Tohoku Math. J. 54 (2002), 85–104

MEROMORPHIC FIRST INTEGRALS: SOME EXTENSION RESULTS

ROGÉRIO S. MOL

(Received April 3, 2000, revised March 29, 2001)

Abstract. We present sufficient conditions of extending a meromorphic function which is defined outside an analytic compact curve in a complex surface. The function we deal with is a first integral for a holomorphic foliation in the whole surface. The key to extension is the study of singularities of the foliation on the complex curve.

1. Introduction. We consider a singular holomorphic foliation \mathcal{F} in a complex surface M, equipped with a meromorphic first integral defined outside a compact complex curve S. We are basically concerned with the following question: under which conditions does \mathcal{F} admit a meromorphic first integral in the entire surface M?

Proposition 2 asserts that when *S* is not \mathcal{F} -invariant, then the first integral extends to the whole *M*. To study the case where *S* is \mathcal{F} -invariant, some necessary hypotheses are set on the singularities of \mathcal{F} in *S*: we assume that any singularity contained in *S* has no saddle-nodes in its desingularization. Such a singularity is called a *generalized curve*. We have:

THEOREM A. Let \mathcal{F} be a singular holomorphic foliation in a complex surface M admitting a meromorphic first integral h in $M \setminus S$, where S is a compact, smooth, connected complex curve. If some singularity of \mathcal{F} in S is a non-dicritical generalized curve, then h extends to a meromorphic first integral for \mathcal{F} in M.

In the case where all singularities in *S* are discritical (here, being *discritical* means having an infinite number of separatrices), further hypothesis are set on the curve *S*:

THEOREM B. Let \mathcal{F} be a singular holomorphic foliation in a complex surface M admitting a meromorphic first integral h in $M \setminus S$, where S is a compact, smooth, connected complex curve with negative self-intersection number. If all singularities of \mathcal{F} in S are generalized curves, then h extends to a meromorphic first integral defined in M.

When *S* has non-negative self-intersection number, the extension is still possible if *S* contains an adequate amount of special dicritical singularities, which we call *ordinary dicritical*:

THEOREM C. Let \mathcal{F} be a singular holomorphic foliation in a complex surface M admitting a meromorphic first integral h outside a compact, smooth, connected complex curve S with self-intersection number $n \ge 0$. Suppose that the singularities of \mathcal{F} in S are generalized

²⁰⁰⁰ Mathematics Subjetct Classification. Primary 32S65; Secondary 32A20.

Key words and phrases. Holomorphic foliation, first integral, meromorphic function.

This work was supported by PRPq-Universidade Federal de Minas Gerais and CNPq-Brasil.

curves. If there are at least n + 1 ordinary discritical singularities in S, then h extends to a meromorphic first integral in M.

The basic tool for the proofs of Theorems A, B and C is Lemma 2, which is called Extension Lemma. It asserts that a meromorphic first integral in a neighborhood of one of the separatrices of a simple singularity extends to a neighborhood of the singularity. This, along with some results on the extension of meromorphic functions, transforms our problem into one of finding separatrices through the desingularization divisor.

Sections 5 and 6 are devoted to the situation where M is a complex projective space CP^n . We study the problem in dimension two and then show how the problem in CP^n reduces to a two-dimensional one.

In Section 7 we give conditions upon that similar extension theorems apply to a foliation by curves in a complex manifold M of dimension n. Finally, in Section 8, we produce variants of Theorems A, B and C where we extend closed meromorphic one-forms defining a foliation in a complex surface. With some adaptations, the techniques of the previous sections also apply to this situation.

This work was developed as a Ph. D. thesis at IMPA, Brazil. I am grateful to my advisor C. Camacho. I also thank P. Sad and B. Azevedo Scárdua for their valuable comments and contributions.

2. Proofs of the main theorems. Let \mathcal{F} be a singular holomorphic foliation defined in a complex surface M, that is, a two-dimensional complex manifold. By a singular holomorphic foliation we mean a holomorphic foliation outside an analytic set $s(\mathcal{F})$, the *singular set* of \mathcal{F} , of codimension two or greater. We remark that, as a consequence of Levi's extension theorem, a singular holomorphic foliation of dimension one is induced by a holomorphic vector field in a neighborhood of each point (see [L]). We say that a point $p \in s(\mathcal{F})$ is a reduced singularity if the eigenvalues λ_1 and λ_2 of the linear part of a vector field which defines \mathcal{F} at p satisfy one of the following:

- (i) $\lambda_1 \neq 0, \lambda_2 \neq 0, \lambda_2/\lambda_1 \notin \mathbf{Q}^+$;
- (ii) $\lambda_1 \neq 0, \lambda_2 = 0 \text{ or } \lambda_1 \neq 0, \lambda_2 = 0.$

Singularities of type (i) are said to be *simple*. The special case in which $\lambda_1/\lambda_2 \in Q^-$ is called a *resonance*. Singularities of type (ii) are called *saddle-nodes*.

A meromorphic function *h* is called a *meromorphic first integral* for \mathcal{F} if its indeterminacy set is contained in $s(\mathcal{F})$ and its level curves contain the leaves of \mathcal{F} . Simple singularities which admit meromorphic first integrals are linearizable resonances, as the following results prove:

PROPOSITION 1. Let p be a reduced singularity of \mathcal{F} admitting a meromorphic first integral in some neighborhood. Then p is a resonance.

PROOF. Suppose first that p is simple and non resonant. Then \mathcal{F} is formally linearizable (see [CS1]); in formal coordinates at p, \mathcal{F} is given by $\omega_p = xdy - \lambda ydx$, $\lambda \in C - Q$.

Write

$$F(x, y) = \sum_{m \ge m_0, n \ge n_0} a_{mn} x^m y^n$$

the development in Laurent series of the (formal) first integral for \mathcal{F} . We have

$$0 = \omega_p \wedge dF$$

= $(xdy - \lambda ydx) \wedge \Big(\sum_{m \ge m_0, n \ge n_0} ma_{mn} x^{m-1} y^n dx + \sum_{m \ge m_0, n \ge n_0} na_{mn} x^m y^{n-1} dy\Big)$
= $-\sum_{m \ge m_0, n \ge n_0} (m + \lambda n) a_{mn} x^m y^n dx \wedge dy.$

Since $\lambda \notin Q$, we must have $a_{mn} = 0$ for any $(m, n) \neq (0, 0)$, contradicting the fact that *F* is non-constant.

Similar formal calculations employing Dulac's normal form ([CS1]) show that p cannot be a saddle-node.

We say that a one-dimensional analytic set *S* is a *separatrix* through $p \in s(\mathcal{F})$ if $p \in S$ and *S* is invariant by \mathcal{F} . We remark that a simple singularity admits a pair of smooth separatrices. For a saddle node, we can assure the existence of one smooth separatrix (see [CS1]). In general, a singularity always admits at least one separatrix ([CS]).

LEMMA 1 (Linearization lemma). Let $p \in s(\mathcal{F})$ and S a separatrix for \mathcal{F} at p. Suppose that \mathcal{F} admits a meromorphic first integral F in a neighborhood V of $S^* = S \setminus \{p\}$. Then the holonomy with respect to S is linearizable.

PROOF. Let $\gamma : [0, 1] \to S^*$ be a simple closed path around p. Let $q = \gamma(0) = \gamma(1)$ and Σ a small complex disc centered at q, contained in V and transversal to \mathcal{F} , provided with a complex coordinate w. If $h_{\gamma} : \Sigma \to \Sigma$ is the holonomy map associated to γ , then $F(h_{\gamma}(w)) = F(w)$ for any $w \in \Sigma$. Setting a new complex coordinate z in which $F|_{\Sigma}$ reads $F|_{\Sigma}(z) = z^n$, we have $(h_{\gamma}(z))^n = z^n$. Therefore, $h_{\gamma}(z) = e^{2\pi i k/l} z$, where $k, l \in \mathbb{Z}$ and l|n.

LEMMA 2 (Extension lemma). Let $p \in s(\mathcal{F})$ and S a separatrix for \mathcal{F} at p. Suppose that \mathcal{F} admits a meromorphic first integral F in a neighborhood V of $S^* = S \setminus \{p\}$. If p is a simple singularity, then F extends meromorphically to a neighborhood of p.

