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Abstract. We investigateminimal extension sheaves on arbitrary (possibly non-
rational) fans as an approach toward a combinatorial “virtual” intersection cohomology. These
are flabby sheaves of graded modules over a sheaf ofpolynomial rings, satisfying three rela-
tively simple axioms that characterize the equivariant intersection cohomology sheaves on toric
varieties. As in “classical” intersection cohomology, minimal extension sheaves are models for
the pure objects of a “perverse category"; a Decomposition Theorem holds. The analysis of the
step from equivariant to non-equivariant intersection cohomology of toric varieties leads us to
investigate “quasi-convex" fans (generalizing fans with convex or “co-convex" support), where
our approach yields a meaningful virtual intersection cohomology. We characterize such fans
by a topological condition and prove a version of Stanley’s “Local-Global" formula relating
the global intersection Poincaré polynomial to local data. Virtual intersection cohomology of
quasi-convex fans is shown to satisfy Poincaré duality. To describe the local data in terms
of the global data for lower-dimensional complete polytopal fans as in the rational case, one
needs a “Hard Lefschetz" type result. It requires a vanishing condition that is valid for rational
cones, but has not yet been proven in the general case.
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Introduction. A basic combinatorial invariant of acomplete simplicial fan ∆ in Rn is
its h-vector (h0, . . . , hn): It encodes the numbers of cones of the different dimensions. By the
classicalDehn-Sommerville relations, the equalityhi = hn−i holds, i.e., the vector ispalin-
dromic; furthermore, for a polytopal fan∆, it is known to beunimodal, i.e.,hi ≤ hi+1 holds
for 0 ≤ i < n/2. If ∆ is evenrational, then theh-vector admits a topological interpretation
in terms of the associated compactQ-smooth toric varietyX∆: By the theorem of Jurkiewicz
and Danilov, the real1) cohomology ringH •(X∆) is a quotient of the Stanley-Reisner ring

2000Mathematics Subject Classification. Primary 14F32; Secondary 14M25, 32S60, 52B20.
1) Unless otherwise specified, we always use realcoefficients for (intersection) cohomology.
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of ∆. In particular, this result implies that the Betti numbers ofX∆ are combinatorial invari-
ants of the fan∆ (i.e., they are determined by the structure of∆ as a partially ordered set),
they “live” only in even degrees, and the equalityhi = dimH 2i (X∆) holds for 0≤ i ≤ n.

Since every simplicial fan is combinatorially equivalent to a rational one, this interpre-
tation allows to apply topological results about toric varieties to combinatorics. To give an
example, we mention that the Dehn-Sommerville equations are just a combinatorial version
of Poincaré duality. A deeper application is Stanley’s proof of the necessity of McMullen’s
conditions that characterize the possibleh-vectors of simplicialpolytopal fans: To prove uni-
modality, it uses the “Hard” Lefschetz Theorem for the rational cohomology of the corre-
sponding projective toric variety.

We now considercomplete non-simplicial fans, looking first at therational case. Unfor-
tunately, the Betti numbers of the associated compact toric varieties no longer enjoy such good
properties as in the simplicial case: Poincaré duality fails to hold, non-zero Betti numbers in
odd degrees may occur, and worst of all, Betti numbers may fail to be combinatorial invariants.
Replacing singular cohomology with intersection cohomology, however, yields invariants that
share the essential properties of the classicalh-vector in the simplicial case: Intersection Betti
numbers satisfy Poincaré duality, they vanish in odd degrees, and they are determined by
the combinatorics of the fan. The last property follows from the two “Local-Global For-
mulæ” that serve as a kind of“Leitmotiv”: For a complete rational fan∆ with associated
toric varietyX∆, one considers the global (intersection cohomology) Poincaré polynomial
P∆ := ∑2n

q=0 dimR IH
q(X∆) · tq and its local counterpartsPσ := ∑2n

q=0 dimR IHq
σ · tq ,

whereIH•σ denotes the local intersection cohomology along the orbit corresponding to the
coneσ ∈ ∆. These polynomials are related by the first formula

P∆(t) =
∑
σ∈∆

(t2 − 1)n−dimσPσ (t) .

By the second formula, each local polynomialPσ in turn is readily obtained from the global
one of a projective toric varietyXΛσ of strictly smaller dimension associated to the “flattened
boundary fan”Λσ of the coneσ : One has

Pσ (t) = τ≤d−1((1− t2)PΛσ (t)) for d := dimσ ,

whereτ≤d−1 denotes truncation.
Combined, these formulae yield inductively that the global and local intersection coho-

mology Betti numbers

hi(∆) := dimIH 2i (X∆), for i ≤ n and 0 elsewhere, and

g i (σ ) := dimIH2i
σ = hi(Λσ )− hi−1(Λσ ), for 0≤ i < dimσ/2 and 0 elsewhere,

are combinatorial invariants that can becomputed recursively, starting fromg i = hi = δi,0

(Kronecker index) in the casen = 0. This observation was used by Stanley in [St] to de-
fine generalizedh- andg -vectors even for non-rational cones and fans. These invariants are
computable via linear functions in the numbers of flags of cones with prescribed sequences of
dimensions.
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In the case of a (complete)simplicial fan∆, we may reverse the theorem of Jurkiewicz
and Danilov and take the quotient of the Stanley-Reisner ring as definition of a “virtual co-
homology algebra”H •(∆) of the fan, thus obtaining virtual Betti numbers dimH 2i (∆) that
coincide withhi(∆) for 0 ≤ i ≤ n. Our main aim is to define a “virtual intersection coho-
mology” with analoguous properties for arbitrary fans.

Our approach toward such a theory builds on the previous study ofequivariant intersec-
tion cohomology of toric varieties in [BBFK]. Coming back to complete rational simplicial
fans for a moment, we recall that the Stanley-Reisner ring itself has a topological interpreta-
tion, namely, it is theequivariant cohomology ring of the toric variety defined by such a fan:
For affine open toric subvarietiesXσ ⊂ X∆, there are natural isomorphismsH •T(Xσ )

∼= A•σ
with the algebraA•σ of real-valued polynomial functions onσ . They induce an isomorphism
between the associated sheavesH•T andA• on the “fan space”∆, i.e., the fan∆ identified
with the (non-Hausdorff) orbit space of the toric variety; its open subsets correspond to the
subfans. SinceH•T(∆) ∼= H •T(X∆) andA•(∆) constitutes the algebra of∆-piecewise poly-
nomial functions on the support of∆, we only have to notice that the latter is nothing but
the Stanley-Reisner ring of∆. The theorem of Jurkiewicz and Danilov may then be restated
as follows: A toric variety defined by a complete simplicial fan isequivariantly formal, i.e.,
equivariant and non-equivariant cohomologydetermine each other by Künneth type formu-
lae: Since the graded algebraA• of real valued polynomial functions onRn is canonically
isomorphic to the cohomology ringH •(BT) of the classifying spaceB T ∼= (P∞C)n of the
torus, the equivariant cohomologyH •T(X∆) carries the structure of anA•-module, andX∆ is
called equivariantly formal if the natural mapH •T(X∆) → H •(X) induces an isomorphism
A•/m⊗A• H •T(X∆) ∼= H •(X∆), wherem := A>0 is the unique homogeneous maximal ideal
of A•.

These observations led us to study theequivariant intersection cohomology presheaf
IH•T in the case of a not necessarily simplicial rational fan∆. This presheaf turns out to
be very well behaved: In fact, it is a flabbysheaf of A•-modules as has been proved in
[BBFK], and it may be characterized by three relatively simple properties that determine it up
to isomorphism. Its global sections yield the equivariant intersection cohomologyIH •T(X∆),
a gradedA•-module, and in the compact case, we again have equivariant formality: The
formulaIH •(X∆) ∼= A•/m⊗A• IH •T(X∆) holds. The axiomatic characterization now allows
to carry the whole construction over to the case of not necessarily rational fans and leads to
the notion of a so-called “minimal extension sheaf"E• on∆ (such thatE• ∼= A• is the sheaf
of piecewise polynomial functions for simplicial∆).

In particular, in the complete case, the role of the Stanley-Reisner ring is played by the
A•-moduleE•(∆) of global sections, and thevirtual intersection cohomology of a fan∆ is
defined asIH •(∆) := A•/m⊗A• E•(∆).

In the present article, we systematize the investigation of the algebraic theory of such
minimal extension sheaves. We do hope that this will finally lead to a proof of the formula
hi(∆) = dimR IH

2i (∆) that would provide an interpretation of the components of the gener-
alizedh-vector in the case of a complete and possibly non-rational fan. In the first section, we
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recall and extend some results of [BBFK]; in particular, the virtual intersection Betti numbers
of a complete rational fan∆ are seen to equal the intersection Betti numbers ofX∆. The
second section is devoted to combinatorially pure sheaves over the fan space∆. These turn
out to be direct sums of simple sheaves, which are generalized minimal extension sheaves: To
each coneτ ∈ ∆, we associate a simple pure sheafτL•, whereE• coincides with the sheaf

oL• associated with the zero coneo, and prove a Decomposition Theorem (Theorem 2.4) for
pure sheaves. As a corollary, we present a proof of Kalai’s conjecture for virtual intersection
cohomology Poincaré polynomials, as proposed by Tom Braden (see also [BrMPh]).

In the third section, we provide a main technical tool for the following sections in study-
ing the cellularČech cohomology of sheaves on the fan space. In the fourth section, we show
that the acyclicity of that complex with coefficients in a minimal extension sheafE• on a
purelyn-dimensional fan∆ has both a surprisingly easy algebraic and topological reformula-
tion: It holds if and only if theA•-moduleE•(∆) of global sections is free resp. if and only
if the support|∂∆| of the boundary fan∂∆ is a real homology manifold, cf. Theorems 4.3
and 4.4. In particular that holds for fans with either convex or “co-convex” support, and that
motivates to call such fansquasi-convex. For a rational fan∆, quasi-convexity is a necessary
and sufficient condition for the equalityIH •(∆) ∼= IH •(X∆) to hold, whereX∆ is the asso-
ciated toric variety, i.e.∆ is quasi-convex iffX∆ is IH -equivariantly formal. An equivalent
formulation of that fact is the vanishing of the odd-dimensional intersection Betti numbers
of X∆.

On the other hand, the freeness condition is used in order to have a satisfactory “Poincaré
Duality” theory both onE•(∆) andIH •(∆) = A•/m ⊗A• E•(∆). As a corollary we prove a
conjecture of Bernstein and Lunts.

The fifth section deals with the computation of the virtual intersection Poincaré polyno-
mialsP∆ := ∑

dimIH 2j (∆) · t2j : For a quasi-convex fan∆, the polynomialP∆ can be
expressed, as in the rational case, in terms of the virtual local intersection Poincaré polyno-
mialsPσ , see Theorem 5.3. That is a consequence of the above mentioned acyclicity of the
cellular complex, and the fact that the global section modulesIH •(∆) andE•(∆) and their
local counterpartsIH•σ := A•/m ⊗A• E•(σ ) andE•(σ ) are related by Künneth type formu-
lae. To obtain a recursive computation algorithm forP∆ as in the rational case, we relate the
Poincaré polynomialPσ to that of the “flattened boundary fan”Λσ of σ , the polytopal fan
obtained by projecting the boundary ofσ to Vσ/� , whereVσ := span(σ ) and� ⊂ Vσ is a
line meeting the relative interior ofσ . To that end, we need the vanishing conditionIHq

σ = 0
for q ≥ dimσ > 0, see 1.7. In the case of arational cone, that condition holds because it
is equivalent to the vanishing condition for the local intersection cohomology ofXσ along its
closed orbit, and we expect it even to hold in the non-rational case. The above vanishing con-
dition, together with Poincaré duality (see section 6), leads to a “Hard Lefschetz Theorem” for
the virtual intersection cohomologyIH •(Λσ ) of the polytopal fanΛσ , see Theorem 5.6, and
that theorem provides the background for the description ofPσ in terms ofPΛσ . In particular,
if all the cones in∆ satisfy the above vanishing condition, we havehi(∆) = dimIH 2i (∆).
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Finally, the last section is devoted to Poincaré duality: On a minimal extension sheafE•,
a (non-canonical) internal “intersection product”E•×E• → E• and an evaluation map may be
defined, leading to duality isomorphismsE•(∆) ∼= E•(∆, ∂∆)∗ andIH •(∆) ∼= IH •(∆, ∂∆)∗
for quasi-convex fans, see Theorem 6.3.

In order to make our results accessible to non-specialists, we have aimed at avoiding
technical “machinery” and keeping the presentation as elementary as possible. Many essen-
tial results of the present article are contained in Chapters 7–10 of our Uppsala preprint2); the
current version has been announced in the note [Fi2]. Using the formalism of derived cate-
gories, closely related work has been done by Tom Braden in the rational case and by Paul
Bressler and Valery Lunts in the polytopal case.Tom Braden sent us a manuscript presented
at the AMS meeting in Washington, January 2000. Even more recently, Paul Bressler and
Valery Lunts published their ideas in the e-print [BreLu2].

For helpful discussions, our particular thanks go to Michel Brion, Volker Puppe and Tom
Braden. We also are indebted tothe referee for his comments.

0. Preliminaries.
0.A CONES AND FANS: Let V be a real vector space of dimensionn. A non-zero

linear formα : V → R on V determines theupper halfspace Hα := {v ∈ V ; α(v) ≥ 0}.
A (strictly convex polyhedral)cone in V is a finite intersectionσ = ⋂r

i=1Hαi of halfspaces
with linear forms satisfying

⋂r
i=1 ker αi = {0}. LetVσ := σ + (−σ) denote the linear span

of σ in V , and define dimσ := dimVσ . A cone of dimensiond is called ad-cone.
A cone also may be described as the setσ = ∑s

j=1 R≥0vj of all positive linear combi-
nations of a finite set of non-zero vectorsvj in V . A cone spanned by a linearly independent
system of generators is calledsimplicial. Cones of dimensiond ≤ 2 are always simplicial; in
particular, this applies to thezero cone o := {0} and to everyray (i.e., a one-dimensional cone
R≥0v).

A face of a coneσ is any intersectionτ = σ ∩ker β, whereβ ∈ V ∗ is a linear form with
σ ⊂ Hβ . We then writeτ � σ (andτ ≺ σ for aproper face). If in addition dimτ = dimσ−1,
we callτ a facet of σ and writeτ ≺1 σ .

