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LONG TIME BEHAVIOR OF THE TRANSITION PROBABILITY OF
A RANDOM WALK WITH DRIFT ON AN ABELIAN
COVERING GRAPH
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Abstract. For a certain class of reversible random walks possibly with drift on an
abelian covering graph of a finite graph, using the technique of twisted transition operator, we
obtain the asymptotic behavior of tlestep transition probability, (x, y) asn — oo and
give an expression of the constant which appears in the asymptotics.

1. Introduction. Arandom walk orz? defined by the sum of independéiftvalued
random variables has been intensively investigated by many authors (cf. [9, 10]). From the
definition it is a Markov chain that is homogeneous in time and space. A Markov chain which
has weaker spatial homogeneity than the above is called a semi-Markov chain or sometimes
a random walk with internal states (internal degrees of freedom). The asymptotic behavior of
then-step transition probability or central limit theorems for semi-Markov chains have been
studied under mild conditions (cf. [3, 4, 8]. In a previous paper [5], we obtain an expression
of the constant which appears in the asymptotic behavior of-tep transition probabilities
for a certain class of semi-Markov chains in terms of geometric quantity, namely, the volume
of a Jacobian torus [1, 5, 6, 7]. In the present paper, we extend the result obtained in [5] to a
wider class of symmetric random walks possibly with drift.

Let G = (V(G), E(G)) be an infinite, connected and locally finite graph, whe(&r)
is the vertex set of; andE (G) is the oriented edges df. For an edge € E(G), o(e) (resp.

t(e)) is the origin ofe (resp. the terminus &) ande is the inverse edge ef We assume that
G has an abelian group of automorphisms which acts @nfreely, thatisgx # x,0e # e
for everyo (# 1) € I', and the quotient grapM = I"'\G is finite. We can regard; as the
abelian covering graph af/ with covering transformation group and denote its covering
map byr : G - M.

We consider a transition probabilify : £(G) — (0, 1] satisfying the following condi-
tions:

(1) Y.k, ) Ple) = Lforanyx € V(G), whereE,(G) = {e € E(G) | o(e) = x},

(2) p is invariant under theg -action, that isp(ce) = p(e) foranyo € I’ ande €
E(G),
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(3) p is m-symmetric, that is, there exists a positive function: V(G) — (0, o0)
such that

(1.1) m(o(e))p(e) = m(t(e))p(e).

The functionm is called the reversible measure fpr If a reversible measure exists, it is
unigue up to a constant multiple. We define the transition operatny

(1.2) Pf)y= Y ple)f(t(e),
ecE, (G)
which, by (1.1), turns out to be a self-adjoint operatortd(¥ (G)) equipped with the inner
product(f, g) = > cy ) f () g (x)m(x).
Our main concern is the asymptotic behavior of th&tep transition probability defined
by
(1.3) plc, )= > ple),

|c|=n
o(e1)=x.t(en)=y

where a pathv = (e1, e2, ..., e,) Of lengthn is a sequence of edges such thatle;) =
o(ei+1) for1 <i <n —1,|c|(= n) is the length of andp(c) = []/_; p(e).

In a previous paper [5], we assumed thats invariant under thg -action, so that we
necessarily dealt with “isotropic” random vial(see Proposition 3.1 and Remark 3.2 below).
In this paper, we do not assume tReinvariance ofmn, that is, the existence of a reversible
measure on the quotient graph

Our setting includes a certain class of non-isotropic reversible random walks, for ex-
ample, the random walk on one-dimensional latidevhose transition probability is given
by
(1.4) px,x+1) =p, pkx,x—-1=q foranyx ez,

wherep + g = 1 with p,g > 0. In this case, we may také to be the 1-bouquet graph
with I" = Z1, and the reversible measure is given/y) = (p/q)*. However,m is not
I-invariant unlesp = g = 1/2. Itis easy to see that

1
(1.5) Pan(x, x) ~ ﬁ(zm)%

asn — Q.
Let 0 = (g(x, y)x,yev(m) be the finite symmetric matrix o whose elements are
defined by

(1.6) qx, =Y q,
o(e)=x,t(e)=y

where

(1.7) q(e) = (p(e)p(@)*?

for eache € E(M). In our setting, the matrix2 plays an important role and the asymp-
totic behavior of the transition probability, (x, y) is controlled by it. The quantity Zpg
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which appeared in (1.5) is closely related to the above symmetrization of the transition prob-
ability p.

