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Abstract. For a CMC immersion from a two-dimensional compact smooth manifold
with boundary into the Euclidean three-space, we give sufficient conditions under which it
has a CMC deformation fixing the boundary. Moreover, we give a criterion of the stability for
CMC immersions. Both of these are achieved by using the properties of eigenvalues and eigen-
functions of an eigenvalue problem associatethe second variation of the area functional.

In a certain special case, by combining these results, we obtain a ‘visible’ way of judging the
stability.

1. Introduction. Animmersiont : M — R3 of a two-dimensional orientable com-
pact connected® manifold M with boundaryd M into the Euclidean three-spa& has
constant mean curvature if and onlyifis a critical point of the area functional for all volume-
preserving variations ot that fix the boundary (cf. Barbosa-do Carmo [1, Proposition 2.7]).
When the mean curvature afis constant (we will say that is a CMC immersion) is said
to be stable if the second variation of the area functional is nonnegative for all such variations
of X as above.

The objective of this paper includes two themes. One of them is on the possibility of (not
necessarily isometric) CMC deformation of CMC immersions that fix the boundary (Theo-
rems 1.1 and 1.2). The other is on the determination of the stability or the unstability of CMC
immersions (Theorem 1.3, Corollary 1.1). Begwo themes are related to each other in the
following sense. First, both of these are achieved by using the properties of eigenvalues and
eigenfunctions of an eigenvalue problem associated to the second variation of the area func-
tional (Theorems 1.1, 1.2, and 1.3). Secomdhie most characteristic case as a solution of a
certain variational problem with constraint, a criterion of the stability of a CMC immersion is
represented by the property of its CMC deformation fixing the boundary (Corollary 1.1).

Given a CMC immersiotk’ : M — R3, consider a volume-preserving variatiéh of X
that fixes the boundary. Denote Byr) the area oft;. Then

A”(0) = —/ (Au+ ||B||Pu)udw ,
M
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whereu is the normal component of the variation vector fieldf A = div grad is the
Laplacian onM induced by, || B||2 is the squared norm of the second fundamental form of
X, anddw is the area element @f induced byX".

Let us define a linear operatbr: H}(M) — L?(M) (as for the definition of the function
spacesd}(M) andL?(M), see Section 2) as

Lu = Au + ||B|?u,
and consider the eigenvalue problem

{Lu:—)»u,

1.1
(L.1) ulagy =0,

u € Hy(M) —{0}.
Regarding the existence of CMC deformations, we will prove the following Theorems
1.1 and 1.2. Letr be an arbitrary fixed number such thatQx < 1.

THEOREM 1.1. Let X e C3*(M, R®) be an immersion with constant mean curva-
ture Ho, and N/ : M — 52 be its Gauss map. Assume that the eigenvalue problem (1.1)
has no zero as its eigenvalue. Then there exist a neighborhood W of Hp in R and a unique
injective C* mapping ¢ : W — C3*(M) such that ¢ (Ho) = 0 and that each

X+oHN, HeW

isa C2t* immersion of M into R with constant mean curvature H. Moreover, in a small
neighborhood of X' in C2t*(M, R®), there exists no other CMC immersion (modulo €2+
diffeomor phisms of M) with the same boundary valueas X'.

When the problem (1.1) has zero eigenvalues, denofe thye eigenspace of zero eigen-
values, and bye L its orthogonal complement ib?(M).

THEOREM 1.2. Let X € C3t*(M, R®) be an immersion with constant mean curva-
ture Ho, and N : M — S2 beits Gauss map. Assume that E is one-dimensional, and that
[} edw is not zero for any eigenfunction e in E. Then there exist a neighborhood W of 0
in E and a unique injective C* mapping v = (§,7) : W — (C3™ N EY) x R, such that
¥ (0) = (0, Hp) and that each

X+w+EWN, uew

isa C2+* jmmersion of M into R with constant mean curvature («). Moreover, in a small
neighborhood of X' in C2+%(M, R®), there exists no other CMC immersion (modulo €2+
diffeormor phisms of M) with the same boundary valueas X'.

We remark that) in Theorem 1.2 is not necessarily injective. In fact, each hemisphere is
an example thag is not injective.