A fan in V is a non-empty finite set∆ of cones such that each face of a cone in∆
also belongs to∆ and the intersection of two cones in∆ is a face of both. To a fan∆, one
associates itssupport |∆| := ∪σ∈∆ σ , a closed subset inV . The fan∆ is generated by cones
σ1, . . . , σr if ∆ consists of all cones that are a face of some generating cone. In particular,
a given coneσ generates the fan〈σ 〉 consisting ofσ and its proper faces; such a fan is also
called anaffine fan and occasionally is simply denotedσ . Furthermore, we associate toσ its
boundary fan ∂σ := 〈σ 〉 \ {σ }, and itsrelative interior σ

◦ := σ \ |∂σ |.
Every fan is generated by the collection∆max of its maximal cones. We define

∆k := {σ ∈ ∆ ; dimσ = k} and ∆≤k :=
⋃
r≤k

∆r ,

2) “Equivariant Intersection Cohomology of Toric Varieties”, UUDM report 1998:34.
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the latter being a subfan called thek-skeleton. The fan∆ is calledpurely n-dimensional if
∆max = ∆n. In that case, we define itsboundary fan ∂∆ as the subfan generated by those
(n − 1)-cones that are facets of precisely onen-cone in∆. The boundary fan is supported
by the topological boundary of|∆|. In contrast with the case of a single cone, we use∆

◦
to

denote the collection∆ \ ∂∆ of interior cones.
A fan is calledsimplicial if all its cones are simplicial; this holds if and only if its maxi-

mal cones are simplicial. It is calledcomplete if it is supported by all ofV .
A subfanΛ of a fan∆ is any subset that itself is a fan; we then writeΛ � ∆ (andΛ ≺ ∆

if in additionΛ is a proper subfan). The collection of all subfans of∆ clearly satisfies the
axioms for the open sets of a topology on∆, the empty set being admitted as a fan. In the
sequel, we always endow∆ with this fan topology and consider it as a topological space, the
fan space.

A refinement of a fan∆ is a fan∆̌with |∆̌| = |∆| such that each coněσ ∈ ∆̌ is contained
in some coneσ ∈ ∆. If σ is minimal with that property, we writeσ = π(σ̌ ) and obtain in that
way the associated refinement mapπ : ∆̌→ ∆. Every purelyn-dimensional fan∆ admits a
refinement which can be embedded into a complete fan: For a coneσi ∈ ∆n, we fix a line�
meetingσi

◦ and set� := −(� ∩ σi); then the fan∆i generated byσi and all cones� + τ for
τ ≺1 σi is complete. For∆n = {σ1, . . . , σr }, thefan-theoretic intersection

r⋂
i=1

∆i :=
{ r⋂
i=1

τi ; τi ∈ ∆i
}
.

is a complete fan including a refinement of∆ as a subfan.
A fan∆ in V is calledrational (or, more precisely,N-rational) if there exists a lattice

(i.e., a discrete additive subgroup)N ⊂ V of maximal rank such that� ∩ N �= {0} for each
ray� ∈ ∆.

0.B GRADED A•-MODULES: Let A• denote the symmetric algebraS•(V ∗) over the
dual vector spaceV ∗ of V . Its elements are canonically identified with polynomial functions
on V . In the case of a rational fan,A• is isomorphic to the cohomology algebraH •(BT)
of the classifying spaceBT ∼= (P∞C)n of the complex algebraicn-torusT ∼= (C∗)n acting
on the associated toric variety. Motivated by that topological considerations, we endowA•

with the positive even grading determined by settingA2q := Sq(V ∗); in particular,A2 = V ∗
consists of all linear forms onV . Correspondingly, for a coneσ in V , we letA•σ denote the
graded algebraS•(V ∗σ ); if σ is of dimensionn, thenA•σ = A• holds. The natural projection
V ∗ → V ∗σ extends to an epimorphismA• → A•σ of graded algebras. We usually consider
the elements inA•σ as functionsf : σ → R; the above epimorphism then corresponds to the
restriction of polynomial functions.

For a gradedA•-moduleF •, we writeF • for its residue class module

F • := F •/(m·F •) ∼= R• ⊗A• F • ,
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wherem := A>0 ⊂ A• is the unique homogeneous maximal ideal ofA• and whereR• :=
A•/m = A• is the fieldR, considered as graded algebra concentrated in degree zero. Obvi-
ouslyF • is a graded vector space overR, which is finite dimensional ifF • is finitely gen-
erated overA•. If F • is positively graded or, more generally, bounded from below, then the
converse holds: A family(f1, . . . , fr ) of homogeneous elements inF • generatesF • overA•

if and only if the system of residue classes(f 1, . . . , f r ) modulom ·F • generates the vector
spaceF •. In that case, we have rkA•F • ≤ dimF •, where equality holds if and only ifF •

is a freeA•-module. The collection(f1, . . . , fr ) is part of a basis of the freeA•-moduleF •

overA• if and only if (f 1, . . . , f r) is linearly independent overR. Furthermore, every homo-
morphismϕ : F • → G• of finitely generated gradedA•-modules induces a homomorphism
ϕ : F • → G• of graded vector spaces, which is surjective if and only ifϕ is so. IfF • is free,
then every homomorphismψ : F • → G• can be lifted to a homomorphismϕ : F • → G• (i.e.,
ϕ = ψ holds); ifG• is free, thenϕ is an isomorphism if and only if that holds forϕ.

A finitely generatedA•-moduleF • is free if and only if TorA
•

1 (F •,R•) = 0. That
condition is obviously necessary, so let us show that it is also sufficient: As we have seen
above, there is a surjection(A•)d → F • whered := dimF •; let K• be its kernel. Since
TorA

•
1 (F •,R•) = 0, the exact sequence

0→ K• → (A•)d → F • → 0

induces an exact sequence

0→ K• → (A•)d → F • → 0 .

By construction,(A•)d → F • is an isomorphism, so we haveK• = 0 and thus alsoK• = 0,
i.e.,F • ∼= (A•)d is free.

By means of the restriction mapA• → A•σ , anA•σ -moduleF •σ is anA•-module, and
there is a natural isomorphismF •σ = F •σ /(m·F •σ ) ∼= F •σ /(mσ ·F •σ ). Let us denote byV⊥σ the
orthogonal complement ofVσ ⊂ V in the dual vector spaceV ∗. We remark that, using the
Koszul complex for theA•-moduleI (Vσ ) := A• · V ⊥σ ⊂ A•, one finds a natural isomorphism
of vector spaces

(0.B.1) TorA
•

i (A
•
σ ,R•) ∼= ΛiV ⊥σ

overR• = A•/m.
0.C SHEAVES ON A FAN SPACE: Sheaf theory on a fan space is particularly simple

since the “affine” open sets〈σ 〉 � ∆ form a basis of the fan topology whose elements can not
be covered by strictly smaller open sets. In fact, let(Fσ )σ∈∆ be a collection of abelian groups,
say, together with “restriction” homomorphisms�στ : Fσ → Fτ for τ � σ , i.e., we require
�σσ = id and�τγ ◦�στ = �σγ for γ � τ � σ . Then there is a unique sheafF on the fan space∆
such that its group of sectionsF(σ ) := F(〈σ 〉) agrees withFσ . The sheafF is flabby if and
only if each restriction map�σ∂σ : F(σ )→ F(∂σ ) is surjective. — In the same spirit of ideas,
sheaves on a fan space occur in the work of Bressler and Lunts [BreLu2], Brion [Bri2] and
McConnell [MCo].
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In particular, we consider the sheafA• of graded polynomial algebras on∆ determined
by A•(σ ) := A•σ , the homomorphism�στ : A•σ → A•τ being the restriction of functions onσ
to the faceτ � σ . The set of sectionsA•(Λ) on a subfanΛ � ∆ constitutes the algebra of
(Λ-) piecewise polynomial functions on|Λ| in a natural way.

If F • is a sheaf ofA•-modules, then everyF •(Λ) also is anA•-module, and ifF •(σ ) is
finitely generated for every coneσ ∈ ∆, then so isF(Λ) for every subfanΛ � ∆: This is an
immediate consequence of the facts thatA• is a noetherian ring andF •(Λ), a submodule of⊕

σ∈ΛmaxF •(σ ).
For notational convenience, we often write

F •Λ := F •(Λ) and F •σ := F •(σ ) ;
more generally, for a pair of subfans(Λ,Λ0), we define

F •(Λ,Λ0)
:= ker(�ΛΛ0

: F •Λ → F •Λ0
) ,

the submodule of sections onΛ vanishing onΛ0. In particular, for a purelyn-dimensional
fan∆, we obtain in that way the module

F •(∆,∂∆) := ker(�∆∂∆ : F •∆ → F •∂∆)

of sections over∆ with “compact supports”.
To a sheafF • of A•-modules, we may associate thepresheaf of gradedR•-modules

given by the assignmentΛ �→ F •(Λ). The associated sheafF • satisfies the equalityF •(σ ) =
F •(σ ) on the basic open sets. This fact does not carry over to an arbitrary open set, i.e., the
above presheaf need not be a sheaf. As an example, consider a complete simplicial rational
fan∆. ThenA• is the constant sheafR• on∆, soA•(∆) ∼= R•, while A•∆ := A•(∆) ∼=
H •(X∆) has a non-vanishing weight subspace in degree 2n since the compact toric varietyX∆
satisfiesH 2n(X∆) �= 0.

0.D FAN CONSTRUCTIONS ASSOCIATED WITH A CONE: In addition to theaffine
fan 〈σ 〉 and theboundary fan ∂σ associated with a coneσ , we need two more constructions.
Firstly, if σ belongs to a fan∆, we consider thestar

st∆(σ) := {γ ∈ ∆ ; σ � γ }
of σ in ∆. This set is not a subfan of∆ — we note in passing that it is theclosure of the
one-point set{σ } in the fan topology —, but its image

∆σ := p
(
st∆(σ)

) = {p(γ ) ; σ � γ }
under the quotient projectionp : V → V/Vσ is a fan inV/Vσ , called the“transversal fan”
of σ in ∆.

Secondly, letσ be a non-zero cone. Fixing an auxiliary line� in V passing through the
relative interiorσ◦ , we consider the“flattened boundary fan”Λσ = Λσ (�) that is obtained by
projecting the boundary fan∂σ onto the quotient vector spaceVσ /�: If π : Vσ → Vσ /� is the
quotient projection, then we set

(0.D.1) Λσ := π(∂σ) = {π(τ) ; τ ≺ σ } .
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This fan iscomplete. Restricting the projectionπ to the support of∂σ yields a (piecewise
linear) homeomorphism

π ||∂σ | : |∂σ | → |Λσ | = Vσ /�
that in turn induces a homeomorphism∂σ → Λσ of fan spaces; in particular, the combi-
natorial type ofΛσ is independent of the choice of�. Let T ∈ A2

σ be a linear function

with T |�∩σ� > 0. It provides an isomorphism�
∼=−→ R; furthermore, it gives rise to a decom-

positionVσ = ker(T )⊕ � and hence, to an isomorphism ker(T ) ∼= Vσ /�. IdentifyingVσ and
(Vσ /�)× R via these isomorphisms yields a natural identification

A•σ = B•σ [T ] ,
where

(0.D.2) B•σ := π∗
(
S•

(
(Vσ /�)

∗)) ⊂ A•σ
is the algebra of polynomial functions onVσ that are constant along parallels to�. Moreover,
the support|∂σ | of the boundary fan is the graph of the strictly convexΛσ -piecewise linear
function

(0.D.3) f := T ◦ (π ||∂σ |)−1 : Vσ /�→ R .

On the other hand, for a complete fanΛ in a vector spaceW and a strictly convexΛ-
piecewise linear functionf : W → R, the convex hullγ of the graphΓf in W × R is a cone
with boundary∂γ = Γf

1. Minimal extension sheaves. The investigation of a “virtual” intersection coho-
mology theory for arbitrary fans is couched in terms of a certain class of sheaves on fans
calledminimal extension sheaves. In this section, we introduce that notion and study some
elementary properties of such sheaves.

1.1 DEFINITION. A sheafE• of gradedA•-modules on a fan∆ is called aminimal
extension sheaf (of R•) if it satisfies the following conditions:
(N) Normalization: One hasE•o ∼= A•o = R• for the zero coneo.
(PF) Pointwise Freeness: For each coneσ ∈ ∆, the moduleE•σ is free overA•σ .
(LME) Local Minimal Extension modm: For each coneσ ∈ ∆ \ {o}, the restriction map-

ping
�σ := �σ∂σ : E•σ → E•∂σ

induces an isomorphism

�σ : E•σ
∼=−→ E•∂σ

of graded real vector spaces.

The above condition (LME) implies thatE• is minimal in the set of all flabby sheaves of
gradedA•-modules satisfying conditions (N) and (PF), whence the name “minimal extension
sheaf”.

1.2 REMARK. LetE• be a minimal extension sheaf on a fan∆.
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i) The sheafE• is flabby and vanishes in odd degrees.
ii) For each subfanΛ � ∆, theA•-moduleE•Λ is finitely generated.
iii) For each coneσ ∈ ∆, there is an isomorphim of gradedA•σ -modules

(1.2.1) E•σ ∼= A•σ ⊗R E
•
σ .

PROOF. (i) and (ii): By the results of 0.B, condition (LME) implies that�σ is surjective
for each coneσ ∈ ∆; hence, 0.C asserts flabbiness. To prove finite generation, we proceed
by induction. Let us assume thatE•τ is finitely generated for dimτ ≤ k, then so isE•Λ
for each subfanΛ � ∆≤k, see 0.C. In particular, ifσ is a cone of dimensionk + 1, then
E•∂σ is finitely generated, whenceE•σ ∼= E•∂σ is finite-dimensional, and thus the freeA•σ -
moduleE•σ is finitely generated. Now an application of 0.C yields (ii). SinceA• only lives
in even degrees, the obviousR•-splittingF • = F even⊕ F odd of a gradedA•-module actually
is a decomposition into gradedA•-submodules. Hence, a finitely generatedA•-moduleF •

vanishes in odd degrees if and only ifF • does. Thus, we may achieve the proof of (i) by
induction over the skeleta of∆ as above.

(iii) The isomorphism (1.2.1) is an immediate consequence of the results quoted in 0.B
since theA•σ -moduleE•σ is free and finitely generated. �

On every fan∆, a minimal extension sheaf exists, it can be constructed recursively, and it
is unique up to isomorphism; hence, we may speak ofthe minimal extension sheafE• = ∆E•
of ∆:

1.3 PROPOSITION(Existence and uniqueness of minimal extension sheaves).On ev-
ery fan ∆, there exists a minimal extension sheaf E•; it is unique up to an isomorphism of
graded A•-modules. More precisely, for any two such sheaves E• and F • on∆, every isomor-

phism E•o ∼= F •o extends to an isomorphism ϕ : E• ∼=−→ F • of graded A•-modules.

As to the uniqueness ofϕ, see Remark 1.8, (iii).

