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Abstract. We compute the first variation of the functional that assigns each unit vector
field the volume of its image in the unit tangent bundle. It is shown that critical points are
exactly those vector fields that determine a minimal immersion. We also find a necessary and
sufficient condition that a vector field, defined in an open manifold, must fulfill to be minimal,
and obtain a simpler equivalent condition when the vector field is Killing. The condition is
fulfilled, in particular, by the characteristicvector field of a Sasakian manifold and by Hopf
vector fields on spheres.

1. Introduction. Let M be a Riemannian manifold such that the setX 1(M) of unit
vector fields is not empty. In [GlZi], whereM is also assumed to be compact, oriented and
boundaryless, the volume of an elementV ∈ X 1(M) was defined to be the volume of the sub-
manifoldV (M), which is the image of the immersionV : M → T 1M, when the unit tangent
bundleT 1M is equipped with the restriction of the Sasaki metric. There is a trivial absolute
minimum of the volume functional when unit parallel vector fields exist, but this is not always
the case, since such a vector field will determine two mutually orthogonal complementary
totally geodesic foliations.

On a round unit odd-dimensional sphere, Gluck and Ziller ([GlZi]) considered Hopf vec-
tor fields as the candidates for this absolute minimum and showed that it is the case for the
three-sphereS3. Their method of calibrated geometries cannot be applied to higher dimen-
sional spheres and in fact, Johnson ([Jo]) showed that the Hopf vector fields onS5 are not
local minima of the volume. He used direct methods to show that for every deformation of a
Hopf vector field the first variation vanishes but that there are deformations on which the sec-
ond variation is negative. In both papers the results are derived using the specific properties
of Hopf vector fields and spheres.

For a givenM, unit vector fields of minimum volume, if they exist, are to be found among
the critical points of the volume functional restricted toX 1(M). In order to characterize these
critical points we have computed the first variation of the functional and have associated to
eachV ∈ X 1(M) a 1-form which vanishes when and only whenV is critical. This 1-form
depends on the second covariant derivative ofV .
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It is clear that if a vector field defines a minimal immersion, it should be a solution of the
variational problem restricted toX 1(M), but we have shown that the converse is also true:

An element V ∈ X 1(M) is a critical point of the volume functional restricted to X 1(M)

if and only if V : M → (T 1M, gS) is a minimal immersion.
In [Pe], Pedersen constructed, for any dimension, unit vector fields of exceptionally small

volume, on the open manifoldU defined to be the sphere minus one point. In particular, for
S2m+1 with m ≥ 2, their volume is lower than the volume of Hopf vector fields, and she
conjectured that this value is the infimum (not attained) of the volume of unit vector fields on
S2m+1. In this paper, we use a direct computation of the involved tensor field to show that
these vector fields define minimal immersions of U into its unit tangent bundle.

Hopf vector fields on spheres define a totally geodesic Riemannian foliation with bundle-
like metric or, equivalently, they are unit Killing vector fields; many results of this paper
concern this class of vector fields. For instance, we prove the following:

Let M be a manifold of constant sectional curvature k. Every unit Killing vector field is
minimal and its volume is equal to (k + 1)(n−1)/2 vol(M), where n = dimM .

It is worth noting that under the hypotheses, the curvature must be nonnegative; if the
manifold is flat, only the trivial case of a parallel vector field is admissible and ifk > 0,
the dimension of the manifold should be odd. Therefore, apart from flat spaces, the only
complete manifolds involved are the quotients of round spheres. Since it is known that Hopf
vector fields onS2m+1 have volume 2m vol(S2m+1) ([GlZi]) and that they are critical ([Jo]),
for complete manifolds, our result could be seen as a slight generalization and an extremely
simple new proof of these results.

The merit is, however, that as we only use the properties of the curvature tensor, on a
manifold with such a vector field, the method ispurely local and no completeness assumption
is needed.

In a general manifold, the existence of a unit Killing vector field does not imply any
restriction on the dimension and only sectional curvatures of planes containingV have to be
nonnegative. We have found thatthe necessary and sufficient condition for a unit Killing
vector field V to be minimal is the vanishing of certain 1-form given in terms of the covariant
derivative of V and the curvature tensor.

It is commonly said concerning this problem that best organized vector fields are re-
warded with small volume; we can see now that even for a well-organized vector field it is
necessary, at least, to be well-adapted to the ambient.

The curvature condition is satisfied by parallel vector fields and for every unit Killing
vector field in a constant curvature space.Using our characterization we show thatthe char-
acteristic vector field of a Sasakian manifold is always minimal.