Theorems 1.1 and 1.2 give deformations of CMC immersions with fixed boundary val-
ues, where the mean curvature continuoukdpends on each CMC immersion. On the other
hand, Tomi [15] obtains deformations of disk-type CMC immersions with fixed mean curva-
ture but with variable boundary values.
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Next, we turn our attention to the determination of the stability of CMC immersions.
When we consider a variational problem without constraint, for example the case of minimal
surfaces, the stability of a critical point is equivalent to the nonnegativity of the first eigenvalue
of the eigenvalue problem associated to teeamd variation of the considered functional.
However, for CMC immersions, the situation is different, and we can decide the stability by
the following way: Let us denote by, = A; (M) thei-th eigenvalue of the problem (1.1).

THEOREM 1.3. Let X e C3*(M, R®) be an immersion with constant mean curva-
ture.
() Ifaxg>0,then X isstable.
(I 1f &1 < 0 < A2, then there exists a uniquely determined function u € CS*“(M)
which satisfies Lu = 1, and the following (11-1) and (11-2) hold:
(1-1) If [, udw > 0, then X is stable.
(1-2) If [,, udw < O, then X isunstable.
(ny 1f A1 < 0 = A2, then thefollowing (I1I-A) and (111-B) hold:

(II-A)  Ifthere exists an eigenfunction g belonging to 1, which satisfies [, gdw #
0, then X isunstable.

(IN-B) I f;, gdew = Ofor any eigenfunction g belonging to 12, then there exists a
uniquely determined functionu € E--NC3™ (M) which satisfies Lu = 1,
and the following (111-B1) and (11I-B2) hold:

(IN-B1) If [}, udw > 0, then X isstable.

(IN-B2) If [}, udw < 0, then X isunstable.

(IV) Ifx2 <0, then X isunstable.

The positivity of the first eigenvalue and the negativity of the second eigenvalue of (1.1)
are rather easily estimated by using the Gauss map of the considered CMC immersion (cf.
Koiso [7, Corollary 1]). Therefore, (1) and (IV) of Theorem 1.3 are often useful. On the other
hand, it is not easy to understand the geometric meaning of (II) and (Ill). However, for the
case (Il), by using Theorem 1.1, we can prove the following result which is easier to be seen.

COROLLARY 1.1. Let X € C3t%(M, R®) be an immersion with constant mean cur-
vature. Assumethat 11 < 0 < A2. Then, in a small neighborhood U of X in C2+* (M, R3),
there exists a unique (modulo €22 diffeomorphisms of M) one-parameter family {X;} of
CMC immersions with the same boundary value as X’ such that the mean curvature H (¢) of
X, is a strictly monotone function of r. Parameter + can be chosen so that X; is of C* with
respect to r and that H’(0) # 0. Denoteby V (¢) the volume of X;. Then thefollowing (1) and
(2) hold:

(1) IfH'(0)V'(0) > 0, then X isstable.

(2) IfH'(0)V'(0) < 0, then X isunstable.

In the case (lIl) of Theorem 1.3, consider an increasing sequence of closed dafyains
of M with smooth boundary, each of which is a proper subséaind converges t/ as
s — oo. Then, by the monotonicity of eigenvalues (cf. Remark 2.1), any restriétign
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satisfiesh1 < 0 < Ap for larges. Therefore, we can apply Corollary 1.1 to eathy,, and
decide its stability. It is clear that if all sucki|,,, are stable, thed’ is also stable, and if at
least one sucl’|y, is unstable, then so i¥.

We should mention works by Maddocks ([11], [12], [13]) and by Vogel ([16], [17], [18],
[19]). Maddocks gave criteria of the stability for general variational problems with constraint.
Our proofs of Theorem 1.3 (II) and Corollary 1.1 are essentially in line with Maddocks’
methods. Vogel obtained results for CMC embeddings of revolution with free boundary on
two parallel planes ([16]), for a general variational problem with constraint ([17]), and for
capillary surfaces ([19]), similar to or more stringent than (1), (1), and (IV) of our Theorem
1.3. Moreover, [16] gave a result on CMC embeddings of revolution with free boundary on
two parallel planes similar to our Corollary 1.1.

