, and

DuΦ(0,H)v = −2
∂Htv

∂t

∣∣∣∣
t=0

= −(�v + ‖B‖2v) ,

where we used (2.2), and hence we have proved (3.3).
SinceΦ(u,H) is linear with respect toH , the Fréchet differentiability with respect toH

and the formula (3.4) are clearly valid. (3.5) is obtained from (3.3) and (3.4). �

LEMMA 3.2. Assume that zero is not an eigenvalue of the problem (1.1). Then the
linear operator

DuΦ(0,H0) : C2+α
0 (M) → Cα(M)

is bijective.

PROOF. The injectivity is clear by (3.3). The surjectivity is obtained from Lemma
2.2(a). �

Now we are ready to prove Theorem 1.1.

PROOF OFTHEOREM 1.1. By virtue of Lemma 3.2, we can apply the implicit map-
ping theorem (cf. Lang [10, pp. 17–18]) to the mapping

Φ : V × R → Cα(M) .

In view of Lemma 2.1 and Claim 3.1, we obtain Theorem 1.1. �

Now, let us consider the case where the eigenvalue problem (1.1) has zero eigenvalues.
As in Section 1, we denote byE the eigenspace corresponding to zero eigenvalues, and by
E⊥ its orthogonal complement inL2(M). Define a mapping


 : (V ∩ E)× (V ∩ E⊥)× R → Cα(M)

by

(3.6) 
(u, v,H) = Φ(u+ v,H) .

Then, in view of Lemma 3.1,
(u, v,H) is Fréchet differentiable with respect tou, v, andH ,
and we have

(3.7) D(v,H)
(0,0,H0)(w,H) = 2H − (�w+ ‖B‖2w) , (w,H) ∈ (C2+α
0 ∩E⊥)× R .

LEMMA 3.3. Assume that
dimE = 1
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and that ∫
M

edω 	= 0 for some (and therefore all) e ∈ E − {0}.
Then the linear operator

D(v,H)
(0,0,H0) : (C2+α
0 (M) ∩ E⊥)× R → Cα(M)

is bijective.

PROOF. By assumption,E is represented as

(3.8) E = {ae0|a ∈ R} ,
wheree0 is an eigenfunction with eigenvalue zero satisfying

(3.9)
∫
M

e0dω 	= 0 .

Set
F = D(v,H)
(0,0,H0) .

In view of (3.7), we see

KerF = {
(w,H) ∈ (C2+α

0 ∩E⊥)× R
∣∣2H − (�w + ‖B‖2w) = 0

}
.

Suppose that(w,H) ∈ (C2+α
0 ∩ E⊥)× R is an element of KerF . Then

(3.10) −Lw = −2H .

Hence, by Lemma 2.2(b),

−2H
∫
M

e0dω = 0 .

From (3.9), we obtain
H = 0 .

Therefore, by (3.10),w is an element ofE. On the other hand, by assumption,w is in E⊥.
Hence

w = 0 ,

and we have proved
KerF = {(0,0)} ,

which implies the injectivity ofF .
Now let us prove the surjectivity ofF . For any functionf ∈ Cα(M), set

H =
∫
M
f e0dω

2
∫
M
e0dω

.

Then, by Lemma 2.2(b), there exists a functionu ∈ C2+α
0 (M) which satisfies

−Lu = f − 2H .

Let us decomposeu into
u = e +w , e ∈ E, w ∈ E⊥ .
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Thenw ∈ C2+α
0 (M) ∩ E⊥, and

−Lw = −Lu = f − 2H ,

which implies that

F(w,H) = f , (w,H) ∈ (C2+α
0 (M) ∩E⊥)× R . �

Now, we are in the last stage of proving Theorem 1.2.

PROOF OFTHEOREM 1.2. By virtue of Lemma 3.3, we can apply the implicit map-
ping theorem (cf. Lang [10, pp. 17–18]) to the mapping


 : (V ∩ E)× (V ∩ E⊥)× R → Cα(M) .

Remark that, by Lemma 2.2(b) (or Remark 2.1),E ⊂ C3+α
0 (M) ⊂ C2+α

0 (M). In view of
Lemma 2.1 and Claim 3.1, we obtain Theorem 1.2. �

4. Proofs of Theorem 1.3 and Corollary 1.1.

PROOF OFTHEOREM 1.3. (I) is clear from (2.3).
Assume thatλ1 < 0. As in Remark 2.1, letϕi be the eigenfunction corresponding to the

i-th eigenvalueλi of (1.1) such that{ϕi} form an orthonormal basis forL2(M). Sinceϕ1 does
not change sign,

(4.1)
∫
M

ϕ1dω 	= 0 .

For a functionu ∈ C3+α
0 (M), set

(4.2) v = −
∫
M udω∫
M
ϕ1dω

ϕ1 + u .

Then

(4.3)
∫
M

vdω = 0 .

By setting

a = −
∫
M udω∫
M ϕ1dω

,

v is represented as

v = aϕ1 + u .