PROOF. The previous Lemma and [MM] show that \mathcal{F} is a linearizable resonance at p; there exists a system of coordinates (x, y) centered at p such that \mathcal{F} is defined by $\omega = xdy - \lambda ydx$, $\lambda \in \mathbf{Q}^+$. Write $\lambda = -p/q$, $p, q \in N$, (p, q) = 1. Suppose that S has the local equation $\{y = 0\}$. Developing F in the Laurent series

$$F(x, y) = \sum_{n \ge n_0} a_{mn} x^m y^n,$$

we have

$$0 = dF \wedge \omega = \sum_{n \ge n_0} (mq - np) a_{mn} x^m y^n dx \wedge dy$$

We see that $a_{mn} \neq 0$ if and only if mq - np = 0, which occurs if and only if there exists $l \in \mathbb{Z}$ such that m = lp and n = lq. It is then possible to rewrite

$$F(x, y) = \sum_{l \ge l_0} a_{lp, lq} (x^p y^q)^l$$

for some $l_0 \in \mathbb{Z}$. This shows that F extends meromorphically to a neighborhood of 0.

Levi's extension theorem, which provides the extension of a meromorphic function defined in a Hartogs' domain to its holomorphic closure ([Siu]), allows us to prove the following:

LEMMA 3. Let M be a complex surface and S a smooth, compact, connected complex curve. Suppose that h is a meromorphic function defined in $M \setminus S$. If h extends as a meromorphic function to $(M \setminus S) \cup V_p$, where V_p is a neighborhood of a point $p \in S$, then it extends meromorphically to M.

PROOF. Let \mathcal{W} be the union of the points $q \in S$ for which there exists a neighborhood V_q , $q \in V_q$, such that h extends meromorphically to $(M \setminus S) \cup V_q$. \mathcal{W} is non-empty by hypothesis and open from its definition. Let us show that it is closed. Take $p_0 \in S$ in the closure of \mathcal{W} . This means that there exists a sequence $q_n \in \mathcal{W}$ such that $q_n \to p_0$. Chose a coordinate neighborhood U_{p_0} around p_0 , $\Phi = (x, y) : U_{p_0} \to C^2$ a coordinate chart, such that $P := \Phi(U_{p_0})$ is a polydisc and $\Phi(S_0 \cap U_{p_0}) = \{y = 0\}$. Take n_0 sufficiently large so that $q_{n_0} \in U_{p_0}$. Then $P \setminus \{y = 0\} \cup \Phi(U_{p_0} \cap V_{q_{n_0}})$ is a Hartogs' domain. Levi's theorem assures that h extends meromorphically to U_{p_0} . Therefore, $p_0 \in \mathcal{W}$ and the result follows.

Let \mathcal{F} be a foliation in a complex surface M admitting a meromorphic first integral in $M \setminus S$, where S is a smooth, compact, connected complex curve. We are concerned with finding conditions for extending the meromorphic function to the whole M. First of all, if S is not \mathcal{F} -invariant, then extension is immediate:

PROPOSITION 2. Let M be a complex surface with a singular holomorphic foliation \mathcal{F} admitting a meromorphic first integral h in $M \setminus S$, where S is a smooth, connected complex curve. If S is not \mathcal{F} -invariant, then h extends to M as a meromorphic first integral for \mathcal{F} .

PROOF. Let $p \in S$ be a regular point of \mathcal{F} where the foliation is transversal to S. Choose a coordinate neighborhood U_p around p and $\Phi = (x, y) : U_p \to \mathbb{C}^2$ a coordinate chart such that $P := \Phi(U_p)$ is a polydisc, $\Phi(S \cap U_p) = \{y = 0\}$ and $\mathcal{F}|_{U_p}$ is a foliation with vertical leaves given by dx = 0. Since h is a first integral, we have that h(x, y) = h(x) for $(x, y) \in P \setminus \{y = 0\}$. Therefore, h extends meromorphically to $\{y = 0\}$ by setting

h(x, 0) = h(x). This yields the extension of h to S outside $s(\mathcal{F}) \cap S$ and the points of tangency between \mathcal{F} and S. They constitute, however, a codimension two analytic set, and the meromorphic extension to them is straight.

Suppose now that *S* is invariant by \mathcal{F} . From Proposition 1, it is reasonable to assume that the singularities of \mathcal{F} over *S* do not have saddle-nodes in their desingularization; they are *generalized curves*, according to the definition in [CLS].

Let $\pi : \tilde{M} \to M$ be a sequence of blow-ups that desingularizes $s(\mathcal{F}) \cap S$ (see [Sei]). We consider the desingularization divisor $D = \pi^{-1}(S) = \bigcup_{i=0}^{n} P_i$, where $P_0 = \pi^*(S)$ is the strict transform of S and $\bigcup_{i=1}^{n} P_i = \pi^{-1}(s(\mathcal{F}) \cap S)$ are the projective lines associated to the blow-ups. Let $\tilde{\mathcal{F}}$ be the foliation induced in \tilde{M} and $\tilde{h} = h \circ \pi$ its meromorphic first integral defined in $\tilde{M} \setminus D$. Among P_1, \ldots, P_n there are perhaps some non-invariant lines. By the previous proposition, \tilde{h} automatically extends to these lines outside their intersection with other invariant lines.

Let \tilde{D} be the set of invariant curves in D. We decompose $\tilde{D} = \bigcup_{j=0}^{k} D_{j}$, where each D_{j} is connected and $D_{i} \cap D_{j} = \emptyset$ if $i \neq j$. D_{0} is taken to be the component which contains P_{0} . Our job is now reduced to searching separatrices through each D_{j} which are not contained in D_{j} . Since we are dealing with generalized curves, this is equivalent to the existence of a singularity of $\tilde{\mathcal{F}}$ outside a corner. Suppose such a separatrix exists at a point p contained in some component $D_{j_{0}}$. Denote by S_{0} the separatrix and by $P_{i_{0}}$ the line which contains p. Since p is not a saddle-node and a meromorphic first integral is defined in a neighborhood of $S_{0} \setminus \{p\}$, by applying Extension Lemma 2, it is possible to extend \tilde{h} to a neighborhood of p. Lemma 3 allows us to extend \tilde{h} to $P_{i_{0}} \setminus \{q_{1}, \ldots, q_{l}\}$, the points of intersection of $P_{i_{0}}$ with other lines in $D_{j_{0}}$. Now we apply the same process and extend \tilde{h} to a neighborhood of each q_{j} and, as a consequence, to the lines which contain them. This procedure is repeated until \tilde{h} is extended throughout $D_{j_{0}}$.

Next we show that it is always possible to find a separatrix through D_1, \ldots, D_n . We do not always assure the existence of a separatrix through D_0 . However, some conditions may be given so that this occurs.

Let *M* be a complex surface and \mathcal{F} a singular holomorphic foliation. The *algebraic multiplicity* (or simply the *multiplicity*) of \mathcal{F} at $p \in M$, denoted by $m_p(\mathcal{F})$, is the lowest order of the terms appearing in the Taylor series of ω_p , some holomorphic one-form which gives the foliation at *p*. Let *S* be a smooth separatrix through *p*. Choose a local system of coordinates (x, y) at *p* such that $S = \{y = 0\}$ and $\omega_p = p(x, y)dx + q(x, y)dy$ is a defining one-form for \mathcal{F} . The *tangent multiplicity* of \mathcal{F} and *S* at *p*, $m_p(\mathcal{F}, S)$, is the order of q(x, 0) at x = 0. If *S* is one of the separatrices of a simple singularity, or the strong separatrix of a saddle node, then $m_p(\mathcal{F}, S) = 1$. We also have that *p* is a regular point if and only if $m_p(\mathcal{F}, S) = 0$.

Let $\pi : \tilde{M} \to M$ be a sequence of blow-ups starting at $p \in M$ and $D = \pi^{-1}(p)$ the associated divisor. It is proved in [CLS] that

$$m_p(\mathcal{F}) + 1 = \sum_{q \in P \subset D} (\rho(P)) m_q^*(\mathcal{F}, P) \,,$$

where

$$m_q^*(\mathcal{F}, P) = \begin{cases} m_q(\mathcal{F}, P) & \text{if } q \text{ is not a corner}, \\ m_q(\mathcal{F}, P) - 1 & \text{if } q \text{ is a corner} \end{cases}$$

and $\rho(P)$ is a weight associated to P. For our purposes, it is sufficient to know that $\rho(P) = 1$ when P is associated to the first blow-up.

LEMMA 4. Let p be a singularity of a singular holomorphic foliation \mathcal{F} admitting a smooth separatrix S. Suppose that p is a generalized curve. Then p admits another separatrix distinct from S.