PROOF. For theexistence, we define the sheafE• inductively on thek-skeleton sub-
fans∆≤k, starting withE•o := R• for k = 0. Fork > 0, we assume thatE• has been defined
on∆<k; in particular,E•∂σ exists for every coneσ ∈ ∆k. It thus suffices to defineE•σ , to-
gether with a restriction homomorphismE•σ → E•∂σ . To that end, we fix anR•-linear section
s : E•∂σ → E•∂σ of the residue class mapE•∂σ → E•∂σ that is homogeneous of degree zero.
According to (1.2.1), we set

(1.3.1) E•σ := A•σ ⊗R E
•
∂σ and �σ∂σ : E•σ = A•σ ⊗R E

•
∂σ

1⊗s−→ A•σ ⊗R E
•
∂σ −→ E•∂σ .

For theuniqueness of minimal extension sheaves up to isomorphism, we use the same
induction pattern and show how a given isomorphismϕ : E• → F • of such sheaves on∆<k

may be extended to∆≤k. It suffices to verify that, for each coneσ ∈ ∆k, there is a lifting of

ϕ∂σ : E•∂σ
∼=−→ F •∂σ to an isomorphismϕσ : E•σ

∼=−→ F •σ . Using the results recalled in section
0.B, the existence of such a lifting follows easily from the properties of gradedA•σ -modules:
We choose a homogeneous basis(e1, . . . , er ) of the freeA•σ -moduleE•σ . SinceF • is a flabby
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sheaf, the imagesϕ∂σ (ei |∂σ ) in F •∂σ can be extended to homogeneous sectionsf1, . . . , fr

in F •σ with degej = degfj . The induced restriction isomorphismF •σ
∼=−→ F •∂σ maps the

residue classesf 1, . . . , f r to a basis ofF •∂σ . It is immediate that these sectionsf1, . . . , fr

form a basis of the freeA•σ -moduleF •σ , and thatei �→ fi defines a liftingϕσ : E•σ
∼=−→ F •σ of

ϕ∂σ . �

Simplicial fans are easily characterized in terms of minimal extension sheaves:

1.4 PROPOSITION. The following conditions for a fan ∆ are equivalent:
i) ∆ is simplicial,
ii) A• is a minimal extension sheaf on ∆.

PROOF. “(ii) ⇒ (i)” Assuming thatA• is a minimal extension sheaf, we show by
induction on the dimensiond for each coneσ ∈ ∆d that the numberk of its rays equalsd, i.e.,
thatσ is simplicial. This is always true ford ≤ 2. As induction hypothesis, we assume that
the boundary fan∂σ is simplicial. On each ray ofσ , we choose a non-zero vectorvi . Then
there exist unique piecewise linear functionsfi ∈ A2

∂σ with fi(vj ) = δij for i, j = 1, . . . , k.
These functionsf1, . . . , fk are linearly independent overR, whence dimRA

2
∂σ ≥ k.

We proceed to prove the equality dimRA
2
∂σ = dimRA

2
σ = d, thus obtaining the in-

equalityk ≤ d that yields (i). SinceA• is a minimal extension sheaf, the induced restriction
homomorphismA•σ → A•∂σ is an isomorphism. FromA•σ = R•, we concludeA2

σ = 0
and thusA2

∂σ = 0, i.e.,A2
∂σ is the homogeneous component of degree 2 in the graded mod-

ule mA•∂σ . That component obviously is nothing butA2 · A0
∂σ = A2|∂σ ∼= A2

σ |∂σ . Hence,
k ≤ dimA2

∂σ = dimA2
σ |∂σ ≤ dimA2

σ = d, while d ≤ k is obvious.
“(i) ⇒ (ii)”: We again proceed by induction on the dimensiond, proving that for any

simplicial coneσ with dimσ = d, a minimal extension sheafE• on 〈σ 〉 in a natural manner
is isomorphic to the sheafA•. The cased = 0 being immediate, let us first remark that a
simplicial cone is the sumσ = � + τ of any facetτ ≺1 σ and the remaining ray�. The
decompositionVσ = V� ⊕ Vτ provides projectionsp : Vσ → V� andq : Vσ → Vτ and thus
subalgebras

(1.4.1) D•� := p∗(S•(V ∗� )) and D•τ := q∗(S•(V ∗τ ))
of A•σ , together with an isomorphism

(1.4.2) A•σ ∼= D•� ⊗R D
•
τ .

As the facetτ is simplicial and thusE•τ ∼= D•τ holds by induction hypothesis, Lemma 1.5
below yields isomorphisms

E•σ ∼= A•σ ⊗D•τ E•τ ∼= A•σ ⊗D•τ D•τ = A•σ . �

1.5 LEMMA . If a cone σ is the sum � + τ of a facet τ and a ray �, then the minimal
extension sheaf E• on 〈σ 〉 satisfies in a natural way

E•σ ∼= A•σ ⊗D•τ E•τ ∼= D•� ⊗R E
•
τ ,
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using an isomorphism as in (1.4.2). In particular, the restriction homomorphism E•σ → E•τ
induces an isomorphism E•σ ∼= E•τ of graded vector spaces.

PROOF. We use induction on dimσ . For a proper faceγ ≺ τ , we writeγ̂ := �+γ ≺ σ ;
furthermore, with the projectionqγ : Vγ̂ = V�⊕Vγ → Vγ and the subalgebraD•γ := q∗γ (A•γ )
of A•

γ̂
, we haveA•

γ̂
∼= D•� ⊗R D

•
γ . By induction hypothesis, there are natural isomorphisms

E•
γ̂
∼= A•γ̂ ⊗D•γ E•γ ∼= D•� ⊗R E

•
γ . With a non-zero linear formT ∈ A2

σ that vanishes onVτ ,
we may writeD•� = R[T ] and thus

A•σ = D•τ [T ] , A•γ̂ = D•γ [T ] and E•γ̂
∼= A•γ̂ ⊗D•γ E•γ = E•γ [T ] = E•γ ⊕ T E•γ [T ] .

Since∂σ = 〈τ 〉 ∪ {γ̂ ; γ ≺ τ }, there is an isomorphismE•∂σ
∼= E•τ ⊕ T E•∂τ [T ]. To prove the

isomorphismE•σ ∼= A•σ ⊗D•τ E•τ of the assertion, we first note that theA•σ -module on the right
hand side is free. It thus suffices to show that the restriction homomorphismA•σ ⊗D•τ E•τ →
E•∂σ induces an isomorphism modulom. This homomorphism agrees with the natural map

A•σ ⊗D•τ E•τ ∼= E•τ [T ] = E•τ ⊕ TE•τ [T ] −→ E•τ ⊕ T E•∂τ [T ] .
It is surjective, sinceE•τ → E•∂τ is; hence, the restriction modulom is surjective, too; fur-
thermore, it is injective since the compositionE•τ [T ] → E•τ ⊕ T E•∂τ [T ] → E•τ even is an
isomorphism modulom. �

If ∆ is anN-rational fan for a latticeN ⊂ V of rankn = dimV , one associates to∆ a
toric varietyX∆ with the action of the algebraic torusT := N ⊗Z C∗ ∼= (C∗)n. Let IH •T(X∆)
denote the equivariant intersection cohomology ofX∆ with real coefficients. The follow-
ing theorem, proved in [BBFK], has been the starting point to investigate minimal extension
sheaves:

1.6 THEOREM. Let ∆ be a rational fan and E• a minimal extension sheaf on ∆.
i) The presheaf

IH•T : Λ �→ IH •T(XΛ)

is a minimal extension sheaf on the fan space ∆.
ii) For each cone σ ∈ ∆, the (non-equivariant) intersection cohomology sheaf IH• of

X∆ is constant along the corresponding T-orbit, and its stalks are isomorphic to E•σ .
iii) If ∆ is complete or is affine of dimension n, then one has

IH •(X∆) ∼= E•∆ .

Statement (iii) will be generalized in Theorem 4.3 to a considerably larger class of ratio-
nal fans, called “quasi-convex”.

For a non-zerorational coneσ , the vanishing axiom for intersection cohomology to-
gether with statement (ii) yieldsEqσ = 0 forq ≥ dimσ . This fact turns out to be a cornerstone
in the recursive computation of intersection Betti numbers in Section 5. In the non-rational
case, we have to state it as a condition; we conjecture that it holds in general:

1.7. VANISHING CONDITION V(σ ): A non-zero cone σ satisfies the condition V(σ ) if

Eqσ = 0 for q ≥ dimσ
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holds. A fan ∆ satisfies the condition V(∆) if V(σ ) holds for each non-zero cone σ ∈ ∆.

We add some comments on that condition. Note that the statements (ii) and (iii) in the
following remark are not needed for later results; in particular, the results cited in their proof
do not depend on these statements. — Statement (iii) has been influenced by a remark of Tom
Braden.

1.8 REMARK. i) If a fan∆ is simplicial or rational, then conditionV(∆) is satisfied.
ii) ConditionV(σ ) is equivalent to

E
q

(σ,∂σ ) = {0} for q ≤ dimσ .

iii) If ∆ satisfiesV(∆), then every homomorphismE• → F • between minimal exten-
sion sheaves on∆ is determined by the homomorphismR• ∼= E•o → F •o ∼= R•.

PROOF. (i) The rational case has been mentioned above; for the simplicial case, see
Proposition 1.4.

(ii) ReplacingV with Vσ if necessary, we may assume dimσ = n; hence, the affine
fan 〈σ 〉 is “quasi-convex” (see Theorem 4.4). According to Corollary 6.9, there exists an
isomorphism of vector spacesEqσ ∼= E

2n−q
(σ,∂σ ). Hence, conditionV(σ ) holds if and only if

E
≤n
(σ,∂σ ) = 0. It remains to show that this is equivalent to the vanishingE

≤n
(σ,∂σ ) = 0. To

that end, we may apply the following fact: LetF • �= 0 be a finitely generatedA•-module; if
r <∞ is minimal withFr �= 0, thenFr ∼= Fr andF<r = 0.

(iii) We use the terminology of the proof of Proposition 1.3: We have to show that a
homomorphismϕ∂σ : E•∂σ → F •∂σ extends in a unique way to a homomorphismϕσ : E•σ →
F •σ . Statement (ii) implies that the restriction homomorphismsE

q
σ → E

q
∂σ andFqσ → F

q
∂σ

are isomorphisms forq ≤ dimσ . Since, as a consequence ofV(σ ), theA•-modulesE•σ and
F •σ can be generated by homogeneous elements of degree below dimσ , the assertion follows.

�

2. Combinatorial pure sheaves. In the case of a rational fan, “the” minimal extension
sheaf is represented by the equivariant intersection cohomology sheaf (see Theorem 1.6) and
thus can be considered as an object of a class of “pure” sheaves. This observation holds also
for general minimal extension sheaves, regardless of rationality. The simple objects in this
class are generalizations of minimal extension sheaves. We introduce such objects and prove
an analogue to the decomposition theorem in intersection cohomology.

2.1 DEFINITION. A (combinatorially)pure sheaf on a fan space∆ is a flabby sheafF •
of gradedA•-modules such that, for each coneσ ∈ ∆, theA•σ -moduleF •σ is finitely generated
and free.

2.2 REMARK. As a consequence of the results in section 0.B and 0.C, we may replace
flabbiness with the following “local” requirement: For each coneσ ∈ ∆, the restriction
homomorphism�σ∂σ : F •σ → F •∂σ induces a surjective mapF •σ → F •∂σ .
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Pure sheaves are built up from simple objects, which are generalized minimal extension
sheaves:

(COMBINATORIALLY ) SIMPLE SHEAVES. For each coneσ ∈ ∆, we construct induc-
tively a “simple” sheafσL• on∆ as follows: For a coneτ ∈ ∆ with dimτ ≤ dimσ , we
set

σL
•
τ := σL•(τ ) :=

{
A•σ if τ = σ ,
0 otherwise.

If σL• has been defined on∆≤m for somem ≥ dimσ , then for eachτ ∈ ∆m+1, we set

σL
•
τ := A•τ ⊗R σL

•
∂τ

and define the restriction map�τ∂τ just as in (1.3.1).

Let us collect some useful facts about these sheaves.

2.3 REMARK. i) The simple sheafF • := σL• is pure; it is determined by the fol-
lowing properties:

a) F •σ ∼= R•,
b) for each coneτ �= σ , the reduced restriction mapF •τ → F •∂τ is an isomorphism.
ii) The sheafσL• vanishes outside of st∆(σ) and can be obtained from a minimal exten-

sion sheaf∆σ E• on the transversal fan∆σ in the following way: We choose a decomposition
V = Vσ ⊕W , and letD•W ⊂ A• denote the image ofS•

(
(V /Vσ )

∗) in A• andD•σ , the image
of S•(V ∗σ ) with respect to the projection with kernelW . ThenA• ∼= D•σ ⊗RD

•
W , and on st(σ ),

there is a decomposition

σL• ∼= D•σ ⊗R (∆σ E•) ,
where we identify∆σ with st(σ ).

iii) For the zero coneo, the simple sheafoL• is the minimal extension sheaf of∆.
iv) If ∆ is a rational fan andY ⊂ X∆ the orbit closure associated to a coneσ ∈ ∆,

then the presheaf

YIH•T : Λ �→ IH •T(Y ∩XΛ)
on∆ is a sheaf isomorphic toσL•.

As main result of this section, we provide a Decomposition Formula for pure sheaves.

2.4 ALGEBRAIC DECOMPOSITIONTHEOREM. Every pure sheaf F • on ∆ admits a
direct sum decomposition

(2.4.1) F • ∼=
⊕
σ∈∆

(
σL• ⊗R K

•
σ

)

with K•σ := K•σ (F •) := ker( �σ∂σ : F •σ → F •∂σ ), a finite dimensional graded vector space.
Since a finite dimensional graded vector spaceK• has a unique representation in the form

K• =⊕
i R•[−�i]ni , the decomposition (2.4.1) may be written as

F • ∼=
⊕
i

σiL•[−�i]ni ,
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which is the “classical” version of the Decomposition Theorem.

PROOF. The following result evidently allows an inductive construction of the decom-
position (2.4.1):

Let F • be a pure sheaf on ∆. For each cone σ ∈ ∆ of minimal dimension with F •σ �= 0,
there is a decomposition F • = G• ⊕H• as a direct sum of pure A•-submodules where G• ∼=
σL• ⊗R F

•
σ and H• (where H •σ = 0).

We construct the decomposition recursively on each skeleton∆≤m, starting withm =
dimσ : We setK•σ := F •σ and

G•(τ ) :=
{
F •σ ∼= A•σ ⊗R K

•
σ if τ = σ ,

0 otherwise,
and H•(τ ) :=

{
0 if τ = σ ,
F •(τ ) otherwise.

We now assume that we have constructed the decomposition on∆≤m. In order to extend it to
∆≤m+1, it suffices to fix a coneτ ∈ ∆m+1 and to extend the decomposition from∂τ to the
affine fan〈τ 〉. By induction hypothesis, there exists a commutative diagram

F •τ →→ F •∂τ
∼= G•∂τ ⊕H •∂τ




K•τ ↪→ F •τ →→ F •∂τ
∼= G•∂τ ⊕H •∂τ .