This paper consists of five sections. Section 2 is a preparatory section, where we will
give some fundamental definitions and notation, and recall basic properties of the eigenvalue
problem (1.1). Section 3 will be devoted to proofs of Theorems 1.1 and 1.2. Theorem 1.3 and
Corollary 1.1 will be proved in Section 4. Finally, in Section 5, we will give some examples
and remarks in relation to our main results.

Before ending this section, we would like to propose a conjecture.

CONJECTURE 1.1. If X isa stable CMC immersion, then there exists a CMC defor-
mation of X" that fixes the boundary.

2. Preliminaries. LetX : M — R3be aCc3t® immersion andV : M — $2 be the
Gauss map of’. Then the area (X) and the volumé/ (X)) of X’ are defined as follows:

A(X) =/ do, V(X)= }/ (X, Ndw ,
M 3 M
where(, ) is the usual inner product iRS.

A one-parameter familyX;},¢—s,5) (6 > 0) of CZ+ immersionsX; : M — R3is
called a variation oft, if Xo = X and if A, is of C1 with respect ta. For convenience, we
often write &; instead off X;};c(—s,s5). 9X;/0t|;=0 is called the variation vector field of;.

For a variationX; of X, setA(t) = A(X;) andV () = V(X;). We will say that a
variation &; is volume-preserving i¥’ (t) = V(0) for all r € (-4, §), and that a variatioit;
fixes the boundary ;|5 = Xy forall t € (=6, 9).

Let X; be a variation that fixes the boundary. DenoteHyythe mean curvature of;, by
N; the Gauss map of;, and bydw, the volume element of/ relative to the metric induced
by &;. Set
0&:(2)

T

ur(z) = < M(Z)>»

The following first variation formulas are well-known:

(21) A/(t) = —2/ H[I/l[d(,()[ . V/(t) = / u,da); .
M M
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From now on, we assume that : M — R3is a CMC immersion. We would like to
consider allC?* immersions) : M — R3 which satisfyY|sy = X|sx. The following
Lemma can be observed in view of the discussion in Bohme and Tomi [2, 83].

LEMMA 2.1. Let X : M — R®bea C3t* immersion. Then there exists a neighbor-
hood U of X in C2t*(M, R3) such that the following statement is true: For each ) € U
satisfying V]sm = Xlam, there exist a unique C2te diffeomorphismt : M — M and a

unique function u € C5™ (M) such that

Yor=X+uN.

Therefore, nead’, it is sufficient to consider only immersions represented as
X+uN, ueCi™M),

and hence, it is sufficient to consider only normal variations. For a normal varidtipn
the following variation formula of the corresponding mean curvafdrés well-known (cf.
Duschek [3], Kapouleas [6]).

3H,
2.2) 2—L

2
= Aug + ||B||“uo.
a7 o+ | Bll“uo

t=0

Moreover, if X; is volume-preserving and fixes the boundary, then we have

A"(0) = — f (Auo + || B[Puo)uodw .
M
DEFINITION 2.1. LetX : M — R3be a CMC immersion. Thef is said to be stable

A”(0) >0

for all volume-preserving variation%; of X which fix the boundary. Whe#' is not stable,
it is said to be unstable.

The following necessary and sufficient condition for the stability is known.

THEOREMA (Barbosa and do Carmo [1, Proposition 2.10]).et X be a CMC immer-
sion. Then X is stableif and only if

I(u) := —/ (Au + || B||Pw)udw > 0
M
for all functionu in
F = {u c c§+°‘(M) ‘/ udw = o} ,
M

where Cé*“(M ) is the set of all real-valued functions on M which are of C2t® on M and
vanishon oM.



150 M. KOISO

Let us define some function spaces associated WwithDenote byL2(M) the usual
Hilbert space completion af*>° (M) with respect to the norm defined by the inner product

(u,v)L2=/ uvdw .
M

We denote b)HOl(M) the completion o€5° (M) with respect to the norm defined by the inner
product

U, V)1 = / (uv + VuVo)dw,
M

whereVu Vv denotes the inner product of the gradient.adind that ofv with respect to the
Riemannian metric o#/ induced byX'. Let us denote bﬁ(M) the pre-Hilbert spacH(}(M)
with inner product(, ), 2.

