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A CERTAIN CLASS OF POINCARÉ SERIES ON Spn, II
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Abstract. We compute the Petersson scalar product of certain Poincaré series intro-
duced in our previous paper against a Siegel cusp form and show that it can be written as a
certain averaged cycle integral. This generalizes earlier work by Katok, Zagier and the first
named author in the case of genus 1.

1. Introduction. In our previous paper [4] we had introduced a certain type of
Poincaré seriesPn,k,Q(z), wheren andk are positive integers,Q is an even integral sym-
metric(2n, 2n)-matrix which is a symplectic similitude with integral negative scalel andz is
a variable in the Siegel upper half-spaceHn of genusn. The main result of that paper states
that if k > n(n + 1)/2 and−l is not a perfect integral square, thenPn,k,Q(z) converges in
sufficiently large domains and is a cusp form of weight 2k with respect to the full Siegel mod-
ular groupΓn := Spn(Z) of genusn. If n = 1, thePn,k,Q(z) are just the classical hyperbolic
Poincaré series studied in [1, 2, 7].

It is natural to try to evaluate the Petersson scalar product ofPn,k,Q against a Siegel
cusp formf of weight 2k and genusn. Optimistically, in analogy with the classical case
n = 1 [1, 2], one could hope that this scalar product up to a universal constant is equal to a
“normalized” integral off over a fundamental domainFn,Q for the action ofΓn,Q onCn,Q.
HereΓn,Q ⊂ Γn is the stabilizer subgroup ofQ andΓn acts on matricesQ as described above
by (Q,M) �→ Q[M] := M ′QM with M ′ the transpose ofM. Furthermore

Cn,Q :=
{
z ∈ Hn

∣∣∣∣ (z̄ 1n)Q

(
z

1n

)
= 0

}
,

which is a real-analytic submanifold ofHn of real dimensionn(n+ 1)/2 (if n = 1, thenCn,Q

is just a classical “Heegner cycle”). Note that the natural action ofΓn onHn induces an action
of Γn,Q onCn,Q.

In the present paper we shall prove a result in the above direction. However, instead of
obtaining an integral alongFn,Q, we only get integrals along certain submanifoldsFn,Q;u of
Hn depending on a parameteru which is a real symmetric(n, n)-matrix (one hasFn,Q;0 =
Fn,Q), and then these integrals are averaged by integrating with respect tou in an appropriate
way. So far we have not been able to reduce the integration overu in a further way. To avoid
taking square roots of complex determinants at several places, in stating our Theorem we have
also supposed thatn is odd, for the sake of simplicity.
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In Section 2 we shall prove two technichal Lemmas needed later. In Section 3 we will
state our main result in detail. The proof will be given in Section 4, along with some com-
ments.

We use the samenotation as in [4]. In particular,A′ denotes the transpose of a matrixA

andA[B] := B ′AB for matricesA andB of appropriate sizes. We write 1= 1n for the unit
matrix of sizen if there is no danger of confusion.

2. Two lemmas. Let us writeG = GLn(R) and denote byT (resp.B) the subgroups
of G consisting of diagonal matrices with positive entries (resp. unipotent upper triangular
matrices). LetK = O(n, R). According to the Iwasawa decomposition, everyg ∈ G has a
unique expression asκtb with κ ∈ K, t ∈ T , b ∈ B. HenceG acts onT × B by

(1) (t, b) ◦ g = (t0, b0) ,

where

(2) tbg = κt0b0 (κ ∈ K, t0 ∈ T , b0 ∈ B) .

Let Sn be the space of symmetric real(n, n)-matrices andPn the subset of positive
definite ones. We have diffeomorphisms

T × B → Pn, (t, b) �→ 1[tb]
(Jacobi decomposition) and

φ : Sn × T × B → Hn , (u, t, b) �→ z = (u + i)[tb] .

Under the mapφ−1 the actionz �→ z[g ] of G on Hn corresponds to the action ofG on
Sn × T × B given by

(u, t, b) ◦ g = (u[κ], (t, b) ◦ g ) ,

where(t, b) ◦ g andκ are determined by (1) and (2).

LEMMA 1. The functional determinant of the map φ is given by

J (φ) = (−1)
n(n−1)

2 2n(dett)3n+2
n∏

j=1

t
−2j
j .