In general, every unit Killing vector fieldV such that the curvature tensorR verifies
R(X, Y, V ) = 0 for all vector fieldsX,Y orthogonal toV is minimal. The necessary and
sufficient condition is more general, as we show with an example of an invariant vector field
in the generalized Heisenberg group.
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We have devoted the last part of the paper to show how the condition can be written for
three-dimensional and four-dimensional manifolds; in both cases it is equivalent toρV (X) =
{0} for all vector fieldsX orthogonal toV , whereρV is the 1-form related to the Ricci tensor
ρ by ρV (X) = ρ(X, V ). The proof makes use of the hypothesis on the dimension in a very
specific form, so the result cannot be generalized to higher dimensions.

These characterizations have been used by several authors in [BoVa1], [BoVa2],
[GMGDVa], [GDVa1], [GDVa2], [GDVa3], [TsVa1], [TsVa2] [TsVa3], to obtain many ex-
amples of minimal unit vector fields.

The authors want to express their gratitude to Fabiano Brito, Antonio Ros and Lieven
Vanhecke for helpful comments.

2. First variation of the volume functional in the space of unit vector fields. If
(M, g) is a smooth, connected, closed Riemannian manifold, then the setX 1(M) of all smooth
unit vector fields, if nonempty, can be endowed with a structure of Fréchet manifold, com-
patible with itsC∞-topology, such that eachV ∈ X 1(M) is contained in a chart modeled in
HV , the space of smooth vector fields in the horizontal distribution determined byV and the
metric. In fact,X 1(M) is a Fréchet submanifold of the Fréchet spaceX (M) (see [GM]).

The volumeF(V ) of an elementV ∈ X 1(M) is defined to be the volume of the subman-
ifold V (M), which is the image of the immersionV : M → T 1M, when inT 1M the usual
metricgS , defined by Sasaki, is considered. It can be described as the volume ofM with the
induced metrichV = V ∗gS , which is related withg and the(1, 1)-tensor field∇V as follows:

hV (X, Y ) = (V ∗gS)(X, Y ) = gS(T V ◦ X , T V ◦ Y )

= g(T π ◦ T V ◦ X , T π ◦ T V ◦ Y ) + g(κ ◦ T V ◦ X , κ ◦ T V ◦ Y )

= g(X, Y ) + g(∇XV,∇Y V ) = g(X, Y ) + g(((∇V )t ◦ (∇V ))(X), Y ) ,

whereπ : T 1M → M is the projection andκ denotes the connection map of the Levi-Civita
connection ofg. If we consider theg-symmetric(1, 1)-tensor fieldLV = Id +(∇V )t ◦ ∇V ,
thenhV (X, Y ) = g(LV (X), Y ).

A map f : X 1(M) → C∞(M) can be defined asf (V ) = √
detLV , by which the

volume functionalF : X 1(M) → R is given by

F(V ) =
∫

M

f (V )dv ,

wheredv is the density onM defined byg.
Let us compute the first variation ofF . We will denote the differential, or the tangent

map, ofF atV asTV F .

PROPOSITION 1. Let V ∈ X 1(M) be a unit vector field and A ∈ TVX 1(M) = HV be
a tangent vector. The tangent map of F at V acting on A is given by

(TV F )(A) =
∫

M

(TV f )(A)dv =
∫

M

f (V ) tr(L−1
V ◦ (∇V )t ◦ ∇A)dv .
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PROOF. Let V : I → X 1(M) be a curve for some open intervalI containing 0, such
thatV (0) = V andV ′(0) = A. TakeL(t) = LV (t). ThenL′(0) = (∇A)t ◦∇V + (∇V )t ◦∇A

and therefore

(TV f )(A) = (f ◦ V )′(0) = 1

2
f (V ) tr(L′(0) ◦ L−1(0)) = f (V ) tr(L−1

V ◦ (∇V )t ◦ ∇A) .

�
To write the tangent map, and therefore the condition for a vector field to be critical, in

a simpler form, we will use the following Lemma, the proof of which is a straightforward
application of the definitions.

LEMMA 2. Given a (1, 1)-tensor field K , let ωK be the 1-form defined by ωK(X) =
tr(Z 
→ (∇ZK)(X)). For each A ∈ X (M) we have

ωK(A) = − tr(K ◦ ∇A) − δα ,

where δ represents the divergence operator of g and α(X) = g(K(A),X).

COROLLARY 3. Let V ∈ X 1(M) be a unit vector field and A ∈ TVX 1(M) = HV be
a tangent vector. The tangent map of F at V acting on A can be written as

(TV F )(A) = −
∫

M

ωV (A)dv ,

where ωV (X) = tr(Z 
→ (∇ZKV )(X)) and KV = f (V )L−1
V ◦ (∇V )t .

