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Abstract. It is well-known that the only minimal Lagrangian submanifolds of constant
sectional curvaturec in a Riemannian complex space form of constant holomorphic sectional
curvature 4c are the totally geodesic ones. In this paper we investigate minimal Lagrangian
Lorentzian submanifolds of constant sectional curvaturec in Lorentzian complex space form
of constant holomorphic sectional curvature 4c. We prove that the situation in the Lorentzian
case is quite different from the Riemannian case. Several existence and classification theorems
in this respect are obtained. Some explicit expression of flat minimal Lagrangian submanifolds
in flat complex Lorentzian space form are also presented.

1. Introduction. Let M̃n
k (4c) be an indefinite complex space form of complex di-

mensionn and complex indexk. The complex index is defined as the complex dimension of
the largest complex negative definite subspace of the tangent space. Ifk = 1, we say that
M̃(4c) is Lorentzian. The curvature tensorR̃ of M̃(4c) is given by

R̃(X, Y )Z = c{〈Y,Z〉X − 〈X,Z〉Y + 〈JY,Z〉JX − 〈JX,Z〉JY + 2〈X, JY 〉JZ} .

Let Cn denote the complex numbern-space with complex coordinatesz1, . . . , zn. The
Cn endowed withgs,n, i.e., the real part of the Hermitian form

bs,n(z,w) = −
s∑

k=1

z̄kwk +
n∑

j=s+1

z̄jwj , z,w ∈ Cn ,

defines a flat indefinite complex space form with complex indexs. We simply denote the pair
(Cn, gs,n) by Cn

s . In particular,Cn
1 is the flatLorentzian complex n-space.

For complex space forms with nonzero curvaturec > 0, consider the differentiable
manifold:

S2n+1
2 (c) = {

z ∈ Cn+1
1 ; b1,n+1(z, z) = 1/c

}
,

which is an indefinite real space form of constant sectional curvaturec. The Hopf fibration

π : S2n+1
2 (c) → CPn

1 : z �→ z · C∗

is a submersion and there exists a unique pseudo-Riemannian metric of complex index one on
CPn

1 such thatπ is a Riemannian submersion. The pseudo-Riemannian manifoldCPn
1 (4c) is

a Lorentzian complex space form of positive holomorphic sectional curvature 4c.
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Analogously, ifc < 0, consider

H 2n+1
2 (c) = {

z ∈ Cn+1
2 ; b2,n+1(z, z) = 1/c

}
,

which is an indefinite real space form of constant sectional curvaturec < 0. The Hopf
fibration

π : H 2n+1
2 (c) → CHn

1 : z �→ z · C∗

is a submersion and there exists a unique pseudo-Riemannian metric of complex index 1 on
CHn

1 such thatπ is a Riemannian submersion. The pseudo-Riemannian manifoldCHn
1 (4c)

is a Lorentzian complex space form of negative holomorphic sectional curvature 4c.
A complete simply-connected Lorentzian complex space form̃Mn

1 (4c) is holomorphi-
cally isometric toCn

1, CPn
1 (4c), or CHn

1 (4c), according toc = 0, c > 0 or c < 0, respec-
tively.

A submanifoldM of M̃n
1 (4c) is calledLagrangian if the almost complex structureJ of

M̃n
1 (4c) interchanges the tangent and the normal spaces. Clearly, a Lagrangian submanifold

of M̃n
1 (4c) is n-dimensional. A Lagrangian submanifold ofM̃n

1 (4c) is Lorentzian if and only
if M has (real) index one.

One of the most fundamental problems in the study of Lagrangian submanifolds is the
classification of Lagrangian isometric immersions of real space forms into complex space
forms. For Riemannian complex space forms, this problem have been studied in [CO, E, C1,
C2, C3, CDVV2]. In particular, Ejiri [E] proved that every minimal Lagrangian submani-
fold of constant sectional curvaturec in a Riemannian complex space form of holomorphic
sectional curvature 4c is totally geodesic and that the only minimal Lagrangian isometric im-
mersions of real space forms into Riemannian complex space forms are either totally geodesic
or flat Lagrangian submanifolds in a complex projective space (see, also [CO]).

In Lorentzian case, the corresponding problem was solved in [KV1] and [KV2] for mini-
mal Lagrangian submanifolds of constant sectional curvaturec in a Lorentzian complex space
form M̃n

1 (4c̄) with c �= c̄. However, the method used in [KV1] and [KV2] relies heavily on
the assumption:c �= c̄; hence the method of [KV1] and [KV2] does not apply to the most
fundamental case; namely, minimal Lagrangian submanifolds of constant sectional curvature
c in a Lorentzian complex space form̃Mn

1 (4c) of holomorphic sectional curvature 4c.
The purpose of this paper is to investigate the most fundamental case; namely, to classify

minimal Lagrangian submanifolds of constant sectional curvaturec in a Lorentzian com-
plex space formM̃n

1 (4c) of holomorphic sectional curvature 4c. In Section 3 we determine
completely the second fundamental form of minimal Lagrangian submanifolds of constant
sectional curvaturec in a Lorentzian complex space form̃Mn

1 (4c). In Sections 4 and 5, we
classify flat minimal Lagrangian submanifolds inCn

1. In the last section, we provide some
explicit expression of flat minimal Lagrangian submanifolds inCn

1.

2. Preliminaries. LetM be a Lagrangian submanifold of a Lorentzian complex space
form M̃n

1 (4c). Denote by∇ and∇̃ the Levi Civita connection onM andM̃n
1 (4c), respectively.
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Then the formulas of Gauss and Weingarten are given respectively by

∇̃XY = ∇XY + h(X, Y ) ,(2.1)

∇̃XJY = −AJYX + DXJY ,(2.2)

whereh, A andD are the second fundamental form, the shape operator and the normal con-
nection. It is well-known that, for eachY ∈ TxM, the shape operatorAJY is a symmetric
endomorphism of the tangent spaceTxM.

SinceJ is the almost complex structure, we deduce as in the Riemannian case that

DXJY = J∇XY ,(2.3)

AJY X = −Jh(X, Y ) = AJXY .(2.4)

The equations of Gauss, Codazzi and Ricci are given respectively by

(2.5)
〈R(X, Y )Z,W 〉 = 〈Ah(Y,Z)X,W 〉 − 〈Ah(X,Z)Y,W 〉

+c(〈X,W 〉〈Y,Z〉 − 〈X,Z〉〈Y,W 〉) ,

(2.6) (∇h)(X, Y,Z) = (∇h)(Y,X,Z) ,

(2.7)
〈RD(X, Y )JZ, JW 〉 = 〈[AJZ,AJW ]X,Y 〉

+c(〈X,W 〉〈Y,Z〉 − 〈X,Z〉〈Y,W 〉) ,

whereX,Y,Z,W (respectively,η andξ ) are vector fields tangent (respectively, normal) to
M, RD(X, Y ) = [DX,DY ] − D[X,Y ], and∇h is defined by

(2.8) (∇h)(X, Y,Z) = DXh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ) .

We need the following Existence and Uniqueness Theorems for later use.

THEOREM A. Let (Mn, g) be an n-dimensional simply connected Lorentzian manifold
and TM denote the tangent bundle of Mn. If σ be a TM-valued symmetric bilinear form on M
satisfying

(1) 〈σ(X, Y ), Z〉 is totally symmetric,
(2) (∇σ)(X, Y,Z) = ∇Xσ(Y,Z) − σ(∇XY,Z) − σ(Y,∇XZ) is totally symmetric,
(3) R(X, Y )Z = c(〈Y,Z〉X − 〈X,Z〉Y ) + σ(σ(Y,Z),X) − σ(σ(X,Z), Y ),

then there exists a Lagrangian isometric immersion L from (M, g) into a complete simply-
connected Lorentzian complex space form M̃n

1 (4c) whose second fundamental form h is given
by h(X, Y ) = Jσ(X, Y ).