PROOF. If p is dicritical, there is nothing to prove. Suppose that p admits a finite number of separatrices. If p is already reduced, then it is simple and has two transversal smooth separatrices. If p is not reduced, we desingularize it and prove by induction in the number of blow-ups.

Suppose first that one blow-up desingularizes \mathcal{F} . Denote by P the projective line introduced, by \tilde{S} the strict transform of S (which is smooth and transversal to P), and set $p_0 = P \cap \tilde{S}$. If there exists another singularity of $\tilde{\mathcal{F}}$ in P, it is reduced and has a separatrix transversal to P. So, let us examine the case where p_0 is a unique singularity in P. It is reduced and has P and \tilde{S} as the set of its separatrices. We have

$$m_p(\mathcal{F}) + 1 = m_{p_0}(\mathcal{F}, P) = 1$$
,

which implies $m_{p_0} = 0$, an absurdity.

Suppose now that n > 1 is the number of blow-ups necessary to desingularization and that the result is already proved for singularities which desingularize in less than n steps. Let us perform a first blow-up at p, introducing P, \tilde{S} and p_0 as above. If there exists a singularity $q \in P$, distinct from p_0 , then the induction hypothesis applies to assure the existence of a separatrix through q distinct from P. It remains to consider the case where the only singularity in P is p_0 , having P and \tilde{S} as the set of its separatrices. However, according to [CLS], a generalized curve having exactly two transversal smooth separatrices is reduced. The argument of the preceding paragraph applies here to achieve a contradiction.

REMARK 1. Lemma 4 may be false if S is not smooth. For instance, take $p = (0, 0) \in C^2$, $S : x^2 - y^3 = 0$ and $\mathcal{F} : d(x^2 - y^3) = 2xdx - 3y^2dy = 0$. p is a generalized curve having S as its unique separatrix.

At this point, we are ready to prove Theorem A:

PROOF OF THEOREM A. We suppose that *S* is \mathcal{F} -invariant, since the other case was already proved. Applying Lemma 4, we extend *h* to $S \setminus \{p_1, \ldots, p_n\}$, where p_1, \ldots, p_n are the other singularities of \mathcal{F} in *S*. Since these points form a codimension two analytic set, *h* extends through them, yielding a meromorphic first integral for \mathcal{F} defined in *M*.

Remark that the conclusion of the theorem implies that all singularities of \mathcal{F} in S are generalized curves.

Let *M* be a complex surface. Let $S = \bigcup_{i=1}^{n} S_i \subset M$ be a finite union of compact complex curves. The matrix $M_S = (s_{ij})_{1 \leq i,j \leq n}$, where $s_{ij} = S_i \cdot S_j$, is called the *intersection matrix* associated to *S*. Notice that M_S is symmetric and has real entries.

Observe that if $M_0 \in M_n(\mathbf{R})$ is symmetric and $Q \in M_n(\mathbf{R})$ is non-singular, then M_0 is negative definite if and only if $Q^t M_0 Q$ is. As a consequence, a permutation of columns followed by the corresponding permutation of lines of a negative definite, symmetric, real matrix yields a negative definite, symmetric, real matrix. This means that the negative definiteness of the intersection matrix of a curve is independent from the enumeration associated to its components. The following is proved in [La]:

THEOREM 1. Let $\pi : \tilde{M} \to M$ be a sequence of a finite number of blow-ups at $p \in M$ and $D = \pi^{-1}(p)$, $D = \bigcup_{i=1}^{n} P_i$, where P_i are projective lines. Then the intersection matrix M_D is negative definite.

We establish now a connection between the negative definiteness of the intersection matrix M_S and the existence of separatrices through a divisor S.

Let $S = \bigcup_{i=1}^{n} S_i$ be a union of complex curves in a complex surface M. To S we associate a graph Γ_S constructed in the following way: The set of vertices $V_{\Gamma_S} = \{V_1, \ldots, V_n\}$ corresponds bijectively to the set of components of S; to each point in $S_i \cap S_j$ we define an edge connecting V_i and V_j . We have the following proposition:

PROPOSITION 3 ([C]). Let M be a complex surface with a singular holomorphic foliation \mathcal{F} . Let $S = \bigcup_{i=1}^{m} S_i$ be a union of \mathcal{F} -invariant compact smooth complex curves. Suppose that the singularities of \mathcal{F} in S are non-dicritical and

(i) The associated graph Γ_S is a tree,

(ii) M_S is negative definite.

Then, there exists a separatrix through S.

LEMMA 5. Let $M_0 \in M_n(\mathbf{R})$ be a symmetric negative-definite matrix. If $M_1 \in M_{n_1}(\mathbf{R})$ is a submatrix of M_0 in its diagonal, then M_1 is negative-definite.

PROOF. We may suppose that M_0 has the form

$$M_0 = \begin{pmatrix} M_1 & N^t \\ N & M_2 \end{pmatrix},$$

where $M_2 \in M_{n-n_1}(\mathbf{R})$ and $N \in M_{(n-n_1) \times n_1}(\mathbf{R})$. If $\mathbf{v} \in \mathbf{R}^{n_1}$, $\mathbf{v} \neq 0$, then we have

$$\mathbf{v}M_1\mathbf{v}^t = (\mathbf{v}, 0)M_0(\mathbf{v}, 0)^t < 0$$

since M_0 is negative definite. This accomplishes the proof.

Suppose that *M* carries a singular holomorphic foliation \mathcal{F} . Let π be a sequence of blow-ups that desingularizes $p \in s(\mathcal{F})$ and $D = \pi^{-1}(p)$ the associated divisor. Denote by \tilde{D} the union of all invariant lines in *D*. Write $\tilde{D} = \bigcup_{i=1}^{n} D_i$, where each D_i is a connected set coposed by union of projective lines and $D_i \cap D_j = \emptyset$ if $i \neq j$. We have

PROPOSITION 4. There exists a separatrix through each D_i .

PROOF. In fact, after renumbering the projective lines in *D* if necessary, each M_{D_i} will be a submatrix in the diagonal of M_D . The result follows from the fact that M_D is negative definite.

We are at the point of proving Theorem B:

PROOF OF THEOREM B. When S is not \mathcal{F} -invariant, the result is already proved. If S is \mathcal{F} -invariant, perform the desingularization of $s(\mathcal{F}) \cap S$. Denote by π the sequence of blow-ups. Easy calculations show that blowing up a divisor with negative definite intersection matrix yields a divisor with negative definite intersection matrix. The proof of Proposition 4. shows that a divisor contained in a larger divisor with negative definite intersection matrix also has negative definite intersection matrix. Since we depart from a curve S with negative self-intersection number, these facts show that the largest connected set containing $\pi^*(S)$ composed by the union of invariant curves of $\pi^{-1}(S)$ has negative definite intersection matrix. This assures that it is crossed by a separatrix. It is therefore possible to extend h to M.

We remark that Theorem B may be proved through more general results. A divisor with negative definite intersection matrix may be blown down to a complex surface having normal singularities ([La], Theorem 4.9 and Proposition 4.6). On the other hand, a theorem of Levi assures the extension of a meromorphic function defined outside a codimension-two variety in a normal complex space ([N], Theorem VII-4). The proof we present here has a virtue of relying on properties of foliated surfaces.

In the following lines we make an attempt to extend a meromorphic first integral through a smooth complex curve with non-negative self-intersection number.

Let *p* be a non-reduced singularity of \mathcal{F} in an invariant curve *S*, which is smooth at *p*. A *linear chain* at *p* (with respect to *S*) (see [CS]) is a sequence of blow-ups performed in the following way: Let π_1 be a blow-up at *p* and $P_1 = \pi_1^{-1}(p)$. If $p_1 = \pi_1^*(S) \cap P_1$ is reduced, then the linear chain at p_1 is π_1 . If p_1 is non-reduced, then make another blow-up π_2 at p_1 and, if necessary, successive blow-ups at the corners, until all of them are reduced; the linear chain at *p* consists of the composition $\pi_n \circ \ldots \circ \pi_1$ of these blow-ups. We make the following definition:

DEFINITION 1. Let p be a singularity of a germ of holomorphic foliation \mathcal{F} admitting a germ of smooth separatrix S. We say that p is an *ordinary dicritical singularity* if the desingularization of p has one non-invariant projective line lying in the divisor associated to the first linear chain with respect to S.