PROOF. We have

J (φ) = det

(
∂x/∂u ∂x/∂t ∂x/∂b

∂y/∂u ∂y/∂t ∂y/∂b

)
= det(∂x/∂u)det(∂y/∂t ∂y/∂b) ,

since(∂y/∂u) = 0.
One hasx = u[tb]. Write x = (xij )1≤i,j≤n, u = (uij )1≤i,j≤n, t = diag(t1, . . . , tn) and

denote the upper diagonal components ofb by bij (1 ≤ i ≤ j ≤ n); in particular,bii = 1 for

all i. Then

xij =
∑

1≤µ≤i,1≤ν≤j

tµtνuµνbµibνj (1 ≤ i ≤ j ≤ n)
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and hence(∂x/∂u) is a lower triangular matrix and

det(∂x/∂u) =
∏

1≤i≤j≤n

∂xij

∂uij

=
∏

1≤i≤j≤n

ti tj

=
( n∏

i=1

ti

)n+1

= (dett)n+1 .

By interchanging columns, we transform the matrix
(
∂y/∂t ∂y/∂b

)
to the form

(3)
(· · · ∂y/∂ti ∂y/∂bi,i+1 ∂y/∂bi,i+2 · · · ∂y/∂bin · · · ∂y/∂tn

)
1≤i≤n−1 .

The required number of changes of columns, modulo 2 isn(n − 1)/2 (mod 2), and hence we
find that det

(
∂y/∂t ∂y/∂b

)
is equal to(−1)n(n−1)/2 times the determinant of the matrix in

(3).
We havey = 1[tb] = b′t2b and therefore

yij =
min{i,j}∑

λ=1

t2
λbλibλj .

From this we see that (3) is a lower triangular matrix and that

det
(
∂y/∂t ∂y/∂b

) = (−1)n(n−1)/2
n∏

i=1

(
∂yii

∂ti

n∏
j=i+1

∂yij

∂bij

)

= (−1)n(n−1)/2
n∏

i=1

(
2ti

n∏
j=i+1

t2
i

)
= (−1)n(n−1)/22n(dett)2n+1

n∏
j=1

t
−2j
j .

Hence we obtain our assertion.

LEMMA 2. Let u be a fixed complex symmetric matrix of size n. Put

(4) z = u[tb] (t ∈ T , b ∈ B) .

Then the complex functional determinant of the map (4) is given by

(5) det
(
∂z/∂t ∂z/∂b

) = (−1)n(n−1)/22n

( n∏
j=1

detu(j)

)
· (dett)2n+1

n∏
j=1

t
−2j

j ,

where u(1) = u11, u(2), . . . , u(n−1), u(n) = u are the principal submatrices of u.

PROOF. Denote the determinant on the left-hand side of (5) byα(u(n), t(n), b(n)). We
shall proceed by induction onn, the casen = 1 being clear.

Supposen ≥ 2. We have

(6) zij =
∑

1≤µ≤i, 1≤ν≤j

tµtνuµνbµibνj (1 ≤ i ≤ j ≤ n) .

Observe thatzij for 1 ≤ i ≤ j ≤ n − 1 does not depend ontn, ben (1 ≤ e ≤ n − 1) and
ufn (1 ≤ f ≤ n).
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Therefore one easily sees that

α(u(n), t(n), b(n)) = α(u(n−1), t(n−1), b(n−1)) · β(u(n), t(n), b(n)) ,

where
β = β(u(n), t(n), b(n)) = det

(
∂zin/∂tn ∂zin/∂ben

)
1≤i≤n, 1≤e≤n−1

(to transform det
(
∂z/∂t ∂z/∂b

)
into a lower triangular block matrix, one has to perform an

equal number of changes of columns and rows).
Hence by the induction hypothesis it is sufficient to show that

β = (−1)n−1 · 2 · detu ·
n−1∏
j=1

tj ·
n∏

j=1

tj .

From (6) we find that
∂zin

∂tn
= (1 + δni)

∑
1≤µ≤i

bµiuµntµ

and
∂zin

∂ben
= (1 + δni)te

( ∑
1≤µ≤i

bµiuµetµ
)

(1 ≤ e ≤ n − 1) ,

whereδni denotes the Kronecker delta. Therefore we obtain after a simple computation

β = (−1)n−1 · 2 · t−1
n · det(b′c) ,

where
c = u[t] .