THEOREM B. Let L1, L2 : M → M̃n
1 (4c) be two Lagrangian isometric immersions

of a Lorentzian manifold M with second fundamental forms h1 and h2, respectively. If

〈h1(X, Y ), JL1�Z〉 = 〈h2(X, Y ), JL2�Z〉 ,

for all vector fields X,Y,Z tangent to M, then there exists an isometry φ of M̃n
1 (4c) such that

L1 = L2 ◦ φ.

These two theorems can be proved in a way similar to the Riemannian case given in
[CDVV1, C1].
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3. Shape operator of minimal Lagrangian submanifolds. The main purpose of this
section is to completely determine the shape operators of minimal Lagrangian submanifolds
of constant sectional curvaturec in a Lorentzian complex space form̃Mn

1 (4c). In order to do
so, we need several lemmas. First we give the following.

LEMMA 1. Let M be a Lagrangian submanifold of a Lorentzian complex space form
M̃n

1 (4c). Then M is of constant sectional curvature c if and only if the shape operators of M
commute, i.e., [AJZ,AJW ] = 0 for all Z, W tangent to M.

PROOF. (2.3) and (2.7) imply

〈R(X, Y )Z,W 〉 = 〈[AJZ,AJW ]X,Y 〉 + c(〈X,W 〉〈Y,Z〉 − 〈X,Z〉〈Y,W 〉) ,

which yields the lemma. �

Next, we recall the following result from [On, pp. 261–262].

LEMMA 2. A symmetric endomorphism S of an n-dimensional vector space V with a
Lorentzian inner product ( , ) can be put into one of the following four forms:

I. S ∼




a1 0
a2

. . .

0 an


 , II . S ∼




a0 0 0
1 a0

a3
. . .

0 an




,

III . S ∼




a0 0 0
0 a0 1

−1 0 a0
a4

. . .

an




,

IV . S ∼




a0 b0
−b0 a0

a3
. . .

an




,

where b0 is assumed to be nonzero. In cases I and IV, S is represented with respect to an
orthonormal basis {E1, . . . , En} satisfying (E1, E1) = −1, (Ei, Ej ) = δij , (E1, Ei) = 0
for 2 ≤ i, j ≤ n, while in cases II and III the basis {E1, . . . , En} is pseudo-orthonormal
satisfying (E1, E1) = 0 = (E2, E2) = (E1, Ei) = (E2, Ei), for 3 ≤ i ≤ n, (E1, E2) = −1,
and (Ei, Ej ) = δij , otherwise.

The following lemma is fundamental in this article.
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LEMMA 3. Let M be a minimal Lagrangian submanifold of constant sectional curva-
ture c in a Lorentzian complex space form M̃n

1 (4c). Then, for any vector v tangent to M and
any natural number k, we have trace(Ak

Jv) = 0.

PROOF. SinceM is assumed to be minimal, one has trace(AJv) = 0 for anyv ∈ T M.
Thus, trace(AJAJvv) = 0. Therefore, by applying (2.4) and Lemma 1, we have

n∑
i=1

εi〈A2
JvEi, Ei〉 =

n∑
i=1

εi〈AJvAJEi v,Ei〉 =
n∑

i=1

εi〈AJEi AJvv,Ei〉

=
n∑

i=1

εi〈AJAJvvEi, Ei〉 = 0

for any orthonormal basis{E1, . . . , En}, which implies traceA2
Jv = 0. Similarly, we have

n∑
i=1

εi〈Ak
JvEi,Ei〉 =

n∑
i=1

εi〈Ak−1
Jv AJEi v,Ei〉 =

n∑
i=1

εi〈AJEi A
k−1
Jv v,Ei 〉

=
n∑

i=1

εi〈AJAk−1
Jv v

Ei, Ei〉 .

Thus, by induction we obtain trace(Ak
Jv) = 0 for any natural numberk. �

LEMMA 4. Let M be a minimal Lagrangian submanifold of constant sectional curva-
ture c in a Lorentzian complex space form M̃n

1 (4c). Then, for any point x ∈ M, exactly one
of the following three cases occurs:

(A) 〈AJww,w〉 = 0 for all w ∈ TxM;
(B) there is a vector v ∈ TxM such that 〈AJvv, v〉 = 1, but 〈A2

Jww,w〉 = 0 for all
w ∈ TxM;

(C) there is a vector v ∈ TxM such that 〈A2
Jvv, v〉 = ±1, but 〈A3

Jww,w〉 = 0 for all
w ∈ TxM.

PROOF. For any fixedw ∈ TxM, AJw is a symmetric endomorphism ofTxM. Thus,
according to Lemma 2,AJw can be put into one of the four forms mentioned in Lemma 2.

(I) If AJw can be put into a diagonal matrix given in case I of Lemma 2, then Lemma
3 with k = 2 yields

∑n
i=1 a2

i = 0, which impliesa1 = · · · = an = 0. ThusAJw = 0.
(II) If AJw can be put into the form of the matrix in case II, then we have

AJwE1 = a0E1 + E2 , AJwE2 = a0E2 , AJwEi = aiEi , i = 3, . . . , n .

Thus

A2
JwE1 = a2

0E1 + 2a0E2 , A2
JwE2 = a2

0E2 , A2
JwEi = a2

i Ei , i = 3, . . . , n .
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Hence, 0= trace(A2
Jw) = 2a2

0 + a2
3 + · · · + a2

n, which yieldsa0 = a3 = · · · = an = 0. Thus,
in this case,AJw can be put in the form:

(3.1) AJw ∼




0 0 0
1 0

0
. . .

0 0




.

In particular, we obtainA2
Jw = 0 in case II.

(III) If AJw can be put into the matrix of case III, we have

AJwE1 = a0E1 − E3 , AJwE2 = a0E2 , AJwE3 = E2 + a0E3 ,

AJwEi = aiEi , i = 4, . . . , n ,

A2
JwE1 = a2

0E1 − E2 − 2a0E3 , A2
JwE2 = a2

0E2 ,

A2
JwE3 = 2a0E2 + a2

0E3 , A2
JwEi = a2

i Ei , i = 4, . . . , n .

Hence, 0= trace(A2
Jw) = 3a2

0 + a2
4 + · · · + a2

n. Thus, in this case,AJw can be put in the
form:

(3.2) AJw ∼




0 0 0 0
0 0 1

−1 0 0
. . .

0 0




.

In particular, we obtainA3
Jw = 0.

(IV) If AJw can be put into the matrix of case IV, then we have

AJwE1 = a0E1 − b0E2 , AJwE2 = b0E1 + a0E2 , AJwEi = aiEi ,

A2
JwE1 = (a2

0 − b2
0)E1 − 2a0b0E2 , A2

JwE2 = 2a0b0E1 + (a2
0 − b2

0)E2 ,

A2
JwEi = a2

i Ei , i = 3, . . . , n .

Hence,

trace(AJw) = 2a0 + a3 + · · · + an = z1 + z2 + a3 + · · · + an = 0 ,

trace(A2
Jw) = 2a2

0 − 2b2
0 + a2

3 + · · · + a2
n = z2

1 + z2
2 + a2

3 + · · · + a2
n = 0 ,

wherez1 = a0 + ib0, z2 = a0 − ib0. Similarly, we also have

trace(Ak
Jw) = zk

1 + zk
2 + ak

3 + · · · + ak
n = 0 , k = 3, 4, . . . .