We will prove the following result:

THEOREM 1.1. (1) The maximum of the spectrum of P on ¢2(V(G)), say A1 :=
max Spec¢P), is egual to the maximal eigenvalue of Q.

(2) LetI bethe group of unitary characters of I" and k = rankl".
(i) When G isnon-bipartite, we have

1 1Y
xp( 5 [ d10gm ) wolr(xn(r(s) ik
Y 1

1.8 n(x,y) ~ =
(1.8) pn(x,y) VO|q(F) (47.”,1)k/2

asn — 00.

(i)  When G isbipartite with bipartition V(G) = Au B, and

(@)ifx,ye Aorx,y e B, forevenn — oo, or (b)ifx € A,ye Borx € B,y € A,
for odd n — oo, we have

1Y
ZGXD(E/ leQM) @o(m (x))po(m (¥)) 51t k/2)
X 1

1.9 n(x, y) ~ = .
(1.9 pn(x,y) V0|q(F) (47.[,,1)](/2

In the theorem, the quantity ekly2 [x’ dlogm) is equaltoy/m(y)/m(x). The cobound-
ary operatow and the integrafxy are defined in Section 2. The functigy is the (positive)
normalized eigenfunction for the maximal eigenvalugofthat is,

(1.10) Qpo =100, lgol§= D lpox)>=1.
xeV(M)

The 1-cohomology grouff1(M, R) can be identified with the space of harmonic 1-forms on
M by introducing the inner product

1
(1.11) (1, w2)g = 5 Z w1(e)wz(e)q(e)po(o(e))po(t(e))

ecE(M)

on CL(M, R), the space of 1-forms oi. The group! is identified with a subset of the Ja-
cobian torus/ (M) = HX(M, R)/H*(M, Z) by the canonical injection. The volume Yo"
is that of I" with respect to the Lebesgue measure associated with the inner ptedigt

REMARK 1.2. By Proposition 3.14; = 1if and only ifm is I"-invariant, and then the
positive normalized eigenfunction ig(x) = (m(x)/m(F))Y?, whereF is a fundamental
set of G for I" andm (F) = ) . m(x). Itis easy to check that ifz is I"-invariant andG is
non-bipartite it holds that
_my)mF)FEt

Vol (I)

asn — 0o, which has been obtained in [5].

(1.12) Pn(x, y) (4rn) /2
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Our method is also applied to continuous time random walks.pLét, y) is the tran-
sition probability of the continuous time random walk with generato= P — I. Then we
have the following.

THEOREM 1.3. Let I" betheunitary character of I and k = rankl”. Then we have
1
eXP(E/ d |Ogm> @o (1 (x))po(r (y)) o—ton
X

(1.13) pi(x,y) ~ vol, () X @r)h2

ast — oo, Wherea1(= 1 — A1) istheminimal eigenvalue of —A.

2. Thetwisted transition operators. We let
2. COM, A) = {f: V(M) — A},
' CYM,A) = {w: E(M) > A|w@) = —w(e)},

whereA is an abelian group. Define the coboundary oper@to€®(M, A) — CL(M, A) by
(2.2) df(e) = f(t(e)) — f(o(e)),

and consider the 1-cohomology group

(2.3) HYM,R) = (M, R)/Imaged) .

We take inner products, -) on C%(M, R) and (-, -)) on C1(M, R). With respect to them, we
obtain the adjoint operatarof d satisfying(df, o) = (f, Sw). We say thato € C1(M, R)
is a harmonic 1-form iBw = 0. So one can identiff/ 1(M, R) with the space of harmonic
1-forms, that is,

(2.4) HYM,R) = {we C*(M,R) | $w = 0},
and under this identification

(25) HYM,z2)= {a) e HY(M,R) ‘ /a) € Z for any closed path in M} ,

where
n
(2.6) /w =) o)
¢ i=1
for a pathc = (e1, e2,...,¢,). Inthe next section, in order to compute the Hessian of the

maximal eigenvalue of a twisted transition operator, we will choose appropriate inner products
onC%M, R) andCl(M, R).

