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Abstract. Itis well-known that the only minimal Lagrangian submanifolds of constant
sectional curvature in a Riemannian complex space form of constant holomorphic sectional
curvature 4 are the totally geodesic ones. In this paper we investigate minimal Lagrangian
Lorentzian submanifolds of constant sectional curvatureLorentzian complex space form
of constant holomorphic sectional curvatuke ¥Ve prove that the situation in the Lorentzian
case is quite different from the Riemannian case. Several existence and classification theorems
in this respect are obtained. Some explicit expression of flat minimal Lagrangian submanifolds
in flat complex Lorentzian space form are also presented.

1. Introduction. Let A7I,’{’(4c) be an indefinite complex space form of complex di-
mensiomm and complex index. The complex index is defined as the complex dimension of
the largest complex negative definite subspace of the tangent space= [f, we say that
M (4c) is Lorentzian. The curvature tensBrof M (4c) is given by

RX,Y)Z=c{(Y,Z)X — (X, Z)Y +(JY, Z)JX — (JX, Z)JY +2(X,JY)JZ}.

Let C" denote the complex humberspace with complex coordinates, ... , z,. The
C" endowed withy; », i.e., the real part of the Hermitian form

N n
byn(z, w) = — szwk + Z Zjwj, z,weC",
k=1 j=s+1
defines a flat indefinite complepace form with complex index We simply denote the pair
(C", gs.n) by C7. In particular,C is the flatLorentzian complex n-space.
For complex space forms with nonzero curvature- 0, consider the differentiable
manifold:

$271(0) = {z € CM by ysa(z, 2) = 1/c),
which is an indefinite real space form of constant sectional curvaturee Hopf fibration

T 522"+1(c) —CP{ iz z-C*

is a submersion and there exists a unique pseudo-Riemannian metric of complex index one on

CPJ such thatr is a Riemannian submersion. The pseudo-Riemannian madfefd4c) is
a Lorentzian complex space form of positive holomorphic sectional curvature 4
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Analogously, ifc < 0, consider
2n+1 _ n+1, _
H3" " (c) = {z € C4™ ba i1z, 2) = 1/c},

which is an indefinite real space form of constant sectional curvatute 0. The Hopf
fibration

7T H22"+1(c) — CH] :z+ z-C*

is a submersion and there exists a unique pseudo-Riemannian metric of complex index 1 on
CHj' such thatr is a Riemannian submersion. The pseudo-Riemannian ma@i4c)
is a Lorentzian complex space form of negative holomorphic sectional curvature 4

A complete simply-connected kentzian complex space form;lf(4c) is holomorphi-
cally isometric toC’, CPy' (4c), or CH{'(4c), according toc = 0,¢ > O orc < O, respec-
tively.

A submanifoldM of 1\71'11 (4c) is calledLagrangian if the almost complex structuré of
1\711’£4c) interchanges the tangent and the normalcss. Cl~early, a Lagrangian submanifold
of M7 (4c) is n-dimensional. A Lagrangian submanifold &f; (4c) is Lorentzian if and only
if M has (real) index one.

One of the most fundamental problems in the study of Lagrangian submanifolds is the
classification of Lagrangian isometric immnsens of real space forms into complex space
forms. For Riemannian complex space forms, this problem have been studied in [CO, E, C1,
C2, C3, CDVV2]. In particular, Ejiri [E] progd that every minimal Lagrangian submani-
fold of constant sectional curvaturein a Riemannian complex space form of holomorphic
sectional curvaturedis totally geodesic and that the only minimal Lagrangian isometric im-
mersions of real space forms into Riemanniamptex space forms are either totally geodesic
or flat Lagrangian submanifolds in a complex projective space (see, also [CO]).

In Lorentzian case, the corresponding problem was solved in [KV1] and [KV2] for mini-
mal Lagrangian submanifolds of constant sectional curvatur@ Lorentzian complex space
form 1\71'11 (4c) with ¢ # ¢. However, the method used in [KV1] and [KV2] relies heavily on
the assumptionc # c¢; hence the method of [KV1] and [KV2] does not apply to the most
fundamental case; namely, minimal Lagrangian submanifolds of constant sectional curvature
¢ in a Lorentzian complex space forﬂi’f (4c¢) of holomorphic sectional curvature 4

The purpose of this paper is to investigate the most fundamental case; namely, to classify
minimal Lagrangian submanifolds of constant sectional curvaturea Lorentzian com-
plex space forrm71'11 (4¢) of holomorphic sectional curvature 4In Section 3 we determine
completely the second fundamental form of minimal Lagrangian submanifolds of constant
sectional curvature in a Lorentzian complex space fornﬁf (4c). In Sections 4 and 5, we
classify flat minimal Lagrangian submanifolds@{. In the last section, we provide some
explicit expression of flat minimal Lagrangian submanifold€ih

2. Preliminaries. LetM be alLagrangian submanifold of a Lorentzian complex space
form M7 (4c). Denote byv andV the Levi Civita connection oM andM7 (4c), respectively.
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Then the formulas of Gauss and Weingarten are given respectively by
(2.1) VxY = VxY +h(X,Y),
(2.2) VxJY = —A;yX + DxJY,

whereh, A and D are the second fundamental form, the shape operator and the normal con-
nection. It is well-known that, for eachh € T, M, the shape operatof;y is a symmetric
endomorphism of the tangent spalGeV .

SinceJ is the almost complex structure, we deduce as in the Riemannian case that

(2.3) DxJY = JVxY,

(2.4) AjyX =—Jh(X,Y) = AjxY.

The equations of Gauss, Codazzi and Ricci are given respectively by
(RX,Y)Z, W) = (Apr, )X, W) — {(Apx,2)Y, W)

25
9 Fc((X, WNY, Z) — (X, Z)(Y, W),
(2.6) (Vh)(X,Y,Z)=(Vh)(Y, X, 2),
D —
@27 (RE(X,V)JZ,JW) = ([Ajz, Ayw]X, Y)

+c((X, WIY, Z) — (X, Z)(Y, W)),

whereX, Y, Z, W (respectivelyy; and&) are vector fields tangent (respectively, normal) to
M, RP(X,Y) = [Dyx, Dyl — Dix.y), andVh is defined by

(2.8) (Vh)(X,Y, Z) = Dxh(Y, Z) — h(VxY, Z) — h(Y, Vx Z) .
We need the following Existence and Uniqueness Theorems for later use.