This proves our assertion.

COROLLARY. Let u ∈ Sn and g ∈ G be fixed. For t ∈ T , b ∈ B write

tbg = κg ,t,b t0b0 (κg ,t,b ∈ K, t0 ∈ T , b0 ∈ B)

(compare (2)). Then the complex functional determinants of the maps

(7) z =((u[κ−1
g ,t,b] + i

)[tb] (t ∈ T , b ∈ B)

and

(8) z = (u + i)[tb] (t ∈ T , b ∈ B)

differ by the constant factor (sign detg )n+1.

PROOF. Write J0(t, b) andJ (t, b) for the functional determinants of the maps (7) and
(8), respectively. By definition, we have

((u[κ−1
g ,t,b] + i)[tb] = (u + i)[t0b0] [g −1] .

Sincez �→ z[g −1] has determinant(detg )−n−1, we obtain

(9) J0(t, b) = (detg )−n−1 J (t0, b0) det

(
∂((t, b) ◦ g )

∂t∂b

)
.
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The measure(dety)−(n+1)/2dy (y ∈ Pn) is G-invariant with respect to the actiony �→
y[g ]. Since the functional determinant of the mapy = 1[tb] (t ∈ T , b ∈ B) is equal to
(dett)2n+1∏n

j=1 t
−2j
j (argue in the same way as in Lemma 2 or use [6, Chap. 4.1, ex. 21a)]),

we see that(dett)n
∏n

j=1 t
−2j
j dtdb is aG-invariant measure onT × B. Hence we have

det

(
∂((t, b) ◦ g )

∂t∂b

)
= (dett)n

n∏
j=1

t
−2j
j · (dett0)−n

n∏
j=1

(t0)
2j
j .

Using (9), Lemma 2 and the fact that dett0 = dett · detg · detκ−1
g ,t,b , detκg ,t,b = ±1, we

obtain our assertion.

3. The Petersson scalar product. To state our result we have to recall several defi-
nitions and results from [3, 4].

Let Q be as in Section 1 and assume that−l is not a perfect integral square. Letk be an
integer withk > n(n + 1)/2 and define

(10) Pn,k,Q(z) :=
∑

M∈Γn,Q\Γn

(
det(Q[M] [

(
z

1

)
])
)−k

(z ∈ Hn) .

It was proved in [4] that the series (10) is absolutely uniformly convergent on subsets of
the form

Vn(δ) := {z = x + iy ∈ Hn| tr(x ′x) ≤ 1/δ, y ≥ δ1n} (δ > 0)

and is a cusp form of weight 2k onΓn.
Write

Q =
(

a b

b′ c

)
with a, b andc integral(n, n)-matrices,a andc symmetric and

ab′ = ba , b′c = cb′ , ac − b2 = l1n .

ReplacingQ by a Γn-equivalent form if necessary, we can and will assume thata

is invertible [3, Lemma 5]. Letσ be the non-trivial automorphism of the field extension
Q(

√−l)/Q, and set

w1 := a−1(−b + √−l) , w2 := wσ
1 = a−1(−b − √−l) .

Thenw1 andw2 are symmetric and satisfy

Q[
(

w1
1

)
] = 0 , Q[

(
w2
1

)
] = 0 .

Put

R :=
(−w2 w1

−1 1

)(
a 0
0 1

)
.

ThenR is a symplectic similitude with scale 2
√−l and

Q[R] = (−2l)

(
0 1
1 0

)
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[4, p. 429]. In the sequel,R ◦ z denotes the usual action ofR on z ∈ Hn.
Write −l = df 2 with d, f ∈ N andd squarefree. LetO be the ring of integers of

Q(
√−l). Put

q := |deta|
and

Ha−1 := {g ∈ GLn(O)| a−1g ′σ a = g −1, g ≡ 1 (mod 2qf )} .

ThenHa−1 is a discrete subgroup ofGLn(R), and

H
↑
a−1 :=

{(
g 0
0 g ′−1

) ∣∣∣∣ g ∈ Ha−1

}

is contained in the conjugate subgroupR−1Γn,QR with finite index [4, p. 430].
Put

ιa−1 := [R−1Γn,QR : H
↑
a−1] .