Let H1(M, Z) be the 1-homology group aff and H1(M, Z) the unitary character of
H1(M, Z). We identify Hy(M, Z) with the Jacobian torus(M) = HY(M, R)/HY(M, Z) by
the mapping

(2.7) HYM,R) > 0+ xo € Hi(M,2),
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where
(2.8) Xo(0) = exp<2n\/—_1 / a))

ando is represented by 1-cyctein M.

There exists an abelian covering gralti® of M whose covering transformation group
is H1(M, Z). The graphM“? is called the maximal abelian covering graph. For any covering
graphG of M, whose covering transformation groilify there exists a covering mapg®> —

G which factorizes the covering mag®” — M. We remark that if the transformation group
of the covering map/¢® — G is I'y, thenTI” is isomorphic toHy(M, Z)/I'1.

Let I" be the group of unitary characters 6f The surjective homomorphism :
H1(M,Z) — ' = Hy(M, Z)/I'y induces the injective homomorphisin I' — Hi(M, Z) =
J(M), and sol” is identified with the image i (M) by 7. Theny, € I if and only if
/. w € Zfor every 1-cycle inM with n(c) = 1. Itis easy to check that the tangent Spack
of I" at the trivial charactet coincides with

(2.9) {a) € HY(M,R) /a) = 0 for every 1-cycle: in M with n(c) = 1} .

We have the Euclidean metrig, -) on H1(M, R) and induce it o/ (M) by 7. The volume
is measured with respect to this metric and denoted byl

In what follows, we choose an arbitrary vertexe V(G) and fix it. Let® be the lift of
w € T1I" to E(G). We define a function on V (G) by

X
(2.10) 5(x) =8y, (x) = exp(ZnV—l/ d)) ,
X0
Where[;‘od) = Y ! 1 w(e) fora pathxox = (e1, ez, ..., e,). The functions is independent
of the choice of a path joiningp to x and
(2.11) 5(0x) = Xw(o)s(x)
foranyo e I'.
Next, we define the functiohon V(G) x V(G) by
~r plei)
2.12 L(x,y) = — € (0, 00),
(212) Y E ple)
wherexy = (e, ez, ..., e;). Sincep is m-symmetric, we have
Sem(i(e))  m(i(en)  m(y)
2.13 Ux,y) = = = ,
(2.13) Y g m(o(ei))  m(o(er))  m(x)
and so it is independent of the choice of a path ez, . . ., ¢,,) joining x to y. We note that
£(x, y) can be represented by
y
(2.14) L(x,y) = exp(/ d |Ogm) ,

whered is the one defined by (2.2).
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LEMMA 2.1. (1) Let ¢ bedefined asabove. Then we have

(2.15) Lx,x) =1 £(y,x)=4L(x, y)_l, m(y) = m(x)e(x,y).
(2) £(x,ox)isindependent of x € V(G) and so
(2.16) (o) :=L(x,0x)

iswell-defined and ¢ : I — (0, co) is a multiplicative homomorphism, that is, ¢(on) =
L(o)e(n).
PROOF (1) Itis trivial.

(2) Since
(2.17) L(x,ox)l(ox,0y)l(cy, V)E(y,x) =L(x,x) =1
andp is I'-invariant, we obtain
n
[[pten/pen
£(x, £(x, i=
(2.18) (x,0x) _ (x,y) _ 1 _1
L(y,oy) L(ox,oy) B
[[ploen/ploe)
i=1
for a pathxy = (e1, e2, ..., e,). The last assertion is obvious. O

Letwr : G — M be the canonical projection. We define the weighted fiifof f <
CO%M,C)to V(G) by

(2.19) f@x) =a(xo, x) f(m(x)),
wherea(x, y) = £(x, y)~Y/2. We remark that for every € I
(2.20) flox) =a(0)f(x),
wherea (o) = £(0) Y2, Let
(2.21) Zi)a ={f:V(G) - C| f(ox) = yx(o)a(o)f(x)foroc € I'},
which is the finite dimensionaP-space equipped with the inner product
(2.22) (f 90y = Y F)g()L(x0, %),
xeF

where F is a fundamental set aff. The inner product is independent of the choice of a
fundamental sef, since

flox)g(ox)l(xo,0x) = x(0)a(o)f(x)x(o)a(o)g(x)t(xo, x)L(o)
= f(x)g(x)(x0,x).