THEOREM A. Let(M", g) beann-dimensional simply connected Lorentzian manifold
and TM denote the tangent bundle of M". If o be a TM-valued symmetric bilinear formon M
satisfying

(1) (o(X,Y), Z) istotally symmetric,

(2) (Vo) X,Y,Z)=Vxo(Y,Z)—0o(VxY,Z) —o(Y, Vx Z) istotally symmetric,

3) RX,VZ=c({{Y,Z)X - (X,Z2)Y)+o0(c(Y,Z),X)—0(0(X, Z),Y),
then there exists a Lagrangian isometric immersion L from (M, g) into a complete simply-
connected Lorentzian complex space form Mf (4c) whose second fundamental formhis given
byh(X,Y)=Jo(X,Y).

THEOREM B. LetL1,L2 : M — Mf(4c) be two Lagrangian isometric immersions
of a Lorentzian manifold M with second fundamental forms i and 2, respectively. If

(hNX, V), JL1.Z) = (h*(X, Y), J L2, Z),

for all vector fields X, Y, Z tangent to M, then there exists an isometry ¢ of Mf (4c) such that
Ly =Loo¢.

These two theorems can be proved in a way similar to the Riemannian case given in
[CDVV1, C1].
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3. Shapeoperator of minimal Lagrangian submanifolds. The main purpose of this
section is to completely determine the shape operators of minimal Lagrangian submanifolds
of constant sectional curvatueeén a Lorentzian complex space forimf (4c). In order to do
so, we need several lemmas. First we give the following.

LEMMA 1. Let M be a Lagrangian submanifold of a Lorentzian complex space form
Mf (4c). Then M is of constant sectional curvature c if and only if the shape operators of M
commute, i.e.,[A;z, Ayw] = O0for all Z, Wtangent to M.

PrROOF (2.3) and (2.7) imply
(RX,Y)Z, W) =([Asz, AgwlX, Y) + c((X, WY, Z) — (X, Z)(Y, W})),
which yields the lemma. O

Next, we recall the following result from [On, pp. 261-262].

LEMMA 2. A symmetric endomorphism S of an n-dimensional vector space V with a
Lorentzian inner product ( , ) can be put into one of the following four forms:

a 0 0
0w o o !
az 0
l. §~ , . S~ as ,
0 an 0 a
n
ag 0 O
0 a 1
-1 0 ap
. s~ ” ,
an
ap  bo
—bo ao
V. §~ as ,
an

where bg is assumed to be nonzero. In cases | and 1V, Sis represented with respect to an
orthonormal basis {Ey, ... , E,} satisfying (E1, E1) = —1, (E;, E;) = 8;j, (E1, E;)) =0
for 2 < i,j < n, whilein cases Il and lll the basis {E1, ..., E,} is pseudo-orthonormal
satisfying (E1, E1) = 0 = (E2, E2) = (E1, E;) = (E2, Ej),for 3 <i <n, (E1, E2) = -1,
and (E;, E;) = 6;j, otherwise.

The following lemma is fundamental in this article.
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LEMMA 3. Let M beaminimal Lagrangian submanifold of constant sectional curva-
ture c in a Lorentzian complex space form M7 (4c). Then, for any vector v tangent to M and
any natural number k, we have trace(A’;v) =0.

PROOF.  SinceM is assumed to be minimal, one has trgtg,) = 0 for anyv € T M.
Thus, tracéAj 4,,,) = 0. Therefore, by applying (2.4) and Lemma 1, we have

n n n
28:' (A%,Ei, E;) = ZSi(AJvAJE,-U, E;) = Z&'(AJE,-AJUU, E;)
i—1 i=1 i=1

n
= 28i<AJAJUUEia Ei)=0
i=1

for any orthonormal basigEs, . .. , E,}, which implies traceqzv = 0. Similarly, we have

n n n
Y eilAY B E) =) e A, Bl =) ei(Agg AN, E)
i=1 i=1 i=1

n
= ZSi(AJA'}_,lin’ E;).
i=1

Thus, by induction we obtain tra(:e’jv) = 0 for any natural numbet. O

LEMMA 4. Let M beaminimal Lagrangian submanifold of constant sectional curva-
ture c in a Lorentzian complex space form A7I'11 (4c). Then, for any point x € M, exactly one
of the following three cases occurs:

(A) (Ajpw,w)=0foralweTM,

(B) thereisavector v € TyM such that (A;,v,v) = 1, but (A%ww, w) = 0 for all
we TyM,;

(C) thereisavector v € T, M suchthat (A2 v,v) = £1,but (A3 w, w) = 0 for all
we T M.

PROOF For any fixedw € T, M, Ay, is a symmetric endomorphism @&f M. Thus,
according to Lemma 24 ;,, can be put into one of the four forms mentioned in Lemma 2.

() If Ay can be putinto a diagonal matrix given in case | of Lemma 2, then Lemma
3with k = 2 yieldsY"}_; a? = 0, which impliesay = - -- = a, = 0. ThusA,, = 0.

(I If Ay, can be putinto the form of the matrix in case Il, then we have

AjwEr=aoE1+ E2, AjwEz=a0E2, AjwEi=aE, =3, ...,n.
Thus

A% E1=a3E1 +2a0E2, A3 Ex=d3E;, A%, Ei=a’E;, i=3,...,n.
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Hence, O= tracgA? ) = 2a3 + a3 +- - -+ a2, which yieldsag = ag = - - - = a, = 0. Thus,
in this caseA ;,, can be put in the form:

0O 0

1 0
3.1 Ay ~ 0

0 0

In particular, we obtaim3 = 0in case Il.
(1) If Ay can be putinto the matrix of case Ill, we have

AjwE1=aok1— E3, AjuEz»=aok2, AjuE3=E>+aoks,
AjwEi =a;E;, i=4,...,n,
2 _ 2 2 _ 2
A5,E1=apE1 — E; — 2a0E3, A5,E>=ajE>,
A% E3=2a0E>+a2Es, A3 Ei=d’E;, i=4,...,n.