We choose a first decompositionF •τ = K•τ ⊕N • ⊕M• satisfyingN • ∼= G•∂τ andM• ∼=
H •∂τ . We may then lift it to a decompositionF •τ = G•τ ⊕ H •τ into freeA•τ -submodules such
thatG•τ = N • andH •τ = K•τ ⊕M• as well asG•τ |∂τ = G•∂τ andH •τ |∂τ = H •∂τ . �

2.5 GEOMETRIC DECOMPOSITIONTHEOREM. Let π : ∆̌→ ∆ be a refinement map
of fans with minimal extension sheaves Ě• and E•, respectively. Then there is a decomposition

π∗(Ě•) ∼= E• ⊕
⊕
σ∈∆≥2

σL• ⊗R K
•
σ

of A•-modules, where the K•σ are (positively) graded vector spaces, and the “correction
terms” are supported on ∆≥2.

PROOF. For an application of the Algebraic Decomposition Theorem 2.4, we have
to verify that the flabby sheafπ∗(Ě•) is pure. We still need to know that theA•σ -modules
π∗(Ě•)(σ ) are free. Ifσ is ann-dimensional cone, then the affine fan〈σ 〉 is quasi-convex,
see section 4. According to Corollary 4.7, the same holds true for the refinementσ̌ :=
π−1(〈σ 〉) � ∆̌; hence, by Theorem 4.3,̌Eσ̌ is a freeA•-module. For a cone of positive
codimension, we may go over toVσ . — The fact thatπ∗(Ě•) ∼= E• ∼= A• on∆≤1 provides the
condition dimσ ≥ 2, whileK<0

σ = 0 is an obvious consequence of the corresponding fact for
π∗(Ě•). �
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2.6 COROLLARY. Let π : ∆̌→ ∆ be a simplicial refinement of ∆. Then the minimal
extension sheaf E• on∆ can be embedded as a direct factor into the sheaf of functions on |∆|
that are ∆̌-piecewise polynomial.

PROOF. According to Proposition 1.4, the sheafǍ• is a minimal extension sheaf oň∆.
By the Geometric Decomposition Theorem 2.5, we know thatE• is a direct subsheaf of
π∗(Ǎ•), which is the sheaf of functions on|∆| that are∆̌-piecewise polynomial. �

We conclude this section with an application of the Algebraic Decomposition Theorem
2.4 to Poincaré polynomials

P∆(t) :=
<∞∑
q≥0

dim E
2q
∆ · t2q , Pσ (t) :=

<∞∑
q≥0

dim E2q
σ · t2q

which has been communicated to us by Tom Braden (cf. also [BrMPh]):

2.7 THEOREM (Kalai’s Conjecture). For an affine fan ∆ := 〈σ 〉 and a face τ � σ

with transversal fan ∆τ , there is a coefficientwise inequality of polynomials

Pσ ≥ Pτ · P∆τ .
PROOF. Let E• denote the minimal extension sheaf on∆ andF •, the trivial extension

of E•|st(τ ) by zero to∆. For a subfanΛ of ∆, we haveF •Λ = E•Λ0
, whereΛ0 � Λ is the

subfan generated by the cones inΛ ∩ st(τ ). In particular, we see thatF • is a pure sheaf and
hence, according to the Algebraic Decomposition Theorem 2.4, may be written in the form

F • ∼= (τL• ⊗K•τ )⊕ · · · .
Thus, if we denoteP(K•) the Poincaré polynomial of the graded vector spaceK•, we obtain
the inequality

P(F •∆) ≥ P(τL
•
∆ ⊗K•τ ) = P(τL

•
∆) · P(K•τ ) .

The equalitiesK•τ = E•τ andF •∆ = E•σ are readily checked, so thatP(Kτ ) = Pτ and
P(F •∆) = Pσ holds. In the notation of 2.3 (ii), we have

A•σ ∼= D•τ ⊗R D
•
W , τL

•
∆
∼= D•τ ⊗R E

•
∆τ
,

i.e., the Poincaré polynomial ofτL•∆
∼= E•∆τ coincides withP∆τ . �

3. Cellular Čech cohomology. In this section, we introduce and discuss a “cellular”
cochain complex associated with a sheaf on a fan and the corresponding cohomology. This
theory will later be used as a principal technical tool to reach one of the main aims of the
present article, namely,to characterize those fans∆ for which theA•-moduleE•∆ of global
sections of a minimal extension sheafE• on∆ is free.

3.1. THE CELLULAR COCHAIN COMPLEX. To a sheafF of abelian groups on a fan
space∆, we associate acellular cochain complex C•(∆,F): The cochain groups are

Ck(∆,F) :=
⊕

dimσ=n−k
F(σ ) .
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To define the coboundary operatorδk : Ck → Ck+1, we first fix, for each coneσ ∈ ∆, an
orientation or(σ ) of Vσ such that or|∆n is a constant function. To each facetτ ≺1 σ , we then
assign the orientation coefficient orσ

τ := 1 if the orientation ofVτ , followed by some inward
pointing vector, coincides with the orientation ofVσ , and orστ := −1 otherwise. We then set

δ(f )τ :=
∑
σ�1τ

orστ fσ |τ for f = (fσ ) ∈ Ck(∆,F) and τ ∈ ∆n−k−1 .

For a minimal extension sheafE• on∆, the complexC•(∆, E•) is, up to a rearrangement
of indices, aminimal complex in the sense of Bernstein and Lunts. We shall come back to that
at the end of Section 4.

More generally, we have to consider relative cellular cochain complexes with respect to
subfans.

3.2 DEFINITION. For a subfanΛ of ∆ and a sheafF on the fan space∆, we set

C•(∆,Λ;F) := C•(∆;F)/C•(Λ;F) and Hq(∆,Λ;F) := Hq(C•(∆,Λ;F))
with the induced coboundary operatorδ• := δ•(∆,Λ;F). If ∆ is purelyn-dimensional,Λ a
purely (n − 1)-dimensional subfan of∂∆, andΛc its “complementary” subfan generated by
the cones in(∂∆)n−1 \Λ, then the restriction of sections induces an augmented complex

C̃•(∆,Λ;F) : 0→ F(∆,Λc)
δ−1−→ C0(∆,Λ;F) δ0−→ · · · −→ Cn(∆,Λ;F)→ 0

with cohomologyH̃ q(∆,Λ;F) := Hq(C̃•(∆,Λ;F)).
In fact, we need only the two casesΛ = ∂∆ andΛ = ∅, where the complementary

subfan isΛc = ∅ resp.Λc = ∂∆. We mainly are interested in the case whereF is anA•-
module. Then, the cohomologỹHq(∆,Λ;F) is anA•-module. — In the augmented situation
described above, we note thatC0(Λ;F) = 0 and henceC0(∆,Λ;F) = C0(∆;F) holds.

For the constant sheafF = R, we want to compare the cohomologỹH •(∆, ∂∆;R) with
the usual real singular homology of a “spherical” cell complex associated with a purelyn-
dimensional fan∆. To that end, we fix a euclidean norm onV (and hence onV/Vσ for every
coneσ ∈ ∆); let SV ⊂ V be its unit sphere, and for a subfanΛ � ∆, let

SΛ := |Λ| ∩ SV .
For each non-zero coneσ in V , the subsetSσ := σ∩SV is a closed cell of dimension dimσ−1.
Hence, the collection(Sσ )σ∈∆\{o} is a cell decomposition ofS∆, and the corresponding (aug-
mented) “homological” complexC•(S∆;R) of cellular chains with real coefficients essen-
tially coincides with the cochain complexC•(∆;R): We haveCq(∆;R) = Cn−1−q (S∆;R)
andδq = ∂n−1−q for q ≤ n− 1.

Let us call afacet-connected component of∆ each purelyn-dimensional subfanΛ being
maximal with the property that every twon-dimensional cones can be joined by a chain of
n-dimensional cones inΛ where two consecutive ones meet in a facet.

3.3 REMARK. Let∆ be a purelyn-dimensional fan.
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(i) If ∆ is complete orn ≤ 1, thenH̃ •(∆, ∂∆;R) = 0.
(ii) If ∆ is not complete andn ≥ 2, then

H̃ q(∆, ∂∆;R) ∼= Hn−1−q(S∆, S∂∆;R) for q > 0 ;
in particular,H̃ q(∆, ∂∆;R) = 0 holds forq ≥ n− 1.

(iii) If s is the number of facet-connected components of∆, then

H̃ 0(∆, ∂∆;R) ∼= Rs−1 .

PROOF. The casen ≤ 1 is straightforward. Forn ≥ 2, the cohomology is computed
via cellular homology; in the complete case, one has to use the fact that such a fan is facet-
connected and that there is an isomorphism

H̃ q(∆;R) ∼= H̃n−1−q(SV ;R) for n ≥ 2 and q ≥ 1 .

For iii), we note that∆ is connected; hence, the global sections of the constant sheafR form
a one-dimensional vector space. �

In order to study the cellular cohomology of a flabby sheafF of real vector spaces on∆,
we want to write such a sheaf as a direct sum of simpler sheaves: To a coneσ in ∆, we
associate itscharacteristic sheaf σJ , i.e.,

σJ (Λ) :=
{

R if Λ � σ ,
0 otherwise,

while the restriction homomorphisms are idR or 0.
The following lemma is an elementary analogue of the Algebraic Decomposition Theo-

rem 2.4.

3.4 LEMMA . Every flabby sheaf F of real vector spaces on ∆ admits a direct sum
decomposition

F ∼=
⊕
σ∈∆

σJ ⊗R Kσ

with the vector spaces Kσ := ker(�σ∂σ : F(σ )→ F(∂σ )).
PROOF. The following arguments are analoguous to those in the proof of the Algebraic

Decomposition Theorem 2.4. Evidently, it suffices to decompose such a flabby sheafF as a
direct sum

(3.4.1) F = G ⊕H
of flabby subsheavesG andH, whereG ∼= σJ ⊗ Kσ andH(σ ) = 0 for some coneσ ∈ ∆.
We then may use induction on the number of conesτ ∈ ∆, such thatF(τ ) �= 0.

For (3.4.1), letσ be a cone of minimal dimension, sayd, with F(σ ) �= 0. We construct
the subsheavesG andH on the skeleton∆≤d as follows:

G(τ ) : =
{F(σ ) = Kσ if τ = σ ,

0 otherwise
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while

H(τ ) :=
{

0 if τ = σ
F(τ ) otherwise.

We now suppose that the decomposition (3.4.1) has been constructed on∆≤m. Let τ be a
cone of dimensionm+ 1. In particular, there is a decomposition

F(∂τ ) = G(∂τ )⊕H(∂τ ) .
SinceF is flabby, the restriction map�τ∂τ : F(τ ) → F(∂τ ) is surjective. We can find a
decompositionF(τ ) = U ⊕W into complementary subspacesU,W ⊂ F(τ ) such that�τ∂τ
induces an isomorphismU

∼=−→ G(∂τ ) and an epimorphismW →→ H(∂τ ). Now we set
G(τ ) := U andH(τ ) := W . In that manner, we can defineG andH for all (m + 1)-
dimensional cones and thus on∆≤m+1. �

Cellular cohomology commutes with direct sums and the tensor product with a fixed
vector space. Hence, from Lemma 3.4 stems an isomorphism of graded vector spaces

(3.4.2) H̃ •(∆, ∂∆;F) ∼=
⊕
σ∈∆

H̃ •(∆, ∂∆; σJ )⊗R Kσ .

We thus are led to compute the cohomology of characteristic sheaves.

3.5 REMARK. For a coneσ ∈ ∆, its transversal fan∆σ , and the characteristic
sheafσJ , there are isomorphisms

H̃ •(∆; σJ ) ∼= H̃ •(∆σ ;R) and H̃ •(∆, ∂∆; σJ ) ∼= H̃ •(∆σ , ∂∆σ ;R) .
In particular, Remark 3.3 ii) implies

H̃ q(∆, ∂∆; σJ ) = 0 for q ≥ n− dimσ − 1

for each coneσ ∈ ∆.

4. Quasi-convex fans. In this section, we study those fans∆ for which theA•-
moduleE•∆ of global sections of a minimal extension sheafE• on∆ is free. The great in-
terest in that freeness condition is due to the “Künneth formula”E•∆

∼= A• ⊗R• E•∆, which
holds in that case. The name “quasi-convex” introduced below for such fans is motivated by
Theorem 4.4. Quasi-convexity allows us in sections 5 and 6 first to compute virtual intersec-
tion Betti numbers and Poincaré duality on the “equivariant” levelE•∆, and then to pass to
“ordinary” (virtual) intersection cohomologyE•∆. We give various characterizations of quasi-
convex fans: We first formulate the main result of this section, then restate it in topological
terms, and then proceed to the proof.

4.1 DEFINITION. A fan∆ is calledquasi-convex if theA•-moduleE•∆ is free.
Quasi-convex fans are known to be purelyn-dimensional, see [BBFK; 6.1]. In the ratio-

nal case, quasi-convexity can be reformulatedin terms of the associated toric variety:
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4.2 THEOREM. A rational fan ∆ is quasi-convex if and only if the intersection coho-
mology of the associated toric variety X∆ vanishes in odd degrees:

IH odd(X∆;R) :=
⊕
q≥0

IH 2q+1(X∆;R) = 0 .

In that case, there exists an isomorphism IH •(X∆) ∼= E•∆.

PROOF. See Proposition 6.1 in [BBFK]. �

4.3 THEOREM (Characterization of quasi-convex fans).For a purely n-dimensional
fan ∆ and its minimal extension sheaf E•, the following statements are equivalent:

(a) The fan ∆ is quasi-convex,
(b) H̃ •(∆, ∂∆; E•) = 0,
(c) H̃ •(∆σ , ∂∆σ ;R) = 0 for each cone σ ∈ ∆.

We put off the proof for a while, since we first want to deduce atopological characteri-
zation of quasi-convex fans. In its proof and in the subsequent lemma, we use the following
notations:

For a coneσ in a fan∆, we setLσ := S∆σ ⊂ (V /Vσ ) and∂Lσ := S∂∆σ ; in particular,
we haveLo = S∆. It is important to note that the cellular complexLσ in the (k − 1)-
sphereSV/Vσ (for k := n− dimσ ) may be identified with thelink at an arbitrary point of the
(n− k − 1)-dimensional stratumSσ \ S∂σ of the stratified spaceS∆, while its boundary∂Lσ
is the link of such a point inS∂σ .

