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A CERTAIN CLASS OF POINCARE SERIESON Sp,, I

WINFRIED KOHNEN AND JYOTI SENGUPTA

(Received March 7, 2000, revised October 23, 2000)

Abstract. We compute the Petersson scalar product of certain Poincaré series intro-
duced in our previous paper against a Siegel cusp form and show that it can be written as a
certain averaged cycle integral. This generalizes earlier work by Katok, Zagier and the first
named author in the case of genus 1.

1. Introduction. In our previous paper [4] we had introduced a certain type of
Poincaré serie®, x o(z), wheren andk are positive integersQ is an even integral sym-
metric (2n, 2n)-matrix which is a symplectic similitude with integral negative séadedz is
a variable in the Siegel upper half-spadg of genus:. The main result of that paper states
that if k > n(n + 1)/2 and—! is not a perfect integral square, thén, o(z) converges in
sufficiently large domains and is a cusp form of weightdth respect to the full Siegel mod-
ular groupl;, := Sp,(Z) of genus:. If n = 1, the P, ;o (z) are just the classical hyperbolic
Poincaré series studied in [1, 2, 7].

It is natural to try to evaluate the Petersson scalar produdt,@fp against a Siegel
cusp form f of weight Z and genus:. Optimistically, in analogy with the classical case
n = 1[1, 2], one could hope that this scalar product up to a universal constant is equal to a
“normalized” integral off over a fundamental domaif, ¢ for the action off}, o onC,, .
Hererl, o C I3, is the stabilizer subgroup @ andr;, acts on matrice® as described above
by (Q, M) — Q[M] := M’'QM with M’ the transpose a¥/. Furthermore

(2 1)0Q (f) = o} ,

which is a real-analytic submanifold &f,, of real dimensiom(n +1)/2 (if n = 1, thenC, ¢
is just a classical “Heegner cycle”). Note that the natural actiah,afn 7, induces an action
of I,,0 0N Cy, g.
In the present paper we shall prove a result in the above direction. However, instead of
obtaining an integral along,, o, we only get integrals along certain submanifolisy., of
H, depending on a parametemwhich is a real symmetri¢:, n)-matrix (one has, g.0 =
Fu,0), and then these integrals are averaged by integrating with respeist m appropriate
way. So far we have not been able to reduce the integrationuowvea further way. To avoid
taking square roots of complex determinants at several places, in stating our Theorem we have
also supposed thatis odd, for the sake of simplicity.

Cu0 = {Z € H,
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In Section 2 we shall prove two technichal Lemmas needed later. In Section 3 we will
state our main result in detail. The proof will be given in Section 4, along with some com-
ments.

We use the sameotation as in [4]. In particularA’ denotes the transpose of a mattix
andA[B] := B’AB for matricesA and B of appropriate sizes. We write 1,, for the unit
matrix of sizen if there is no danger of confusion.

2. Twolemmas. LetuswriteG = GL,(R) and denote by (resp.B) the subgroups
of G consisting of diagonal matrices with positive entries (resp. unipotent upper triangular
matrices). Letk = O(n, R). According to the lwasawa decomposition, everg G has a
unigue expression agb withk € K, t € T, b € B. HenceG acts onT’ x B by

D (t,D) o g = (to, bo) ,
where
(2) tbhg =«xtobg (k € K,to e T,bo € B).

Let S, be the space of symmetric re@l, n)-matrices andP, the subset of positive
definite ones. We have diffeomorphisms

T x B— P,, (t,b)+— 1[th]
(Jacobi decomposition) and
¢:Sy xTxB—>H,, t,b)r>z=w+i)th].

Under the map;)‘1 the actionz — z[g] of G on 'H, corresponds to the action @f on
S, x T x B given by
(u,t,b) 0 g = (ulkl, (t,b) 0 g),
where(z, b) o g andk are determined by (1) and (2).
LEMMA 1. Thefunctional determinant of the map ¢ is given by

nn-1)

n 3n+2 - —2j
J(p) = (1)~ z 2"(detr)®* Htj I,
j=1

PROOE We have
_ ox/ou dx/dt 9x/ob\ _
J(p) = det(ay/au 531 8y/8b> = det(dx/0u)det(dy/dr dy/db),
since(dy/du) = 0.
One has: = u[tb]. Write x = (xjj)1<i,j<n, 4 = (Uij)1<i,j<n, t = diag(ts, ..., t;) and
denote the upper diagonal components bl b;; (1 <i < j < n); in particular,b;; = 1 for

alli. Then
Xij= Y tubuubuiby (1<i<j<n)

l<p<il<v<j
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and hencédx /du) is a lower triangular matrix and

det(dx/ou) = ]_[ 9xij _ ]_[ 1t

au. .
l<i<j<n Y l<i<j<n

n+1
t,-) = (detr)" 1.