Hence, O= trac&A2 ) = 3aZ + a7 + --- + a2. Thus, in this cased s, can be put in the
form:

0 0 O 0
0 0 1

3.2) App~|"1 00
0 0

In particular, we obtaim3 = 0.
(IvV) If Ay, can be putinto the matrix of case IV, then we have

AjwE1=aoE1r—boE2, AjwE2=0>boE1+aok2, AjwEi=aiE;,
A% E1= (a3 — b3)E1 — 2a0boE2, A3, Ep = 2aoboE1 + (a3 — b3)Ea,
A2 E;=d’E;, i=3,...,n.
Hence,
trac€Ayy) =2a0+az+---+ap=z1+z2+az+---+a, =0,
tracgA3 ) =2a3 — 2% + a2+ - +a?=z2 45 +a5+ - +a?=0,
wherez1 = ag + ibo, z2 = ag — ibo. Similarly, we also have
tracgAb,) =z + 5 +af+ - +ak =0, k=34, ....

From these we obtaify = zo0 = a3 = --- = g, = 0. Thus, in this case we obtaky,, = 0.
Consequently, we always hamé}w = 0, which implies the lemma in a straightforward way.
O
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Equation (2.5) of Gauss implies thatM” (c) is a space-like minimal Lagrangian sub-
manifold of constant sectional curvaturén a Lorentzian complex space fornﬁf (4c) (or
more generally, in an indefinite complex space form) of constant holomorphic sectional cur-
vature 4, thenM"(c) is totally geodesic. Hence, from now on we only consider minimal
LagrangiarLorentzian submanifold of constant sectional curvaturie 1\711’ (4o).

The following main result of this section determines completely the second fundamental
form for minimal Lagrangian submanifold of constant sectional curvatirea Lorentzian
complex space form (4c).

THEOREM 1. Let M beaminimal Lagrangian submanifold of constant sectional cur-
vature ¢ in a Lorentzian complex space form 1\71'11 (4c). Then at every point p the second
fundamental form h of M takes one of the following three forms:

(1) h=0,i.e,pisatotally geodesic point.

(2) The second fundamental form h satisfies
(3.9 h(e1,e1) = Jez, h(ei,e;)) =h(ej,e;))=0, 2<i,j=<n
with respect to a suitable pseudo-orthonormal basis{es, . .. , e,} satisfying
3.4) (e1,€1) = 0= (e2,e2) = (e1,¢i) = (e2,€;), (e1,€2) =1,

' (ei,ep)=6ij, 1<i,j<n-—2.

(3) The second fundamental form h satisfies
(3.5 h(e1,e1) = Jez, h(ey,e3) =Jep, and h(e,e;) =0, otherwise,
with respect to a suitable pseudo-orthonormal basis{es, ... , e,} satisfying (3.4).

PROOF.  The proof of this theorem bases on Lemma 4. Clearly, if case A of Lemma 4
occurs at every point in M, thenM is totally geodesic.

Let us assume that there is a poirguch that case B of Lemma 4 occurs, i.e., there is a
vectorv € T, M such thatfA;,v,v) =1 but(A%ww, w) = Oforallw € T, M. By linearity
and Lemma 1, the later condition impli@$ | = 0 for all w.

In this case, we put; = v andez = Aj,v. Then

(€2, e2) = (A v, Ajyv) = (A3 v, v) = 0.

Moreover, from(A j,v, v) = 1, we get{e1, e2) = 1.
For any real number we have

Aj(ertaey (€1 +ae2) = Ajeie1+200A e 02 + @?Aje,e2 =e2,

where we use the factsA j.,e2 = A%vv = 0 andAje,e2 = Aje,AjoV = AjpAje,v =
A§Ue2 = 0. Thus, if we putx = —(e1, e1)/2 and replace; by e1 + ae2, we obtain for the
newesi, e> that

(3.6) (e1,€1) = (e2,e2) =0, (er,e2) =1, Ajne1=e2, Aj,e2=0.

Clearly, both Spafe1, ex} and{e1, ex}- =: (Sparfes, e2})* are invariant under the action of
Aje,. Sincefey, e>}+ is Riemannian, the restriction of j., 1O {e1, e}t is diagonalizable.
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BecauseA j., has zero as the only eigenvalue @, ez} (cf. proof of Lemma 4), the re-
striction of A ., to this invariant subspace is zero. Thus, if we choase. . , e, to be an
orthonormal basis ofeq, e2}+, we obtain

0 0 0
1 0

(3.7) Aje, = 0
0 0

with respect to the pseudo-orthonormal bgsis. . . , e,}.
From (2.4), (3.6) and Lemma 1, we finy,,e; = A je,e2 = 0 andA jo,e2 = A3e1
0, which imply that Spafez1, e>} is also invariant under the action 4f;.,. Since{es, eo)t is

also invariant unden j.,, andA ., has zero as the only eigenvalue {en, e2)L, we obtain

€2 =

Aje, = 0.

For i =3,...,n, we have Aj,e1=Aj,e; =0, and Ajpex= Aj,Ajee1 =
A%elei = 0. Thus, by applying the same argument as Agt,,, we also haved;.,, =0
fori = 3,...,n. Consequently, in this case we obtain (3.3).

Next, we assume that there is a veatar 7, M suchtha{A?2 v, v) = £1but(A3 w, w)
=0 forallw € T, M. In this case, we put

e1=v, ex= A%elel, e3=Ajee1.
Then(e1, e2) = £1 andA j.,e2 = 0, sinceA3 v = 0. Also, we have
(e3.e3) = (A, 1, e1) = £1,
(e2.€2) = (A7, e1. AT, e1) = (A, e1,e1) =0,
(2. €3) = (Ayeres, AF, e1) = (A3, e1,e1) = 0.