4.4 THEOREM. A purely n-dimensional fan ∆ is quasi-convex if and only if the sup-
port |∂∆| of its boundary fan is a real homology manifold. In particular, ∆ is quasi-convex
if ∆ is complete or if S∆ is a closed topological (n − 1)-cell, e.g., if the support |∆| or the
complement of the support V \ |∆| are convex sets.

PROOF. For a coneσ ∈ ∆ \ ∂∆, the transversal fan∆σ is complete; thus Remark 3.3,
(i) implies H̃ •(∆σ , ∂∆σ ;R) = 0, which means that condition (c) in Theorem 4.3 is satisfied
for such a cone. In particular, Theorem 4.3 implies that a complete fan is quasi-convex. It
remains to discuss the cones in∂∆. If dim σ is at leastn − 1, then again 3.3 (i) implies
the corresponding vanishing condition in 4.3 (c). Hence, it suffices to consider conesσ ∈
(∂∆)n−k for k ≥ 2. The proof in that case is achieved by Lemma 4.5. In fact, part (ii) of
Remark 3.3 implies that

(4.4.1) H̃ q(∆σ , ∂∆σ ;R) ∼= Hk−1−q(Lσ , ∂Lσ ;R) for q > 0 ,

while H̃ 0(∆σ , ∂∆σ ;R) = 0 if and only ifH 0(∆σ , ∂∆σ ;R) ∼= Hk−1(Lσ , ∂Lσ ;R) = R. �

4.5 LEMMA . For a non-complete purely n-dimensional fan ∆, the following state-
ments are equivalent:

(i) The fan ∆ is quasi-convex.
(ii) Each cone σ in ∂∆ satisfies the following condition:
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(ii)σ The pair (Lσ , ∂Lσ ) is a real homology (k − 1)-cell modulo boundary for
k := n− dimσ .

(iii) Each cone σ in ∂∆ satisfies the following condition:
(iii) σ The link Lσ has the real homology of a point.

(iv) Each cone σ in ∂∆ satisfies the following condition:
(iv)σ The boundary of the link ∂Lσ has the real homology of a sphere of dimen-

sion k − 2 for k := n− dimσ .

PROOF. We already have seen in (4.4.1) that condition (c) of Theorem 4.3 and state-
ment (ii) are equivalent; thus we have reduced the equivalence “(i)⇔ (ii)” to Theorem 4.3.

In order to prove the equivalence of (ii), (iii), and (iv), we use induction onn. The case
n = 0 is vacuous, and in casen = 1, it is trivial to check that (ii), (iii), and (iv) hold. We
thus assume that the equivalence holds for every non-complete purelyd-dimensional fan with
d ≤ n − 1. If we apply that to the fans∆σ for σ ∈ ∂∆ \ {o}, we see that the condition(ii)σ
is satisfied for each coneσ ∈ ∂∆ \ {o}, if and only if (iii )σ resp. (iv)σ is. Hence it suffices
to derive the equivalence of(ii)o, (iii )o and(iv)o under one of that assumptions. We need the
following result:

4.6 LEMMA . Let L := Lo. If the condition (iii )σ is satisfied for each non-zero cone
σ ∈ ∂∆, then

(4.6.1) H•(L,L \ ∂L) = 0

holds.

PROOF. For i = −1, . . . , n− 2, we setUi := L \ (∂L)i , where(∂L)i is thei-skeleton
of ∂L = S∂∆. By induction oni, we show thatH•(L,Ui) = 0 holds. This is evident for
i = −1, and the casei = n − 2 is what we are aiming at. For the induction step, we use the
homology sequence associated to the triple(L,Ui, Ui+1) and showH•(Ui, Ui+1) = 0. Let
∆′ be the following "barycentric" subdivision of∆: For each coneσ ∈ ∆ \ ∂∆, we choose
an additional ray�σ meetingσ◦ . Then∆′ consists of the cones

τ + �τ1 + · · · + �τr , whereτ ∈ ∂∆ andτ ≺1 τ1 ≺1 · · · ≺1 τr with τi ∈ ∆
◦
.

Let st′(σ◦ ) denote the open star ofSσ� with respect to the cellular decomposition ofL induced
by∆′. Then, by excision, the inclusion( •⋃

σ∈(∂∆)i+2

st′(σ◦ ),
•⋃

σ∈(∂∆)i+2

(st′(σ◦ ) \ Sσ�)
)
⊂ (Ui, Ui+1)

induces an isomorphism in homology, while

H•

( •⋃
σ∈(∂∆)i+2

st′(σ◦ ),
•⋃

σ∈(∂∆)i+2

(st′(σ◦ ) \ Sσ�)
)
∼=

⊕
σ∈(∂∆)i+2

H•(st′(σ◦ ), st′(σ◦ ) \ Sσ�) .

Furthermore, there is a homeomorphism st′(σ◦ ) ∼= c◦ (Lσ )×Sσ� , wherec◦ (Lσ ) denotes the open
cone overLσ with vertexv. By the Künneth formula, we thus obtain the first isomorphism in
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the chain

H•
(
st′(σ◦ ), st′(σ◦ ) \ Sσ�

) ∼= H•(c
◦
(Lσ ), c

◦
(Lσ ) \ {v}) ∼= H̃•(Lσ )[−1] = 0 ;

the second one follows from the homotopy equivalencesc
◦
(Lσ ) � v andc◦ (Lσ ) \ {v} � Lσ ,

and the final equality from the assumption(iii )σ . �

We now continue the proof of Lemma 4.5.
“ (ii)o ⇔ (iii )o” With L

◦ := L \ ∂L, we conclude from (4.6.1) this chain of isomor-
phisms

Hq(L) ∼= Hq(L
◦
) ∼= Hn−1−q(SV , SV \ L

◦
) ∼= Hn−1−q(L, ∂L) ∼= Hn−1−q(L, ∂L)∗ ,

where the first one follows from the above lemma, the second one, from relative Poincaré
duality (see, e.g., [Sp: Thm. 6.2.17]), the third one is obtained by excision, and the fourth one
is the obvious duality.

“ (iii )o ⇒ (iv)o”: We may assumen ≥ 3; we then have to show that∂L has the
same homology as an(n − 2)-dimensional sphere. From (iii) together with the equiva-
lent assumption (ii) and the exact homology sequence of the pair(L, ∂L), we derive that
H̃j−1(∂L) ∼= Hj(L, ∂L) = 0 for j �= n− 1, andHn−2(∂L) ∼= Hn−1(L, ∂L) = R.

“ (iv)o ⇒ (iii )o”: It remains to verify that the reduced homologỹH•(L) vanishes. We set
C := Sn−1 \ L◦ and look at the Mayer-Vietoris sequence

· · · → Hq+1(S
n−1)→ Hq(∂L)→ Hq(L)⊕Hq(C)→ Hq(S

n−1)→ Hq−1(∂L)→ · · ·

associated toSn−1 = L ∪ C. The hypothesis immediately yields̃Hq(L) ⊕ H̃q(C) = 0 for
q ≤ n − 3, which settles the claim for these values ofq. The termHn−1(L) ⊕ Hn−1(C)

vanishes since both,L andC, are(n − 1)-dimensional cell complexes inSn−1 with non-
empty boundary. That is obvious forL; for C, it is true since∆ has a refinement which
can be embedded into a complete fan, see 0.A. The arrowHn−1(S

n−1) → Hn−2(∂L) in
the exact sequence under consideration is thus injective; hence, it is even an isomorphism
of one-dimensional vector spaces. This implies that the mappingHn−2(L) ⊕ Hn−2(C) →
Hn−2(S

n−1) is injective, too, and that yieldsHn−2(L) = 0. �

As a consequence, we see that quasi-convexity of a purelyn-dimensional fan depends
only on the topology of its boundary:

4.7 COROLLARY. Let ∆ and ∆′ be purely n-dimensional fans. If their boundaries
have the same support |∂∆| = |∂∆′|, then ∆ is quasi-convex if and only if ∆′ is.

In particular, that applies to the following special cases:
i) ∆′ is a refinement of ∆,
ii) ∆ and∆′ are “complementary” subfans, i.e.,∆ ∪∆′ is a complete fan, and ∆ and

∆′ have no n-dimensional cones in common.

We now come to the proof of Theorem 4.3:
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4.8 PROOF OF THEOREM 4.3. For convenience, we briefly recall that we have to
prove the equivalence of the following three statements for a purelyn-dimensional fan∆ and
the minimal extension sheafE• on∆:

(a) TheA•-moduleE•∆ = E•(∆) is free;
(b) H̃ •(∆, ∂∆; E•) = 0,
(c) H̃ •(∆σ , ∂∆σ ;R) = 0 for each coneσ ∈ ∆.

“ (b)⇔ (c)”: If we write

E• ∼=
⊕
σ∈∆

σJ ⊗Kσ

according to Lemma 3.4, we obtain the following direct sum decomposition

H̃ •(∆, ∂∆; E•) ∼=
⊕
σ∈∆

H̃ •(∆σ , ∂∆σ ;R)⊗Kσ

according to Remark 3.5 and the isomorphism (3.4.2). Hence it is sufficient to see that none
of the vector spacesKσ = ker(�σ∂σ : E•σ → E•∂σ ) is zero: SinceE•σ is a non-zero freeA•σ -
module andE•∂σ is a torsion module (see [BBFK: 6.1]), the restriction homomorphism�σ∂σ
never is injective.
“ (b)⇒ (a)”: We shall use the abbreviations

Cr := Cr(∆, ∂∆; E•) , I r := im δr−1 , and Tork := TorA
•

k .

By downward induction onr, we verifiy the vanishing statement

(4.8.1) Tork(I r ,R•) = 0 for k > r .

That yields the quasi-convexity: SinceI0 = E•∆, we obtain Tor1(E•∆,R•) = 0; hence, ac-
cording to (0.B), the gradedA•-moduleE•∆ is free.

Obviously (4.8.1) holds forr = n+1. By assumption, the complexC• is acyclic; hence,
each sequence

0→ I r → Cr → I r+1→ 0

is exact and thus induces an exact sequence

Tork+1(I
r+1,R•)→ Tork(I

r ,R•)→ Tork(C
r ,R•) .

By induction hypothesis, its first term vanishes; thus, it suffices to verify the vanishing of the
last term fork > r: The moduleCr = ⊕

dimσ=n−r E•σ actually is a direct sum of shifted
modulesA•σ , so Tork(Cr ,R•) = 0 for k > r, see (0.B.1).
“ (a)⇒ (b)” In addition to the above, we use the abbreviations

Kr := kerδr and H̃ r := H̃ r (∆, ∂∆; E•) = Kr/I r .

In order to verify the vanishing of̃H • := H̃ •(∆, ∂∆; E•), we choose an increasing sequence
of subspacesV0 := 0 ⊂ V1 ⊂ · · · ⊂ Vn := V such thatV = Vr ⊕ Vσ holds simultaneously
for eachσ ∈ ∆n−r . Then the algebrasD•r := S•((V /Vr)∗) form a decreasing sequence of
subalgebras ofA•; moreover, there are isomorphismsD•r ∼= A•σ induced by the composed
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mappingsD•r ⊂ A• → A•σ . In particular, eachCr = ⊕
σ∈∆n−r E•σ is a freeD•r -module. In

addition, we choose linear formsT1, . . . , Tn in A2 such thatD•r = R[T1, . . . , Tn−r ].
By induction onr, we prove the stronger statement

H̃ q = 0 for q < r , and I r is a freeD•r -module .

SinceI0 = E•∆ is free by hypothesis, the assertion holds forr = 0. So let us proceed fromr
to r + 1. The vanishing ofH̃ r is a consequence of the fact that its support in Spec(D•r ) is
small: According to Lemma 4.10 below, the support ofH̃ r is of codimension at leastr + 2
in Spec(A•) and thus, considered asD•r -module, of codimension at least 2 in Spec(D•r ). An
application of Lemma 4.9 to the exact sequence

0→ I r → Kr → H̃ r → 0

yields the vanishingH̃ r = 0.
It remains to prove thatI := I r+1 = im δr is a free module overD• := D•r+1. By 0.B,

this is equivalent to
TorD

•
1 (I,R) = 0 .

Recall thatD•r = D•[T ] with T := Tn−r . Thus, the formula

(4.8.2) TorD
•

k (I,R) ∼= TorD
•[T ]

k (I,R[T ])
provides the bridge to the induction hypothesis on the previous levelr. The multiplication
by T yields an endomorphismµ := µT of R[T ] that has degree two, providing exact se-
quences

(4.8.3) 0−→ R[T ] µ−→ R[T ] −→ R −→ 0

and
TorD

•[T ]
2 (I,R) −→ TorD

•[T ]
1 (I,R[T ]) ϑ−→ TorD

•[T ]
1 (I,R[T ]) .

The mapϑ is a homomorphism of degree two since it is induced by the multiplicationµT .
Moreover, it isinjective: In the exact sequence ofD•r -modules

(4.8.4) 0−→ Kr −→ Cr
δr−→ I −→ 0 ,

the moduleKr is isomorphic toI r sinceH̃ r vanishes. Hence, by induction hypothesis, the se-

quence (4.8.4) is afreeD•r -resolution ofI , thus yielding TorD
•[T ]

2 (I,R•) = Tor
D•r
2 (I,R•) = 0.

— Eventually, since TorD
•[T ]

1 (I,R•[T ]) ∼= TorD
•

1 (I,R•) is a finite-dimensional graded vector
space, the injective endomorphismϑ of degree two is the zero map, whence TorD•

1 (I,R•) = 0.
�

We still have to state and prove the two lemmata referred to above. The first one is a
general result of commutative algebra.

4.9 LEMMA . Let R be a noetherian normal integral domain and consider an exact
sequence

0→ Rs → M → H → 0
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of finitely generated R-modules. If M is torsion free and H non-zero, then supp(H) is of
codimension at most 1 in SpecR.

PROOF. We may assume thatY := suppH is a proper subset ofX := SpecR.
Hence,H is a torsion module and thusM is a module of ranks. Let Q be the field of
fractions ofR. SinceM is torsion-free, there is a natural monomorphism

M = M ⊗R R ↪→ M ⊗R Q =: MQ
∼= Qs .

We may interpret the given monomorphismRs ↪→ M as an inclusion. Hence, anR-basis of
Rs may be considered as aQ-basis ofMQ, thus providing an identificationMQ = Qs .

We now fix a non-zero elementh ∈ H and an inverse imagem = (q1, . . . , qs) ∈ M ⊂
Qs of that elementh. A prime idealp ofR lies inX\Y if and only if the localized moduleH�

vanishes, or equivalently — since localization is exact —, if and only if the localized inclusion
(R�)

s ↪→ M� is an isomorphism. Hence,p �∈ Y impliesq1, . . . , qs ∈ R�. SinceR is normal
and noetherian, the stipulation codimX(Y ) ≥ 2 would yieldq1, . . . , qs ∈ R, i.e.,m ∈ Rs ,
providing the contradictionh = 0. �

4.10 LEMMA . The support of the A•-module H̃ q(∆, ∂∆; E•) in Spec(A•) is of codi-
mension at least q + 2.

PROOF. For a prime idealp ⊂ A•, let H̃ q
� be the localization atp of theA•-moduleH̃ q .