n

z(n

i=1
By interchanging columns, we transform the ma(r&y/at ay/ab) to the form
(3 (- ay/ot; 3y/dbiiv1 9y/dbijrz -+ OY/dbin - OV/Otn)y i,y -
The required number of changes of columns, modulai2ris— 1) /2 (mod 2, and hence we
find that de{dy/at dy/db) is equal to(—1)""~/2 times the determinant of the matrix in

3).
We havey = 1[tb] = b't%b and therefore

min{i, j}
Yij = Z 12b;iby, .
a=1
From this we see that (3) is a lower triangular matrix and that
L (v o Ovii
det(ay/at ay/ab) — (_1)/1(/1—1)/2 9Yii Vij
; ot; 1.+ 0bjj
i=1 j=i+1

n

n n
_ - —2j
— (_1)11(11 l)/Zl_I <2ti l_[ t,'z) — (_1)n(n l)/22n(dett)2n+l l_[ tj J )
i=1 j=i+1 j=1
Hence we obtain our assertion.
LEMMA 2. Letu beafixed complex symmetric matrix of size n. Put
(@) z=ulth] (teT,beB).

Then the complex functional determinant of the map (4) is given by

n n

_ (_1\n(n=1)/2 ). 2n+1 —2j

(5)  det(dz/dr 9z/db) = (—1)"" 2”(Hdetu/> det)? [,
j=1 j=1

whereu® = uqq, u@, ..., u"D 4™ =y arethe principal submatrices of u.
PROOF  Denote the determinant on the left-hand side of (S¥by™, r™ ™). We

shall proceed by induction on the case: = 1 being clear.
Suppose: > 2. We have

(6) j= ). tuhwbuby (1<i<j<n).
I<p<i,1<v<j

i <j <n-—1does notdepend ap, b., (1L <e <n—1)and

IA

Observe that;; for 1
Ufn A=<f=n).
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Therefore one easily sees that
a@® 1™ pMy = gD (=D =Dy g, ) )y

where
B =Bw™, 1", b™) = det(dzin/dtn  3zin/dben)

(to transform defdz/d:  3z/9b) into a lower triangular block matrix, one has to perform an
equal number of changes of columns and rows).
Hence by the induction hypothesis it is sufficient to show that

n—1 n
5:(—1)”‘1-2-detu-]_[tj-l_[tj.
=1 j=1

1<i<n,1l<e<n-1

From (6) we find that

0z;
8;; = (14 8u) Z.bmu,mtﬂ
l=<u<i
and \
i
319::1 = (L+ du)e Z buitipety) (1<e=<n-—1),

l<up<i
wheres,,; denotes the Kronecker delta. Therefore we obtain after a simple computation

B=(D"1. 2.7t detd'o),
where
c=ult].
This proves our assertion.
COROLLARY. Letu € S, andg € G befixed. Fort € T, b € B write
thg = kg ptobo (kg1 € K, 10 € T,bo € B)

(compare (2)). Then the complex functional determinants of the maps

@) z=((ulx, 1,1 +i)th] (1 €T,beB)
and
€S)) z=(w+i)[th] (teT,beB)

differ by the constant factor (sign dety)”"*1.
PROOFE  Write Jo(¢, b) andJ (¢, b) for the functional determinants of the maps (7) and
(8), respectively. By definition, we have
((ulkc, 7,1+ DItb] = (u + D)ltobol [g 1.
Sincez — z[¢ 1] has determinanidetg)"~1, we obtain

3((t,b)09)>.

9) Jo(t, b) = (detg) "1 J (10, bo) det( 0k
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The measurédety)~+tD/24y (y € P,) is G-invariant with respect to the action—
ylg]. Since the functional determinant of the map= 1[tb] (t € T,b € B) is equal to
(detr)2r+1 [Tiza tj_zf (argue in the same way as in Lemma 2 or use [6, Chap. 4.1, ex. 21a)]),

we see thatdetr)" [ tj—z,,' dtdb is aG-invariant measure ofi x B. Hence we have

j=1
A((t,b)og) n T -2 T2
det(W) = (detr) jl:[ltj . (dettg) jl:[l(to) .