EXAMPLE 1. Let S_1 and S_2 be two smooth algebraic curves in $\mathbb{C}P^2$. Choose an affine plane $\mathbb{C}P^2 \setminus L_{\infty}$ such that L_{∞} does not intersect $S_1 \cap S_2$. Let $p_1(x, y) = 0$ and $p_2(x, y) = 0$ be irreducible polynomial equations for S_1 and S_2 in $\mathbb{C}P^2 \setminus L_{\infty}$. Let \mathcal{F} be the foliation in $\mathbb{C}P^2$ induced by $\omega(x, y) = p_2^2 d(p_1/p_2) = p_1 dp_2 - p_2 dp_1 = 0$. Then $S_1 \cap S_2$ is

composed by dicritical singularities of \mathcal{F} which are ordinary dicritical with respect to both S_1 and S_2 . We remark that if S_1 and S_2 are transversal, then, by Bezout's theorem, $S_1 \cap S_2$ has degree (S_1) degree (S_2) points. In particular, if degree $(S_1) <$ degree (S_2) , then S_1 contains more than (degree $(S_1))^2 = S_1 \cdot S_1$ ordinary dicritical singularities.

The above definition explains the statement of Theorem C, which we prove now:

PROOF OF THEOREM C. We prove by induction in the intersection number of *S*. Suppose first $S \cdot S = 0$. Let $p \in S$ be an ordinary dicritical singularity. If, in the sequence of blow-ups that produces the linear chain from *p*, a dicritical line intersects the strict transform of *S*, then, at this moment, this will have negative self-intersection number. Theorem C applies to this case. Otherwise, we will reach the following situation: The strict transform \tilde{S} of *S* will have self-intersection number at most -2, while the intersection number of the projective line *P* (intersecting *S*) will be -1. The intersection matrix associated to the divisor $\tilde{S} \cup P$ will clearly be negative definite. Further steps in the desingularization process will take this to a divisor with negative definite intersection matrix.

Suppose now that $S \cdot S = n > 0$ and the result is valid for curves with self-intersection number less than *n*. We may suppose that all n + 1 ordinary dicritical singularities lie in the second case of the previous paragraph. Otherwise we reduce to a curve of smaller intersection number and apply the induction hypothesis. After an appropriate sequence of blow-ups, we reach the situation where \tilde{S} has self-intersection number at most n - 2(n + 1) = -n - 2 and $P_i \cdot P_i = -1$ for i = 1, ..., n + 1 (each P_i is a projective line intersecting \tilde{S} belonging to the first linear chain of one of the singularities related above). The divisor $D = \tilde{S} \cup P_1 \cup ... \cup P_{n+1}$ has the following $(n + 2) \times (n + 2)$ intersection matrix

$$M_D = \begin{pmatrix} \tilde{S} \cdot \tilde{S} & 1 & \dots & 1 \\ 1 & -1 & \dots & 0 \\ & & & \dots & \\ 1 & 0 & & -1 \end{pmatrix},$$

which is negative definite. This concludes the proof.

3. Some Consequences. We present in this section several situations where Theorems A, B and C apply.

COROLLARY 1. Let \mathcal{F} be a parabolic foliation on $\mathbb{C}P^2$ whose leaves are proper outside some algebraic invariant curve $S \subset \mathbb{C}P^2$. Assume that the singularities of \mathcal{F} along S satisfy the hypothesis of Theorem A, B or C. Then \mathcal{F} exhibits a rational first integral.

PROOF. A theorem of Suzuki ([Su]) implies that \mathcal{F} admits a meromorphic first integral on $\mathbb{C}P^2 \setminus S$, since S is a Stein manifold.

COROLLARY 2. Let X be a polynomial vector field on C^2 . Suppose that the orbits of X have total finite curvature and are complete for the Euclidean metric on C^2 (this implies

that the line at infinity, l_{∞} , is invariant). If there are no affine invariant lines for X and if the singularities of the corresponding projective foliation on \mathbb{CP}^2 are as in Theorem A, we conclude that X admits a rational first integral and its orbits are contained in algebraic curves.

PROOF. A well-known theorem of Osserman on minimal surfaces assures that each orbit is a parabolic Riemann surface ([W]), so that \mathcal{F} is parabolic. According to [Sc] the fact that the total curvature is finite also implies that the orbits are properly embedded in C^2 . The result then follows from the corollary above.

COROLLARY 3. Let \mathcal{F} and \mathcal{F}_1 be projective foliations on $\mathbb{C}P^2$. Assume that \mathcal{F} is a pencil by algebraic curves of genus $g \ge 2$, and that there exists some analytic automorphism $T : \mathbb{C}^2 \to \mathbb{C}^2$ that conjugates \mathcal{F} and \mathcal{F}_1 on \mathbb{C}^2 . Assume also that the singularities of \mathcal{F}_1 along the line at infinity are as in Theorem A. Then \mathcal{F}_1 admits a rational first integral and T is algebraic.

PROOF. First we observe that \mathcal{F}_1 admits a meromorphic first integral and therefore a rational first integral by Theorem A. Therefore *T* is an analytic automorphism of C^2 that takes algebraic curves into algebraic curves. Since the algebraic curves involved have genus $g \ge 2$ it follows from a result of Kizuka ([K]) that *T* must be algebraic.

4. Examples. We give some examples where there are obstructions to extend a meromorphic first integral.

EXAMPLE 2. Consider the foliation \mathcal{F} in $\mathbb{C}P^2$ induced by

$$\omega = dy - (a(x)y + b(x))dx = 0,$$

where a(x) and b(x) are polynomials. Let A(x) be a primitive for a(x) and B(x) a primitive for $b(x)/\exp(A(x))$. The meromorphic function

$$F(x, y) = \frac{y}{\exp(A(x))} - \exp(B(x))$$

is a first integral for \mathcal{F} in $\mathbb{C}P^2 \setminus L_{\infty}$. All singularities of \mathcal{F} are contained in L_{∞} . We have the following cases:

(i) If degree(a) < degree(b), then $s(\mathcal{F})$ consists of a single point at $L_{\infty} \cap \overline{\{x = 0\}}$. It is a non-reduced singularity, giving rise to a saddle-node by a single blow-up.

(ii) If degree(a) \geq degree(b), then the crossing $L_{\infty} \cap \overline{\{x = 0\}}$ is also a non-reduced singularity, which produces a saddle-node after one blow-up. In this case, L_{∞} contains another singularity, which is a saddle-node.

The above example does not admit a rational first integral, since it contains saddle-nodes in L_{∞} (see Proposition 1).

EXAMPLE 3. The following construction is carried out by means of the techniques of [L]. We construct a surface M_0 provided with a foliation \mathcal{F}_0 , having an invariant projective line P_0 such that $P_0 \cdot P_0 = -1$, with two singularities p_1 and p_2 , both of them are linearizable with index -1/2 with respect to P_0 . We also construct a surface M_1 provided with a foliation \mathcal{F}_1 , having an invariant projective line P_1 such that $P_1 \cdot P_1 = -1$, with a linearizable singularity q_1 with index -2 with respect to P_1 , and a second singularity r_1 , which is radial. We define M_2 to be a copy of M_1 . Similarly, define \mathcal{F}_2 to be the foliation in M_2 , P_2 the invariant projective line, q_2 and r_2 the singularities.

We glue a neighborhood of P_0 in M_0 with a neighborhood of P_1 in M_1 by identifying the local models of \mathcal{F}_0 in p_1 and \mathcal{F}_1 in q_1 , and with a neighborhood of P_2 in M_2 by identifying the local models of \mathcal{F}_0 in p_2 and \mathcal{F}_2 in q_2 . The result is a complex surface M with a foliation \mathcal{F} having $P_0 \cup P_1 \cup P_2$ as an invariant divisor.