From these we obtainz1 = z2 = a3 = · · · = an = 0. Thus, in this case we obtainAJw = 0.
Consequently, we always haveA3

Jw = 0, which implies the lemma in a straightforward way.
�
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Equation (2.5) of Gauss implies that ifMn(c) is a space-like minimal Lagrangian sub-
manifold of constant sectional curvaturec in a Lorentzian complex space form̃Mn

1 (4c) (or
more generally, in an indefinite complex space form) of constant holomorphic sectional cur-
vature 4c, thenMn(c) is totally geodesic. Hence, from now on we only consider minimal
LagrangianLorentzian submanifold of constant sectional curvaturec in M̃n

1 (4c).
The following main result of this section determines completely the second fundamental

form for minimal Lagrangian submanifold of constant sectional curvaturec in a Lorentzian
complex space formM̃n

1 (4c).

THEOREM 1. Let M be a minimal Lagrangian submanifold of constant sectional cur-
vature c in a Lorentzian complex space form M̃n

1 (4c). Then at every point p the second
fundamental form h of M takes one of the following three forms:

(1) h = 0, i.e., p is a totally geodesic point.
(2) The second fundamental form h satisfies

(3.3) h(e1, e1) = J e2 , h(e1, ei) = h(ei , ej ) = 0 , 2 ≤ i, j ≤ n

with respect to a suitable pseudo-orthonormal basis {e1, . . . , en} satisfying

(3.4)
(e1, e1) = 0 = (e2, e2) = (e1, ei ) = (e2, ei ) , (e1, e2) = 1 ,

(ei, ej ) = δij , 1 ≤ i, j ≤ n − 2 .

(3) The second fundamental form h satisfies

(3.5) h(e1, e1) = J e3 , h(e1, e3) = J e2 , and h(ei, ej ) = 0 , otherwise ,

with respect to a suitable pseudo-orthonormal basis {e1, . . . , en} satisfying (3.4).

PROOF. The proof of this theorem bases on Lemma 4. Clearly, if case A of Lemma 4
occurs at every pointx in M, thenM is totally geodesic.

Let us assume that there is a pointx such that case B of Lemma 4 occurs, i.e., there is a
vectorv ∈ TxM such that〈AJvv, v〉 = 1 but〈A2

Jww,w〉 = 0 for all w ∈ TxM. By linearity
and Lemma 1, the later condition impliesA2

Jw = 0 for all w.
In this case, we pute1 = v ande2 = AJvv. Then

〈e2, e2〉 = 〈AJvv,AJvv〉 = 〈A2
Jvv, v〉 = 0 .

Moreover, from〈AJvv, v〉 = 1, we get〈e1, e2〉 = 1.
For any real numberα we have

AJ(e1+αe2)(e1 + αe2) = AJe1e1 + 2αAJe1e2 + α2AJe2e2 = e2 ,

where we use the facts:AJe1e2 = A2
Jvv = 0 andAJe2e2 = AJe2AJvv = AJvAJe2v =

A2
Jve2 = 0. Thus, if we putα = −〈e1, e1〉/2 and replacee1 by e1 + αe2, we obtain for the

newe1, e2 that

(3.6) 〈e1, e1〉 = 〈e2, e2〉 = 0 , 〈e1, e2〉 = 1 , AJe1e1 = e2 , AJe1e2 = 0 .

Clearly, both Span{e1, e2} and{e1, e2}⊥ =: (Span{e1, e2})⊥ are invariant under the action of
AJe1. Since{e1, e2}⊥ is Riemannian, the restriction ofAJe1 to {e1, e2}⊥ is diagonalizable.
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BecauseAJe1 has zero as the only eigenvalue on{e1, e2}⊥ (cf. proof of Lemma 4), the re-
striction ofAJe1 to this invariant subspace is zero. Thus, if we choosee3, . . . , en to be an
orthonormal basis of{e1, e2}⊥, we obtain

(3.7) AJe1 =




0 0 0
1 0

0
. . .

0 0




with respect to the pseudo-orthonormal basis{e1, . . . , en}.
From (2.4), (3.6) and Lemma 1, we findAJe2e1 = AJe1e2 = 0 andAJe2e2 = A2

J e1
e2 =

0, which imply that Span{e1, e2} is also invariant under the action ofAJe2. Since{e1, e2}⊥ is
also invariant underAJe2, andAJe2 has zero as the only eigenvalue on{e1, e2}⊥, we obtain
AJe2 = 0.

For i = 3, . . . , n, we have AJei e1 = AJe1ei = 0, and AJei e2 = AJeiAJe1e1 =
A2

J e1
ei = 0. Thus, by applying the same argument as forAJe2, we also haveAJei = 0

for i = 3, . . . , n. Consequently, in this case we obtain (3.3).
Next, we assume that there is a vectorv ∈ TxM such that〈A2

Jvv, v〉 = ±1 but〈A3
Jww,w〉

= 0 for all w ∈ TxM. In this case, we put

e1 = v , e2 = A2
J e1

e1 , e3 = AJe1e1 .

Then〈e1, e2〉 = ±1 andAJe1e2 = 0, sinceA3
Jvv = 0. Also, we have

〈e3, e3〉 = 〈A2
J e1

e1, e1〉 = ±1 ,

〈e2, e2〉 = 〈A2
J e1

e1, A
2
J e1

e1〉 = 〈A4
J e1

e1, e1〉 = 0 ,

〈e2, e3〉 = 〈AJe1e3, A
2
J e1

e1〉 = 〈A3
J e1

e1, e1〉 = 0 .

With respect toe1, e2, e3, the restriction of the metric tensorg to Span{e1, e2, e3} takes the
form:

(3.8)


 ∗ ±1 ∗

±1 0 0
∗ 0 ±1


 .

If 〈e3, e3〉 = 1, then〈A2
J e1

e1, e1〉 = 1. Thus,〈e2, e1〉 = 1. Similarly, if 〈e3, e3〉 = −1, then
〈e2, e1〉 = −1. Consequently, the restriction of the metric tensorg to Span{e1, e2, e3} takes
one of the following two forms:

B =

∗ 1 ∗

1 0 0
∗ 0 1


 or C =


 ∗ −1 ∗

−1 0 0
∗ 0 −1


 .

Since det(B) < 0, the signature ofB is either(+,+,−) or (−,−,−); while det(C) > 0,
the signature ofC is either(+,+,+) or (−,−,+). Because Span{e1, e2, e3} contains a null
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vector andM is assumed to be Lorentzian, only the first case may occur. Thus, we must have
〈e3, e3〉 = 〈e1, e2〉 = 1.

For any real numbersα, β, we have

AJ(e1+βe2+αe3)(e1 + βe2 + αe3) = e3 + 2αe2 ,

AJ (e1+βe2+αe3)(2αe2 + e3) = AJe1e3 ,

〈2αe2 + e3, 2αe2 + e3〉 = 1 .

Thus, if we replacee1, e3 by e1 + βe2 + αe3, 2αe2 + e3, respectively, but keepe2, then the
newe3 still satisfies〈e3, e3〉 = 1.