Using (9), Lemma 2 and the fact that det= detr - detg - detlcg‘}b, detky ,p» = +1, we
obtain our assertion.

3. The Petersson scalar product. To state our result we have to recall several defi-
nitions and results from [3, 4].

Let O be as in Section 1 and assume thatis not a perfect integral square. Liebe an
integer withk > n(n + 1)/2 and define

—k
(10 Piz,k,Q(Z) = Z (det(Q[M] [<i>])) (z€Hy).

MEI—;LQ\Fn

It was proved in [4] that the series (10) is absolutely uniformly convergent on subsets of
the form
Va(®) :={z =x+iy € Hy|tr(x'x) <1/8, y > 81,} (8§ >0)
and is a cusp form of weigh&2on I;,.

Write
a b
Q = <b/ C)

with a, b andc integral(n, n)-matricesa andc symmetric and
ab' =ba, bc=cb, ac—b’=I1,.

ReplacingQ by a I,-equivalent form if necessary, we can and will assume that
is invertible [3, Lemma 5]. Let be the non-trivial automorphism of the field extension

Q(/—1)/Q, and set
wii=a N=b+v=D), wr=w]=a"Y(=b—-v=I).
Thenwi andw; are symmetric and satisfy

w1 _ w2 _
a("i=o. ai"E)i-o.
__[(—w2 w1\ fa O
= ()6 9)-
ThenR is a symplectic similitude with scale,2—I and

OIR] = (~21) (2 é)

Put
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[4, p. 429]. In the sequeR o z denotes the usual action &fonz € H,,.
Write —I = df2 with d, f € N andd squarefree. Le® be the ring of integers of
Q(/=I). Put
q = |deta|
and
H, 1:={g € GL,(O)|aYg"a=g¢71 g=1 (mod f)}.
ThenH,-1 is a discrete subgroup @fL,(R), and

0
Hanl = {(g g'_l> ‘g € Ha—l}

is contained in the conjugate subgrolapll“,,,QR with finite index [4, p. 430].
Put

l-1=[R I oR : H ).

a
We will denote byF, a fundamental domain for the action8f onT x B (cf. Section
2). We also put
Fo.ow :={Ro(u+i)[th]|(1,b) € Fy}.
Fork e N finally write Sy (I,) for the space of cusp forms of weight @ith respect to
L. If f, g € S (I,), we denote by

d
(f.q) = / £(2)7 () (dety)Z — 2
W\ Hn

W (z=x+1iy),

the Petersson scalar productoaindg.
We can now state our main result.

THEOREM. Supposethat n isodd. Let f € So(I7;). Then with the above assumption
and notation we have

1D (f Parg) = (=D"7 V=D "7 2, / detu® + 1)~ (dettu + i) "3

n k—%
1‘[ detw 4i1;)7t (/ f(2) <det(Q[<i)])> dz) du.
j=]_ Fn,Q;u

Hereu® = w11, u@, ..., u®D, 4™ =y denote the principal submatrices of x and the
orientable connected submanifolds F, ., C H, C R""*D/2 are endowed with the positive
orientation. Furthermore, we have put dz = [ ], ;, dzij wherethe variablesare taken in
lexicographical order.

REMARKS. i) Clearly the differential form appearing in the inner integral on the right-

hand side of (11) is invariant undé}, o. Also

dz

d(Roz) = 2y—D"mh2_— =
(Roz) =( ) det—az 1 1+

and
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Ro kiLJZrl
f(Ro2) (del(Q[( 1Z>1>) d(Ro2)

= V=" L F(R o 2)(detn) "5 det(—az + 1)~ dz

as easily follows from the definitions. Hence, using the Corollary to Lemma 2, we see that the
expression on the right of (11) is independent of the choice of the fundamental dégnain

ii) By definition we haveF, o.0 = Fu,o (cf. Section 1). Therefore the expression on
the right-hand side of (11) could be interprdtas an “appropriately averaged” integral.

4. Proof of Theorem. We will first discuss the convergence of the integrals on the
right-hand side of (11). In the inner integral on the right-hand side of (11) we transform
7z +— R oz. The formula
det Ing
det Im(R =2v-)' ——

MR oz) = ( ) del—az + D2

implies that
_ntl

f(Roz2) (det(Q[(RfZ)])> " d(Roz)

det(—az + 1)|Z  (deto)—*F*
det(—az + )% (det Imz)*
Since f is a cusp form of weight®, the function(det Imz)¥ f(z) is bounded ort,,.