Blow up r_1 and r_2 , giving rise to dicritical lines \tilde{L}_1 and \tilde{L}_2 . Denote by \tilde{P}_0 , \tilde{P}_1 , \tilde{P}_2 and $\tilde{\mathcal{F}}$ the strict transforms of P_0 , P_1 , P_2 and \mathcal{F} , respectively. Choosing a point $s_1 \in \tilde{L}_1$, we provide $\tilde{L}_1 \setminus \{s_1\}$ with a complex coordinate z such that $\tilde{P}_1 \cap \tilde{L}_1$ corresponds to z = 0. We define a holomorphic function H in $\tilde{L}_1 \setminus \{z = 0\}$ in the coordinate z by $H(z) = \exp(1/z)$. H may be extended to a first integral for $\tilde{\mathcal{F}}$ in a neighborhood of \tilde{L}_1 outside $\tilde{P}_1 \cup \tilde{P}_0$ and then to a neighborhood of \tilde{P}_0 outside $\tilde{P}_0 \cup \tilde{P}_1 \cup \tilde{P}_2$. Carrying out the same construction starting from \tilde{L}_2 , we will have, by symmetry, a meromorphic first integral h defined in a neighborhood $\tilde{P}_0 \cup \tilde{P}_1 \cup \tilde{L}_2 \cup \tilde{L}_2$ outside $\tilde{P}_0 \cup \tilde{P}_1 \cup \tilde{P}_2$. If we blow down \tilde{L}_1, \tilde{P}_1 and \tilde{L}_2, \tilde{P}_2 , then the result will be a foliation \mathcal{G} in a complex surface with an invariant line P such that $P \cdot P = 1$, having two dicritical singularities and admitting a meromorphic first integral outside P. This does not extend to P. Notice that these singularities are not ordinary dicritical with respect to P, according to our definition. Considering the foliation $\tilde{\mathcal{F}}$ and the complex curve $\tilde{P}_0 \cup \tilde{P}_1 \cup \tilde{P}_2$, we have an example where theorem A fails when the curve in question is singular.

EXAMPLE 4. Let G be the group of Möbius maps generated by g(z) = z/(z+1). Let T be a complex torus, α and β the generators of $\pi_1(T)$ and $\Phi : \pi_1(T) \to G$ the homomorphism such that $\Phi(\alpha) = g$, $\Phi(\beta) = g$. We make the suspension of this homomorphism, that is, we build a complex fiber bundle E with base T and fiber \overline{C} and a holomorphic foliation \mathcal{F} in E transversal to the fibers such that the holonomy of \mathcal{F} in a fiber is given by Φ (see [CL]). \mathcal{F} admits a meromorphic first integral in $E \setminus E_0$, where $E_0 \simeq T$ is the null section, constructed in the following way: Let z be a complex coordinate in a fixed fiber F_0 such that the generator of the holonomy group is written as g(z) = z/(z+1). $H(z) = \exp(2\pi i/z)$ is holomorphic outside $\{z = 0\}$ and satisfies H(g(z)) = H(z) for $z \neq 0$. Therefore, by following the leaves of \mathcal{F} , we may extend H to a holomorphic first integral h for \mathcal{F} defined outside E_0 . Of course, h does not extend to E_0 . Notice that the obstruction for the extension is the existence of a map in the holonomy with respect to E_0 which has the structure of a flower, which implies that its orbits acummulate in the origin (see [C1]).

EXAMPLE 5. In this example we follow the construction of Riccati foliations with given holonomy, as done in [L]. Let *G* be the group of Möbius maps generated by $f_1(z) = -z$ and $f_2(z) = z/(z + j)$, where $j = \exp(2\pi i/3)$. *G* is non-abelian and its generators satisfy $f_1^2 = f_2^3 = (f_1 \circ f_2)^6 = \text{id}$. The function $H(z) = \mathcal{P}'(1/z)^2$, where \mathcal{P} is the Weierstrass function, is meromorphic in $\overline{C} \setminus \{z = 0\}$ and satisfies H(f(z)) = H(z) for $f \in G$ (see [F], Section VII-II). We build a fiber bundle $P : E \to \overline{C}$ with fiber \overline{C} and a singular holomorphic foliation \mathcal{F} in *E* with three invariant vertical fibers, F_0 , F_1 and F_2 , transversal to the fibers in $E \setminus (F_0 \cup F_1 \cup F_2)$. Let $E_0 \simeq \overline{C}$ be the null section. For a fixed fiber $F \neq F_0$, F_1 , F_2 , with a complex coordinate z ($\{z = 0\} = F \cap E_0$), the holonomy map corresponding to a loop in E_0 around $p_1 = P(F_1)$ is given by f_1 , while f_2 is the holonomy map associated to a loop around $p_2 = P(F_2)$. The holonomy map associated to a loop around $p_0 = P(F_0)$ is $(f_1 \circ f_2)^{-1}$. We obtain a meromorphic first integral *h* for \mathcal{F} defined outside $E_0 \cup F_0 \cup F_1 \cup F_2$ by extending the function *H* defined in $F \setminus \{z = 0\}$ by following the leaves of \mathcal{F} . In a neighborhood $V_i \times \overline{C}$ of F_i , with coordinates $(x_i, z_i), (x_i, \hat{z}_i)$, where $\hat{z}_i = 1/z_i$ (the fibers correspond to the equations $x_i = c$ and p_i corresponds to $(x_i, z_i) = (0, 0)$), \mathcal{F} is given by the equations

$$\omega_i(x, z_i) = \alpha_i z_i dx + x_i dz_i = 0,$$

$$\hat{\omega}_i(x, z_i) = -\alpha_i \hat{z}_i dx + x_i d\hat{z}_i = 0,$$

where $\alpha_0 = 6$, $\alpha_1 = 2$, $\alpha_2 = 3$. Since $i_{p_i}(\mathcal{F}, E_0) = -1/\alpha_i$, we have that $c(E_0) = \sum_{i=1}^{3} i_{p_i}(\mathcal{F}, E_0) = -1$. It is therefore possible to blow down E_0 by a map $\pi : E \to \hat{E} \simeq CP^2$. The foliation $\pi_*\mathcal{F}$ has a meromorphic first integral outside the lines π_*F_0 , π_*F_1 and π_*F_2 . This does not extend to CP^2 and the obstruction lies once again in the existence of a map in the holonomy of \mathcal{F} with respect to E_0 which has a structure of flower (for instance, $[f_1, f_2] = f_1 \circ f_2 \circ f_1^{-1} \circ f_2^{-1} = z/(1-2z)$). Notice that all the singularities of $\pi_*\mathcal{F}$ are generalized curves.

5. Foliations in CP^2 . In this section we study foliations in CP^2 which admit a meromorphic first integral *h* defined in $CP^2 \setminus S$, where *S* is a smooth algebraic curve. We remark that meromorphic functions in CP^2 are rational, that is, they are given by quotients of polynomial functions. We have the following:

PROPOSITION 5. Let S be an algebraic curve invariant by a foliation \mathcal{F} in \mathbb{CP}^2 with a rational first integral h. Then S contains a discritical singularity.

PROOF. We suppose h(x, y) = p(x, y)/q(x, y), where *p* and *q* are non-constant polynomials. Without loss of generality, we may suppose that *S* is irreducible. Take $\{f(x, y) = 0\}$ to be an irreducible polynomial equation defining *S*. The foliation \mathcal{F} is defined by

(1)
$$p(x, y) - \lambda q(x, y) = 0, \quad \lambda \in C$$

Since S is invariant and irreducible, there exists $\lambda_0 \in C$ such that f divides $p - \lambda_0 q$; there exists a polynomial g such that

(2)
$$f(x, y)g(x, y) = p(x, y) - \lambda_0 q(x, y).$$

Substituting (2) in (1), we have the following set of equations:

(3)
$$f(x, y)g(x, y) - (\lambda - \lambda_0)q(x, y) = 0, \ \lambda \in C.$$

Choose a point *p* in the intersection of $\{q = 0\}$ and $\{f = 0\}$. This is a distribution of a generative for \mathcal{F} . In fact, assuming that it lies in the affine plane in question (otherwise simply perform an appropriate change of coordinates), (3) gives an infinite number of algebraic curves through *p*.

Let us suppose that a foliation \mathcal{F} in $\mathbb{C}P^2$ admits a meromorphic first integral in $\mathbb{C}P^2 \setminus S$, where S is a smooth algebraic curve. Theorem A applies to this case if there exists a nondicritical generalized curve in S. As a consequence of this theorem and the preceding result, we have

COROLLARY 4. Let \mathcal{F} be a singular holomorphic foliation in $\mathbb{C}P^2$ admitting a meromorphic first integral outside some smooth algebraic curve S. Suppose that a singularity of \mathcal{F} in S is a generalized curve. Then \mathcal{F} has a dicritical singularity in S.

PROOF. Let $p \in s(\mathcal{F}) \cap S$ be a generalized curve. If it is non-dicritical, Theorem A says that \mathcal{F} has a rational first integral. Proposition 5 then assures the existence of a dicritical singularity in *S*.

6. Foliations in CP^n of codimension 1. Let \mathcal{F} be a codimension one singular holomorphic foliation in CP^n , $n \ge 3$. Suppose that \mathcal{F} admits a meromorphic first integral outside some smooth hypersurface *S*. This *n*-dimensional case can be handled by reducing it to a two-dimensional problem.