PROPOSITION 4. A unit vector field V ∈ X 1(M) is a critical point of F if and only
if the 1-form ωV annihilates HV , or equivalently, if and only if the vector field XV , given by
ωV (X) = g(XV ,X), is in the distribution V determined by V .

PROOF. If V is a critical point and if we represent byXh
V the projection ofXV onto

HV , then

0 = (TV F )(Xh
V ) = −

∫
M

ωV (Xh
V )dv .

Now, ωV (Xh
V ) = g(Xh

V ,XV ) = g(Xh
V ,Xh

V ) ≥ 0, and then forV to be critical,
XV − g(XV , V )V must vanish. The other implication is immediate. �

The condition above means that(TV f )(A) = −δαV A, whereαV A(X) = g(KV (A),X)

and so, ifM is compact with nonempty boundary, thenωV (HV ) = {0} if and only if for each
A ∈ HV

(TV F )(A) =
∫

∂M

f (V )g(A, (∇V ◦ L−1
V )(η))dv .

If M is noncompact, we denote byT ∗ the family of open sets inM with compact closure;
for eachU ∈ T ∗, we also represent byHV

U the subset ofHV consisting of those elements
with support inU . We then have the following

LEMMA 5. ωV (HV ) = {0} if and only if (TV FU)(HV
U ) = {0} for all U ∈ T ∗, where

FU : X 1(M) → R maps each X to the volume of X(U).
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It is well-known that an immersionϕ : M → (T 1M, gS) is minimal if and only if its
mean curvature vector fieldηϕ vanishes and that this condition is equivalent to(TϕF̃ U )(ξ) =
0 for all U ∈ T ∗ and for all vector fieldξ on T 1M alongϕ with support inU . HereF̃ U :
Imm(M, T 1M) → R mapsϕ to the volume ofϕ(U).

PROPOSITION 6. For a unit vector field V on a general manifold M , the map V :
M → (T 1M, gS) is a minimal immersion if and only if ωV (HV ) = {0}.

PROOF. It is clear, using Lemma 5, that everyV ∈ X 1(M) which gives rise to a
minimal immersion must satisfyωV (HV ) = {0}. Conversely, for such aV , the mean curvature
ηV is a vector field onT 1M, alongV , having the property that∫

U

gS(ηV , ξ)dvS = (TV F̃U )(ξ) = 0

for all U ∈ T ∗ and for all vector fieldsξ alongV , with support inU , that are tangent to
variations in the submanifoldX 1(M) of the manifold of all immersions ofM into T 1M. Here
dvS is the density inM defined byV ∗gS .

It is not difficult to show that such a vector field is just a section, alongV , of the vertical
bundle of the bundleπ : T 1M → M; that is, for eachp ∈ M, ξp ∈ TV (p)(T

1
p M) =

ker(TV (p)π) = VertV (p). Therefore,ωV (HV ) = {0} if and only if the mean curvature vector
field verifiesηV

p ∈ Vert⊥V (p) for all p ∈ M.

Since for every unit vector fieldTV (p)(T
1M) = (Im TpV ) ⊕ ker(TV (p)π) and for every

immersionηV
p ∈ (Im TpV )⊥, if ωV (HV ) = {0}, thenηV

p must vanish. �
It will be useful to write the condition for a unit vector field to be minimal in terms of lo-

cal adapted orthonormal frames. Here for a givenV ∈ X 1(M), a locally defined orthonormal
frame field{Ei}ni=1 will be said to be adapted ifEn = V .

If we denoteGk
ij = g(∇Ei Ej ,Ek), then(∇V )

j

i = G
j

in, and using the fact thatGk
ij =

−G
j
ik, we obtain(∇V )ni = 0. Since the 1-formωV can be computed as

ωV (X) =
∑
j

g((∇Ej KV )(X),Ej ) ,

it is easy to see thatωi = ωV (Ei) = ∑
j {Ej(K

j

i ) + ∑
k(G

j

jkK
k
i − Gk

jiK
j

k )}, whereK
j

i =
g(KV (Ei), Ej ). Hence we have proved

PROPOSITION 7. A unit vector field is minimal if and only if∑
j

{Ej(K
j
i ) +

∑
k

(G
j
jkK

k
i − Gk

jiK
j
k )} = 0 ,

for all i ∈ {1, . . . , n − 1}.
3. Minimal unit vector fields in constant curvature spaces. The first example of

these vector fields is given by a vector field defined only on a noncomplete manifold consisting
of the sphereSn minus one point.
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In [Pe], for v0 ∈ Tp0S
n, a vector fieldV is defined by takingV (p) as the element of