Now, we consider the linear operatbr: H(}(M) — L%(M) and the eigenvalue prob-
lem (1.1) both of which were defined in Section 1. When we condidas an operator from
CS*“ (M) into CY¥ (M), L is strongly elliptic and self-adjoint with respect to the inner prod-
uct(,) ;.

REMARK 2.1. The eigenvalue problem (1.1) has countably many eigenvalues (Smale
[14, Lemma 1]):

M<AZ--, Ay —> +00(n—> 4+00).

Each eigenfunction of (1.1) is c[fg’*"‘(M) (cf. Gilbarg-Trudinger [4, Theorem 8.13]
and Ladyzhenskaya-Ural'tseva [9, Chap. 3, Theorem 12.1]). Denajg &y eigenfunction
of (1.1) belonging t6.;. {¢;} can be chosen so that they form an orthonormal basis4a¥/)
(Smale [14, Lemma 2]). Moreover, eatchhas the following minimum property on the pre-
Hilbert spacef (M) (Smale [14, Lemma 4]).

(2.3) A1 =1(¢1) = min{[(u)

u € H}(M) and/

wldw = 1} ,
M

i =1(pi) = min{](u)

ueHOl(M), / u’do=1 and
(2.4) M
/ugojda)=0f0rje{1,...,i—l}}, i=23,....
M

Also, the monotonicity of eigenvalues is verified (cf. Smale [14, Lemma 2]) by virtue of the
property that. has uniqueness in the Cauchy problem (cf. Hormander [5, Chap. VIII]), that
is, if M1 is a proper subset dif such thab M is of C3t® theni; (M1) > A;(M).

By using the Riesz-Schauder alternative theorem combined with the regularity theorem
for solutions of strictly elliptic partial differential equations and the regularity of the CMC
immersionX’, we obtain the following

LEMMA 2.2. Let A be areal number. We assume that M € Ck+2+ (k € Z, k >
0,0<a<1l).



SURFACES WITH CONSTANT MEAN CURVATURE 151

(@) Assumethat 2 isnot an eigenvalue of (1.1). Then, for any function f € L2(M), the
equation

u—Lu=f

has a uniquely determined solution u € Hg(M). Moreover, if f € CK**(M), then the
solution u isin CA+2+e (m).

(b) Assumethat A is an eigenvalue of (1.1). Then, for each function f € L2(M), the
equation

Au—Lu=f

hasasolutionu € H}(M) if and only if

/ fvdw =0
M

for all eigenfunctions v belonging to 1. Moreover, if f € C¥+* (M), then the solution u isin
C16+2+05 (M).

3. Proofs of Theorems 1.1 and 1.2. Let us assume that¥ : M — R3is aC3t

immersion with constant mean curvatutlg. Choose a neighborhodd of O in CS*“ (M) so

that, for anyu € V, X +uN : M — R3is an immersion. For any € V, denote byH, the
mean curvature ok’ + u/N.
Define a mapping

®:VxR— C*M)

by
3.1 ®u,H)=2(H—H,).
Then we first note the following

CLaiM 3.1.
(3.2 @ (0, Hyp) =0.
The mean curvature of X + uN (u € V) isconstant if and only if

&u,H)=0

for some H € R.

LEMMA 3.1. &(u, H) isFréchet differentiable with respect to « and H, and

(33)  D,®(0 Hv=—(Av+|B|>), HeR, veCi™M),
(34) Dy®u,H)K =2K, H,K¢eR,
(35  Du.m®O, H)(v,K) = 2K — (Av + ||B|?v),
HeR, (v,K)eC5™M)xR.
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PROOE Since
Ou+tv, H)— P, H) 28Hu+,v

lim )
t—0 t at =0
the Gateau derivative @ (u, H) with respect ta: is
_28Hu+tv i
at t=0

and this operator is continuousin Therefore @ (u, H) is Fréchet differentiable with respect
tou, and
Pl = —av 18I,
t t=0
where we used (2.2), and hence we have proved (3.3).
Since® (u, H) is linear with respect téf, the Fréchet differentiability with respect t
and the formula (3.4) are clearly valid. (3.5) is obtained from (3.3) and (3.4). O

D, ®(0, Hyv = —2

LEMMA 3.2. Assume that zero is not an eigenvalue of the problem (1.1). Then the
linear operator
D,®(0, Ho) : CET*(M) — C(M)
is bijective.
PROOFE The injectivity is clear by (3.3). Tdrsurjectivity is obtained from Lemma
2.2(a). |
Now we are ready to prove Theorem 1.1.