Let $H \subset CP^n$ be an *m*-dimensional complex plane, $2 \leq m \leq n$. We say that *H* is in *general position* with respect to \mathcal{F} if *H* is not \mathcal{F} -invariant and $s(\mathcal{F}) \cap H$ is a codimension two analytic set. The proof of the following proposition is adapted from Lemma 5 in [CLS1]:

PROPOSITION 6. Let \mathcal{F} be a singular holomorphic foliation in $\mathbb{C}P^n$ and $H \subset \mathbb{C}P^n$ a hyperplane in general position with \mathcal{F} . Then \mathcal{F} admits a rational first integral if and only if $\mathcal{F}|_H$ does.

PROOF. The "only if" part of the proof is straightforward. Let us prove the opposite implication. It is enough to build a meromorphic first integral for \mathcal{F}_V , where V is an open neighborhood of H. Since $\mathbb{C}P^n \setminus H$ is a Stein manifold, it extends to $\mathbb{C}P^n$ ([Siu]). Let f be a meromorphic first integral for $\mathcal{F}|_H$. Take $p \in H$ a regular point for \mathcal{F} . It is possible to find a sufficiently small neighborhood W_p of p and a holomorphic coordinate chart $\Psi : W_p \to \Delta$, where $\Delta \subset \mathbb{C}^n$ is a polydisc, such that:

(i) $\Psi(H \cap W_p) = \{z_n = 0\} \cap \Delta$,

(ii) $\Psi_*(\mathcal{F})$ is given by $dz_1 = 0$.

Let $\tilde{f}_p = f \circ \Psi^{-1}|_{\Delta \cap \{z_n=0\}}$. This extends naturally to a meromorphic function defined in Δ , which we still call \tilde{f}_p , by setting $\tilde{f}_p(z_1, \ldots, z_n) = \tilde{f}_p(z_1, \ldots, z_{n-1}, 0)$. This is a first integral for $\Psi_*(\mathcal{F})$. We define $f_p = \tilde{f}_p \circ \Psi$.

Notice that, if $W_p \cap W_q \neq \emptyset$, p and q being regular points for \mathcal{F} , then we have $f_p|_{W_p \cap W_q} = f_q|_{W_p \cap W_q}$. This follows easily from the identity principle for meromorphic functions. Let $W = \bigcup_{p \in H \setminus s(\mathcal{F})} W_p$. W is a neighborhood of $H \setminus s(\mathcal{F})$, where \mathcal{F} admits a meromorphic first integral, which we call f_W . All we have to do is extending f_W to a neighborhood of $H \cap s(\mathcal{F})$. Since H is in general position with respect to \mathcal{F} , $H \cap s(\mathcal{F})$ is a codimension two analytic set in H. Let $p \in H \cap s(\mathcal{F})$. It is possible to find a neighborhood V_p of p, a change of coordinates Φ such that $\Phi(p) = 0$, $\Phi(V_p) = \Delta_1 \times D$ and $\Phi^{-1}((\Delta_1 \setminus \Delta_2) \times D) \subset W \cap V_p$, where $\Delta_2 \subset \Delta_1 \subset C^{n-1}$ are polydiscs and $D \subset C$ is a disc, all of which centered in the origin. $(\Delta_1 \setminus \Delta_2) \times D$ is a Hartogs' domain whose holomorphic closure is $\Delta_1 \times D$. Levi's theorem then allows us to extend f_W to V_p . The result is a meromorphic first integral F defined in V, the neighborhood of H consisting of $W \bigcup_{p \in s(\mathcal{F}) \cap H} V_p$.

It is proved in [CLS1] that the set of hyperplanes in general position with respect to a foliation \mathcal{F} in $\mathbb{C}P^n$, $n \ge 3$, is generic in the set of all hyperplanes.

We can apply the above facts to reduce the extension problem in dimension *n* to a problem in dimension two. We find a sequence of linear subspaces $H_2 \subset ... \subset H_{n-1} \subset H_n = CP^n$, where each H_i is a linear subspace of dimension *i*, transversal to $H_{i+1} \cap S$, and in general position with respect to $\mathcal{F}|_{H_{i+1}}$, for i = 2, ..., n-1 ($H_n = CP^n$). Choosing each H_i in such a way that the meromorphic first integral for \mathcal{F} is non-constant over it, $H_2 \simeq CP^2$ will be provided with a foliation $\mathcal{F}|_{H_2}$ which admits a meromorphic first integral outside $H_2 \cap S$. Furthermore $\mathcal{F}|_{H_2}$ admits a rational first integral if and only if \mathcal{F} does.

7. Foliations by curves in higher dimension. Let M be an n-dimensional complex manifold with a foliation \mathcal{F} whose leaves are curves (\mathcal{F} is locally induced by a holomorphic vector field). In this section we consider the problem of extending a meromorphic function F defined outside a compact subvariety S, whose level surfaces contain the leaves of \mathcal{F} . Such a function will still be called a *first integral* for \mathcal{F} . We first remark that if S is of codimension two or greater, F extends meromorphically to M as a consequence of Levi's theorem. Therefore, it is enough to consider the case where S is of codimension one. When S is not \mathcal{F} -invariant, the extension is automatic and the proof proceeds as that of Proposition 2:

PROPOSITION 7. Let M, S, F and F be as above. If S is not F-invariant, then F extends to M as a meromorphic first integral for F.

For the case where S is \mathcal{F} -invariant, a higher dimensional version of Extension Lemma 2 is required:

LEMMA 6. Let F be a meromorphic first integral for the linear vector field $X(z_1, \ldots, z_n) = \lambda_1 z_1 \partial/\partial z_1 + \cdots + \lambda_n z_n \partial/\partial z_n$, where $\lambda_i \neq 0$ for $i = 1, \ldots, n$, defined outside the hyperplane $\{z_1 = 0\}$. If X admits a finite number of separatrices at 0 (outside $\{z_1 = 0\}$), then F extends to a neighborhood of 0 as a meromorphic first integral for X.

PROOF. We consider the development of *F* in the Laurent series:

$$F(z_1,\ldots,z_n)=\sum_{i_1\in\mathbb{Z},i_2\geq l_2,\ldots,i_n\geq l_n}a_{i_1\ldots i_n}z_1^{i_1}\ldots z_n^{i_n}.$$

Since *F* is a first integral for *X* outside $\{z_1 = 0\}$, we have

$$0 = dF(z_1, \ldots, z_n)X(z_1, \ldots, z_n)$$

=
$$\sum_{i_1 \in \mathbb{Z}, i_2 \ge l_2, \ldots, i_n \ge l_n} (\lambda_1 i_1 + \cdots + \lambda_n i_n) a_{i_1 \ldots i_n} z_1^{i_1} \ldots z_n^{i_n}.$$

Whenever $a_{i_1...i_n} \neq 0$, we have

$$\lambda_1 i_1 + \cdots + \lambda_n i_n = 0,$$

which is equivalent to

$$i_1 = -\frac{\lambda_2}{\lambda_1}i_2 - \cdots - \frac{\lambda_n}{\lambda_1}i_n$$

Restricting the field *X* to invariant two dimensional planes $z_1 \times z_i$, i = 2, ..., n, we see that $\lambda_i/\lambda_1 \in \mathbf{Q}$ (since there exists a meromorphic first integral outside $z_1 = 0$). On the other hand, the hypothesis on the finite number of separatrices implies that, in fact, $\lambda_i/\lambda_1 \in \mathbf{Q}^+$. This means that i_1 is bounded from below by $l_1 = -(\lambda_2/\lambda_1)l_2 - \cdots - (\lambda_n/\lambda_1)l_n$, which gives the meromorphic extension of *F* to the hyperplane { $z_1 = 0$ }.

The hypothesis on the number of separatrices is necessary. For instance $F(z_1, z_2, z_3) = \exp(z_2^2/z_1)$ is a first integral for $X(z_1, z_2, z_3) = 2z_1\partial/\partial z_1 + z_2\partial/\partial z_2 + z_3\partial/\partial z_3$, which does not extend meromorphically to $\{z_1 = 0\}$. In view of the previous lemma, we may state the following:

THEOREM 2. Let M, S, F and F be as in the beginning of this section. Assume that S is F-invariant. If $p \in S$ is a linearizable singularity of F, which is a saddle (only non-zero eigenvalues) admitting a finite number of separatrices outside S. Then F extends to M as a meromorphic first integral for F.