Furthermore, since

〈e1 + βe2 + αe3, e1 + βe2 + αe3〉 = 〈e1, e1〉 + α2 + 2α〈e1, e3〉 + 2β ,

〈e1 + βe2 + αe3, 2αe2 + e3〉 = 〈e1, e3〉 + 3α ,

so if we choose

α = −1

3
〈e1, e3〉 , β = 5

18
〈e1, e3〉2 − 1

2
〈e1, e1〉 ,

then the newe1, e3 also satisfy〈e1, e1〉 = 〈e1, e3〉 = 0. By choosing an orthonormal basis
{e4, . . . , en} of {e1, e2, e3}⊥, we know that the metric tensorg with respect to the pseudo-
orthonormal basis{e1, . . . , en} is given by

(3.9)




0 1 0
1 0 0 0
0 0 1

0 In−3


 ,

whereI denotes the identity matrix.
By applyingA3

Jw = 0 and the definition ofe1, . . . , en given above and proceeding as in
the previous case, we obtain

AJe1 =




0 0 0
0 0 1 0
1 0 0

0 0


 , AJe3 =




0 0 0
1 0 0 0
0 0 0

0 0


 ,(3.10)

AJe2 = AJe4 = · · · = AJen = 0 .(3.11)

Thus, in this case the second fundamental satisfies (3.5). �

4. Existence theorems. The purpose of this section is to show that there exist many
minimal flat Lagrangian submanifolds inCn

1.
Let γ = γ (t) be a null line in the Lorentziann-spaceLn defined byγ (t) = tζ , whereζ

is a (nonzero) null vector inLn, and letα = α(t) be a null curve lying in the hyperplane

Λn−1 =: {x ∈ Ln; 〈x, ζ 〉 = 1}
of Ln. Here by a null curve inLn we mean a curveα satisfying〈α(t), α(t)〉 = 0 for anyt .
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If α is a null line, we putϕ3 = · · · = ϕn = 0 and choose{α3, . . . , αn} to be any fixed
orthonormal basis of{ζ, α}⊥.

If α is not a null line, then, by applying〈α(t), α(t)〉 = 0 and〈α(t), ζ 〉 = 1, we know
thatα′(t) is a vector perpendicular toα(t) andζ , i.e., 〈α′(t), α(t)〉 = 〈α′(t), ζ 〉 = 0. Thus,
there is a unit vectorα3(t) and a real numberϕ3(t) such thatα′(t) = ϕ3(t)α3(t). Sinceα is
not a null line, it follows from〈α(t), ζ 〉 = 1 thatζ , α andα′ are linearly independent.

If n ≥ 4, then by using〈α3, α3〉 = 〈α, ζ 〉 = 1 and〈α, α3〉 = 0, we know thatα′
3(t) =

−ϕ3(t)ζ + ϕ4(t)α4(t), whereϕ4(t) is a real number andα4(t) is a unit vector perpendicular
to ζ , α, α3. Whenϕ4 ≡ 0, we chooseα4, . . . , αn to be any orthonormal basis of{ζ, α, α3}⊥.
Continuing this process if necessary, we obtain the Frenet curvaturesϕ3, . . . , ϕn and the
(orthonormal) Frenet frame{α3, . . . , αn} which satisfy the Frenet formulas:

(4.1)




α′ = ϕ3α3 ,

α′
3 = −ϕ3ζ + ϕ4α4 ,

· · ·
α′

n−1 = −ϕn−1αn−2 + ϕnαn ,

α′
n = −ϕnαn−1 .

The main result of this section is the following existence theorems.

THEOREM 2. Suppose µ = µ(t) is a function of one variable, γ (t) = tζ a null line
in the Lorentzian n-space Ln, and α = α(t) a null curve lying in the hyperplane Λn−1 with
Frenet curvatures ϕ3, . . . , ϕn and the (orthonormal) Frenet frame {α3, . . . , αn} mentioned as
above. Let Ln be parameterized by

(4.2) x(t, u2, . . . , un) = tζ + u2α(t) + u3α3(t) + · · · + unαn(t) .

Then, up to rigid motions, there exists a unique minimal Lagrangian isometric immersion
Fαζµ : Ln → Cn

1 whose second fundamental form satisfies

(4.3)




h

(
∂

∂t
,

∂

∂t

)
= µ(t)(u3ϕ3(t) − 1)J

(
∂

∂u2

)
,

h

(
∂

∂t
,

∂

∂ui

)
= h

(
∂

∂ui

,
∂

∂uj

)
= 0 , 2 ≤ i, j ≤ n .

PROOF. It follows from (4.2) and a direct computation that the coefficients of metric
tensorg takes the form:

(4.4) (gij ) =




g11 g12 g13 . . . g1n

g12 0 0 . . . 0
g13 0 1 0
...

...
. . .

g1n 0 0 1




,
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where

(4.5)




g11 = u2
n−1ϕ

2
n +

n∑
i=4

(ui−2ϕi−1 − uiϕi)
2 ,

g12 = 1 − u3ϕ3 ,

g13 = u2ϕ3 − u4ϕ4 ,

· · ·
g1n−1 = un−2ϕn−1 − unϕn ,

g1n = un−1ϕn .

Thus, det(gij ) = −g2
12 and

(4.6) (g ij ) = 1

g2
12




0 g12 0 . . . 0
g12 −g11 + g2

13 + · · · + g2
1n −g12g13 . . . −g12g1n

0 −g12g13 g2
12 0

...
...

. . .

0 −g12g1n 0 g2
12




.

By a straightforward computation, we obtain the Christoffel’s symbols ofLn as follows:

Γ 1
11 = − 1

g12
(u3ϕ

′
3 + ϕ3g13) , Γ 2

11 = −g22(ϕ3g13 + u3ϕ
′
3) ,

Γ 3
11 = g13

g12
(u3ϕ

′
3 + ϕ3g13) + u2ϕ

′
3 − u4ϕ

′
4 − ϕ4g14 ,

Γ k
11 = g1k

g12
(u3ϕ

′
3 + ϕ3g13) + uk−1ϕ

′
k − uk+1ϕ

′
k+1

+ ϕkg1k−1 − ϕk+1g1k+1 , 4 ≤ k ≤ n − 1,

Γ n
11 = g1n

g12
(u3ϕ

′
3 + ϕ3g13) + un−1ϕ

′
n + ϕng1n−1 ,

Γ 3
12 = ϕ3 , Γ 1

12 = Γ 2
12 = Γ 4

12 = · · · = Γ n
12 = 0 ,(4.7)

Γ 1
13 = − ϕ3

g12
, Γ 2

13 = −g22ϕ3 , Γ 3
13 = g13

g12
ϕ3 , Γ 4

13 = g14

g12
ϕ3 + ϕ4 ,

Γ s
13 = g1s

g12
ϕ3 , 5 ≤ s ≤ n ,

Γ 3
14 = −ϕ4 , Γ 1

14 = Γ 2
14 = Γ 4

14 = Γ 6
14 = · · · = Γ n

14 = 0 ,

Γ 1
1r = · · · = Γ r−2

1r = Γ r
1r = Γ r+2

1r = · · · = Γ n
1r = 0 , 5 ≤ r ≤ n ,

Γ r+1
1 r = ϕr+1 , Γ r

1 r+1 = −ϕr+1 , 4 ≤ r ≤ n − 1 ,

Γ k
ij = 0 , 2 ≤ i, j ≤ n ; 1 ≤ k ≤ n .
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We define a symmetric bilinear formσ onM by

(4.8)

σ

(
∂

∂t
,

∂

∂t

)
= µ(t)(u3ϕ3(t) − 1)

∂

∂u2
,

σ

(
∂

∂t
,

∂

∂ui

)
= σ

(
∂

∂ui

,
∂

∂uj

)
= 0 , 2 ≤ i, j ≤ n.

From (4.2), (4.4), (4.5), (4.8) and〈α, α〉 = 0, it follows that〈σ(X, Y ), Z〉 is totally symmetric
in X, Y andZ. Also, (4.4), (4.5), (4.7) and (4.8) show thatσ and the Riemannian curvature
tensorR of Ln satisfy

(4.9) 0 = R(X, Y )Z = σ(σ(Y,Z),X) − σ(σ(X,Z)Y ) .