When (1.1) has no zero eigenvalue, by virtue of Lemma 2.2(a) and Remark 2.1, there
exists a unique functionu ∈ C3+α

0 (M) satisfyingLu = 1. In this case, by using the Green’s
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formula and (4.3), we see that

I (v) = −
∫
M

vLvdω

= −
∫
M

(a2ϕ1Lϕ1 + aϕ1Lu+ auLϕ1 + uLu)dω(4.4)

= a2λ1

∫
M

ϕ2
1dω − 2a

∫
M

ϕ1Ludω −
∫
M

udω

= a2λ1 +
∫
M

udω .

Sinceλ1 < 0, I (v) < 0 in the case where
∫
M
udω < 0. In this case, in view of Theorem A,

X is unstable, which proves (II-2).
Next, whenu = ϕ2, from (4.4) and the orthonormality of{ϕi}, we see

I (v) = a2λ1

∫
M

ϕ2
1dω − 2a

∫
M

ϕ1Lϕ2dω −
∫
M

ϕ2Lϕ2dω

= a2λ1

∫
M

ϕ2
1dω + 2aλ2

∫
M

ϕ1ϕ2dω + λ2

∫
M

ϕ2
2dω

= λ1

(∫
M

ϕ2dω

)2(∫
M

ϕ1dω

)−2

+ λ2 .

Therefore, ifλ2 ≤ 0 and
∫
M ϕ2 	= 0, thenI (v) < 0, which proves (III-A). Whenλ2 < 0, also

I (v) < 0, which proves (IV).
Next we prove (II-1). Set

E1 = {aϕ1|a ∈ R} , E⊥
1 =

{
u ∈ C3+α

0 (M)

∣∣∣∣
∫
M

ϕ1udω = 0

}
.

By virtue of Lemma 2.2(a) and Remark 2.1, there exists a unique functionu ∈ C3+α
0 (M)

satisfyingLu = 1. If ∫
M

udω ≥ 0 ,

then

(4.5) I (u) = −
∫
M

uLudω = −
∫
M

udω ≤ 0 .

(2.4), (4.5) andλ2 > 0 imply u /∈ E⊥
1 . Therefore, anyv ∈ F is represented as follows:

v = w + bu, b ∈ R , w ∈ E⊥
1 .
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Then

I (v) = −
∫
M

(b2uLu+ buLw + bwLu+wLw)dω

= −b2
∫
M

udω − 2b
∫
M

wdω + I (w)

= b2
∫
M

udω − 2b
∫
M

(w + bu)dω+ I (w)

= −b2I (u)+ I (w)

≥ 0 ,

which implies thatX is stable.
Finally, we prove (III-B). By virtue of Lemma 2.2(b) and Remark 2.1, there exists a

unique functionu ∈ E⊥ ∩ C3+α
0 (M) that satisfiesLu = 1.

When
∫
M udω < 0, we can prove thatX is unstable by the same way as in the proof of

(II-2).
When

∫
M udω > 0, we can prove thatX is stable by the same way as in the proof of

(II-1).
When

∫
M
udω = 0,

I (u) = −
∫
M

uLudω = −
∫
M

udω = 0 = λ2 .

Assume thatu ∈ E⊥
1 . By (2.4), u is an eigenfunction corresponding toλ2 = 0, that is,

Lu = 0, which is a contradiction. Therefore,u /∈ E⊥
1 , and hence, we can prove the stability

of X by the same way as in the proof of (II-1). �

PROOF OF COROLLARY 1.1. By virtue of Theorem 1.1, the existence of a one-
parameter family{Xt } of CMC immersions stated in the first half of Corollary 1.1 is veri-
fied.

From (2.2),

(4.6) 2H ′(0) = Lu, u =
〈
∂Xt
∂t

∣∣∣∣
t=0
, N

〉
.

On the other hand, from (2.1),

(4.7) V ′(0) =
∫
M

udω .

(1) and (2) are verified by (4.6), (4.7) and Theorem 1.3(II). �

5. Examples and concluding remarks. In this section, we give some examples and
remarks relating to our results which were obtained in the preceding sections.

Besides the plane, the simplest examples of CMC immersions are so-called Delaunay
surfaces, which are rotational surfaces with constant mean curvature. Delaunay surfaces
are classified into five classes, namely catenoids, spheres, cylinders, unduloids, and nodoids.
Catenoids are only minimal surfaces among Delaunay surfaces.
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Let us consider connected compact subsets of Delaunay surfaces each of whose boundary
(if it is not empty) consists of one or two circles that are perpendicular to the rotation axis. In
the following, we will call each such subset tobe an admissible piece. Any admissible piece
with only one boundary component is a subset of a sphere, which is called a spherical cap.
For an admissible pieceS of a Delaunay surface, we denote byλi(S) thei-th eigenvalue of the
eigenvalue problem (1.1) forS. This notation is reasonable, because the eigenvalues of (1.1)
are independent of each parametrization ofX (M) in the following sense: Letτ : M → M be
aC3+α diffeomorphism ofM, and setY = X ◦ τ . Then the eigenvalues forY are the same
as those forX .