PROOF. We apply the previous lemma to extend F to a neighborhood of p, and Levi's theorem to obtain an extension to the whole M.

8. Closed meromorphic one-forms. In this section we seek conditions for extending a closed meromorphic one-form which defines a foliation \mathcal{F} outside a compact complex curve. We remark that in C^2 closed meromorphic one-forms with simple poles correspond to foliations admitting as a first integral a multiform function of the kind $f_1^{\lambda_1} \dots f_p^{\lambda_p}$, where f_1, \dots, f_p are holomorphic and $\lambda_1, \dots, \lambda_p \in C$ (see [CM]). We will see that the techniques developed above also apply to this situation.

PROPOSITION 8. Let M be a complex surface and $S \subset M$ a compact complex curve. Let \mathcal{F} be a singular holomorphic foliation in M, which is induced in $M \setminus S$ by a closed meromorphic one-form ω . If S is not \mathcal{F} -invariant, then ω extends to a meromorphic closed one-form in M.

PROOF. The proof is similar to that of Proposition 2. Let p be a regular point in S, also regular for \mathcal{F} , where the foliation is transversal to S. Choose U_p a coordinate neighborhood around p and $\Phi = (x, y) : U_p \to \mathbb{C}^2$ a coordinate chart such that $P := \Phi(U_p)$ is a polydisc, $\Phi(S \cap U_p) = \{y = 0\}$ and $\mathcal{F}|_{U_p}$ is the foliation with vertical leaves given by dx = 0. Let $\tilde{\omega} = \Phi_* \omega|_{U_p \setminus S}$. We have $\tilde{\omega}(x, y) = a(x, y)dx$, $(x, y) \in P \setminus \{y = 0\}$, where a(x, y) is meromorphic in $P \setminus \{y = 0\}$. Since ω is closed, we have that a(x, y) is a function of x only. The extension of ω to S is achieved by noticing that the singular points of S, the tangencies of \mathcal{F} and S, and the singularities of \mathcal{F} in S form a codimension two analytic set. \Box

The following is a generalization of Lemma 1:

100

LEMMA 7. Let $p \in s(\mathcal{F})$ be a simple singularity and S a separatrix for \mathcal{F} at p. Suppose that \mathcal{F} is given in a neighborhood V of $S^* = S \setminus \{p\}$ by a closed meromorphic one-form ω with simple poles. Then the holonomy with respect to S is linearizable.

PROOF. Let $\gamma : [0, 1] \to S^*$ be a closed path such that $[\gamma] \in H_1(S^*)$ is a generator. Choose Σ a small disk such that $\gamma \times \Sigma$ is contained in V. Suppose first that $S \subset (\omega)_{\infty}$.

Fix $q \in \gamma$. There exists a neighborhood U of q and a local chart (X, Y) in which \mathcal{F} is given by dY = 0 and $S \cap U = \{Y = 0\}$. Since ω is closed and has simple poles, it follows that $\omega = adY/Y + d\phi$, where $\phi \in \mathcal{O}(U)$ and $a \in C$ is the residue of ω with respect to S^* (hence, independent from q). From $\omega \wedge dY = 0$, we have $d\phi \wedge dY = 0$, so that $\phi = \phi(Y)$. In a new system of coordinates $(x, y) = (X, Y \exp(\phi(Y)))$, \mathcal{F} is given by dy = 0, while $\omega = ady/y$.

It follows that we may cover a neighborhood of $\gamma \times \{0\}$ with a finite number of coordinate charts (x_j, y_j) such that $S \cap U_j = \{y_j = 0\}, \mathcal{F}|_{U_j} : dy_j = 0$ and $\omega|_{U_j} = ady_j/y_j$. Whenever $U_i \cap U_j \neq \emptyset$, we have

$$a\frac{dy_i}{y_i} = a\frac{dy_j}{y_j},$$

so that $y_i = c_{ij}y_j$, where c_{ij} is locally constant in $U_i \cap U_j$. It follows that the holonomy mapping associated to $[\gamma]$ is linear.

Suppose now that $S \not\subset (\omega)_{\infty}$. As above, we produce a covering of $\gamma \times \{0\}$ with a finite number of open sets U_j provided with coordinates (x_j, y_j) such that $\mathcal{F}|_{U_j} : dy_j = 0$. We can thus write $\omega|_{U_j} = a_j(y_j)dy_j$, where $a_j(y_j)$ is holomorphic. Let $A_j(y_j)$ be a primitive of $a_j(y_j)$ such that $A_j(0) = 0$. A_j is a holomorphic first integral for $\mathcal{F}|_{U_j}$. If $U_i \cap U_j \neq \emptyset$, we have $dA_i = \omega|_{U_i \cap U_j} = dA_j$, which gives $A_i = A_j$ in $U_i \cap U_j$. The function $A : U = \bigcup_j U_j \to C$ such that $A|_{U_j} = A_j$ is a holomorphic first integral for $\mathcal{F}|_U$. If h_{γ} is the holonomy map associated to γ , we have that $A|_{\Sigma} \circ h_{\gamma} = A|_{\sigma}$. Therefore, h_{γ} is linearizable.

LEMMA 8 (Extension Lemma I). Let $p \in s(\mathcal{F})$ be a simple singularity and S a separatrix for \mathcal{F} at p. Suppose that \mathcal{F} is given in a neighborhood V of $S^* = S \setminus \{p\}$ by a closed meromorphic one-form ω with simple poles. Then ω extends to a meromorphic one-form defined in a neighborhood of p.

PROOF. Lemma 7 and [MM] give that \mathcal{F} is linearizable at p, that is, there are coordinates (x, y) such that the one-form $\eta = xdy - \lambda ydx$, $\lambda \in C \setminus Q^+$, induces the foliation in a neighborhood of p = (0, 0). Suppose that $S = \{y = 0\}$ in this coordinate system. Let us write

$$\omega = a(x, y)dx + b(x, y)dy$$

= $\left(\sum_{j \ge -1, i \in \mathbb{Z}} a_{ij}x^i y^j\right)dx + \left(\sum_{j \ge -1, i \in \mathbb{Z}} b_{ij}x^i y^j\right)dy.$

Since ω is closed, we have

$$\sum_{j\geq -1, i\in \mathbf{Z}} ib_{i,j} x^{i-1} y^j - \sum_{j\geq -1, i\in \mathbf{Z}} ja_{i,j} x^i y^{j-1} = 0.$$

Therefore

(4)
$$(i+1)b_{i+1,j} = (j+1)a_{i,j+1}$$
 for $j \ge -1, i \in \mathbb{Z}$.

On the other hand, since $\omega \wedge \eta = 0$ in a neighborhood where both forms are defined, we have

$$\sum_{j\geq -1,i\in\mathbf{Z}}a_{ij}x^{i+1}y^j+\lambda\sum_{j\geq -1,i\in\mathbf{Z}}b_{ij}x^iy^{j+1}=0,$$

which gives

(5)
$$a_{i,j+1} = -\lambda b_{i+1,j} \quad \text{for } j \ge -1, i \in \mathbb{Z}$$

Suppose that some $b_{i_0, j_0} \neq 0$, where $j_0 \neq -1$. From relations (4) and (5) we have

$$\lambda = -\frac{a_{i_0-1,j_0+1}}{b_{i_0,j_0}} = -\frac{i_0}{j_0+1} = -\frac{p}{q},$$

where $p, q \in \mathbb{Z}^+$ are such that (p, q) = 1. This means that whenever $b_{i,j} \neq 0$ with $j \neq -1$, we have

$$-\frac{i}{j+1} = -\frac{p}{q} \,.$$

That is, there exists $l \in \mathbb{Z}$ such that i = lp and j = -1 + lq. When $b_{i,-1} \neq 0$, equation (4) implies that i = 0. Therefore the set of indices (i, j) such that $b_{i,j}$ is possibly non-zero is of the form

$$\begin{cases} i = lp, \\ j = -1 + lq, \end{cases} l \ge 0.$$

This means that b(x, y) extends meromorphically to a neighborhood of p, possibly having a simple pole in $\{y = 0\}$. From equation (5) we see that

$$a_{i,j} \neq 0 \Rightarrow b_{i+1,j-1} \neq 0$$
$$\Rightarrow \begin{cases} i = -1 + lp, \\ j = lq, \end{cases} l \ge 0.$$

Therefore a(x, y) also extends meromorphically to p.