With respect tees, e, e3, the restriction of the metric tensgrto Spare1, e2, e3} takes the
form:

* 1 %
(3.8) +1 O 0
* 0 =+1

If (e3,e3) = 1, then(A%qel, e1) = 1. Thus,(e, e1) = 1. Similarly, if (e3, e3) = —1, then
(e2, e1) = —1. Consequently, the restriction of the metric tengtw Sparfe, ez, e3} takes
one of the following two forms:

¥ 1 % ¥ =1 =%
B=|1 0 O or C=|-1 O 0
* 0 1 * 0 -1
Since detB) < 0, the signature oB is either(+, 4+, —) or (—, —, —); while de{C) > 0,

the signature o€ is either(+, +, +) or (—, —, +). Because Spdmy, ez, e3} contains a null
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vector andM is assumed to be Lorentzian, only the first case may occur. Thus, we must have
(e3, e3) = (e1,e2) = 1.
For any real numbers, 8, we have
AJ(er+Bestaes) (€1 + Be2 + aes) = ez + 2aez,
AJ(er+Bestaes) (20e2 + €3) = Ajee3,
(2aep + e3, 2aep +e3) = 1.
Thus, if we replaces, e3 by e1 + Bea + aes, 2uez + e3, respectively, but keegp, then the
newes still satisfies(es, e3) = 1.
Furthermore, since
(e1 + Bea 4+ aes, e1 + Bex + ae3) = (e1, e1) + o? + 20(e1, e3) + 28,
(e1 + Be2 + aes, 2aez + e3) = (e1, e3) + 3,

so if we choose

= llenesh, B= e esh— 2ler, e
a=—zlenes), = 1gler s Sleen),
then the newy, ez also satisfy(e1, e1) = (e1, e3) = 0. By choosing an orthonormal basis
{ea, ..., en} Of {e1, e, e3}*, we know that the metric tensgrwith respect to the pseudo-
orthonormal basi¢es, . .. , e,} is given by
010
1 00 O
3.9 00 1 ,
0 I3
wherel denotes the identity matrix.
By applyingA?w = 0 and the definition of4, . .. , e, given above and proceeding as in
the previous case, we obtain
0 0O 0 0O
0 010 1 000
(310) AJe1 = 1 00 , A.feg = 00O ,
0 0 0 0
(3-11) AJeZZAJm:"':AJen =0.
Thus, in this case the second fundamental satisfies (3.5). O

4. Existencetheorems. The purpose of this section is to show that there exist many
minimal flat Lagrangian submanifolds @ .

Lety = y(¢r) be a null line in the Lorentzian-spaceL” defined byy () = ¢, wheret
is a (nonzero) null vector ik, and lete = «(¢) be a null curve lying in the hyperplane

A= (x el (x,0)=1)

of L. Here by a null curve irl” we mean a curve satisfying(a(z), «(¢)) = 0 for anyz.
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If « is anullline, we putps = --- = ¢, = 0 and chooséus, ... , a,} to be any fixed
orthonormal basis ofz, a}*.

If « is not a null line, then, by applyingx(¢), «(z)) = 0 and{a(?), ¢) = 1, we know
thato/(¢) is a vector perpendicular ®(¢) and¢, i.e., (&/'(¢), a(t)) = {(«'(t), ¢) = 0. Thus,
there is a unit vectows(r) and a real numbaps(7) such that' () = @3(t)as(). Sincea is
not a null line, it follows from(«(r), ¢) = 1 that¢, « anda’ are linearly independent.

If n > 4, then by usindas, a3) = (o, ¢) = 1 and(a, a3) = 0, we know thatr;(r) =
—3(t)¢ + @a(t)aa(t), whereps(t) is a real number ands(¢) is a unit vector perpendicular

to ¢, o, a3. Whengs = 0, we chooseuw, . . . , o, to be any orthonormal basis 6f, «, a3}*.
Continuing this process if necessary, we obtain the Frenet curvapgres. , ¢, and the
(orthonormal) Frenet framiges, . . . , a,, } which satisfy the Frenet formulas:

o = p3as,

on = —@3¢ + @404,
4.2 .

@y 1 = —Pn-10n-2 + Pnln .

O‘;l = —¢nQp—1.

The main result of this section is the following existence theorems.

THEOREM 2. Suppose u = w(t) isa function of one variable, y () = t¢ anull line
in the Lorentzian n-space L", and @ = «(¢) a null curve lying in the hyperplane A”~1 with
Frenet curvatures ¢s, . . . , ¢, and the (orthonormal) Frenet frame {as, . . . , a, } mentioned as
above. Let L" be parameterized by

4.2) x(t,up, ... up) =t& +upa(t) + uzaz(t) + -+ upo,(t).

Then, up to rigid motions, there exists a unique minimal Lagrangian isometric immersion
Fyep o L' — CY whose second fundamental form satisfies

A 9 0\ ‘ HJ !
<E’E)‘M()(us<ﬂ3(”_ ) <3—uz)

d 0 a 0
h —, — =h —_—, —— =0, 2517.15”
A’ du; ou; duj

ProOF. It follows from (4.2) and a direct compation that the coefficients of metric
tensorg takes the form:

(4.3)

911 gi12 913 9in
g2 0 O 0
(44) (gp=|[9e O 1 o1,
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where

n
gi11= ur2171¢3 —+ Z(ui—Z(pi—l - Mifpi)z 5
i=4
g12=1—u3p3,
(4.5 913 = U203 — U4P4 ,
9in—1 = Un—2¢Pn-1 — UnPn ,
gin = Up—-1Pn -

Thus, de@g,'j) = —g%z and

0 912 0 ... 0
g12 —gi1+ 9%3 +-o 9%1 —g12913 ... —g1291in
(4.6) (¢h=—-109 —912913 92, 0
912 . . . )
0 —91291n 0 932

131

By a straightforward computation, we obtain the Christoffel's symbols"ods follows:

1 1 / 2 22 /
I'; = T (u3pz +@3913), I3 = —9° (3913 + uses),
913
= %(uzwé + ¢3913) + U2ps — UaPy — Pagia,

g1k
= E(uwé + ¢3913) + Ur—19; — Uk+1P)41
+ Qkg1k-1 — Qk+191k+1, 4=<k=<n-—-1,

g1
Iy = g—lr;(”wé + 93913) + Un—1¢, + Gngin-1,

1 2 4
47 Ibh=¢3, Ih=Ih=Ih==TI}=0,
1 ¥3 2 22 913 4 _ 914
My=—-=—=., Ify=—g"%p3. I'y=""¢3, Ifs=>""g3+¢a.
912 12 912
Ff3:&(p3, 5§s§n,
g12
3 1 2 4 6
I'a=—¢a, I'p=T{=TIy=Iy==I3=0,
Flj;’z"'ZFZIT;ZZFJZ’ZF{r+2="'=Ffr=0’ =r=mn,