We will denote byFa a fundamental domain for the action ofHa onT × B (cf. Section
2). We also put

Fn,Q;u := {R ◦ (u + i)[tb] | (t, b) ∈ Fa} .

Fork ∈ N finally write S2k(Γn) for the space of cusp forms of weight 2k with respect to
Γn. If f, g ∈ S2k(Γn), we denote by

〈f, g 〉 =
∫

Γn\Hn

f (z)ḡ (z)(dety)2k dxdy

(dety)n+1
(z = x + iy) ,

the Petersson scalar product off andg .
We can now state our main result.

THEOREM. Suppose that n is odd. Let f ∈ S2k(Γn). Then with the above assumption
and notation we have

(11) 〈f, Pn,k,Q〉 = (−1)
n(n−1)

2 (2
√−l)

n(n+1)
2 −2nkιa−1

∫
Sn

det(u2 + 1)−k(det(u + i))
n+1

2

·
n∏

j=1

det(u(j) + i1j )
−1

(∫
Fn,Q;u

f (z)

(
det(Q[

(
z

1

)
])
)k− n+1

2

dz

)
du .

Here u(1) = u11, u(2), . . . , u(n−1), u(n) = u denote the principal submatrices of u and the
orientable connected submanifolds Fn,Q;u ⊂ Hn ⊂ Rn(n+1)/2 are endowed with the positive
orientation. Furthermore, we have put dz = ∏

1≤i≤j≤n dzij where the variables are taken in
lexicographical order.

REMARKS. i) Clearly the differential form appearing in the inner integral on the right-
hand side of (11) is invariant underΓn,Q. Also

d(R ◦ z) = (2
√−l)n(n+1)/2 dz

det(−az + 1)n+1

and
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f (R ◦ z)

(
det(Q[

(
R ◦ z

1

)
])
)k− n+1

2

d(R ◦ z)

= (2
√−l)2nk− n(n+1)

2 · f (R ◦ z)(detz)k− n+1
2 det(−az + 1)−2k dz ,

as easily follows from the definitions. Hence, using the Corollary to Lemma 2, we see that the
expression on the right of (11) is independent of the choice of the fundamental domainFa .

ii) By definition we haveFn,Q;0 = Fn,Q (cf. Section 1). Therefore the expression on
the right-hand side of (11) could be interpreted as an “appropriately averaged” integral.

4. Proof of Theorem. We will first discuss the convergence of the integrals on the
right-hand side of (11). In the inner integral on the right-hand side of (11) we transform
z �→ R ◦ z. The formula

det Im(R ◦ z) = (2
√−l)n

det Imz

|det(−az + 1)|2
implies that

f (R ◦ z)

(
det(Q[

(
R ◦ z

1

)
])
)k− n+1

2

d(R ◦ z)

= (2
√−l)nk− n(n+1)

2 · (det Im(R ◦ z)
)k

f (R ◦ z) · |det(−az + 1)|2k
det(−az + 1)2k

· (detz)k− n+1
2

(det Imz)k
dz .

Sincef is a cusp form of weight 2k, the function(det Imz)kf (z) is bounded onHn.
Substitutingz = (u + i)[tb] (t ∈ T , b ∈ B) and using Lemma 2, the absolute value of the
inner integral in (11) then is estimated from above (up to a non-zero factor depending only on
f ) by

(12) |(det(u + i))k− n+1
2 |

n∏
j=1

|det(u(j) + i1j )
−1|

∫
Fa

(dett)n
n∏

j=1

t
−2j
j dtdb ,

and the integral occurring in (12) is equal to∫
Pn/Ha

dy

(dety)(n+1)/2

(cf. the proof of the Corollary to Lemma 2, sect. 2).
The latter, however, is finite as was shown in [4, p. 431].
To prove the absolute convergence of the integral overu on the right of (11), it is therefore

sufficient to show that ∫
Sn

|det(u + i)|−k du < ∞ .

This also was proved in [4] (under the assumptionk > n(n + 1)/2, cf. p. 430).
Let us now prove equality (11). The validity of interchanging sums and integrals and

of any other integral transforms below will follow from stated convergence properties of the
seriesPn,k,Q and from arguments similar as used above, respectively.
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We shall write
I = 〈f, Pn,k,Q〉 .