Furthermore, from (4.4), (4.5), (4.7) and (4.8) we obtain

(∇ ∂
∂us

σ )

(
∂

∂t
,

∂

∂t

)
= 0 = (∇ ∂

∂t
σ )

(
∂

∂us

,
∂

∂t

)
, s = 2, 4, . . . , n ,

(∇ ∂
∂u3

σ)

(
∂

∂t
,

∂

∂t

)
= −µϕ3

∂

∂u2
= (∇ ∂

∂t
σ )

(
∂

∂u3
,

∂

∂t

)
,

(∇ ∂
∂ui

σ )

(
∂

∂uj

,
∂

∂t

)
= (∇ ∂

∂t
σ )

(
∂

∂ui

,
∂

∂uj

)
= (∇ ∂

∂uj

σ )

(
∂

∂ui

,
∂

∂t

)
= 0 ,

(∇ ∂
∂ui

σ )
( ∂

∂uj

,
∂

∂uk

)
= 0 = (∇ ∂

∂uj

σ )

(
∂

∂ui

,
∂

∂uk

)
, 2 ≤ i, j, k ≤ n.

Hence,(∇σ)(X, Y,Z) is also totally symmetric inX, Y andZ. Consequently, by applying
Theorems A and B, we conclude that, up to rigid motions ofCn

1, there exists a unique La-
grangian isometric immersionFαζµ : Ln → Cn

1 whose second fundamental form satisfies
(4.3). �

THEOREM 3. Suppose µ(t), λ(t), β4(t), . . . , βn(t) be n − 1 functions of one vari-
able, γ (t) = tζ a null line in the Lorentzian n-space Ln, and α = α(t) a null curve, not a
null line, lying in the hyperplane Λn−1 with Frenet curvatures ϕ3, . . . , ϕn and Frenet frame
{α3, . . . , αn} as mentioned in Section 4. Assume Ln is parameterized by

(4.10) x(t, u2, . . . , un) = tζ + u2α(t) + u3α3(t) + · · · + unαn(t) .

Then, up to rigid motions, there exists a unique minimal Lagrangian isometric immersion
Iαζµλβ4···βn : Ln → Cn

1 whose second fundamental form satisfies

(4.11)




h

(
∂

∂t
,

∂

∂t

)
= β2J

(
∂

∂u2

)
+ (1 − ϕ3u3)

n∑
i=3

βiJ

(
∂

∂ui

)
,

h

(
∂

∂t
,

∂

∂ui

)
= βiJ

(
∂

∂u2

)
, 3 ≤ i ≤ n ,

h

(
∂

∂t
,

∂

∂u2

)
= h

(
∂

∂ui

,
∂

∂uj

)
= 0 , 2 ≤ i, j ≤ n ,
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where

β2 =
n∑

j=4

β ′
juj +

n∑
k=5

βk(ϕkuk−1 − ϕk+1uk+1) − β4ϕ5u5

+ ϕ′
3u3 + ϕ2

3u2 − ϕ3ϕ4u4

1 − ϕ3u3

n∑
j=4

βjuj + (1 − ϕ3u3)µ(4.12)

+ λ

1 − ϕ3u3

{
ϕ3u2 − ϕ4u4 +

(
ϕ′

3

ϕ2
3

)
(2ϕ3u3 − 1)

}
+ λ′ + ϕ4β4

ϕ3
,

and

(4.13) β3 =
λ + ϕ3

n∑
j=4

βjuj

1 − ϕ3u3
.

PROOF. We define a symmetric bilinear formσ onM by

(4.14)




σ

(
∂

∂t
,

∂

∂t

)
= β2

(
∂

∂u2

)
+ (1 − ϕ3u3)

n∑
i=3

βi

(
∂

∂ui

)
,

σ

(
∂

∂t
,

∂

∂ui

)
= βi

(
∂

∂u2

)
, 3 ≤ i ≤ n ,

σ

(
∂

∂t
,

∂

∂u2

)
= σ

(
∂

∂ui

,
∂

∂uj

)
= 0 , 2 ≤ i, j ≤ n .

From (4.4), (4.5) and (4.14) it follows that〈σ(X, Y ), Z〉 is totally symmetric inX, Y andZ.
Also (4.4), (4.5), (4.7) and (4.14) show thatσ and the Riemannian curvature tensorR of Ln

satisfy

(4.15) 0 = R(X, Y )Z = σ(σ(Y,X),X) − σ(σ(X,Z)Y ) .

Furthermore, from (4.5), (4.7), (4.14) and a straightforward long computation, we know that
(∇σ)(X, Y,Z) is also totally symmetric. Consequently, by applying Theorems A and B, we
conclude that, up to rigid motions ofCn

1, there exists a unique Lagrangian isometric immer-
sionIαζµλβ4···βn : Ln → Cn

1 whose second fundamental form satisfies (4.11). �

5. Classification of minimal flat Lagrangian submanifolds of Cn
1. The purpose of

this section is prove the following theorem which classify minimal flat Lagrangian submani-
folds in Cn

1.

THEOREM 4. Up to rigid motions of Cn
1, locally (in a neighborhood of each point

belonging to an open dense subset), every minimal Lagrangian isometric immersion Ψ of Ln

into Cn
1 is either a Fαζµ given in Theorem 2 or a Iµλβ4···βnζα given in Theorem 3.

PROOF. Let M be a minimal Lagrangian flat submanifold inCn
1 without totally geo-

desic points. Then, according to Theorem 1, the second fundamental formh of Ψ either takes
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the form:

(5.1) h(e1, e1) = J e2 , h(e1, ei) = h(ei , ej ) = 0 , 2 ≤ i, j ≤ n

with respect to a suitable pseudo-orthonormal frame{e1, . . . , en} satisfying

(5.2)
(e1, e1) = 0 = (e2, e2) = (e1, ei ) = (e2, ei ) , (e1, e2) = 1 ,

(ei , ej ) = δij , 1 ≤ i, j ≤ n − 2 ,

or takes the form:

(5.3) h(e1, e1) = J e3 , h(e1, e3) = J e2 , and h(ei, ej ) = 0 , otherwise,

in a neighborhood ofp, with respect to some pseudo-orthonormal basis{e1, . . . , en} satisfy-
ing (5.2). It is clear that we can extend{e1, . . . , en} to differentiable vector fields{E1, . . . , En}
on a neighborhood ofp.

Let ωi
j , 1 ≤ i, j ≤ n denote the connection forms with respect to{E1, . . . , En}, i.e.,

∇XEi =
n∑

j=1

ω
j
i (X)Ej .

We consider these two cases separately.
Case (I): Suppose that the second fundamental form takes the form (5.1).
In this case, (5.1), (5.2) andCodazzi equation (2.6) withX = Ei , i ≥ 2, andY = Z =

E1 yield

(5.4)
ω1

2(Ei) = ω
j

2(Ei) = 0 , 2 ≤ i ≤ n , 3 ≤ j ≤ n ,

ω2
2(Ei) − 2ω1

1(Ei) = −ω1
i (E1) .

Also, from (5.1), (5.2) and Codazzi equation (2.6) withY = Ei,Z = Ej , i, j ≥ 2, and
X = E1, we know that∇Ei Ej has no components inE1-direction. Thus,E2, . . . , En span
an integrable distribution, sayD, whose leaves are totally geodesic inLn. Moreover, (5.4)
implies that∇E2E2 ∈ Span{E2}. Hence, the integral curves ofE2 are pregeodesics ofLn.