1
F{j_ = ¢r+1, F{r_;_l:_(/)r—i-l’ 4<r=<n-1,

F/;:O, 2<i,j<n; 1<k<n.
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We define a symmetric bilinear formon M by
L (1)( -1 i
T\ o g ) T MRS uz’

a 0 ad ad
ol =, 2 )=0o(—,-2)=0, 2<ij<n.
dat du; du; 8uj

From (4.2), (4.4), (4.5), (4.8) and, «) = 0, it follows that{c (X, Y), Z) is totally symmetric
in X, Y andZ. Also, (4.4), (4.5), (4.7) and (4.8) show thatand the Riemannian curvature
tensorr of L" satisfy

(4.8)

(4.9 O=RX,Y)Z=0(0({,Z2),X)—0(0(X, 2)Y).
Furthermore, from (4.4), (4.5), (4.7) and (4.8) we obtain

9 9 3 9
(V%o’)(g’g):O:(vl%o’)<a—us,§>, S=2,4,...,n,
oL N
p o) = — ) = —ppzz—= (Vi) =—, ],
w5\t o SACPWR 5\ ouz ot

W o2 Y g w2 DY Zo
0 U —’_ = ia _’— = 0 U _7_ == 9
mr \ou; ot 50\ Ju;” u; 77\ u;” o

(VLU)(i i)=0=(Vaad)(a 9 ) 2<i,j,k<n.

qu; 3uj’ ouy uj 3u," duy

Hence, (Vo) (X, Y, Z) is also totally symmetric irX, Y andZ. Consequently, by applying
Theorems A and B, we conclude that, up to rigid motion<hf there exists a unique La-
grangian isometric immersiof,;, : L" — C’ whose second fundamental form satisfies

(4.3). 0O

THEOREM 3. Suppose w(t), A1), Ba(t), ..., B.(t) be n — 1 functions of one vari-
able, y(t) = tz anull linein the Lorentzian n-space L", and @ = «(¢) a null curve, not a
null line, lying in the hyperplane A"~ with Frenet curvatures ¢z, . .. , ¢, and Frenet frame

{as, ..., a,} asmentioned in Section 4. Assume L" is parameterized by
(4.10 x(t,uz, ..., uy) =t& +u2a(®) + uzaz®) + -+ + upo, (2) .

Then, up to rigid motions, there exists a unique minimal Lagrangian isometric immersion
Iy prgs--p, + L™ — C' whose second fundamental form satisfies

9 9 9 . d
h —_—, — = J —_— 1— J ~ b
<at 8t> p2 <8uz>+( ¢3u3)§ﬂl <3ui)
4.11) (2 2 opi (L), s3<i<n.
Jat du; dup

Jd 0 0 0 ..
hWW—, — |=hl—,— ) =0, 251,]5”,
dt dup ou; Ou;
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where
n n
B2=> Biuj+ Y Bilprur—1— Qrp1tir1) — Pagsis
j=4 k=5
Q3 + 93Uz — p3paus
(4.12) 2 . > Bjuj+ (1— pauz)p
1~ qaus P
A 7 A+ apa
ST Y ) PN B3
1 - gaus ©5 ®3
and
n
A+ (PSZ,Bjuj
=4
(4.13 pa=—1—"
— ¢3uU3

PROOF.  We define a symmetric bilinear formon M by

a9 9 " 9
0(5’ E) = '82<8_142) +@A- ¢3M3)§,3i(8—m) ,
(4.14) G(i,i>:ﬁi(i), 3<i<n.

ot odu; ouo

a 0 0 0
ol—, — |)=0|—,— =0, 2<i,j<n.
ot Jduo ou; Ou;

From (4.4), (4.5) and (4.14) it follows th&t (X, Y), Z) is totally symmetric inX, Y andZ.
Also (4.4), (4.5), (4.7) and (4.14) show thatand the Riemannian curvature tengoof L"
satisfy

(4.15 O0=RX,Y)Z=0(0(Y,X),X)—o0(c(X,2)Y).

Furthermore, from (4.5), (4.7), (4.14) and a straightforward long computation, we know that
(Vo)(X, Y, Z) is also totally symmetric. Consequently, by applying Theorems A and B, we
conclude that, up to rigid motions @f7, there exists a unique Lagrangian isometric immer-
Sion Iy pipa--p, : L — C whose second fundamental form satisfies (4.11). O

5. Clasdfication of minimal flat Lagrangian submanifoldsof C}j. The purpose of
this section is prove the following theorem whiclassify minimal flat Lagrangian submani-
folds inCY.

THEOREM 4. Up to rigid motions of C7, locally (in a neighborhood of each point
belonging to an open dense subset), every minimal Lagrangian isometric immersion ¥ of L"
into C} iseither a Fy;, givenin Theorem2or a l,;g,...8,c« givenin Theorem 3.

PROOF. Let M be a minimal Lagrangian flat submanifold @ without totally geo-
desic points. Then, according to Theorem 1, the second fundamental fofr either takes
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the form:
(5.1 he1,e1) = Jez, h(ei,e;) =h(ej,e;)=0, 2<i,j<n
with respect to a suitable pseudo-orthonormal frgme. . . , e, } satisfying

(e1,e1) =0=(ez,e2) = (e1,€;) = (e2,¢;), (e1,e2) =1,

(5.2
(ei,ej) =6, 1=<i,j<n-2,
or takes the form:
(5.3 h(e1,e1) = Jez, h(er,e3) =Jez, and h(e,e;) =0, otherwise

in a neighborhood op, with respect to some pseudo-orthonormal bésis. . . , ¢, } satisfy-

ing (5.2). Itis clear that we can extefd, .. ., ¢,} to differentiable vector field&Ey, . . ., E,}
on a neighborhood gf.
Letw;, 1 < i, j < n denote the connection forms with respecti, ... , E,}, i.e.,

n
VxE; = Zw{(X)E,- )
j=1

We consider these two cases separately.

Case (I): Suppose that the second fundamental form takes the form (5.1).