TpSn obtained by parallel translatingv0 along the great circle ofSn passing throughp0 and
p. Then,V is defined only onM = Sn − {−p0}. To compute the tensor field involved in the
condition for a vector field to be minimal, it will be useful to have the explicit expression of
V . To this end, we may assume, without lost of generality, thatp0 = N = (0, . . . , 1) and so
M = Sn − {S} with S = (0, . . . ,−1). Then it is easy to see the following

LEMMA 8. Let v0 ∈ TNSn be a unit vector. Then the corresponding vector field V in
M is given by

V (p) = 〈vo, p〉
(
h(p)p −

( ∂

∂rn+1

)
p

)
+ v0 ,

where {ri}n+1
i=1 represent the usual coordinates on Rn+1, h(p) = −(1 + pn+1)

−1 and p =∑n
k=1 pk(∂/∂rk)p.

PROPOSITION 9. Any vector field defined as above is minimal.

PROOF. Let {ei}n+1
i=1 be the canonical basis ofRn+1. We assume, for simplicity, that

v0 = en. The vector fields{Ei}ni=1, obtained by the procedure described above, give rise to a
local adapted orthonormal frame. According to Proposition 7, we need to show thatωi = 0
for i ∈ {1, . . . , n − 1}, where

ωi =
n∑

j=1

{Ej(K
j
i ) +

n∑
k=1

(G
j
jkK

k
i − Gk

jiK
j
k )} .

By elementary computations using that

Ej =
n∑

k=1

(δjk + hrj rk)
∂

∂rk
− rj ∂

∂rn+1

and thath2 ∑n
k=1(r

k)2 + 1 = −2h onM, we have

Gk
ij = h(δikr

j − δij r
k) with i, j, k ∈ {1, . . . , n} .

As a consequence, we obtain

ωi =
n∑

j=1

Ej(K
j
i ) + h{(n − 1)

n∑
k=1

Kk
i rk − ri

n∑
k=1

Kk
k +

n∑
k=1

Ki
kr

k} .(1)

Let us compute the expression ofK with respect to this frame. The matrix ofL is given by(
g Id h2rnat

h2rna h2‖a‖2 + 1

)
,

whereg = (hrn)2 + 1 anda = −(r1, . . . , rn−1).
It is easy to see that for a matrixA of the form(

λ Id bt

b ε

)
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with λ, ε ∈ R andb ∈ Rn−1, we have detA = λn−2(λε − ‖b‖2) and

A−1 = 1

λε − ‖b‖2

(
((λε − ‖b‖2) Id+btb)/λ −bt

−b λ

)
.

Thenf = g(n−2)/2(−2h)1/2 and, sinceK = f L−1 ◦ (∇V )t , we obtain by a straightforward
computation that, fori, j ∈ {1, . . . , n − 1},

K
j
i = fhrn

g

(
δij + hrirj

2

)
and Kn

i = f ri

2
.

Moreover, on every point ofM we have
∑n

k=1 Kk
i rk = 0,

n∑
k=1

Kk
k = f hrn

g

(
(n − 1) + h‖a‖2

2

)
and

n∑
k=1

Ki
kr

k = f hrnri

g

(
1 + h‖a‖2

2

)
.

Now, using(1), we get

ωi =
n∑

j=1

Ej(K
j
i ) + (2 − n)

f h2rnri

g
.

To conclude, we only need to compute
∑n

j=1 Ej(K
j
i ). Let us define the vector field

E =
n∑

k=1

rk ∂

∂rk
− 1 − (rn+1)2

rn+1

∂

∂rn+1 .

Since this is tangent to the sphere,E(
∑n

k=1 Kk
i rk) = 0 and also

∑n
k=1 rkE(Kk

i ) = 0. Fur-
thermore,

Ej = ∂

∂rj
− rj

rn+1

∂

∂rn+1
− rj

1 + rn+1
E

and then
n∑

j=1

Ej(K
j
i ) =

n∑
j=1

∂

∂rj
(K

j
i ) − 1

rn+1

n∑
j=1

rj ∂

∂rn+1
(K

j
i ) .

By differentiation using thath2‖a‖2 = −(2h + g), it is easy to see that
n∑

j=1

rj ∂

∂rn+1 (K
j
i ) = rirn

(
−f g

2h

∂(h/g)
∂rn+1 − f (2h + g)

2hg
∂h

∂rn+1

)
= fh2rirn

g
rn+1 .