PROOF OFTHEOREM 1.1. By virtue of Lemma 3.2, we can apply the implicit map-
ping theorem (cf. Lang [10, pp. 17-18]) to the mapping

®:VxR— C*M).
In view of Lemma 2.1 and Claim 3.1, we obtain Theorem 1.1. O

Now, let us consider the case where the eigéue problem (1.1) has zero eigenvalues.
As in Section 1, we denote b¥ the eigenspace corresponding to zero eigenvalues, and by
E- its orthogonal complement in?(M). Define a mapping

U:(VNE)x (VNEY) xR—> C¥M)
by
(3.6) W(u,v,H) = ®u+v, H).

Then, in view of Lemma 3.2¥ (u, v, H) is Fréchet differentiable with respectiov, andH,
and we have

(3.7) D, m¥(0,0, Ho)(w, H) = 2H — (Aw + || BlI*w), (w, H) € (C5™ NE) x R.

LEMMA 3.3. Assumethat
dmE =1
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and that

edw # 0 for some (and therefore all) e € E — {0}.
M

Then the linear operator
D, m¥ (0,0, Ho) : (CST*(M) N EY) x R— C%(M)
is bijective.

PROOFE By assumptionE is represented as

(3.8) E = {aepla € R},
whereeg is an eigenfunction with eigenvalue zero satisfying
3.9 / eodw = 0.

M
Set

F =D m¥(0,0, H) .
In view of (3.7), we see

KerF = {(w, H) € (C57 N EY) x R|2H — (Aw + || B|I?w) = 0}
Suppose thatw, H) € (Cé*“ N E+) x Ris an element of Ker. Then

(3.10) —Lw = —2H .
Hence, by Lemma 2.2(b),
—ZH/ egdw = 0.
M
From (3.9), we obtain
H=0.

Therefore, by (3.10)w is an element o. On the other hand, by assumptian,is in E*.
Hence
w=0,
and we have proved
KerF = {(0,0)},
which implies the injectivity ofF.
Now let us prove the surjectivity af. For any functionf € C*(M), set
o Jy feodw .
2 [y eodw
Then, by Lemma 2.2(b), there exists a functioa Cé*“ (M) which satisfies
—Lu=f—2H.

Let us decompose into
u=e+w, eckE, weEL.
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Thenw € C3" (M) N E*, and
—Lw=—Lu=f—2H,
which implies that
Fw,H)=f, (w,H)e (CS*M)nE*) xR. O

Now, we are in the last stage of proving Theorem 1.2.

PROOF OFTHEOREM 1.2. By virtue of Lemma 3.3, we can apply the implicit map-
ping theorem (cf. Lang [10, pp. 17-18]) to the mapping

VU (VNE)x (VNEY) xR— CYM).

Remark that, by Lemma 2.2(b) (or Remark 2.E),c C3™(M) c CZT(M). In view of
Lemma 2.1 and Claim 3.1, we obtain Theorem 1.2. O

4. Proofsof Theorem 1.3 and Corollary 1.1.

PROOF OFTHEOREM 1.3. (l)is clear from (2.3).

Assume thaki < 0. Asin Remark 2.1, lep; be the eigenfunction corresponding to the
i-th eigenvalug.; of (1.1) such thate; } form an orthonormal basis fdr?(M). Sinceyp; does
not change sign,

4.2 / p1dw # 0.
M

For a functionu € C3™ (M), set

4.2) v = —%fﬂl—ku.
Then
4.3) / vdw = 0.
M

By setting

Y [y udew

Juerdo’
v is represented as
v=aep1+u.