Let

(5.5)

F1 = E1 + b3E3 + · · · + bnEn − 1

2
(b2

3 + · · · + b2
n)E2 ,

F2 = E2 ,

Fi = Ei − biE2 , i = 3, . . . , n ,

whereb3, . . . , bn are functions onLn. It is easy to see from (5.2) and (5.5) that{F1, . . . , Fn}
is also a pseudo-orthonormal frame satisfying (5.2). Moreover, (5.1) and (5.5) imply that the
frame{F1, . . . , Fn} preserves the same property for the second fundamental formh of Ψ ,
that is, we have

(5.6) h(F1, F1) = JF2 , h(F1, Fi ) = h(Fi, Fj ) = 0 , 2 ≤ i, j ≤ n .

(5.6) and the discussion above show that the integral curves ofF2 are pregeodesics and the
distribution spanned by{F2, . . . , Fn} is an integrable distribution whose leaves are linear
(n − 1)-subspace ofLn.
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The above statement means that we can parameterizeLn by

x(t, v2, . . . , vn) = γ (t) +
n∑

i=2

viγi(t) ,

such that∂/∂t = F1 and Span{∂/∂v2, . . . , ∂/∂vn} = Span{F2, . . . , Fn}.
SinceF1 is a null vector field,F1 lies in the light cone. Thus, there exist suitable functions

b3, . . . , bn such thatF1 is parallel to some constant null vector, sayζ . In particular, this
implies that an integral curveγ = γ (t) of F1 is a null line parallel toζ in Ln. So, by
reparameterizing if necessary, we may assumeγ (t) = tζ for some null vectorζ .

Taking nowF̃2 as the multiple ofF2 such that〈ζ, F̃2〉 = 1, it follows from (5.4) that

∇Fi F̃2 = 0

for 2 ≤ i ≤ n. This means that in the(n − 1)-dimensional subspace mentioned before,F̃2 is
a constant. It only changes along the integral curve ofF1. It follows that we may write

(5.7) x(t, u2, . . . , un) = tζ + u2α2(t) + · · · + unαn(t) ,

where∂/∂u2 = F̃2 and Span{∂/∂u2, . . . , ∂/∂un} = Span{F2, . . . , Fn} and thusα2(t), . . . ,

αn(t) satisfy

(5.8)




α2(t) = b(t)E2 ,

〈ζ, α2(t)〉 = 1 ,

〈α2, α2〉 = 0 ,

〈ζ, αi(t)〉 = 〈α2(t), αi(t)〉 = 0 ,

〈αi(t), αj (t)〉 = δij , 3 ≤ i, j ≤ n .

For simplicity, we may choose{α3, . . . , αn} to be the Frenet frame of the null curveα = α2(t)

with the corresponding Frenet curvaturesϕ3, . . . , ϕn as mentioned in Section 4.
From (5.7) and (5.8), we obtain

(5.9)
∂

∂t
= ζ + u2α

′
2(t) + · · · + unα

′
n(t) ,

∂

∂u2
= b(t)E2 ,

whereζ is a null vector parallel toF1. Therefore, from (5.5), (5.6), (5.8) and (5.9) we get

(5.10) h

(
∂

∂t
,

∂

∂t

)
= κJ

(
∂

∂u2

)
, h

(
∂

∂t
,

∂

∂ui

)
= h

(
∂

∂ui

,
∂

∂uj

)
= 0 , 2 ≤ i, j ≤ n,

for some functionκ .
From (5.10) and Codazzi equation (2.6) withX = ∂/∂uj andY = Z = ∂/∂t , we obtain

(5.11)
∂κ

∂uj

= κ

(
Γ 1

j1 − Γ 2
j2

)
, j = 2, . . . , n .
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Using (4.7), equation (5.11) reduces to

(5.12)

∂κ

∂u2
= ∂κ

∂u4
= · · · = ∂κ

∂un

= 0 ,

∂κ

∂u3
=

(
ϕ3

u3ϕ3 − 1

)
κ .

Solving (5.12) yields

(5.13) κ = µ(t)(u3ϕ3 − 1)

for some functionµ(t). Hence, the second fundamental form of the immersionΨ satisfies
(4.3). Thus, by applying Theorem B of uniqueness we conclude that, up to rigid motions of
Cn

1, the immersion is given by aFαζµ associated with a null curveα, a null vectorζ , and a
functionµ of one variable as mentioned in Theorem 2.

Case (II): Suppose that the second fundamental form takes the form (5.3) with respect
to a suitable pseudo-orthonormal frame{E1, . . . , En} satisfying (5.2).

In this case, from (5.2) and (5.3) and Codazzi’s equation, we obtain

(5.14)

ω1
2(E3) = ω4

2(E3) = · · · = ωn
2(E3) = 0 ,

ω1
i (E3) = ω1

3(Ei) = ω3
2(Ei) = ω1

i (Ej ) = ω3
i (Ej ) = 0 , i, j �= 1, 3,

ωk
2(Ei) = 0 , 4 ≤ k ≤ n .

Thus, Span{E2, E3} and Span{E2, E4, . . . , En} are integrable distributions and their leaves
are linear subspaces ofLn and thus{E2, E3, . . . , En} gives rise to a linear subspace too. This
means that we can still parameterizeLn such that

x(t, v2, . . . , vn) = γ (t) +
n∑

i=2

viγi(t) ,

such that∂/∂t = E1 and Span{∂/∂v2, . . . , ∂/∂vn} = Span{E2, . . . , En}.
We now consider the following change of basis. We take functionsa3, a4, . . . , an and

defineF1, . . . , Fn by (5.5). Unfortunately, the expression for the second fundamental form is
not preserved under such a change. However, we still have

(5.15)
h(F1, F1) ∈ Span{JF2, JF3} ,

h(F1, F3) ∈ Span{JF2} ,

and all other components still vanish.
SinceF1 is a null vector field, there exist suitable functionsb3, . . . , bn such thatF1 is

parallel to some constant null vector, sayζ . In particular, this implies that an integral curve
γ = γ (t) of F1 is a null line parallel toζ in Ln. So, by reparameterizing, we may assume
γ (t) = tζ for some null vectorζ .

Taking nowF̃2 as the multiple ofF2 such that〈ζ, F̃2〉 = 1, it follows from (5.14) that

∇Fi F̃2 = 0
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for 2 ≤ i ≤ n. This means that in the(n − 1)-dimensional subspace mentioned before,F̃2 is
a constant. It only changes along the integral curve ofF1. It follows that we may write

x(t, u2, . . . , un) = tζ + u2α2(t) + · · · + unαn(t) ,

where∂/∂u2 = F̃2 and Span{∂/∂u2, . . . , ∂/∂un} = Span{F2, . . . , Fn} and thusα2(t), . . . ,

αn(t) satisfy

(5.16)




α2(t) = b(t)E2 ,

〈ζ, α2(t)〉 = 1 ,

〈α2, α2〉 = 0 ,

〈ζ, αi(t)〉 = 〈α2(t), αi(t)〉 = 0 ,

〈αi(t), αj (t)〉 = δij , 3 ≤ i, j ≤ n .