In this case, (5.1), (5.2) ardodazzi equation (2.6) with = E;,i > 2, andY = Z =
E1 yield
a)%(Ei)za)é(E,')zO, 2<i<n, 3<j<n,
w3(Ei) — 201(E;) = o} (E1).
Also, from (5.1), (5.2) and Codazzi equation (2.6) with= E;, Z = E;, i,j > 2, and
X = Ei, we know thatVg, E; has no components ifi;-direction. ThusEo, ... , E, span

an integrable distribution, sa, whose leaves are totally geodesicZii. Moreover, (5.4)
implies thatVg, E> € Spar{E>}. Hence, the integral curves @b are pregeodesics @f*.

5.4

Let
1

Fi = E1+b3Es+ -+ byEy — (b5 + -+ b)) E2.
(5.5 Fo= Ey.

F,=E;—bjEx, i=3,...,n,
wherebs, ... , b, are functions orL”. It is easy to see from (5.2) and (5.5) tha&t, ... , F,}
is also a pseudo-orthonormal frame satisfying (5.2). Moreover, (5.1) and (5.5) imply that the
frame{Fy, ..., F,} preserves the same property for the second fundamental/arfn?,
that is, we have
(5.6) h(F1, F1) = JF2, h(F1, F;)) =h(F;, F;j)=0, 2<i,j<n.
(5.6) and the discussion above show that the integral curvés afe pregeodesics and the
distribution spanned byFy, ..., F,} is an integrable distribution whose leaves are linear

(n — 1)-subspace of.”.



LAGRANGIAN MINIMAL ISOMETRIC IMMERSIONS 135

The above statement means that we can parametetibg

n
X(t, v, v) =y (O + Y vivi(0),
i=2
such thav/dr = Fy and Spafv/dvy, ..., d/dv,} = SpanFa, ..., F,}.

SinceF1 is anull vector field Fy lies in the light cone. Thus, there exist suitable functions
b3, ..., b, such thatF is parallel to some constant null vector, say In particular, this
implies that an integral curvge = y(¢) of Fy is a null line parallel toz in L". So, by
reparameterizing if necessary, we may assyifi¢ = ¢¢ for some null vector .

Taking nowF> as the multiple of* such that¢, F») = 1, it follows from (5.4) that

VF,-ﬁ'Z =0

for 2 < i < n. This means that in thé: — 1)-dimensional subspace mentioned befdteis
a constant. It only changes along the integral curvgofit follows that we may write

(57) x(t7 uz,..., uﬂ) - t§ + M2052(t) + te + Mnan(t) )

whered/dus = F» and Spaf®/duo, ..., d/du,} = SpadFo, ..., F,} and thusxo(r), . .. ,
a, (¢) satisfy

az(t) =b)E>,

(¢ a2(0)) =1,
(5.8 (a2,02) =0,
(¢, ai(0)) = (a2(1), i (1)) =0,
(ai(®), aj(@®)) =8ij, 3=<i,j=<n.
For simplicity, we may choosfs, . .. , «, } to be the Frenet frame of the null curwe= a2 (¢)

with the corresponding Frenet curvatuges. . . , ¢, as mentioned in Section 4.
From (5.7) and (5.8), we obtain

0 0
(5.9 35 ¢+ upoy(t) + -+ + upa (1), B_Ltz =b(t)E2,

where¢ is a null vector parallel té;. Therefore, from (5.5), (5.6), (5.8) and (5.9) we get

0o 9 0 o 0 0 0 o
510 Al— —)=«xJ|—), |l = — |=h|l—.— ) =0, 2<i,j<n,
Jat ot duo dat du; ou; Ouj

for some functiorx.
From (5.10) and Codazzi equation (2.6) wkh= 9/0u; andY = Z = 9/d¢, we obtain

K .
(5.11) W:%Fﬁ-fﬁ), ji=2...,n.
J
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Using (4.7), equation (5.11) reduces to

BK_ _BK_O
dup  dua  Odu,

oK ®3

_— = — K.

dus uzpz —1
Solving (5.12) yields

(5.13 k= u(t)(uspsz —1)

for some functionw(¢). Hence, the second fundamental form of the immergfosatisfies
(4.3). Thus, by applying Theorem B of uniqueness we conclude that, up to rigid motions of
C1, the immersion is given by &, associated with a null curwe, a null vector, and a
function . of one variable as mentioned in Theorem 2.

Case (II): Suppose that the second fundamental form takes the form (5.3) with respect
to a suitable pseudo-orthonormal frafig, . . . , E,} satisfying (5.2).

In this case, from (5.2) and (5.3) and Codazzi's equation, we obtain

0K

(5.12)

w5(E3) = w3(E3) = --- = w3(E3) =0,
(5.14) o} (E3) = w3(E)) = 03(E)) = o} (E)) = 0} (Ej) =0, i,j#13,
W5(Ej))=0, 4<k<n.

Thus, SpafEy, E3} and SpafE,, Ea, ... , E,} are integrable distributions and their leaves
are linear subspaces bf and thu§ Eo, E3, ..., E,} gives rise to a linear subspace too. This
means that we can still parameterizé such that

n
X(t, vz, v) =Y (O + Y vivi(0),
i=2
such thav/dr = E1 and Spafd/dvy, ..., d/dv,} = SpaniEy, ..., E,}.
We now consider the following change of basis. We take functiansy, ... , a, and
defineFy, ..., F, by (5.5). Unfortunately, the expression for the second fundamental form is
not preserved under such a change. However, we still have

h(F1, F1) € SpanJ F», J F3},

5.1
619 h(F1, F3) € SpaiJ F2},

and all other components still vanish.

Since F; is a null vector field, there exist suitable functians . .. , b, such thatFy is
parallel to some constant null vector, sayln particular, this implies that an integral curve
y = y(t) of Fy is a null line parallel ta; in L". So, by reparameterizing, we may assume
y(t) = t¢ for some null vector .