Let ¢2(V(M)) be thef?-space of complex-valued functions 6f(M) with the inner
product

(2.24) (frgdo= Y, [)g).

xeV (M)

(2.23)
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It is immediate to see thafs e ¢2 , from (2.11) and (2.20). Then we define the operator
U:L3(V(M)) — (2 ,byUf = fs.
LEMMA 2.2. Theoperator U : (L2(V(M)), (-, o) = (Z)Z()a, (-, *)y) IS unitary.

PrROOF Using (2.19) and Lemma 2.1 (1), we obtain
(Uf,Ug)x =Y f(x)s(x)Fx)s(x)e(xo, x)

xeF
(2.25) = Y alxo, x) f((x)alxo, x)g (T (x)e(xo, x)
xeF
= Y fWgl={(f 9.
xeV(M)
Since the dimensions 6&(V (M)) andei)a are the same, the operai@ris unitary. O

It is easy to check thaP leavest? , invariant, thatis,P(¢2 ,) C £2 ,. The restriction
Py = Plgz  is called the twisted transition operator. Hut = U=tp,U : 2(V(M)) —
¢2(V(M)). Then we find the concrete form &f, .

LEMMA 2.3. Letg(e) = (p(e)p(e))Y? for eache € E(M). Then,
(2.26) Ly f(x) = Z q(e) exp2r v/ —1w(e)) f(t(e)).

ecE (M)
PrROOE From the definition o/, we have
P Uf(x)= Y plealxo, t(e) f(r(t(e)))s(t(e))
eeE,(G)
ple)\ 2
(2.27) = Y pl (—) a(xo, x) f (0 (t (e))) exp2m /= 1w (e))s (x)

e€eE,(G) p(E)
=( > a@ exp<2nJ—_1w(e>)f(r(e>)>a(xo, 0)s(x) .
eEE,,(x)(M)

Hence we obtain the lemma.
We enumerate the eigenvaluesiof (or P,) by

(2.28) MO0 = 2200 = - = AN (X))

whereN = |F|. By the theory of direct integral we obtain

N
(2.29) speeP) = J | JniGo).

i=lyel
We remark that.1 is equal to the finite matrix defined in (1.6) and may not be a stochastic
matrix.
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3. Properties of 11(x). In this section we show some propertiesiafx). In the
proofs we will use three kinds of (modified) coboundary operators and their duals with respect
to the pairs of inner products in (3.5), (3.13) and (3.21).

The asymptotic behavior of the transition probability is determined by the behavior of the
largest eigenvalugy (x) of L, around the trivial charactdr. First we remark the relationship
betweent1(1) and the existence of a reversible measure)fon the quotient graph/.

PropPoOsITION 3.1. Assume that there exists a reversible measure m on V(G) for a
transition probability p : E(G) — (0, 1] which is I'-invariant. Then the following three
conditions are equivalent:

(1) Thereversible measurem is I"-invariant.

(2) Thereexistsareversible measuremgon V(M).

3) rm() =1

PROOFE It is obvious that (1) and (2) are equivalent, so that it suffices to show (2)

and (3) are equivalent. Assume that there exists a reversible meagune V (M). Since
mo(o(e)) p(e) = mo(t(e)) p(e), we find that

(3.1) mo(o(e)) p(e)? = mo(t(e)) p(&) p(e) = mo(t(e))q(e)?.
Then we have
(32  @LmdH = Y. q@mg’t@) = Y. plemy o) =myx)
ecE (M) ecE, (M)
and sor1(1) = 1.
Conversely, we assume thiat has the eigenvalue 1, and{gbe its corresponding eigen-

function, that is,L1¢ = ¢. We define the modified coboundary operator C°(M, R) —
CcY(M,R) by