Since
n∑

j=1

∂

∂rj
(K

j
i ) = (n − 1)

f h2rirn

g
,

we obtainωi = 0. �
REMARK. In [Pe], it is shown that the generalized Pontryagin cycle is minimal at each

smooth point as a submanifold of the corresponding Stiefel manifold. From this fact, the
minimality of V can be also obtained by adifferent method.
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In general, the minimality condition is difficult to handle. However, it becomes simpler
if we assume that the vector field verifies some additional property.

LEMMA 10. A unit vector field with totally geodesic flow is minimal if and only if

n−1∑
j=1

{Ej(K
j
i ) +

n−1∑
k=1

(G
j
jkK

k
i − Gk

jiK
j
k )} = 0

for all i ∈ {1, . . . , n − 1}.
PROOF. If the flow ofV is totally geodesic, then(∇V )t (HV ) ⊂ HV and consequently

KV (HV ) ⊂ HV . Hence the result follows from Proposition 7. �
Let R be the(1, 3)-curvature tensor defined by

R(X, Y,Z) = −∇X∇Y Z + ∇Y ∇XZ + ∇[X,Y ]Z .

We will use the same symbol for the(0, 4)-tensor fieldR(X, Y,Z,W) = g(R(X, Y,Z),W).

LEMMA 11. If V is a unit Killing vector field, then (∇V )t ◦ ∇V = R(V, · , V ).

PROOF. It is easy to see that, for a unit Killing vector field, the(0, 2)-tensor fieldh

defined ash(X, Y ) = g(R(V,X, V ), Y ) is given by

h(X, Y ) = g(∇XV,∇V Y ) − V (g(∇XV, Y )) − g(∇Y V,∇V X) + g(∇Y V,∇XV ) .

Sinceh is symmetric,h(X, Y ) must be equal tog(∇XV,∇Y V ) and therefore, for allX in
X (M), R(V,X, V ) = (∇V )t ◦ (∇V )(X) as claimed. �

LEMMA 12. With respect to any local orthonormal frame, the components of the cur-
vature tensor are given by

Rjikr = Ei(G
r
jk) − Ej(G

r
ik) +

n∑
l=1

{Gl
jkG

r
il − Gl

ikG
r
jl − Gl

ijG
r
lk + Gl

jiG
r
lk} .

In particular, if V is a unit Killing vector field and the frame is adapted, then, for i, j, k ∈
{1, . . . , n − 1},

Rjikn = − Ei((∇V )kj ) + Ej((∇V )ki )

+
n−1∑
l=1

{−Gk
il(∇V )lj + Gk

jl(∇V )li + Gl
ij (∇V )kl − Gl

ji(∇V )kl } .

PROPOSITION 13. Let M be an n-dimensional manifold of constant sectional curva-
ture k. Then every unit Killing vector field on M is minimal. Moreover, f (V ) = (k+1)(n−1)/2

and F(V ) = (k + 1)(n−1)/2 vol(M).

PROOF. It follows from Lemma 11 that for every local adapted orthonormal frame,
((∇V )t ◦ ∇V )

j
i = k(δ

j
i − δnj δni) and thenf = (k + 1)(n−1)/2. Moreover,

K = (k + 1)(n−3)/2(∇V )t .
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Under the hypothesis, if we putk = j in the equality in Lemma 12, we obtain

Ej((∇V )
j
i ) =

n−1∑
l=1

{Gj
il(∇V )lj − G

j
jl(∇V )li − Gl

ij (∇V )
j
l + Gl

ji(∇V )
j
l }

=
n−1∑
l=1

{Gl
ji(∇V )

j

l − G
j

jl(∇V )li}

and then Lemma 10 gives us the result. �
REMARK. The condition forV to be a unit Killing vector field is equivalent to that

of V being a totally geodesic, Riemannian foliation with bundle-like metric. If a Riemannian
manifold of constant curvaturek admits such a foliationV , thenk ≥ 0, andk = 0 would imply
thatHV is also involutive; therefore the manifold would be, locally, a Riemannian product
([Ca]). On the other hand, the existence of a unit Killing vector field in a manifold of positive
curvature implies that the dimension must be odd. Consequently, apart from the trivial case
of parallel vector fields, the hypotheses of Proposition 13 implyk > 0 andn = 2m+ 1. If we
assume, moreover,M to be complete, thenM should be a quotient ofS2m+1 and, according
to [GrGr], the lift of the vector field must be a Hopf vector field. In view of the corresponding
results in [GlZi] and [Jo], Proposition 13 essentially provides new information only in the
case where the manifold is not complete.

4. Minimal unit Killing vector fields. We have seen in Proposition 13 that every
unit Killing vector field is minimal if the manifold has constant curvature. In this section we
will show a necessary and sufficient condition for a unit Killing vector field to be minimal in
a general manifold; the condition involves∇V and the curvature ofM.