We show that supp̃Hq := {p ∈ Spec(A•) ; H̃ q
� �= 0}, thesupport of H̃ q , is contained in the

union

(4.10.1)
⋃

σ∈∆≤n−q−2

SpecAσ

of the “linear subspaces" SpecA•σ ⊂ SpecA•. To that end, we consider a prime idealp ∈
Spec(A•). Since localization ofA•-modules atp is an exact functor, the localized cohomology
moduleH̃ q

� is theq-th cohomology of the complex

C̃•� ∼= C̃•(∆, ∂∆; E•�) ,
where the “localized” sheafE•� is determined by

E•�(τ ) := E•(τ )� .
Let k = k(p) be the minimal dimension of a coneτ ∈ ∆ such thatp belongs to Spec(A•τ ).
ThenE•�(σ ) = 0 for a cone with dimσ < k, whence in particular a decomposition

E•� ∼=
⊕

dimσ≥k
σJ ⊗Kσ ,

see Lemma 3.4. According to (3.4.2) and Remark 3.5,

H̃ q(∆, ∂∆; E•�) ∼=
⊕

dimσ≥k
H̃ q(∆, ∂∆; σJ )⊗Kσ

vanishes forq ≥ n − k − 1. Consequently, ifp belongs to supp̃Hq , thenk(p) ≤ n − q − 2
holds, i.e.,p appears in the union (4.10.1). �



26 G. BARTHEL, J.-P. BRASSELET, K.-H. FIESELER AND L. KAUP

Theorem 4.3 provides a characterization of quasi-convex fans in terms of acyclicity of
the relative cellular cochain complex. An analoguous statement holds also for the augmented
absolute cellular cochain complex

(4.11.1) 0→ F(∆,∂∆)→ C0(∆;F)→ · · · → Cn(∆;F)→ 0

for the sheafF = E• on∆. Up to a shift, that complex turns out to be a minimal complex in
the sense of Bernstein and Lunts: In [BeLu], a complex

Z• : 0−→ Z−n δ−n−→ Z−n+1 δ
−n+1−→ · · · δ−1−→ Z0 −→ 0

of gradedA•-modules is calledminimal if it satisfies the following conditions:
(i) Z0 ∼= R•[n], i.e., theA•-moduleA•/m ∼= R• placed in degree−n;
(ii) there is a decompositionZ−d =⊕

σ∈∆d Zσ for 0≤ d ≤ n;
(iii) eachZσ is a free gradedA•σ -module;
(iv) for each coneσ ∈ ∆, the differentialδ mapsZσ to

⊕
τ≺1σ

Zτ , so for dimσ = d,
one obtains a subcomplex

0−→ Zσ
δ−dσ−→

⊕
τ≺1σ

Zτ
δ−d+1
σ−→ . . . −→ Zo −→ 0 ;

(v) with Iσ := ker δ−d+1
σ , the differentialδ−dσ induces an isomorphism

δ−dσ : Zσ := Zσ/mZσ
∼=−→ Iσ := Iσ /mIσ

of real vector spaces.
If the fan∆ is purelyn-dimensional, then the shifted cochain complex

Z• := C•(∆, E•[n])[n] i.e., Z−i = Cn−i (∆, E•[n])
is minimal: WithZσ := E•σ [n], conditions (i)–(iv) are immediate; condition (v) follows from
(LME) using the isomorphismIσ ∼= E•(∂σ )[n] = E•∂σ [n] of A•σ -modules.

The following result proves a conjecture of Bernstein and Lunts in [BeLu], p.129:

4.11 THEOREM. A purely n-dimensional fan∆ is quasi-convex if and only if the com-
plex C•(∆, E•) is exact in degrees q > 0 and H 0(∆, E•) ∼= E•(∆,∂∆). Specifically, for a
complete fan ∆, a minimal complex in the sense of Bernstein and Lunts is exact except in
degree −n.

PROOF. We use the fact that the sheafE• is flabby, and we profit from the proof of
the equivalence (c)⇔ (b) in Theorem 4.3: By the absolute version of (3.4.2), the complex
(4.11.1) is acyclic for the sheafE• if and only if it is acyclic for each characteristic sheaf

σJ of σ ∈ ∆ since none of the vector spacesKσ vanishes, see the proof of Theorem 4.3,
(c)⇔ (b). Forσ �∈ ∂∆, the characteristic sheafσJ has been treated at the beginning of the
proof of Theorem 4.4. Forσ ∈ ∂∆, we haveσJ (∆, ∂∆) = 0, such that the absolute versions
of Remark 3.5 and formula (4.4.1) yield isomorphisms

H̃ q(∆, σJ ) ∼= Hq(∆, σJ ) ∼= Hq(∆σ ,R) ∼= H̃k−1−q(Lσ ,R) ,
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wherek = codimσ andLσ is the link of some pointx ∈ S∆ ∩ σ◦ . Eventually, statement (iii)
of Proposition 4.5 gives̃H•(Lσ ,R) = 0. �

4.12 COROLLARY. For a minimal extension sheaf E• on a quasi-convex fan ∆, the
A•-submodule E•(∆,∂∆) of E•∆ is free.

PROOF. Since the absolute cellular cochain complex is acyclic, we may proceed as in
the proof of Theorem 4.3. �

5. Poincaré polynomials. In the present section, we discuss the virtual intersection
Betti numbersb2q(∆) := dimE2q

∆ andb2q(∆, ∂∆) := dimE2q
(∆,∂∆) of a quasi-convex fan∆,

whereE• is a minimal extension sheaf on∆. It is convenient to use the language of Poincaré
polynomials.

5.1 DEFINITION. The (equivariant) Poincaré series of a fan∆ is the formal power
series

Q∆(t) :=
∑
q≥0

dim E
2q
∆ · t2q ,

its (intersection) Poincaré polynomial is the polynomial

P∆(t) =
∞∑
q=0

dim E
2q
∆ · t2q =

∞∑
q=0

b2q(∆)t
2q .

For an affine fan〈σ 〉, we simply write

Qσ := Q〈σ 〉 and Pσ := P〈σ 〉 .
Furthermore, for a subfanΛ � ∆, the relative Poincaré polynomialP(∆,Λ) is defined in an
analoguous manner.

We refer toP∆ as theglobal Poincaré polynomial of∆, while the polynomialsPσ for
σ ∈ ∆ are called itslocal Poincaré polynomials.

5.2 REMARK. If the fan∆ is quasi-convex, then

Q∆(t) = 1(
1− t2)n ·P∆(t) ;

for a coneσ , that implies

Qσ(t) = 1

(1− t2)dimσ ·Pσ (t) .

PROOF. For a free gradedA•-moduleF •, the Künneth formulaF • ∼= A• ⊗R F
• holds,

while the Poincaré series of a tensor product of graded vector spaces is the product of the
Poincaré series of the factors. SinceQA• = 1/(1−t2)n, the first formula follows immediately.
Going over to the base ringA•σ yields the second one. �

The basic idea for the computation of the virtual intersection Betti numbers is to use a
two-step procedure. In the first step, the global invariant is expressed as a sum of local terms.
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In the second step, these local invariants are described in terms of the global ones associated
to lower-dimensional complete fans.

5.3 THEOREM (Local-to-Global Formula). If ∆ is a quasi-convex fan of dimension n
and∆

◦ := ∆ \ ∂∆, then

P∆(t) =
∑
σ∈∆◦

(t2− 1)n−dimσPσ (t)

and

P(∆,∂∆)(t) =
∑
σ∈∆

(t2 − 1)n−dimσPσ (t) .

PROOF. The augmented cellular cochain complex

0→ E•∆→ C0(∆, ∂∆; E•)→ · · · → Cn(∆, ∂∆; E•)→ 0

of 3.2 associated to the quasi-convex fan∆ is acyclic by Theorem 4.3. We set

Qi(t) :=
∑
q≥0

dim Ci(∆, ∂∆; E2q) · t2q =
∑

σ∈∆◦ ∩∆n−i
Qσ (t) .

Then we obtain the equality

Q∆ =
n∑
i=0

(−1)iQi =
∑
σ∈∆◦

(−1)n−dimσQσ (t) .

The first assertion follows from Remark 5.2. The second formula is obtained in the same way
using the acyclicity of the complex

0→ E•(∆,∂∆)→ C0(∆, E•)→ · · · → Cn(∆, E•)→ 0 ,

see Theorem 4.11 and Corollary 4.12. �

For a non-zero coneσ , in order to reduce the computation ofE•σ to a problem in lower
dimensions, we come back to section 0.D: We choose a line� ⊂ V intersecting the relative
interior σ◦ and consider the flattened boundary fanΛσ := π(∂σ), whereπ : Vσ → Vσ /� is
the quotient map. Then the direct image sheaf

(5.3.1) G• := π∗(E•|∂σ ) : τ �→ E•((π |∂σ )−1(τ ))

is a minimal extension sheaf onΛσ . We use the identificationA•σ = B•σ [T ] of (0.D.2) and
the functionf ∈ A2(Λσ ) of (0.D.3). If we form residue classes of theA•σ -modulesE•σ and
E•∂σ (with respect tomA•σ ) and of theB•σ -moduleG•Λσ (with respect tomB•σ ), then we obtain
isomorphisms of graded vector spaces

(5.3.2) E•σ ∼= E•∂σ ∼= G•Λσ /(f ·G•Λσ ) .
A first result is an estimate for the degree of the Poincaré polynomials:

5.4 COROLLARY. Let ∆ be a quasi-convex fan and σ , a non-zero cone.
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i) The relative Poincaré polynomial P(∆,∂∆) is monic of degree 2n; if ∆ is not com-
plete, then the absolute Poincaré polynomial P∆ is of degree at most 2n− 2.

ii) The “local” Poincaré polynomial Pσ is of degree at most 2 dimσ − 2.

PROOF. We proceed by induction on the dimensionn of ∆: If (ii) holds up to dimen-
sionn, then so does (i), see Theorem 5.3. If (i) is valid up to dimensionn− 1, then (ii) holds
for dimσ = n. Since this is evident forn = 1, we may assumen > 1. Going over to the
complete fanΛσ of dimensionn− 1, we use the isomorphism (5.3.2). SinceG

q

Λσ
= 0 holds

for q > 2n− 2 according to the induction hypothesis, assertion (ii) follows. �

For the second step in the computation of Betti numbers, we have to relate the local
Poincaré polynomialPσ to the global Poincaré polynomialPΛσ of the complete (and thus
quasi-convex) fanΛσ of dimension dimσ − 1. Here the vanishing conditionV(σ ) of 1.7
plays a decisive role:

5.5 THEOREM (Local recursion formula). Let σ be a cone.
i) If σ is simplicial, then Pσ ≡ 1.
ii) If the condition V(σ ) is satisfied and σ is not the zero cone, then

Pσ (t) = τ<dimσ ((1− t2)PΛσ (t)) .

The truncation operatorτ<k is defined byτ<k(
∑
q aqt

q) := ∑
q<k aqt

q . — Let us note
that for dimσ = 1 and 2, the statements (i) and (ii) agree.

PROOF. Statement i) follows from the isomorphismE•σ ∼= A•σ for a simplicial cone
σ , see 1.4. In order to prove statement ii), we use the isomorphism (5.3.2). We thus have to
investigate the graded vector spaceG•Λσ /fG

•
Λσ

, or equivalently the kernel and cokernel of
the map

µf : G•Λσ [−2] → G•Λσ , h �→ fh

induced by the multiplicationµf : G•Λσ [−2] → G•Λσ . The formula ii) now is an immediate
consequence of the “Hard Lefschetz” type theorem 5.6 below. �

5.6 COMBINATORIAL HARD LEFSCHETZTHEOREM. Let ∆ be a complete fan and
f ∈ A2(∆), a strictly convex function. If the condition V

(
γ (f )

)
is satisfied, then multiplica-

tion with f,

µ
2q
f : E2q

∆ → E
2q+2
∆ , h �→ f h ,

is injective for 2q ≤ n− 1 and surjective for 2q ≥ n− 1.

Theorem 5.6 will be derived at the end of section 6 by means of the Poincaré Duality
Theorem 6.3.

6. Poincaré duality. Our aim in this section is to prove a “Poincaré Duality Theo-
rem” for the virtual intersection cohomology of quasi-convex fans. The first step is to de-
fine a — non-canonical and not necessarily associative —A•-bilinear “intersection product”
E• × E• → E• on a minimal extension sheafE• for an arbitrary fan∆. On the level of global
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sections, it provides anA•-bilinear “product”E•∆×E•(∆,∂∆)→ E•(∆,∂∆) for the “virtual equi-
variant intersection cohomology” of∆. If ∆ is quasi-convex, then in addition, there exists an
evaluation mappingε : E•(∆,∂∆) → A•[−2n]. The crucial result is the “equivariant Poincaré
Duality Theorem” 6.3 according to which the composition of the intersection product and the
evaluation map is a dual pairing ofA•-modules. Passing to the quotients modulo the maximal
idealm, we reach our aim.

In the case of a simplicial fan, where the sheafA• of piecewise polynomial functions is a
minimal extension sheaf, such an “interesection product” is simply given by the multiplication
of functions. Hence, a possible approach to the general case is as follows: We choose a
simplicial refinement∆̂ of ∆. According to the Decomposition Theorem 2.5, we interpretE•
as a direct factor of the sheaf̂A of ∆̂-piecewise polynomial functions on∆. Then we restrict
the multiplication of functions fromÂ• to its direct factorE• and project onto it.

In order to keep track of the relation betweenthe intersection product over the boundary
of a cone and the cone itself, we apply the above idea repeatedly in a recursive extension
procedure. The proof of Poincaré duality will follow the same pattern.

6.1 AN INTERSECTIONPRODUCT. The 2-dimensional skeleton∆≤2 is a simplicial
subfan. Hence, up to scalar multiples, there is a canonical isomorphismA• ∼= E• on∆≤2

(see 1.8). We thus define the intersection product on∆≤2 to correspond via that isomorphism
to the product of functions.