Here we also choose again{α3, . . . , αn} to be the Frenet frame of the null curveα = α2(t)

with ϕ3, . . . , ϕn to be its corresponding Frenet curvatures as mentioned in Section 4.
From (4.4), (5.3), (5.5), (5.9), (5.16) and the total symmetry of〈h(X, Y ), JZ〉 we get

h

(
∂

∂t
,

∂

∂t

)
= β2J

(
∂

∂u2

)
+

n∑
i=3

g12βiJ

(
∂

∂ui

)
,

h

(
∂

∂t
,

∂

∂uk

)
= βkJ

(
∂

∂u2

)
, 3 ≤ k ≤ n ,(5.17)

h

(
∂

∂t
,

∂

∂u2

)
= h

(
∂

∂ui

,
∂

∂uj

)
= 0 , 2 ≤ i, j ≤ n ,

for some functionsβ2, . . . , βn.
From (5.17), Codazzi equation (2.6) withX = ∂/∂uk, k ≥ 3,Y = ∂/∂u2 andZ = ∂/∂t,

we obtain

(5.18)
∂βk

∂u2
= βk(Γ

1
21 − Γ 2

22) , 3 ≤ k ≤ n .

From (5.17), Codazzi equation (2.6) withX = Z = ∂/∂t andY = ∂/∂u2, we obtain

(5.19)
∂β2

∂u2
= β2(Γ

1
21 − Γ 2

22) − g12

n∑
i=3

βiΓ
2
2i +

n∑
j=3

Γ
j

12βj .

From (5.17), Codazzi equation (2.6) withX = Z = ∂/∂t andY = ∂/∂uk, k ≥ 3, we obtain

(5.20)

∂β2

∂uk

+ β2(Γ
2
k2 − Γ 1

k1) + g12

m∑
i=3

βiΓ
2
ki −

n∑
j=3

βjΓ
j

k1

= ∂βk

∂t
+ βk(Γ

2
12 − Γ 1

11) , 3 ≤ k ≤ n .

From (5.17), Codazzi equation (2.6) withX = ∂/∂t, Y = ∂/∂uk andZ = ∂/∂uj , j, k ≥ 3,
we obtain

(5.21)
∂βj

∂uk

= −βkΓ
1
1j − βjΓ

2
k2 − β2Γ

1
kj , j, k ≥ 3 .
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Using (4.7), equations (5.18) through (5.21) reduce to

(5.22)
∂βk

∂u2
= 0 , 3 ≤ k ≤ n ,

∂β2

∂u2
= ϕ3β3 ,(5.23)

∂β2

∂uk

= ∂βk

∂t
− βkΓ

1
11 + β2Γ

1
k1 +

n∑
j=3

βjΓ
j
k1 , 3 ≤ k ≤ n ,(5.24)

∂β3

∂uk

= βkϕ3

1 − u3ϕ3
, 3 ≤ k ≤ n ,(5.25)

∂βj

∂uk

= 0 , 4 ≤ j ≤ n , 3 ≤ k ≤ n .(5.26)

From (5.22) and (5.26) we obtain

(5.27) β4 = β4(t), . . . , βn = βn(t) .

Also, from (5.22) we obtain

(5.28) β3 = β3(t, u3, . . . , un).

Hence, by solving (5.25) fork ≥ 4, we get

(5.29) β3 = b3(t, u3) + ϕ3

n∑
k=4

βk

1 − u3ϕ3
uk

for some functionb3(t, u3). Thus, by solving (5.25) withk = 3, we find

(5.30) β3 =
λ(t) + ϕ3

n∑
k=4

βkuk

1 − u3ϕ3

for some functionλ = λ(t).
From (4.7), (5.27) and (5.24) withk = n, we get

(5.31)
∂β2

∂un

= β ′
n(t) − βn−1ϕn + βn

1 − u3ϕ3
(u3ϕ

′
3 + u2ϕ

2
3 − u4ϕ3ϕ4) .

Solving (5.31) yields

(5.32)
β2 =

{
β ′

n(t) − βn−1ϕn + βn

1 − u3ϕ3
(u3ϕ

′
3 + u2ϕ

2
3 − u4ϕ3ϕ4)

}
un

+F1(t, u2, . . . , un−1)

for some functionF1 = F1(t, u2, . . . , un−1).
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Similarly, by solving (5.24) fork = 5, . . . , n − 1 and applying (4.7), (5.27) and (5.32),
we may obtain

(5.33)

β2 =
n∑

j=5

{
β ′

j (t) − βj−1ϕj + βj

1 − u3ϕ3
(u3ϕ

′
3 + u2ϕ

2
3 − u4ϕ3ϕ4)

}
uj

+
n∑

j=6

βjϕjuj−1 + F(t, u2, u3, u4)

for some functionF = F(t, u2, u3, u4). From (5.33) we get

(5.34)
∂β2

∂u4
= ∂F

∂u4
− ϕ3ϕ4

1 − u3ϕ3

n∑
j=5

βjuj .

On the other hand, from (5.24) withk = 4 together with (4.7) and (5.27), we find

(5.35)
∂β2

∂u4
= β ′

4(t) −
λϕ4 + ϕ3ϕ4

n∑
k=4

βkuk

1 − u3ϕ3

+ β4

1 − u3ϕ3
(u3ϕ

′
3 + u2ϕ

2
3 − u4ϕ3ϕ4) + β5ϕ5 .

Combining (5.34) and (5.35), we obtain

(5.36)
∂F

∂u4
= β ′

4(t) − λϕ4

1 − u3ϕ3
+ β4

1 − u3ϕ3
(u3ϕ

′
3 + u2ϕ

2
3 − u4ϕ3ϕ4) + β5ϕ5 .

Thus, by solving (5.36) and by using (5.33), we obtain

(5.37)

β2 =
n∑

j=4

{
β ′

j (t) − βj−1ϕj + βj

1 − u3ϕ3
(u3ϕ

′
3 + u2ϕ

2
3 − u4ϕ3ϕ4)

}
uj

+β3ϕ4u4 +
n∑

j=5

βjϕjuj−1 − λϕ4

1 − u3ϕ3
u4 + L(t, u2, u3)

for some functionL = L(t, u2, u3).
From (5.24) withk = 3 we have

(5.38)
∂β2

∂u3
= β ′

3(t) + β3

g12
(u3ϕ

′
3 + 2ϕ3g13) − β2ϕ3

g12
+ β4ϕ4 + ϕ3

g12

n∑
k=4

βkg1k ,

whereg12, . . . , g1n are given by (4.5). Substituting (5.30) into (5.38) yields

(5.39)

∂β2

∂u3
= β4ϕ4 + 1

g12

{
λ′ + ϕ′

3

n∑
k=4

βkuk + ϕ3

n∑
k=4

β ′
kuk + 2β3ϕ

′
3u3

+2β3ϕ3g13 + ϕ3

n∑
k=4

βkg1k − β2ϕ3

}
.
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Substituting (5.37) into (5.39) yields

(5.40)
∂L

∂u3
= β4ϕ4 + 1

g12
{λ′ + ϕ3ϕ4β4u3 − ϕ3L} + 2λ

g2
12

{ϕ′
3u3 + ϕ2

3u2} .

Sinceg12 = 1 − ϕ3u3, (5.40) is a first order linear differential equation. By solving (5.40),
we obtain

(5.41) L = µ(t, u2)g12 + λ′

ϕ3
+ λϕ′

3

ϕ2
3g12

(2ϕ3u3 − 1) + ϕ4β4

ϕ3
+ λϕ3u2

g12

for some functionµ = µ(t, u2). Combining (5.41) and (5.37) yields

β2 =
n∑

j=4

{
β ′

j (t) − βj−1ϕj + βj

1 − u3ϕ3
(u3ϕ

′
3 + u2ϕ

2
3 − u4ϕ3ϕ4)

}
uj

+ β3ϕ4u4 +
n∑

j=5

βjϕjuj−1 − λϕ4

1 − u3ϕ3
u4(5.42)

+ µg12 + λ′

ϕ3
+ λϕ′

3

ϕ2
3g12

(2ϕ3u3 − 1) + ϕ4β4

ϕ3
+ λϕ3u2

g12
.