Taking nowF> as the multiple of such that¢, F») = 1, it follows from (5.14) that

VF,F2=0
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for 2 < i < n. This means that in the: — 1)-dimensional subspace mentioned befdteis
a constant. It only changes along the integral curveofit follows that we may write

x(t,u2, ... up) =1& +uzo(t) + - - + upay (1),

whered/dup = F» and Spafd/duz, ..., d/du,} = SpariFy, ..., F,} and thusxo(?), ... ,
ay, (1) satisfy

az(t) = b(t)E2,

(¢, a2()) =1,
(5.16) (a2, 02) =0,

(¢, a;i(?)) = (@2(8), 0; (1)) =0,

(o (@), () =8;j, 3=<i,j=<n.
Here we also choose agditg, . . . , o} to be the Frenet frame of the null curee= ax(z)

with ¢3, ... , ¢, to be its corresponding Frenet curvatures as mentioned in Section 4.
From (4.4), (5.3), (5.5), (5.9), (5.16) and the total symmetryhg¥, Y), JZ) we get

n( 2 2) = (2 +Xn: 72
o a1 ) = P2 \ouy l_=3912’ ou; )

(5.17) (22— g (L), 3<k<
: | = —, <k=<n,
" dug “\ Buz
a 0 d d
= — |=hl—.,— =0, 2=<i,j=<n,
dt dup ou; Ou;
for some functiongo, ... , B,.

From (5.17), Codazzi equation (2.6) wikh= 9/0uy, k > 3,Y = 9/duz andZ = 9/9t,
we obtain

)
(5.18) 8—/;; =BT —Tf). 3<k=n.
From (5.17), Codazzi equation (2.6) wikh= Z = /3¢ andY = d/duz, we obtain
8ﬂ2 n n .
(5.19 F Bo(I3y — Th) — ngZ,BiFZZi + Z Ii,B; -
i=3 j=3
From (5.17), Codazzi equation (2.6) wikh= Z = 9/9r andY = d/duy, k > 3, we obtain
8182 m n .
52 Bl — D)+ g12) BTG~ ) il
(5.20) k i=3 j=3
a
= % + (TS —T), 3<k<n.

From (5.17), Codazzi equation (2.6) wikh= 9/0t, Y = 9/duy andZ = 9/du;, j, k > 3,
we obtain

3B, .
(5.21) o = —BI — BiTo— Bl J k=3
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Using (4.7), equations (5.18) through (5.21) reduce to

d
(5.22) W _o, 3<k<n.
ouo
B2
(5.23) aﬁ = 3f3.,
uz
B2 _ 0Pk
(5.24) S = o — BT + BTl + ]2:3;3, ., 3<k<n,
d
(5.25) s _ _Pebs 3 p<n,
dur  1—usp3
a .
(5.26) ﬁ:O, 4<j<n, 3<k=<n.
duy
From (5.22) and (5.26) we obtain
(5.27) Ba=Ba®),...,Bn=PBu(®).
Also, from (5.22) we obtain
(5.28) B3 = B3(t,uz, ..., uy).

Hence, by solving (5.25) for > 4, we get

(5.29 B3 = b3(t, uz) + ¢3 Z el

for some functiorbs(z, u3). Thus, by solving (5.25) with = 3, we find

M)+ @3)_Pruk

k=4

(5.30 B3 = 1
— u3ps3

for some functiorh = A(¢).
From (4.7), (5.27) and (5.24) with= n, we get

082
ouy

Solving (5.31) yields

(5.3

B
= B, (1) — Bu—1¢n + 7"(143905 + uzw% — U4P3Pa) .
— U393

1

1
+Fl(t7 Uz, ..., unfl)

B
P2 = {ﬁé(t) — Bu-1¢n + #m(uswé + U2p3 — uagapa) (i

(5.32)

for some functionfy = F1(t, u, ..., up_1).
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Similarly, by solving (5.24) fok =5, ... ,n — 1 and applying (4.7), (5.27) and (5.32),

we may obtain

(5.33

n

P2 = Z{ﬁ;(t) —Bj-19j +

ﬁ4
(U3l + u2gps — uagapa) tu;
= — u3ps3

1

n
"‘Zﬂj(ﬂj”j—l + F(t,u2,u3, ua)
j=6

for some functionF’ = F (¢, uz, us, ug). From (5.33) we get

Bz OF  gaps
5.34 —_—= iuj.
( ) dug ougs 11— uzeps jZ_S'BJMJ

On the other hand, from (5.24) with= 4 together with (4.7) and (5.27), we find

n
hpa+ 9304y Pru
92 _ BL(t) — k=4
(5.35) Sus = Pa 1" ia0s
4
+17(M3§0§ + uz(p% — u493¢4) + B5¢s .
— uzps

Combining (5.34) and (5.35), we obtain

oF A4 4
5.3 — = Bu(t) —
(539 dug Pa®) 1— uzpa + 1—u3zp

Thus, by solving (5.36) and by using (5.33), we obtain

; (u39h + u293 — uapspa) + Psps .

n

Bi
B2 = Z{,B; () — ,Bj—lﬁaj + #m(u:g(pé + uz(pg — UAQP3Q4) uj

° 1

j=4
(5.37) . ,

P4
+B3paus + iQjuj_1 — ————u4s+ L(t, u2, u3)
B3 ;SIBJQDJ Jj 1— uags
for some functionL = L(¢, ua, u3).
From (5.24) withk = 3 we have
082 3 203 3
6539 2 gy P uagl + 2pa0m0) - P22 4 pagat+ B3 ron
u3 912 912 912

k=4

wheregio, ..., g1, are given by (4.5). Substituting (5.30) into (5.38) yields

(5.39)

9p2 1 n n
— = Paga+ s {k/ + @3y Bk + 93y Biuk + 2B3psus

du3 k=4 k=4

n
+2B3p3913+ 93 ) B8k — ﬁz(ﬂs} :
k=4
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Substituting (5.37) into (5.39) yields

9L 1, 2., X
(5.40 —— = Baga + —{X + @3paPauz — 3L} + —{pzuz + p3uz}.
dus 912 992

Sincegi2 = 1 — ¢3us, (5.40) is a first order linear differential equation. By solving (5.40),
we obtain

A kg 4Bs  Apauz
54D L=ptup)gi2+ — + ——>(2p3uz — 1) + paba | 2o
¥3  @3912 ¥3 912

for some functionu = u (¢, u2). Combining (5.41) and (5.37) yields

n

:82 = Z {18} () — ,3/—1(/7/ + L(ps(u:g(pé =+ M2§0§ — M4§03§04)}uj

P 1—u3
. A4
(5.42) + Bapaus+ ) Bjpjuj-1— —————us
; J7YI7"T 1— U3P3
VXA V7% 4Ba | Ap3u2
+ngr2+—+ 23(2<p3u3—1)+ﬂ+ ot
$3  ¢3912 ®3 912