The usual unfolding argument shows that

I =
∫

Γn,Q\Hn

f (z)

(
det(Q[

(
z

1

)
])
)−k

(dety)2k dxdy

(dety)n+1

=
∫

R−1Γn,QR\Hn

f (R ◦ z)det(−az + 1)−2k(detz)−k(dety)2k dxdy

(dety)n+1 ,

where to get the last line we have substitutedz �→ R ◦ z and used the formulas given above.
Hence

I = ιa−1

∫
H

↑
a−1\Hn

f (R ◦ z)(detz)k− n+1
2 det(−az + 1)−2k

·(detzz)−k(detz)(n+1)/2(dety)2k dxdy

(dety)n+1
.

We now substitutez = (u + i)[tb] and use Lemma 1. This gives

I = ιa−12n

∫
Sn×T ×B/Ha

f (R ◦ ((u+ i)[tb]))(det((u+ i)[tb]))k− n+1
2

·(det(−a(u + i)[tb] + 1))−2k · det(u2 + 1)−k(det(u + i))(n+1)/2(dett)2n+1
n∏

j=1

t
−2j
j dudtdb .

A fundamental domain for the action ofHa on Sn × T × B is given by the points
(u, t, b) ∈ Sn × T × B with u unrestricted and(t, b) running overT × B/Ha . Let us fix
a fundamental domainFa for the action ofHa onT × B. Then we can write

(13) I = ιa−12n

∫
Sn

det(u2 + 1)−k
(
det(u + i)

)(n+1)/2
(∫

Fa

f (R ◦ ((u + i)[tb]))

·(det((u + i)[tb]))k− n+1
2 · (det(−a(u + i)[tb] + 1)

)−2k
(dett)2n+1

n∏
j=1

t
−2j
j dtdb

)
du .

Consider the integral overt andb on the right-hand side of (13). Applying Lemma 2
(with u replaced byu + i, u real), we see that this integral is equal to

(14)

(−1)n(n−1)/22−n
(∏n

j=1 det(u(j) + i1j )
−1
)

·
∫

(u+i)[Fa]
f (R ◦ z)(detz)k− n+1

2 det(−az + 1)−2kdz .

Hence transforming backz �→ R−1 ◦ z we obtain (11).

REMARK. To reduce further the integration overu in (11) in order to eventually get a
single integral overFn,Q in (11), it would be very suggestive (at least in the case whereFa is
compact) to imitate the procedure of the casen = 1 and to introduce

Ma,u := {(su + i)[tb] | 0 ≤ s ≤ 1, (t, b) ∈ Fa},
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which (for u �= 0) is an orientable compact submanifold ofHn with boundary and of dimen-
sionn(n + 1)/2 + 1. Its boundary is given by

∂Ma,u = i[Fa] ∪ (u + i)[Fa] ∪ Ma,u;∂ ,

where
Ma,u;∂ := {(su + i)[tb] | 0 ≤ s ≤ 1, (t, b) ∈ ∂Fa}

and∂Fa is the boundary ofFa .
Using Stokes’ theorem, one can then rewrite the integral in (14) as this integral foru = 0

plus the term

(15)
∫

Mo
a,u;∂

f (R ◦ z)(detz)k− n+1
2 det(−az + 1)−2kdz ,

whereo is an appropriately chosen orientation, and then one had to show that the latter term
is zero.

Again it is suggestive to try to do so by choosing forFa a fundamental domain defined in
terms of the geodesic distance of the Riemann manifoldT × B (for the construction of such
a fundamental domain in the symplectic case cf. [5, Sections 19–21]; one eventually has to
replaceHa by a torsionfree subgroup of finite index). This fundamental domain is star shaped
with respect to geodesic arcs through some pointp0, its boundary consists of finitely many
pieces

Ra,hν ∪ R
a,h−1

ν

with hν running through finitely many elements ofHa \ {1} and the orientation induced on
R

a,h−1
ν

is opposite to that ofRa,hν . We are kindly endebted to A. Deitmar for the above
suggestion. However, so far we have not been able to show that (15) is zero in that way.
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