Substitutingz = (« + i)[tb] (t € T, b € B) and using Lemma 2, the absolute value of the
inner integral in (11) then is estimated from above (up to a non-zero factor depending only on

f) by

= /=)™ . (detIm(R 0 2)) f(Ro2) -

(12) |(detu + i "% | ] 1dew? + i1~ | (detry [, drdb.

j=1 Fa j=1

and the integral occurring in (12) is equal to

oy
P./H, (dety)+D/2
(cf. the proof of the Corollary to Lemma 2, sect. 2).
The latter, however, is finite as was shown in [4, p. 431].
To prove the absolute convergence of the integral ewerthe right of (11), itis therefore
sufficient to show that
|det(u + )| F du < co.

Sn
This also was proved in [4] (under the assumpfion n(n + 1)/2, cf. p. 430).
Let us now prove equality (11). The validity of interchanging sums and integrals and
of any other integral transforms below will follow from stated convergence properties of the
seriesP, i, o and from arguments similar as used above, respectively.
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We shall write
I =(f, Poro)-
The usual unfolding argument shows that

—k
I_/F,,,Q\an(Z)(de(Q[(1>])) (dety) (dety)n+1
o dxdy

_ _ —2k (4 gy —k _dxdy
= _/R_l]“nyQR\Hn f(R o z)det(—az + 1)~ <" (detz) " (dety) (dety)i 1’

where to get the last line we have substituteg~ R o z and used the formulas given above.
Hence

=11 f(R o 2)(deto)"% det(—az + 1)~
H! \Hy
o dxdy
(dety)"+1 :

We now substitute = (« + i)[tb] and use Lemma 1. This gives

-(detz7) ¥ (detz) "tV/2(dety)

I =1,42" / F(Ro ((u+)[tb])) (et + Db~
Sy xTxB/H,

n
(det(—a(u +i)[tb] + 1)) % - detw? + 1) ~F (detu + 1)) "t/ 2(detr) 1 T | tj?zf dudtdb .
j=1
A fundamental domain for the action ¢f, on S, x T x B is given by the points
(u,t,b) € S, x T x B with u unrestricted andz, b) running overT x B/H,. Let us fix
a fundamental domaif, for the action ofH, onT x B. Then we can write

13 1=, 12" / det(uz—i—l)’k(deT(u+i))(n+l)/2(/ F(R o ((u + DItb]))
S, F,

n+1l n .
(det((u + D)[tb)) T - (det(—a(u + D)Irb] + 1)) (detr)#+1 I1 tj_ZJdtdb)du :
j=1
Consider the integral overandb on the right-hand side of (13). Applying Lemma 2
(with u replaced by: + i, u real), we see that this integral is equal to

(=102 ([T0_ detu D) + 1))

(14 / f(Ro z)(detz)ki%de(—az +1) %4z,
(u+i)[Fal

Hence transforming back— R~1 o z we obtain (11).

REMARK. To reduce further the integration oueiin (11) in order to eventually get a
single integral ovefr, ¢ in (11), it would be very suggestive (at least in the case wihigrie
compact) to imitate the procedure of the case 1 and to introduce

Mg :={(su+D[tb]|10<s <1, (1,b) € Fu},
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which (foru # 0) is an orientable compact submanifold’gf with boundary and of dimen-
sionn(n + 1)/2 + 1. Its boundary is given by

aMa,u =i[F]U@+i)[F,]U Ma,uga s

where
My = {(u+D[th]|0<s <1, (t,b) € IF,}
andd F, is the boundary of,.
Using Stokes’ theorem, one can then rewrite the integral in (14) as this integra&f @
plus the term

(15 / . f(Ro z)(detz)"‘"—zldet(—az +1)~%*dz,
a,u;d

whereo is an appropriately chosen orientation, and then one had to show that the latter term
is zero.

Again it is suggestive to try to do so by choosing fgra fundamental domain defined in
terms of the geodesic distance of the Riemann manifokd B (for the construction of such
a fundamental domain in the symplectic case cf. [5, Sections 19-21]; one eventually has to
replaceH, by a torsionfree subgroup of finite index). This fundamental domain is star shaped
with respect to geodesic arcs through some ppintits boundary consists of finitely many
pieces

Ryp, U Ra.h\Tl

with £, running through finitely many elements &f, \ {1} and the orientation induced on
R -1 is opposite to that oR, ,,. We are kindly endebted to A. Deitmar for the above

a,hy,

suggestion. However, so far we have not been able to show that (15) is zero in that way.
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