In the case of closed forms with poles of higher order we have:

LEMMA 9 (Extension Lemma II). Let $p \in s(\mathcal{F})$ be a simple singularity and S a separatrix for \mathcal{F} at p. Suppose that \mathcal{F} is given in a neighborhood V of $S^* = S \setminus \{p\}$ by a closed meromorphic one-form ω with a pole of order $k + 1 \ge 2$ in S. Then ω extends to a meromorphic one-form defined in a neighborhood of p.

PROOF. If the holonomy of *S* at *p* is linearizable, then the proof goes as that of Lemma 8. We therefore suppose that the holonomy is not linearizable. We first remark (see [LSc]) that since *S* is a pole of order $k + 1 \ge 2$ of the closed form ω , the holonomy group of *S* is conjugated to a subgroup of $G_{k,\lambda}$ for some λ in *C*, where

$$G_{k,\lambda} = \{ R_{\theta} \circ g_{z,k,\lambda}; z \in \boldsymbol{C}, \lambda^{k} = 1 \},\$$

and

$$g_{z,k,\lambda} = \exp\left(z\frac{x^{k+1}}{1+\lambda x^k}\frac{\partial}{\partial x}\right)$$

It follows from formal calculations that p must be a resonance. We then have at p the following Martinet-Ramis normal form ([MaR, p. 597]): There are formal coordinates at p such that \mathcal{F} is given in a unique way by a form of the model

$$\omega_{p/q,k,\lambda} = p(1 + (\lambda - 1)(x^p y^q)^k)ydx + q(1 + \lambda(x^p y^q)^k)xdy$$

where (p, q) = 1. The holonomy maps at $\{y = 0\}$ and $\{x = 0\}$ are given respectively by

$$\exp(-2\pi i p/q) \circ g_{2\pi i,qk,\lambda q/p}$$

and

$$\exp(-2\pi i q/p) \circ g_{2\pi i, pk, (\lambda-1)p/q}$$

Since each germ of diffeomorphism in (C, 0) tangent to the identity is formally conjugated to a unique model $g_{z,k,\lambda}$ ([MaR, p. 580]), we see that the holonomy of S at p is analytically

102

normalizable, that is, the coordinates in question are holomorphic. Therefore the Martinet-Ramis normal form is in fact holomorphic.

On the other hand, $\omega_{p/q,k,\lambda}$ has $h(x, y) = pqxy(x^py^q)^k$ as an integrating factor. That is, $\bar{\omega}_{p/q,k,\lambda} = h(x, y)^{-1}\omega_{p/q,k,\lambda}$ is closed. Therefore, there exists a meromorphic function gdefined in V such that $\omega = g\bar{\omega}_{p/q,k,\lambda}$. If g were non-constant, it would be a first integral for \mathcal{F} in V, since ω and $\bar{\omega}_{p/q,k,\lambda}$ are closed. Then the holonomy of S at p would be linearizable, which is not the case. Therefore, g is constant and ω extends to a neighborhood of p as $g\tilde{\omega}_{p/q,k,\lambda}$. This completes the proof.

We also have:

LEMMA 10. Let M be a complex surface and S a compact connected complex curve. Suppose that ω is a meromorphic one form defined in $M \setminus S$. If ω extends as a meromorphic one form to $(M \setminus S) \cup V_p$, where V_p is a neighborhood of a point $p \in S$, then it extends meromorphically to M.

PROOF. The proof is similar to that of Lemma 3, noticing that a meromorphic one-form defined in a Hartogs' domain extends to its holomorphic closure. \Box

The proofs of theorems A', B' and C', stated below, proceed as those of their counterparts, Theorems A, B and C.

THEOREM A'. Let \mathcal{F} be a singular holomorphic foliation in a complex surface M induced by a closed meromorphic one-form in $M \setminus S$, where S is a compact, smooth, connected complex curve. If some singularity of \mathcal{F} in S is a non-dicritical generalized curve, then ω extends to a closed meromorphic one-form in M.

THEOREM B'. Let \mathcal{F} be a singular holomorphic foliation in a complex surface M induced by a closed meromorphic one-form in $M \setminus S$, where S is a compact, smooth, connected complex curve with negative self-intersection number. If all singularities of \mathcal{F} in S are generalized curves, then ω extends to a closed meromorphic one-form defined in M.

THEOREM C'. Let \mathcal{F} be a singular holomorphic foliation in a complex surface M induced by a closed meromorphic one-form ω outside a compact, smooth, connected complex curve S with self-intersection number $n \geq 0$. Suppose that the singularities of \mathcal{F} in S are generalized curves. If there are at least n + 1 ordinary dicritical singularities in S, then ω extends to a closed meromorphic one-form defined in M.

REFERENCES

- [C] C. CAMACHO, Quadratic forms and holomorphic foliations on singular surfaces, Math. Ann. 282 (1988), 177–184.
- [C1] C. CAMACHO, On the local structure of conformal mappings and holomorphic vector fields in C², Journéss Sirgulières de Dijon (Univ. Dijon, 1978), 83–94, Astérisque 60, Société Mathématique de France, Paris, 1978.
- [CLS] C. CAMACHO, A. LINS NETO AND P. SAD, Topological invariants and equidesingularization for holomorphic vector fields, J. Differential Geom. 20 (1984), 143–174.

R.	MOL
----	-----

[CLS1]	C. CAMACHO, A. LINS NETO AND P. SAD, Foliations with algebraic limit sets, Ann.of Math.136 (1992),
	429–446.
[CL] [CS]	 C. CAMACHO AND A. LINS NETO, Geometric theory of foliations, Birkhauser, Boston, 1985. C. CAMACHO AND P. SAD, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. 115 (1982), 579–595.
[CS1]	C. CAMACHO AND P. SAD, Pontos singulares de equações diferenciais analíticas, 16 Colóquio Brasileiro de Matemática, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1987.
[CM]	D. CERVEAU AND J-F. MATTEI, Formes intégrables holomorphes singulières, Astérisque 97, Société Mathématique de France, Paris, 1982.
[F]	L. FORD, Automorphic functions, Chelsea Publ. Co., New York, 1951.
[GH]	P. GRIFFITHS AND J. HARRIS, Principles of algebraic Geometry, John Wiley, New York, 1994.
[Gun]	R. GUNNING, Introduction to holomorphic functions of several variables, Vol II, Local theory, Wadsworth & Brooks/Cole Math. Ser., Pacific Grove, 1990.
[K]	T. KIZUKA, Analytic automorphisms and algebraic automorphisms of C ² , Tôhoku Math. J. 31 (1979), 553–565.
[La]	H. B.LAUFER, Normal two-dimensional singularities, Princeton Univ. Press, Princeton, 1971.
[L]	A. LINS NETO, Construction of singular holomorphic vector fields and foliations in dimension two, J. Differential Geom. 26 (1987), 1–31.
[LSc]	A. LINS NETO AND B. AZEVEDO SCÁRDUA, Folheações algébricas complexas, 21 Colóquio Brasileiro de Matemática, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1997.
[MM]	J-F. MATTEI AND R. MOUSSU, Holonomie et intégrales prémières, Ann. Sci. École Norm. Sup. (4) 13 (1980), 469–523.
[MaR]	J.MARTINET AND RAMIS, J-P., Classification analytique des équations différentielles non linéaires ré- sonnantes du premier ordre, Ann. Sci. École Norm. Sup. (4) 16, 571–621.
[N]	R. NARASIMHAN, Introduction to the theory of analytic spaces, Lecture Notes in Math. 25, Springer- Verlage, Berlin-New York, 1966.
[Sc]	B. AZEVEDO SCÁRDUA, Complex vector fields having orbits with bounded geometry, IMPA, 1998, Preprint.
[Sei]	A. SEIDENBERG, Reduction of singularities of the differential equation $Ady = Bdx$, Amer. J. Math. 90 (1968), 248–269.
[Siu]	Y-T. SIU, Techniques of extension of analytic objects, Marcel Dekker, New York, 1974.
[Su]	M. SUZUKI, Sur les opérations holomorphes de C et de C* sur un space de Stein, Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977), 80–88, 394, Lecture Notes in Math. 670, Springer-Verlag, Berlin, 1978.
[W]	B. WHITE, Complete surfaces of finite total curvature, J. Differential Geom. 26 (1987), 315–226.
	AMENTO DE MATEMÁTICA-ICEX

UNIVERSIDADE FEDERAL DE MINAS GERAIS AV. ANTÔNIO CARLOS, 6627 30123–970 BELO HORIZONTE MG BRAZIL

E-mail address: rsmol@mat.ufmg.br

104