From (5.23), (5.30) and (5.42) we get∂µ/∂u2 = 0. Thus,µ = µ(t). Equation (5.42)
is nothing but (4.12). Hence, the second fundamental form of the immersionΨ of Ln into
Cn

1 satisfies (4.11), (4.12) and (4.13), which coincides with the second fundamental form of
Fαζµλβ4···βn . Therefore, by applying Theorem B of uniqueness, we conclude that, up to rigid
motions ofCn

1, the immersionΨ is given by aFαζµλβ4···βn .
Finally, if Ψ : Ln → Cn

1 is a totally geodesic Lagrangian submanifold, thenΨ is nothing
but aFαζµ : Ln → Cn

1 with µ = 0 according to Theorem 2. �

6. Explicit examples. In this section we provide some explicit expression of flat La-
grangian minimal submanifolds inCn

1.

EXAMPLE 6.1. Letµ = µ(t) be a function,γ (t) = tζ a null line inLn, andα = α(t)

a null line lying in the hyperplaneΛn−1 = {x ∈ Ln : 〈x, ζ 〉 = 1}. Chooseα3, . . . , αn to be
an orthonormal basis of{ζ, α}⊥. Then all of Christoffel’s symbols ofLn with respect to the
parameterization (4.2) are equal to zero. Hence, from (4.3) and Gauss’ formula, we know that
the position functionx of the immersionFαζµ : Ln → Cn

1 satisfies

(6.1)

∂2x

∂t2
= −µ(t)i

∂x

∂u2
,

∂2x

∂t∂uj

= ∂2x

∂uj∂uk

= 0 , 2 ≤ j, k ≤ n .
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By solving the partial differential system (6.1), we conclude that the corresponding minimal
Lagrangian isometric immersionFαζµ : Ln → Cn

1 is given by

(6.2)

x(t, u2, . . . , un) = 1

2

(
t + u2 − i

∫ t∫ s

µ(s)dsdt,

t − u2 + i

∫ t∫ s

µ(s)dsdt, 2u3, . . . , 2un

)
,

where we choose the initial conditions as

(6.3)

x(0) = (0, . . . , 0) ,
∂x

∂t
(0) =

(
1

2
,

1

2
, 0, . . . , 0

)
,

∂x

∂u2
(0) =

(
1

2
,−1

2
, 0, . . . , 0

)
,

∂x

∂u3
(0) = (0, 0, 1, 0, . . . , 0), . . . ,

∂x

∂un

(0) = (0, . . . , 0, 1) .

EXAMPLE 6.2. Letγ (t) = tζ be a null line inLn, andα = α(t) a null curve lying
in the hyperplaneΛn−1 = {x ∈ Ln; 〈x, ζ 〉 = 1} with Frenet curvaturesϕ3 = 1, ϕ4 =
· · · = ϕn = 0. Chooseµ = 1. Then the Christoffel symbols ofLn with respect to the
parameterization (4.2) are given by

(6.4)
Γ 1

11 = Γ 2
12 = −Γ 3

13 = u2

u3 − 1
, Γ 3

11 = u2
2

1 − u3
, Γ 1

13 = 1

u3 − 1
,

Γ 3
12 = 1 , Γ i

jk = 0 , otherwise.

From (4.3), (6.4) and Gauss’ formula, we know that the position functionx of the immersion
Fαζµ : Ln → Cn

1 satisfies

(6.5)

∂2x

∂t2 = u2

u3 − 1

∂x

∂t
+ u2

2

1 − u3

∂x

∂u3
+ (u3 − 1)i

∂x

∂u2
,

∂2x

∂t∂u2
= ∂x

∂u3
,

∂2x

∂t∂u3
= 1

u3 − 1

∂x

∂t
+ u2

1 − u3

∂x

∂u3
,

∂2x

∂t∂ur

= ∂2x

∂uj∂uk

= 0 , 4 ≤ r ≤ n , 2 ≤ j, k ≤ n .

By solving the partial differential system (6.5), we conclude that the corresponding minimal
Lagrangian isometric immersionFαζµ : Ln → Cn

1 is given by

x(t, u2, . . . , un) = 1

6

(
2(u2 + i − u3i)e

−it +
(
u3i − i + u2

2
(1 + √

3i)
)
e(

√
3+i)t/2

+
(
u3i − i + 1

2
(1 − √

3i)u2

)
e(−√

3+i)t/2,

(6.6) √
3
(
1 − u3 − u2

2
(
√

3 − i)
)
e(

√
3+i)t/2 + √

3
(
u3 − 1 − u2

2
(
√

3 + i)
)
e(−√

3+i)t/2,

2(u3 − 1 + iu2)e
−it + (2u3 − 2 + (

√
3 − i)u2)e

(
√

3+i)t/2

+ (2u3 − 2 − (
√

3 + i)u2)e
(−√

3+i)t/2, 6u4, . . . , 6un

)
,
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where we choose the initial conditions given by (6.3)

EXAMPLE 6.3. Letγ (t) = tζ be a null line inLn, andα = α(t) a null curve lying
in the hyperplane�n−1 = {x ∈ Ln; 〈x, ζ 〉 = 1} with Frenet curvaturesϕ3 = 1, ϕ4 = · · · =
ϕn = 0. Chooseλ = 1 andβ4 = · · · = βn = 0. Then the Christoffel symbols ofLn

with respect to the parameterization (4.2) are given by (6.4). Hence, from (4.11) and Gauss’
formula, we know that the position functionx of the immersionIαζµλβ4···βn : Ln → Cn

1
satisfies

(6.7)

∂2x

∂t2
= u2

u3 − 1

∂x

∂t
+ u2

2

1 − u3

∂x

∂u3
+ u2i

1 − u3

∂x

∂u2
+ i

∂x

∂u3
,

∂2x

∂t∂u2
= ∂x

∂u3
,

∂2x

∂t∂u3
= 1

u3 − 1

∂x

∂t
+ u2

1 − u3

∂x

∂u3
+ i

1 − u3

∂x

∂u2
,

∂2x

∂t∂ur

= ∂2x

∂uj∂uk

= 0 , 4 ≤ r ≤ n , 2 ≤ j, k ≤ n .

By solving the partial differential system (6.7), we conclude that the corresponding minimal
Lagrangian isometric immersionIαζµλβ4···βn : Ln → Cn

1 is given by

x(t, u2, . . . , un) = 1

2

(
it + u2 + (i − 1)

(
u3t − t + 1

2
t2u2 + 1

6
it3

)
,

−
(
it + u2 + (i + 1)

(
u3t − t + 1

2
t2u2 + 1

6
it3

))
,(6.8)

2tu2 + it2 + 2u3, 2u4, . . . , 2un

)
,

where we choose the initial conditions given by (6.3).

REMARK 6.1. Whenn = 2, Theorem 4 implies that locally, up to rigid motions of
C2

1, every minimal Lagrangian isometric immersion ofL2 into C2
1 must be given by aFαζµ,

whereζ is a null vector,α a null line inΛ1 andµ a function oft , respectively. Hence, from
Example 6.1, we obtain the following.

COROLLARY 5. Locally, up to rigid motions of C2
1, a minimal Lagrangian isometric

immersion Φ : L2 → C2
1 of L2 into C2

1 is given by

(6.9) x(t, u2) = 1

2

(
t + u2 − i

∫ t∫ s

µ(s)dsdt, t − u2 + i

∫ t∫ s

µ(s)dsdt

)
.
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