For a Killing vector fieldV , the rank of∇V must be even, and for each point of an open
dense subset we can find a local adapted orthonormal frame

{Ei,Ei∗, E2m+1, . . . , En = V }mi=1 ,

with 2m the rank of∇V , such that∇V (Ei) = −λiEi∗, ∇V (Ei∗) = λiEi for i ∈ {1, . . . ,m}
and∇V (Eα) = 0 for α ∈ {2m + 1, . . . , n}. From Lemma 11,λ2

i is the common value of the
sectional curvatures of the planes generated byV andEi and byV andEi∗ .

THEOREM 14. Let V be a unit Killing vector field, then ωV = f ρ̃V , where ρ̃V (X) is
defined to be

n∑
j=1

(R((L−1
V ◦ ∇V )(X), (L−1

V ◦ ∇V )(Ej ), V ,Ej ) + R(L−1
V (X),L−1

V (Ej ), V ,Ej )) .

Consequently, V is minimal if and only if the 1-form ρ̃V annihilates HV .

PROOF. It is clear thatLV (Ei) = (1 + λ2
i )Ei, LV (Ei∗) = (1 + λ2

i )Ei∗ for i ∈
{1, . . . ,m}, andLV (Eα) = Eα for α ∈ {2m + 1, . . . , n}.
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SinceKV = f L−1
V ◦ (∇V )t , it follows thatKV (Ei) = f (λi/(1 + λ2

i ))Ei∗, KV (Ei∗) =
−f (λi/(1 + λ2

i ))Ei andKV (Eα) = 0, for i ∈ {1, . . . ,m} andα ∈ {2m + 1, . . . , n}. From
Lemma 10, we get

ωV (Ei) =Ei∗(Ki∗
i ) +

n−1∑
j=1

G
j
ji∗K

i∗
i −

n−1∑
j,l=1

Gl
jiK

j
l ,(2)

ωV (Ei∗) =Ei(K
i
i∗) +

n−1∑
j=1

G
j
jiK

i
i∗ −

n−1∑
j,l=1

Gl
ji∗K

j
l ,(3)

ωV (Eα) = −
n−1∑
j,l=1

Gl
jαK

j
l .(4)

Since, for allk ∈ {1, . . . , n},

Ek(f ) = f

2

Ek(detLV )

detLV

= 2f

m∑
j=1

λj

1 + λ2
j

Ek(λj ) ,

we have

Ei

(
f

λi

1 + λ2
i

)
=2f

λi

1 + λ2
i

m∑
j=1

λj

1 + λ2
j

Ei(λj ) + f
1 − λ2

i

(1 + λ2
i )

2
Ei(λi) ,

Ei∗
(
f

λi

1 + λ2
i

)
=2f

λi

1 + λ2
i

m∑
j=1

λj

1 + λ2
j

Ei∗(λj ) + f
1 − λ2

i

(1 + λ2
i )

2
Ei∗(λi) ,

and then

1

f
ωV (Ei) = 2

λi

1 + λ2
i

m∑
j=1

λj

1 + λ2
j

Ei∗(λj ) + 1 − λ2
i

(1 + λ2
i )

2
Ei∗(λi)

+ λi

1 + λ2
i

n−1∑
j=1

G
j

ji∗ +
m∑

j=1

λj

1 + λ2
j

(G
j∗
ji − G

j

j∗i ) ,

(2′)

1

f
ωV (Ei∗) = − 2

λi

1 + λ2
i

m∑
j=1

λj

1 + λ2
j

Ei(λj ) − 1 − λ2
i

(1 + λ2
i )

2
Ei(λi)

− λi

1 + λ2
i

n−1∑
j=1

G
j
ji −

m∑
j=1

λj

1 + λ2
j

(G
j
j∗i∗ − G

j∗
ji∗) ,

(3′)

1

f
ωV (Eα) = −

m∑
j=1

λj

1 + λ2
j

(G
j

j∗α − G
j∗
jα) .(4′)

On the other hand, fori ∈ {1, . . . ,m}, we have that

(L−1
V ◦ ∇V )(Ei) = −(λi/(1 + λ2

i ))Ei∗
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and(L−1
V ◦ ∇V )(Ei∗) = (λi/(1 + λ2

i ))Ei . Forα ∈ {2m + 1, . . . , n}, we have that
(L−1

V ◦ ∇V )(Eα) = 0, and consequently

ρ̃V (Ei) = − 1

1 + λ2
i

m∑
j=1

1

1 + λ2
j

(R(Ei,Ej ,Ej , V ) + R(Ei,Ej∗ , Ej∗, V ))