We now assume that the intersection product is defined on∆≤m and consider a cone
σ ∈ ∆m+1. So we are given a symmetric bilinear morphismE•∂σ × E•∂σ → E•∂σ of A•σ -
modules. As in section 0.D, we fix a line� ⊂ Vσ intersectingσ◦ and denoteB•σ the subalgebra
of A•σ consisting of the functions constant on parallels to�. We recall thatE•∂σ

∼= G•Λσ is a
freeB•σ -module, cf. Theorem 4.3 applied to the minimal extension sheafG• on the flattened
boundary fanΛσ . SinceE•σ is a freeA•σ -module, the restriction homomorphismE•σ → E•∂σ
admits a factorization

E•σ
α−→ A•σ ⊗B•σ E•∂σ

β−→ A•σ ⊗A•σ E•∂σ = E•∂σ
through thefree A•σ -module

(6.1.1) F •σ := A•σ ⊗B•σ E•∂σ .
Since the reduction ofα modulomσ ⊂ A•σ is injective, the mapα : E•σ → F •σ is a “direct”
embedding, i.e., there is a decomposition

(6.1.2) F •σ ∼= α(E•σ )⊕K•
of freeA•σ -modules. We may even assume thatK• is contained in the kernel of the natural
mapβ : F •σ → E•∂σ : We fix a homogeneous basisf1, . . . , fr of K•. The imagesβ(fi) of
these elements inE•∂σ are restrictions of elementsgi ∈ E•σ ; hence, we may replaceK• with
the submodule generated by the elementsfi − α(gi ) for 1≤ i ≤ r.

On the other hand, by scalar extension, there is an induced product

F •σ × F •σ → F •σ .
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It provides the desired extension of the intersection product from∂σ to σ via the composition

E•σ × E•σ α×α−→ F •σ × F •σ −→ F •σ = α(E•σ )⊕K• −→ α(E•σ ) ∼= E•σ ,
where the last arrow is the projection ontoα(E•σ ) with kernelK•. This ends the description of
the extension procedure. To sum up, after a finite number of steps, we arrive at a symmetric
bilinear morphism

E• × E• → E•
of sheaves ofA•-modules, called anintersection product on the minimal extension sheaf E•.
In particular, we thus have defined a product

E•∆ ×E•∆→ E•∆

on the level of global sections that mapsE•∆×E•(∆,∂∆) toE•(∆,∂∆) and thus induces a product

E•∆ × E•(∆,∂∆)→ E•(∆,∂∆) .

In order to obtain a dual pairing in the case of a quasi-convex fan∆, we compose that
induced product with an “evaluation” homomorphism

ε : E•(∆,∂∆)→ A•[−2n]
that can be defined as follows: Firstly, as a consequence of Corollary 5.4, we have

E
q

(∆,∂∆)
=

{
R for q = 2n ,
0 for q > 2n .

Moreover, according to Corollary 4.12, theA•-moduleE•(∆,∂∆) is free. Hence, there is a

homogeneous basev1 ∈ E2n
(∆,∂∆), v2, ..., vr ∈ E<2n

(∆,∂∆) of E•(∆,∂∆).
Now setε(vi) := δi1. In fact,ε is unique up to multiplication by a real scalar. If∆ is a

simplicial fan, this homomorphismε can be described quite explicitly:
Following [Bri2, p.13], we fix a volume formω on the vector spaceV . For each coneσ ,

we choose a basis(e1, . . . , en) of vectors spanning the rays such that we haveω(e1, . . . , en) =
1. Let(e′1, . . . , e′n) be the dual basis, and setg σ := e′1 · · · e′n. We then define the mapε as the
composition

E•(∆,∂∆) ∼= A•(∆,∂∆) ⊂
⊕
σ∈∆n

A•σ → Q(A•) , f = (fσ )σ∈∆n �→
∑
σ∈∆n

fσ

g σ
,

mapping to the homogeneous fractional ideal generated by the rational functions 1/g σ (of
degree−2n) in the quotient fieldQ(A•). We indicate why the rational functionε(f ) =∑
σ fσ /g σ is even regular. The denominators are products of linear formshτ vanishing on

the facetsτ ∈ ∆n−1, and since such a factorhτ does not appear in any denominatorg σ except
for τ ≺ σ , it suffices to show that

∑
σ�1τ

fσ /g σ is regular alongτ◦ . If τ ≺1 σ lies in ∂∆,
then the corresponding functionfσ vanishes onτ and hence is divisible byhτ . Thus, we
may assume thatτ is the common facet of two conesσ+, σ− in ∆. It suffices to discuss the
contributionf+/g+ + f−/g− of these two cones to the sum. Onτ , the linear formhτ and
f+ − f− vanish; an explicit computation yields the result.
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Since the intersection productE• × E• → E• is a homomorphism of sheaves, we may
sum up the general situation as follows: For a quasi-convex fan∆, there existshomogeneous
pairings (i.e., a pair of elements of degreep andq is mapped to an element of degreep + q)

(6.1.3) E•∆ × E•(∆,∂∆)→ E•(∆,∂∆)→ A•[−2n]
and

(6.1.4) E•∆ × E•(∆,∂∆)→ E•(∆,∂∆)→ R•[−2n] .

Our aim is to prove that these are in fact both dual pairings. Fortunately, it suffices to
verify that property for one of them: By the very definition of quasi-convexity and Corol-
lary 4.12, theA•-modulesE•∆ andE•(∆,∂∆) are both free. We thus may apply the following
result.

6.2 LEMMA . Let E• and F • be two finitely generated free graded A•-modules. Then
a homogeneous pairing

E• × F • → A•[r]
is dual if and only if that holds for the induced pairing

E• × F • → A•[r] = R•[r] .

PROOF. ReplacingF • with F •[−r], we may assume thatr = 0. With respect to fixed
homogeneous bases ofE• andF •, the pairing is represented by a square matrixM overA•.
We claim thatM is invertible if and only if that holds for its residue classM modulomA: The
implication “⇒” is obvious, while for “⇐”, it suffices to prove that detM lies inA0 = R.
To that end, we arrange the basis forE• in increasing order with respect to the degrees, and
in decreasing order forF •. Since the induced pairing is dual, the homogeneous submodules
of E• andF • generated by basis elements of fixed opposite degrees have the same rank.
Hence, the matrixM is a lower triangular block matrix with square blocks along the diagonal
all whose entries lie inA0. Thus detM is the product of their respective determinants, so it
lies inA0, too. �

We come now to the central result of this section:

6.3 THEOREM (Poincaré duality). For a quasi-convex fan ∆ of dimension n, the com-
position

E•∆ × E•(∆,∂∆)→ E•(∆,∂∆)→ A•[−2n]
is a dual pairing of finitely generated free A•-modules.

PROOF. For an affine simplicial fan∆, Poincaré duality obviously holds. The general
case follows by the next two Lemmata 6.4 and 6.5, using a two step induction procedure. The
proof of Lemma 6.5 will use the Lemmata 6.6 and 6.7.

6.4 LEMMA . If Poincaré duality holds for complete fans in dimensions d < n, then it
holds for n-dimensional affine fans.
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6.5 LEMMA . If Poincaré duality holds for every affine fan 〈σ 〉 of dimension at most n,
then it also holds for every quasi-convex fan ∆ of dimension n.

PROOF OFLEMMA 6.4. Letσ be ann-cone. As in (5.3.1)–(5.3.2), we identifyE•∂σ
with theB•σ -moduleG•Λσ of global sections of a minimal extension sheafG• on the flattened
boundary fanΛσ in V/�. SinceΛσ is (n− 1)-dimensional, we obtain a dual pairing

E•∂σ ×E•∂σ → E•∂σ → B•σ [2− 2n] .
By extension of scalars as in (6.1), that induces dual pairings

F •σ × F •σ −→F •σ
η−→ A•[2− 2n] ,

F •σ × F •σ −→F •σ −→ R•[2− 2n]
and, after a shift,

F •σ × F •σ [−2] −→F •σ [−2] η[−2]−→ A•[−2n] ,
(6.4.1)

F •σ × F •σ [−2] −→F •σ [−2] −→ R•[−2n] .
To achieve the proof, we show that there is a homomorphismϑ : E•(σ,∂σ ) → F •σ [−2] and

a factorization of the induced pairingE•σ × E•(σ,∂σ ) → R•[−2n] obtained in (6.1.4) in the
following form:

(6.4.2) E•σ ×E•(σ,∂σ ) α×ϑ−→ F •σ × F •σ [−2] −→ F •σ [−2] −→ R•[−2n] .
We further show the existence of a homomorphismµ : F •σ [−2] → F •σ such thatα andϑ
induce isomorphisms

E•σ ∼= cokerµ and E•(σ,∂σ ) ∼= ker µ .

Finally, forgetting about the shifts, the mapµ is shown to be self-adjoint with respect to the
dual pairing (6.4.1) onF •σ . Hence, the restriction to cokerµ × ker µ is a dual pairing, too;
and an application of 6.2 will finally complete the proof of the Lemma.

We interpretF •σ as the module of sections of a sheaf ofA•-modules on the affine fan〈σ 〉.
To that end, we consider the subdivision

Σ := ∂σ ∪ {τ̂ := � + τ ; τ ∈ ∂σ }
of 〈σ 〉, where� is the ray�∩σ . As in (1.4.1), letD•τ ⊂ A•τ̂ denote the subalgebra of functions
constant on parallels to the line�. Then, according to Lemma 1.5, the minimal extension
sheafF • onΣ is determined by

τ �→ F •τ := E•τ , τ̂ �→ F •
τ̂
:= A•

τ̂
⊗D•τ E•τ for τ ∈ ∂σ

and the obvious restriction homomorphisms; it satisfiesF •(Σ) ∼= A• ⊗B•σ E•∂σ = F •σ . Fur-
thermore, the sheafF • inherits an intersection product fromE•|∂σ ∼= F •|∂σ as in 6.1.

For simplicity, we interpret the mappingα in 6.1 as an inclusionE•σ ⊂ F •σ and identify
F • with its direct image sheaf on the affine fan〈σ 〉 with respect to the refinement mapping
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Σ → 〈σ 〉. Then the decompositionF •σ = E•σ ⊕K• of (6.1.2) corresponds to a decomposition
of sheavesF • ∼= E• ⊕ K• with E• ∼= oL• and the sheafK• := σL• ⊗ K• supported by the
pointσ , cf. Section 2. In particular, there is an inclusion

E•(σ,∂σ ) ⊂ F •(σ,∂σ ) = E•(σ,∂σ ) ⊕K• ,
andF •(σ,∂σ ) is a freeA•-module.

We thus obtain a natural commutative diagram

0 −→ E•(σ,∂σ ) −→ E•σ −→ E•∂σ −→ 0

∩ ∩ ‖"
0 −→ F •(σ,∂σ )

λ−→ F •σ −→ F •∂σ −→ 0

consisting of free resolutions of theA•-moduleE•∂σ
∼= F •∂σ .

Using the very definition of TorA
•
(∗,R•) and the fact thatE•(σ,∂σ )→ E•σ is the zero map

sinceE•σ → E•∂σ is an isomorphism, we obtain identifications

E•σ ∼= coker(λ) ∼= E•∂σ and E•(σ,∂σ ) ∼= Tor1(E
•
∂σ ,R•) ∼= ker(λ) .

On the other hand, we may rewriteF •(σ,∂σ ) = gF •σ ∼= F •σ [−2], whereg ∈ A2(Σ) is
some piecewise linear function onΣ with ∂σ as zero set: In the descriptionA• = B•σ [T ] of
(0.D.2), we may assume that the kernel ofT ∈ A2 intersectsσ in the point 0 only. Then,
for τ ∈ (∂σ )n−1, we setg τ̂ = T − fτ , wherefτ ∈ A2

τ̂
= A2 coincides withT on τ and is

constant on parallels to�, i.e.,fτ ∈ B•σ .
We note that

E•(σ,∂σ ) ⊂ E•(σ,∂σ ) ⊕K• = F •(σ,∂σ ) = gF •σ ∼= F •σ [−2]
determines the desired homomorphism

ϑ : E•(σ,∂σ ) −→ F •σ [−2]
and leads to an evaluation map

E•(σ,∂σ ) −→ F •σ [−2] η[−2]−→ A•[−2n] .
Moreover, we haveK≥2n = 0 because of the isomorphism

E2n
(σ,∂σ )

∼= R ∼= F 2n
(σ,∂σ )

∼= F 2n−2
σ

and the vanishingF>2n
(σ,∂σ ) = 0, which yields thatK• ⊂ F •(σ,∂σ ) is contained in the kernel of

the mapF •(σ,∂σ )→ A•[−2n]. Next we remark that the first part of the diagram

E•σ ×E•(σ,∂σ ) −→ E•(σ,∂σ )
ε−→ A•[−2n]

(6.4.3) ∩ ∩ ‖
F •σ × F •(σ,∂σ ) −→ F •(σ,∂σ )

η[−2]−→ A•[−2n]
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need not be commutative, sinceE•σ is not necessarily closed under the intersection product in
F •σ . Nevertheless, commutativity holds after evaluation (where the two evaluation maps are
scaled in such a way that the right square is commutative). This is true since the difference of
the products in the first and second row is an element inK•, according to the construction.

As the intersection product inF •σ isA•(Σ)-linear, we may replaceF •(σ,∂σ ) in the diagram
(6.4.3) withF •σ [−2] and, combining with (6.4.1), we arrive at the following pairing ofA•-
modules

E•σ × E•(σ,∂σ )→ F •σ × F •σ [−2] → F •σ [−2] → A•[−2n] .
Passing to the quotients modulomA, we obtain (6.4.2), whereµ : F •σ [−2] → F •σ is induced
by multiplication with the functiong ∈ A•(Σ). �

PROOF OFLEMMA 6.5. To simplify notation, we introduce the abbreviationÃ• :=
A•[−2n]. We have to show that the “global” duality homomorphism

Φ : E•∆→ HomA•(E•(∆,∂∆), Ã
•)

induced by the pairing (6.1.3) is an isomorphism. To that end, we embed it into a commutative
diagram of the following form:

0−→ E•∆ −→ C0(∆, ∂∆; E•) −→ C1(∆, ∂∆; E•)
(6.5.1)

� Ψ Θ
0−→ Hom(E•(∆,∂∆), Ã

•)
κ−→ ⊕

σ∈∆n
Hom(E•(σ,∂σ ), Ã

•)
λ−→ ⊕
τ∈∆◦ n−1

Hom(E•(τ,∂τ ), Ã
•
τ [2]) .

Here Hom abbreviates HomA• , andΨ andΘ are the respective duality homomorphisms cor-
responding to the collections of dual pairings

E•σ ×E•(σ,∂σ )→ E•(σ,∂σ )→ Ã• resp. E•τ ×E•(τ,∂τ )→ E•(τ,∂τ )→ Ã•τ [2]
with suitably chosen evaluation maps. The proof now will run along the following lines: The
upper row of diagram (6.5.1) is exact, while the lower one is a complex with an injective
mapκ . The homomorphismΨ andΘ are isomorphisms, and thus, a simple diagram chase
yields that the same holds forΦ, which will end the proof of the Lemma 6.5.