When (1.1) has no zero eigenvalue, by virtue of Lemma 2.2(a) and Remark 2.1, there

exists a unique function € CS*“(M) satisfyingLu = 1. In this case, by using the Green’s
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formula and (4.3), we see that

I(v) = —/ vLvdw
M
(4.4) = — / (az(plL(pl +ap1lu +aulLyp1 + ulLu)dw

M

=a2A1/ (p%da)— Za/ golLuda)—/ udw

M M M
= azkl +/ udw .
M

Sincei1 < 0, I(v) < 0inthe case WherﬁM udw < 0. In this case, in view of Theorem A,
X is unstable, which proves (l1-2).
Next, whenu = ¢, from (4.4) and the orthonormality ¢, }, we see

I(v) = azklf (p%da) - Za/ p1Le2dw —/ p2Lg2dw
M M M

=a2A1/ (p%da)—l-Za)»z/ golgazda)—i-kz/ go%da)
M M M

o (o)

Therefore, ifA; <0 andfM @2 # 0, thenl (v) < 0, which proves (lll-A). Wherk, < 0, also
I (v) < 0, which proves (V).
Next we prove (II-1). Set

E1={apila €R), Ei= {u € CS”(M)‘/ prudw = o} .
M

By virtue of Lemma 2.2(a) and Remark 2.1, there exists a unique funatienCS*“(M)

satisfyingLu = 1. If
/ udw >0,
M
then
(4.5) I(u):—/ uLuda):—/ udw < 0.
M M

(2.4), (4.5) andh2 > 0 imply u ¢ ElL Therefore, any € F is represented as follows:

v=w+bu, beR, weEf.



156 M. KOISO

Then
I(v) = —/ (bzuLu +buLw + bwLu + wLw)dw
M

=—b2/ uda)—Zb/ wdw + 1(w)
M M

:bZ/ uda)—Zb/ (w+ bu)dw + I (w)
M M

= —b%I(u) + I (w)
2 Os

which implies thatt’ is stable.

Finally, we prove (l1l-B). By virtue of Lemma 2.2(b) and Remark 2.1, there exists a
unique functiont € EL+ N Cg+“(M) that satisfied.u = 1.

When [,, udw < 0, we can prove that is unstable by the same way as in the proof of
(1-2).

When [;, udw > 0, we can prove that is stable by the same way as in the proof of
(11-2).

WhenfM udw =0,

I(u):—/ uLuda):—/ udw =0=»xrp.
M M

Assume that: € Ell By (2.4), u is an eigenfunction corresponding 19 = 0, that is,
Lu = 0, which is a contradiction. Therefore,¢ Ei-, and hence, we can prove the stability
of X by the same way as in the proof of (II-1). O

PROOF OF COROLLARY 1.1. By virtue of Theorem 1.1, the existence of a one-
parameter family{X;} of CMC immersions stated in the first half of Corollary 1.1 is veri-
fied.

From (2.2),
X,
(4.6) 2H'(0) = Lu, u= <Q , /\/>.
ot |,_o
On the other hand, from (2.1),
4.7) V'(0) = / udw.
M
(1) and (2) are verified by (4.6), (4.7) and Theorem 1.3(ll). a

5. Examplesand concluding remarks. In this section, we give some examples and
remarks relating to our results which were obtained in the preceding sections.

Besides the plane, the simplest examples of CMC immersions are so-called Delaunay
surfaces, which are rotational surfaces with constant mean curvature. Delaunay surfaces
are classified into five classes, namely catenoids, spheres, cylinders, unduloids, and nodoids.
Catenoids are only minimal surfaces among Delaunay surfaces.
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Let us consider connected compact subsEBetaunay surfaces each of whose boundary
(if it is not empty) consists of one or two circles that are perpendicular to the rotation axis. In
the following, we will call each such subsetlie an admissible piece. Any admissible piece
with only one boundary component is a subset of a sphere, which is called a spherical cap.
For an admissible piecgof a Delaunay surface, we denotehysS) thei-th eigenvalue of the
eigenvalue problem (1.1) fa. This notation is reasonablegtause the eigenvalues of (1.1)
are independent of each parametrizatioi@/) in the following sense: Let : M — M be
a Cc3te diffeomorphism ofM, and sefy = X o . Then the eigenvalues fQr are the same
as those fory.