+ λi

1 + λ2
i

m∑
j=1

λj

1 + λ2
j

R(Ej∗, Ej ,Ei∗, V )

− 1

1 + λ2
i

n∑
β=2m+1

R(Ei,Eβ,Eβ, V ) ,

(5)

ρ̃V (Ei∗) = − 1

1 + λ2
i

m∑
j=1

1

1 + λ2
j

(R(Ei∗ , Ej ,Ej , V ) + R(Ei∗ , Ej∗, Ej∗, V ))

+ λi

1 + λ2
i

m∑
j=1

λj

1 + λ2
j

R(Ej∗ , Ej ,Ei, V )

− 1

1 + λ2
i

n∑
β=2m+1

R(Ei∗ , Eβ,Eβ, V ) ,

(6)

ρ̃V (Eα) = −
m∑

j=1

1

1 + λ2
j

(R(Eα,Ej ,Ej , V ) + R(Eα,Ej∗, Ej∗, V ))

−
n∑

β=2m+1

R(Eα,Eβ,Eβ, V ) .

(7)

Iterated use of Lemma 12 gives us the equality between the right-hand members of (2′)
and (5). Similarly, for (3′) and (6) and for (4′) and (7). �

The curvature condition,̃ρV (X) = 0 for all X ∈ HV , is trivially satisfied when∇V = 0
and whenM has constant curvature. It is known that ifV is the characteristic vector field of
a Sasakian manifold, then it is a unit Killing vector field and that for all vector fieldsX, Y the
curvature tensor field satisfiesR(X, Y, V ) = g(Y, V )X−g(X, V )Y ; in fact, every unit Killing
vector field on an odd-dimensional manifold with this curvature property is the characteristic
vector field of a Sasakian manifold (see [Bl], p.75). Consequently, we have the following

COROLLARY 15. The characteristic vector field of a Sasakian manifold is minimal.

In those three cases mentioned above,V satisfies the curvature conditionR(X, Y, V ) = 0
for all X,Y ∈ HV . However, our conditioñρV (HV ) = {0} is more general as can be seen in
the next example.

Let us consider the generalized Heisenberg groupH(1, r). This is the Lie group, of
dimension 2r + 1, consisting of all real matrices of the form
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a =

Ir A C

0 1 B

0 0 1


 ,

whereIr is ther × r unit matrix.
A system of global coordinates onH(1, r) is given by

xi(a) = Ai, zi(a) = Ci, y(a) = B, i ∈ {1, . . . , r} .

H (1, r) is equipped with an invariant metricg for which we have the following orthonormal
frame of invariant vector fields:

Ui = ∂

∂xi
, Ti = ∂

∂zi
for 1 ≤ i ≤ r and W =

r∑
i=1

xi ∂

∂zi
+ ∂

∂y
.

If we consider the subgroupΓ (1, r) of H(1, r) consisting of those elements ofH(1, r) with
entries inZ, then we obtain the compact manifoldM(1, r) = H(1, r)/Γ (1, r). The metric in
M(1, r) is chosen so as to the projectionp : H(1, r) → M(1, r) is a local isometry.

Since{U1, . . . , Ur , T1, . . . , Tr , W } are invariant vector fields, we obtain onM(1, r)

the corresponding{Ũ1, . . . , Ũr , T̃1, . . . , T̃r , W̃ }. The results concerning the former frame
are also valid for the latter one.

PROPOSITION 16. For each i ∈ {1, . . . , r}, Ti (resp. T̃i) is a minimal vector field of
H(1, r) (resp. M(1, r)).

PROOF. It is not difficult to see that, fori ∈ {1, . . . , r}, Ti and T̃i are Killing vector
fields. Hence we can use Theorem 14 to show by straightforward computations that they are
minimal. In fact, we have

∇UiUj = 0 , ∇UiTj = −δij

2
W , ∇Ui W = 1

2
Ti ,

∇Ti Uj = −δij

2
W , ∇Ti Tj = 0 , ∇Ti W = 1

2
Ui ,

∇WUj = −1

2
Ti , ∇WTj = 1

2
Uj , ∇WW = 0 ,

and then

R(Ui,Uj , Tt ) = 1

4

(
δjt Ti − δit Tj

)
,

R(Ui, Tj , Tt ) = −1

4
δitUj ,

R(Ti,W, Tj ) = 1

4
δijW ,

R(Ui,W, Tj ) = R(Ti, Tj , Tt ) = 0 ,

(8)

from which the result follows. �
From (8), if r > 1 andi �= j , thenR(Ui,Uj , Ti) = −(Tj/4) �= 0. A detailed study of

the minimality ofUi andW can be found in [GDVa1].
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For a better understanding of the conditionρ̃V (HV ) = {0} and to end the section, we
study how it can be written forn = 3 andn = 4.