From (5.23), (5.30) and (5.42) we g&t/dup = 0. Thus,u = (). Equation (5.42)
is nothing but (4.12). Hence, the second fundamental form of the immessiohL” into
C] satisfies (4.11), (4.12) and (4.13), which coincides with the second fundamental form of
Fururgs--pn- Therefore, by applying Theorem B of uniqueness, we conclude that, up to rigid
motions ofCY, the immersion? is given by aFy¢ gy, -

Finally,if ¥ : L" — C/ is atotally geodesic Lagrangian submanifold, tders nothing
butafFye, : L" — C! with u = 0 according to Theorem 2. O

6. Explicit examples. In this section we provide some explicit expression of flat La-
grangian minimal submanifolds @].

EXAMPLE 6.1. Letu = u(z) be afunctiony(t) =tz anulllineinL”, anda = «(t)
a null line lying in the hyperplana”~1 = {x € L" : (x, ¢) = 1}. Choosexs, ... , a, to be
an orthonormal basis dt, «}. Then all of Christoffel's symbols of” with respect to the
parameterization (4.2) are equal to zero. Hence, from (4.3) and Gauss’ formula, we know that
the position functionx of the immersionFy,,, : L" — C] satisfies

92x O dx
0 i X,
912 9
(6.1) ) ,
0°x 0°x

= =0, 2<j,k<n.
0tdu Oujoug
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By solving the patrtial differential system (6.1), we conclude that the corresponding minimal
Lagrangian isometric immersiafy,, : L" — C] is given by

1 tps
x(t,up,...,uy) = E(t + upy — l// w(s)dsdt,

tps
t—uz—i—i// w(s)dsdt, 2us, . .. ,2un>,

where we choose the initial conditions as

ox 11 dax 1 1
X(O)Z(O,...,O), E(O)=<§1§701“'70)1 a_uz(o)z(és_évos"'vo)s

(6.2)

(6.3) , ,
N 0)=(0,0,10,....0)..... 2 ©)=(.,....0.1).
ous duy

EXAMPLE 6.2. Lety(¢t) = r¢ be anullline inL", anda = a(z) a null curve lying
in the hyperplaneA”—l = {x € L"; (x,¢) = 1} with Frenet curvaturegs = 1, ¢4 =
-+~ = ¢, = 0. Choosex = 1. Then the Christoffel symbols df” with respect to the
parameterization (4.2) are given by

2
u 3 us 1 1

F1:F2:—F3= FI—, FZ—,
1 1 1 117 17, I

uz —1’
rg=1, rj, =0, otherwise

(6.4

From (4.3), (6.4) and Gauss’ formula, we know that the position funatiohthe immersion
Focp o L" — CY satisfies

3%x up  Ax us  dx _dx
= Z4 L g Vi,
dt uz—1 ot 1— u3 dus ous
8%x ax 8%x 1 ox uz  dx
(6.5) =—, N ==
0tduz  Jdus otdusz uz—1 ot 1—u3 dus
92x 92x

= =0, 4<r=<n, 2=<j,k=<n.
dtou, oujoug

By solving the partial differential system (6.5), we conclude that the corresponding minimal
Lagrangian isometric immersiak,;, : L" — C/ is given by

1 , '
x(t,uz, ... un) = 6(2(142 +i—uzi)e™" + (ugi —i+ M—22(1_|_ \/§,~))e(«/§+z)z/2
1 ,
+ (ugi —i+=(1- \/él')u2>e(—«/§+l)t/2’
2
(6.6) \/é(l — U3z — u—zz(\/é — l'))e(«/§+i)t/2 + \/g(u3 _1_ u_zz(\/:—)H_ i))e(’“/‘s’ﬂ)’/z’
2(uz — 1+ iup)e™ + (Quz — 2+ (V3 — i)ug)eV3H1/2

T (2uz — 2 — (V34 Dup)e V32 By, 6u,1> ,
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where we choose the initial conditions given by (6.3)

EXAMPLE 6.3. Lety(r) = r¢ be anullline inL", anda = a(z) a null curve lying
in the hyperplaneA”! = {x € L"; (x, ¢) = 1} with Frenet curvaturegs = 1, ¢4 = - -- =
¢on = 0. Choose. = 1 andBs = --- = B, = 0. Then the Christoffel symbols df”
with respect to the parameterization (4.2 given by (6.4). Hence, from (4.11) and Gauss’
formula, we know that the position function of the immersionly¢ 8,6, : L" — C}
satisfies

92x uz 0x u% 0x u2i  0x S dx
w7 = — + — + — +i—,
ot uz—1 ot 1—u30uz 1—u3 dur ous
8%x ax 8%x 1 ox uz  dx i dx
(6.7 =—, = —+ — + —,
dotouo ous o0tous uz—1 ot 1—u3zduz 1—u3 dup
92x 92x

= =0, 4<r<n, 2<j,k<n.
otou, ou joug

By solving the partial differential system (6.7), we conclude that the corresponding minimal
Lagrangian isometric immersialy; ,sg,--p, : L" — C] is given by

1 1 1
x(t,u, ..., uy) = E(it +ux+ (i — 1)<u3t —t+ Etzuz + —its),

6
(6.8) - (it Fup+ (i + 1)(u3t it %tzuz + %it3>>,

2tus + it? + 2u3, 2ua, ..., 2un> ,

where we choose the initial conditions given by (6.3).

REMARK 6.1. Whenn = 2, Theorem 4 implies that locally, up to rigid motions of
C%, every minimal Lagrangian isometric immersioniof into C% must be given by &,
where¢ is a null vectore a null line in A1 andp a function ofz, respectively. Hence, from
Example 6.1, we obtain the following.

COROLLARY 5. Locally, up to rigid motions of C2, a minimal Lagrangian isometric
immersion & : L2 — C2 of L2 into CZ is given by

tps tprs
(6.9 x(t,up) = %(t +up—i // w(s)dsdet, t —up+i // u(s)dsdt) .
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