First, let us consider an admissible pietcef a catenoidS. It is known that if the area of
the image of the Gauss map of a minimal surface is smaller thath2ni; > O (Barbosa-do
Carmo [1]). Therefore, ifS is sufficiently small, therk, is positive. Hence, by Theorem
1.1, there exists a one-parameter faniify}; (So = S) of embedded CMC surfaces from
an annulus with the same boundarySasuch that the mean curvatufg(r) of S; is strictly
monotone with respect to By using the Alexandrov reflection methods, e&gcproves to be
a surface of revolution. From the strict monotonicityfft), S; must be a part of an unduloid
fort > 0, and a part of a nodoid for< 0 (or, a part of an unduloid far < 0, and a part of a
nodoid fors > 0).

Next, we consider spherical caps. Itis well-known that the first eigenvalue of the problem
(1.1) for a hemisphere is zero, and the second eigenvalue for a whole sphere is zero as well.
On the other hand, for each spherical ¢apt is easily observed that there exists a CMC
deformation{s;}; of S such thatSp = S and that eacls; is a spherical cap witdS; = 9S.
Whens is not a hemispher¢s; }; gives an example of Theorem 1.1. Wheis a hemisphere,

{S:}; gives an example of Theorem 1.2. Whe&ns larger than the hemispherg,gives an
example of Corollary 1.1(1).

Next, let$ be a cylinder of radius. For each admissible pieceof S, we denote by
h = h(S) the distance between two boundary circlesSof The largest stable admissible
piece is the one witth = 277, and in this casex(S) = 0. On the other hand, #i = 7r,
theni; = 0. (cf. Barbosa-do Carmo [1, Example 2.17].) When < h(S) < 27r, One
can observe a smooth one-parameter farffily; of admissible pieces of unduloids such that
So = 8,088, = a8, andH'(0)V'(0) > 0. These observations correspond with Corollary
1.1(1).

Similar observations are done for unduloids. Hereafter, a circle of an unduloid (or a
nodoid) S means a circle included it which is perpendicular to the rotation axis$f

Let S be an unduloid. Among alldmissible pieces of one of whose boundary compo-
nents is the largest (or smallest) circle$tthe largest stable ones are those which correspond
to exactly one period of (Koiso [8, Chap. 5, §5.7]). In this case; = 0. On the other hand,
whenaS = C1 U C2 = (one of the largest circles cﬁ‘) U (one of the nearest circles &,
among the smallest circles 8§, 11(S) = 0. In fact, for any unit vector which is parallel to
the rotation axis of5, the functionu = (\/, v) gives an eigenfunction corresponding to the
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zero eigenvalue, wher® is the Gauss map o, and zero is the first eigenvalue by virtue of
the property tha does not change sign in the interiorsf

Moreover, for an admissible piedewith A1(S) < 0 < A2(S), one can observe a smooth
one-parameter familys; }, of admissible pieces of unduloids witly = S and withdS; = 9§
such that?’(0)V’(0) > 0.

Finally, let S be a nodoid. Denote bg the rotation axis ofs. Let S be an admissible
piece ofS with S = C1 U Co, where eaclt; is a circle inS.

Assume first that, oi€'1, the normal taS is parallel to. The largest stable suchis the
case wher&s is one of the two neighboring circles on which the norma$ e parallel to¢,
and in these cases,(S) = 0 (Koiso [8, Chap. 5, §5.7]).

Assume next thaf’; is one of the smallest circles 6f Denote byC* one of the nearest
circles among the largest circles$fand denote by* the admissible piece of with 9.5* =
C1 U C*. Thenir1(S*) = 0. Indeed, this is verified by the same way as for an admissible
piece S of an unduloid above, by considering functian= (N, v), wherev is any unit
vector which is parallel t&. Now, let S be an admissible piece &f such that one of its
boundary components §; and that it containg€™* in its interior. If S is sufficiently small,
theni1(S) < 0 < A2(S). For suchS, we conjecture the following.

CONJECTURE 5.1. There exists a smooth one-parameter family {S;}; of admissible
pieces of nodoids such that So = §, 3S5; = 45, and H'(0)V’(0) < 0.

If this conjecture is verified, then we obtain an example for which Corollary 1.1(2) can
be applied, and we can conclude tl§és unstable.
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