The exactness of the upper row in (6.5.1) follows immediately from Theorem 4.3 since∆

is quasi-convex. We now describe the choice of the evaluation maps: The evaluation map
ε : E•(∆,∂∆) → Ã• induces a system(εσ )σ∈∆n of mapsεσ : E•(σ,∂σ ) ⊂ E•(∆,∂∆) → Ã•. If we
can show that eachεσ is an evaluation map, then the direct sum of the corresponding duality
homomorphismsΨσ : E•σ → Hom(E•(σ,∂σ ), Ã

•) is an isomorphism, since Poincaré duality
onσ holds by hypothesis. We thus have to showεσ �= 0 for eachσ . That follows immediately
from the fact that the mapR ∼= E2n

(σ,∂σ )
→ E2n

(∆,∂∆)
∼= R induced by the homomorphism

E•(σ,∂σ ) → E•(∆,∂∆) is an isomorphism, see Lemma 6.6. The system of duality isomorphisms

Ψσ : E•σ → Hom(E•(σ,∂σ ), Ã
•) thus provides the isomorphismΨ .
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The mapκ associates to a homomorphismϕ : E•(∆,∂∆) → Ã• its restrictions to the sub-
modulesE•(σ,∂σ ) of E•(∆,∂∆). It is injective, since

⊕
σ∈∆n E•(σ,∂σ ) ∼= E•(∆,∆≤n−1)

is a submod-

ule of maximal rank inE•(∆,∂∆): For h := ∏
τ∈∆◦ n−1 hτ , wherehτ ∈ A2 \ {0} vanishes on

Vτ ⊂ V , we have
hE•(∆,∂∆) ⊂ E•(∆,∆≤n−1)

.

This ends the discussion of the first rectangle in (6.5.1).
The mapλ will be composed of “restriction homomorphisms”

λστ : Hom(E•(σ,∂σ ), Ã
•) → Hom(E•(τ,∂τ ), Ã

•
τ [2]), ϕ �→ ϕτ ,

whereτ is a facet ofσ ∈ ∆n. In order to defineλστ , we fix a euclidean norm onV and thus
also onV ∗ ∼= A2. Let hτ ∈ A2 be the unique linear form of norm 1 that vanishes onVτ and
is positive onσ◦ . Then we use three exact sequences, starting with

0 → E•(σ,∂σ ) → E•σ → E•∂σ → 0 .

The second one is composed of the multiplication withhτ and the projection onto the coker-
nel:

0 → Ã•
µ(hτ )−→ Ã•[2] → Ã•τ [2] → 0 .

Eventually the subfan∂τ σ := ∂σ \ {τ } of ∂σ yields the exact sequence

(6.5.2) 0 → E•(τ,∂τ ) → E•∂σ → E•∂τ σ → 0 .

The associated Hom-sequences provide a diagram

Ext(E•∂τ σ , Ã
•)

(6.5.3)


Hom(E•σ , Ã
•) −→ Hom(E•(σ,∂σ ), Ã

•)
α−→ Ext(E•∂σ , Ã

•)β
Hom(E•(τ,∂τ ), Ã

•[2]) −→Hom(E•(τ,∂τ ), Ã
•
τ [2])

γ−→Ext(E•(τ,∂τ ), Ã
•) −→Ext(E•(τ,∂τ ), Ã

•[2])
with Ext= Ext1A• . We show thatγ is an isomorphism; we then may set

λστ := γ−1 ◦ β ◦ α .
Indeed the rightmost arrow in the bottom row is the zero homomorphism, since it is induced by
multiplication withhτ , which annihilatesE•(τ,∂τ ). On the other hand, theA•τ -moduleE•(τ,∂τ )
is a torsion module overA•, so that Hom(E•(τ,∂τ ), Ã

•[2]) vanishes.

An explicit description ofλστ is as follows: For a homomorphismϕ : E•(σ,∂σ ) → Ã•, the

“restriction” λστ (ϕ) = ϕτ : E•(τ,∂τ ) → Ã•τ [2] is this: Tog ∈ E•(τ,∂τ ), we associate a section
ĝ ∈ E•σ such that̂g |∂σ is the trivial extension ofg to ∂σ ; thenϕτ (g ) = ϕ(hτ ĝ )|τ .

For the definition ofλ, we apply the standarďCech coboundary construction to the family
(λστ ), making the lower row of diagram (6.5.1) a complex. We may do so since the following
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compatibility condition is satisfied: For two different conesσ = σ1, σ2 ∈ ∆n with intersection
τ ∈ ∆◦ n−1, the description ofϕτ implies that the compositions

(6.5.4) Hom(E•(∆,∂∆), Ã
•)→ Hom(E•(σi,∂σi), Ã

•)→ Hom(E•(τ,∂τ ), Ã
•
τ [2]) , i = 1,2

coincide.
In particular, the homomorphisms

ετ := λστ (εσ ) : E•(τ,∂τ )→ Ã•τ [2] , τ ∈ ∆
◦ n−1

do not depend on the choice ofσ �1 τ . It remains to verify thatετ is not the zero homo-
morphism, i.e., we have to see thatλστ is injective in degree 0. In diagram (6.5.3), we have to
show thatα andβ are injective in degree 0. By 5.4, the vector spacesE

q
σ vanish forq ≥ 2n;

hence,E•σ can be generated by elements of degree< 2n, and that yields the vanishing of
Hom(E•σ ; Ã•) in degree 0. According to Lemma 6.7, the exact sequence

0 → E•(σ,∂τ σ ) → E•σ → E•∂τ σ → 0

(see (6.5.2)) is a free resolution ofE•∂τ σ , in particular, the module Ext1(E•∂τ σ , Ã
•) is a quotient

of Hom(E•(σ,∂τσ ), Ã
•), which is trivial in degree 0, since according to Lemma 6.7, we have

E
≥2n
(σ,∂τ σ )

= 0.

— For τ ∈ ∆◦ n−1, the evaluation homomorphismsετ induce isomorphisms

Θτ : E•τ
∼=−→ Hom(E•(τ,∂τ ), Ã

•
τ [2]) ,

which constitute the isomorphismΘ.
Finally the commutativity of the second square in the diagram (6.5.1) follows from the

above explicit description of the restriction homomorphismsλστ and the appropriate choice of
the evaluation homomorphismsετ . �

6.6 LEMMA . If Λ ≺ ∆ are quasi-convex fans, then the trivial extension of sections
E•(Λ,∂Λ) ⊂ E•(∆,∂∆) induces an isomorphism

(6.6.1) R ∼= E2n
(Λ,∂Λ)

∼=−→ E2n
(∆,∂∆)

∼= R .

PROOF. Let us first assume that∆ is complete. To the complementary fanΛc � ∆

generated by the cones in∆n \Λn corresponds an exact sequence

0 → E•(Λ,∂Λ) ∼= E•(∆,Λc) → E•∆ → E•Λc → 0 ,

which induces an exact sequenceE2n
(Λ,∂Λ) → E2n

∆ → E2n
Λc . The fanΛc is quasi-convex

according to Corollary 4.7, ii) and non-complete. Hence, the last termE2n
Λc vanishes according

to Corollary 5.4, and thusR ∼= E2n
(Λ,∂Λ) → E2n

∆
∼= R is onto resp. an isomorphism.

We now assume that∆ admits a completion∆̄. We consider the composed map

E2n
(Λ,∂Λ) → E2n

(∆,∂∆) → E2n
∆̄
.

Since it is an isomorphism, so isR ∼= E2n
(Λ,∂Λ) → E2n

(∆,∂∆)
∼= R.
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In the general case, we choose a refinement mapπ : ∆̌→ ∆ where∆̌ admits a comple-
tion, see 0.A. Hence, it suffices to verify that (6.6.1) is an isomorphism for the couple(∆,Λ)

as that holds for(∆̌, Λ̌) according to the second step. By the Geometric Decomposition The-
orem 2.5, we can writeF • := π∗(Ě•) ∼= E• ⊕ G•. From Corollary 5.4 and the very definition
of the direct image sheaf stem isomorphisms

R ∼= Ě
2n

(∆̌,∂∆̌)
∼= F 2n

(∆,∂∆)
∼= E2n

(∆,∂∆) ⊕G2n
(∆,∂∆)

∼= R⊕G2n
(∆,∂∆) ,

and thus,G2n
(∆,∂∆) = 0 andĚ

2n

(∆̌,∂∆̌)
∼= F 2n

(∆,∂∆)
∼= E2n

(∆,∂∆). The corresponding isomor-
phisms also hold forΛ instead of∆. Combining these isomorphisms, we obtain the isomor-
phism (6.6.1). �

The following result has been used in the proof of Lemma 6.5. For the notation, we refer
to (0.D.1).

6.7 LEMMA . Let σ be a cone of dimension n and Λ ⊂ ∂σ be a fan such that π(Λ)
is a quasi-convex subfan of Λσ . Then E•(σ,Λ) is a free A•-module, and, if in addition Λ is a

proper subfan, Eq(σ,Λ) = 0 for q ≥ 2n.

PROOF. As in (0.D.2), we writeA• = B•σ [T ] with a linear formT ∈ A2. The exact
sequence ofA•-modules

0 → E•(σ,Λ) → E•σ → E•Λ → 0

induces an exact Tor-sequence

TorA
•

2 (E•Λ,R•) → TorA
•

1 (E•(σ,Λ),R•)→ 0→ TorA
•

1 (E•Λ,R•) → E•(σ,Λ) → E•σ

sinceE•σ is a freeA•-module. If TorA
•

2 (E•Λ,R•) vanishes, then so does TorA•
1 (E•(σ,Λ),R•), and

E•
(σ,Λ)

is a freeA•-module by Section 0.B. Since the fan〈σ 〉 is not complete, we haveEqσ = 0

for q ≥ 2n by 5.4; if the same vanishing holds for TorA•
1 (E•Λ,R•), then it follows forEq(σ,Λ)

as well. It thus remains to determine TorA•
i (E

•
Λ,R•). As in the proof of Theorem 4.3, we use

the exact sequence

(6.7.1) 0 → R•[T ][−2] → R•[T ] → R• → 0

of A•-module homomorphisms of degree 0; thereR•[T ] is interpreted as theA•-module
A•/(mB•σ A

•) = B•σ /mB•σ [T ] for the maximal homogeneous idealmB•σ := B>0
σ of B•σ . Com-

ing back to the identity (4.8.2) withE•Λ instead ofI , we obtain

Tor
B•σ [T ]
i (E•Λ,R•[T ]) ∼= Tor

B•σ
i (E•Λ,R•) = 0 for i ≥ 1 ,

sinceE•Λ is a freeB•σ -module. Hence, from (6.7.1) stem exact sequences

0→ TorA
•

i+1(E
•
Λ,R•)→ Tor

B•σ
i (E

•
Λ,R•[−2])→ 0 for i ≥ 1,

and

0→ TorA
•

1 (E•Λ,R•)→ E•Λ ⊗B•σ R•[−2] µ(T )−→ E•Λ ⊗B•σ R• .
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This yields the desired description:

TorA
•

i (E
•
Λ,R•) =

{
ker(µ(T ) : E•Λ ⊗B•σ R•[−2] → E•Λ ⊗B•σ R•), if i = 1;
0 , if i ≥ 2 .

Eventually, ifπ(Λ) ⊂ Λσ is not complete, then the vector spaceE•Λ⊗B•σ R•[−2] vanishes in
degrees≥ 2n; hence, the same vanishing holds for TorA•

1 (E•Λ,R•). �

This ends the proof of the auxiliary Lemmata, hence the proof of the Poincaré duality
theorem 6.3.

6.8 REMARK. For every purelyn-dimensional fan∆, we can define an evaluation map
E•(∆,∂∆)→ A•[−2n] as the composition

E•(∆,∂∆) ⊂ Ě•(∆̌,∂∆̌) = E•(∆,∂∆) ⊕ · · · → Ě•
∆̄
→ A•[−2n] ,

where ∆̌ is a refinement of∆ admitting a completion∆̄. It provides a homomorphism
E•∆ → Hom(E•(∆,∂∆), A

•[−2n]) via the intersection pairing. In accordance with the proof

of Lemma 6.5, that is an isomorphism wheneverH̃ 0(∆, ∂∆; E•) = 0, or equivalently, if
H̃ 0(∆σ , ∂∆σ ;R•) = 0 holds for each coneσ ∈ ∆ (see Remark 3.5). In more geometri-
cal terms,∆ has to be both facet-connected and locallyfacet-connected, where we call a fan
locally facet-connected if, for each non-zero coneσ ∈ ∆, the transversal fan∆σ is facet-
connected.

The smallest example of a three-dimensional fan that is both facet-connected and locally
facet-connected, but not quasi-convex, is provided by the fan swept out by the “vertical” facets
of a triangular prism.

Since the dual pairingE•∆ ×E•(∆,∂∆)→ A•[−2n] of A•-modules induces a dual pairing

of real vector spacesE•∆ ×E•(∆,∂∆)→ R•[−2n], we obtain the following consequence.

6.9 COROLLARY. If ∆ is a quasi-convex fan of dimension n, then we have

bq(∆) := dimEq∆ = dimE2n−q
(∆,∂∆) := b2n−q(∆, ∂∆) ;

rephrased in terms of Poincaré polynomials, we have the identity

P(∆,∂∆)(t) = t2nP∆(t
−1) .

We finally are prepared to prove the “Combinatorial Hard Lefschetz” Theorem 5.6.

PROOF OF THE“COMBINATORIAL HARD LEFSCHETZ” T HEOREM 5.6. Sincef is
strictly convex, its graphΓf in V × R is the support of the boundary fan∂γ of the(n + 1)-
dimensional coneγ := γ (f ) in V ×R as we have seen in 0.D. LetF • be a minimal extension
sheaf on∂γ andϕ : ∆ → ∂γ , the map induced by idV × f : V → V × R. Thenϕ∗(F •) is
a minimal extension sheaf on∆, which we thus may identify withE•. Analoguous to (5.3.2),
the residue class module of theA•[T ]-moduleF •∂γ satisfies

F •∂γ ∼= E•∆/fE•∆ = coker(µf : E•∆[−2] → E•∆)
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whereE•∆ = (A•/m) ⊗A• E•∆. Now the vanishing conditionV(γ ) yields the surjectivity of

µ
2q
f for 2q ≥ n − 1. On the other hand, the mapµf is selfadjoint with respect to the dual

pairingE•∆ × E•∆ → A•[−2n] as well asµf with respect toE•∆ × E•∆ → R•[−2n]. Hence

by Poincaré duality the surjectivity ofµ2q
f for 2q ≥ n − 1 implies the injectivity ofµ2q

f for
2q ≤ n− 1. �

ADDED IN PROOF: While we were reading the final galley proof for the present article,
Kalle Karu announced a proof of the Hard Lefschetz Theorem for non-rational polytopes (see
his e-printmath.AG/0112087).
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