PROPOSITION 17. If V is a unit Killing vector field such that the rank of ∇V is 2, then
V is minimal if and only if

ρV (E1) =ρV (E2) = 0 and

ρV (Eα) = −λ

1 + λ2 (R(Eα,E1, E1, V ) + R(Eα,E2, E2, V )) ,

where ρV is the 1-form related to the Ricci tensor ρ by ρV (X) = ρ(X, V ).

PROOF. This follows from (5), (6) and (7). �
COROLLARY 18. Let V be a unit Killing vector field in a manifold of dimension 3 or

4. Then V is minimal if and only if ρV annihilates HV .

PROOF. If V is a parallel vector field, then it clearly satisfies the both conditions. If
rank of∇V is equal to 2, then the result follows easily for dimension 3. If the dimension is 4,
we also need to use thatρV (E3) = R(E1, E3, E1, V ) + R(E2, E3, E2, V ). �

REMARK. Forn = 3, since the conditionρV (HV ) = {0} is equivalent toR1232 = 0 =
R2131, we can conclude thatV is minimal if and only ifR(X, Y, V ) = 0 for all X,Y ∈ HV .

REFERENCES

[Bl] D. B LAIR, Contact manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Berlin,
1976.

[BoVa1] E. BOECKX AND L. VANHECKE, Harmonic and minimal radial vector fields, Acta Math. Hungar. 90
(2001), 317–331.

[BoVa2] E. BOECKX AND L. VANHECKE, Harmonic and minimal vector fields on tangent and unit tangent
bundles, Differential Geom. Appl. 13 (2000), 77–93.

[Ca] F. J. CARRERAS, Linear invariants of Riemannian almost-product manifold, Math. Proc. Cambridge
Philos. Soc. 91 (1982), 99–106.

[GM] O. GIL -MEDRANO, On the volume functional in the manifold of unit vector fields, Proceedings of
the Workshop on Recent Topics in Differential Geometry, Santiago de Compostela, july 1997,
155–164 (Eds. L. A. Cordero and E. García Río), Publ. Dpto. Geom. y Top., Univ. Santiago de
Compostela, 1998.

[GMGDVa] O. GIL -MEDRANO, J. C. GONZÁLEZ-DÁVILA AND L. VANHECKE, Harmonic and minimal in-
variant unit vector fields on homogeneous Riemannian manifolds, Houston J. Math. 27 (2001),
377–409.

[GlZi] H. G LUCK AND W. ZILLER, On the volume of a unit vector field on the three sphere, Comment.
Math. Helv. 61 (1986), 177–192.

[GDVa1] J. C. GONZÁLEZ-DÁVILA AND L. VANHECKE, Examples of minimal unit vector fields, Ann. Global
Anal. Geom. 18 (2000), 385–404.

[GDVa2] J. C. GONZÁLEZ-DÁVILA AND L. VANHECKE, Minimal and harmonic characteristic vector fields on
three-dimensional contact metric manifolds, J. Geom., to appear.

[GDVa3] J. C. GONZÁLEZ-DÁVILA AND L. VANHECKE, Invariant harmonic vector fields on Lie groups, Boll.
Un. Mat. Ital. 48 (2001).

[GrGr] D. GROMOLL AND K. GROVE, One dimensional metric foliations in constant curvature spaces, Dif-
ferential Geometry and Complex Analysis, Rauch Memorial Volume, Springer, Berlin, 1985.

[Jo] D. L. JOHNSON, Volume of flows, Proc. Amer. Math. Soc. 104 (1988), 923–932.
[Pe] S. L. PEDERSEN, Volumes of vector fields on spheres, Trans. Amer. Math. Soc. 336 (1993), 69–78.



84 O. GIL-MEDRANO AND E. LLINARES-FUSTER

[TsVa1] K. TSUKADA AND L. VANHECKE, Invariant minimal vector fields on Lie groups, Period. Math.
Hungar. (2000), 123–133.

[TsVa2] K. TSUKADA AND L. VANHECKE, Minimality and harmonicity for Hopf vector fields, Illinois J.
Math., to appear.

[TsVa3] K. TSUKADA AND L. VANHECKE, Minimal and harmonic unit vector fields inG2(Cm+2) and its
dual space, Monatch. Math. 130 (2000), 143–154.

DEPARTAMENTO DEGEOMETRÍA Y TOPOLOGÍA

FACULTAD DE MATEMÁTICAS

UNIVERSIDAD DE VALENCIA

46100 BURJASSOT, VALENCIA

SPAIN

E-mail address: Olga.Gil@uv.es