First, let us consider an admissible pieceS of a catenoid̂S. It is known that if the area of
the image of the Gauss map of a minimal surface is smaller than 2π , thenλ1 > 0 (Barbosa-do
Carmo [1]). Therefore, ifS is sufficiently small, thenλ1 is positive. Hence, by Theorem
1.1, there exists a one-parameter family{St }t (S0 = S) of embedded CMC surfaces from
an annulus with the same boundary asS such that the mean curvatureH(t) of St is strictly
monotone with respect tot . By using the Alexandrov reflection methods, eachSt proves to be
a surface of revolution. From the strict monotonicity ofH(t), St must be a part of an unduloid
for t > 0, and a part of a nodoid fort < 0 (or, a part of an unduloid fort < 0, and a part of a
nodoid fort > 0).

Next, we consider spherical caps. It is well-known that the first eigenvalue of the problem
(1.1) for a hemisphere is zero, and the second eigenvalue for a whole sphere is zero as well.
On the other hand, for each spherical capS, it is easily observed that there exists a CMC
deformation{St }t of S such thatS0 = S and that eachSt is a spherical cap with∂St = ∂S.
WhenS is not a hemisphere,{St }t gives an example of Theorem 1.1. WhenS is a hemisphere,
{St }t gives an example of Theorem 1.2. WhenS is larger than the hemisphere,S gives an
example of Corollary 1.1(1).

Next, let Ŝ be a cylinder of radiusr. For each admissible pieceS of Ŝ, we denote by
h = h(S) the distance between two boundary circles ofS. The largest stable admissible
piece is the one withh = 2πr, and in this caseλ2(S) = 0. On the other hand, ifh = πr,
thenλ1 = 0. (cf. Barbosa-do Carmo [1, Example 2.17].) Whenπr < h(S) < 2πr, one
can observe a smooth one-parameter family{St }t of admissible pieces of unduloids such that
S0 = S, ∂St = ∂S, andH ′(0)V ′(0) > 0. These observations correspond with Corollary
1.1(1).

Similar observations are done for unduloids. Hereafter, a circle of an unduloid (or a
nodoid)Ŝ means a circle included in̂S which is perpendicular to the rotation axis ofŜ.

Let Ŝ be an unduloid. Among all admissible pieces of̂S one of whose boundary compo-
nents is the largest (or smallest) circle ofŜ, the largest stable ones are those which correspond
to exactly one period of̂S (Koiso [8, Chap. 5, §5.7]). In this case,λ2 = 0. On the other hand,
when∂S = C1 ∪ C2 = (one of the largest circles of̂S) ∪ (one of the nearest circles toC1

among the smallest circles ofŜ), λ1(S) = 0. In fact, for any unit vectorν which is parallel to
the rotation axis of̂S, the functionu = 〈N , ν〉 gives an eigenfunction corresponding to the
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zero eigenvalue, whereN is the Gauss map ofS, and zero is the first eigenvalue by virtue of
the property thatu does not change sign in the interior ofS.

Moreover, for an admissible pieceS with λ1(S) < 0< λ2(S), one can observe a smooth
one-parameter family{St }t of admissible pieces of unduloids withS0 = S and with∂St = ∂S

such thatH ′(0)V ′(0) > 0.
Finally, let Ŝ be a nodoid. Denote by� the rotation axis of̂S. Let S be an admissible

piece ofŜ with ∂S = C1 ∪ C2, where eachCi is a circle inŜ.
Assume first that, onC1, the normal toS is parallel to�. The largest stable suchS is the

case whereC2 is one of the two neighboring circles on which the normal toS is parallel to�,
and in these cases,λ2(S) = 0 (Koiso [8, Chap. 5, §5.7]).

Assume next thatC1 is one of the smallest circles ofŜ. Denote byC∗ one of the nearest
circles among the largest circles ofŜ, and denote byS∗ the admissible piece of̂S with ∂S∗ =
C1 ∪ C∗. Thenλ1(S

∗) = 0. Indeed, this is verified by the same way as for an admissible
pieceS of an unduloid above, by considering functionu = 〈N , ν〉, whereν is any unit
vector which is parallel to�. Now, let S be an admissible piece of̂S such that one of its
boundary components isC1 and that it containsC∗ in its interior. If S is sufficiently small,
thenλ1(S) < 0< λ2(S). For suchS, we conjecture the following.

CONJECTURE 5.1. There exists a smooth one-parameter family {St }t of admissible
pieces of nodoids such that S0 = S, ∂St = ∂S, and H ′(0)V ′(0) < 0.

If this conjecture is verified, then we obtain an example for which Corollary 1.1(2) can
be applied, and we can conclude thatS is unstable.
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