(3.3) Df(e) = p(@Y2f(t(e)) — p(e)*?f(o(e))

and defineD* : C1(M,R) - C%M, R) by

(3.4) D¥*w(x) = — Z p(e)Y%w(e).
ecEy(M)

It is easy to check thab and D* are mutually adjoint operators with respect to the inner
products

1
(3.5) (frglo= Y. f@9@). (o.mo=3 D o).
xeV (M) ecE(M)
and that
(3.6) D*Df(x)=f(x)— Y. q)ft(e)=U—-L)f(x).
ecEy (M)

For the eigenfunctiop as above, since
(3.7) (D¢, Dp)o = (D* Dy, ¢)o = ((I — L1)g, ¢)o =0,
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we get
(3.8) Dg(e) = p(&)%p(t(e)) — p(e)Y?p(0(e)) =0
foranye € E(M), and this implies thagb(x)2 is a reversible measure fpron V(M). O

REMARK 3.2. We assumed the existence of a reversible measuré@nbut not the
I'-invariance of the reversible measure BKG). Since thel -invariance of the reversible
measure otV (G) implies thatr1(1) = 1, the corresponding random walk is “isotropic”.

The eigenvalue.1(1) is the largest one among the first eigenvalued of Since we
consider only abelian covering graphg(1) coincides with the maximum of the spectrum of
P.

PrROPOSITION 3.3. For any unitary character x, A1(x) < A1(1). Theequality holdsif
andonlyif x = 1. Inparticular, the maximum of Speg P) is given by the maximal eigenvalue
of the finite matrix Q defined in (1.6).

PrROOFE The last assertion is obtained from the first assertion and (2.29).
For a 1-formd € C1(M, R) such thaty = xg, put

(3.9) CLHM.C) = {w: E(M) - C|w(@) = —exp(—21/—10(e))w(e) for e € E(M)} .
We define the modified coboundary operapr: CO(M, C) — C(M, C) by

fe)  flole)

(3.10) Dy f(e) = eXp(Z”*/__w(e)) po(t(e))  golo(e))’

wheregyy is the positive solution to the equation
(3.11) Ligo = 21 (Deo

with [|gollo = 1. Also, we defineDj; : C1(M,C) — C°(M, C) by

(3.12) Diw(x)=— Y w(e)q(e)polt(e)).

ecE (M)

It is easy to check thaby and Dj are mutually adjoint operators with respect to the inner
products

(fr9o= Y [f)g0),
xeV (M)
(3.13)

1 N
(. =5 Y @@neq@o@)golt(e)),

ecE(M)
and moreover we see that
DiDof(0) = mDf@ = Y. qle)exp(2ry/=1(e)) f(t(e))
(3.14) e€E, (M)
(A1 = Ly,) f(x).
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Hence we obtain

(3.15) (Do f. Do fhg = (DgDs f. flo= (DI — Ly,) f. flo = 0.

First assertion immediately follows from (3.15).
Assume thatL,, f = 11(1)f and f # 0. Then, by (3.15), we geby f = 0O, or
equivalently,

fte) _ f(o(e))
wo(t(e))  olo(e))

(3.16) exp2rv/—16(e))

foranye € E(M). SinceM is connectedf (x) is non-zero for any € V(M). Thus for any
closed patlr in M, we have

(3.17) exp(zm/—_lfce) =1,

which impliesy = 1. O

The infimum of the spectrum a? is closely related to the bipartiteness of a graph
By using the technique of the proof above we can show the following proposition.

PROPOSITION 3.4. The spectrum of P is contained in the closed interval
[—A1(D), A1(D)]. Furthermore, inf SpedP) = —x1(1) if and only if G is bipartite.

PROOF  Take a 1-formd» € C1(M, R) such thatfy/2| = 1/2, and sed’ = 6 + 612
for a 1-form@. We considep’ as6 in the proof of Proposition 3.3. Then we obtain

(3.18) (Do f, Doy f g = (A1(DI + Ly,) f, o= 0.

This inequality together with (3.15) and (2.29) implies that $pgac [—A1(1), A1(D)].
Assume that inf Spg@) = —A1(1). Then there exists a 1-forthsuch thatyy € I’ and
Ly, f =—-x1(1) f, and hencey f = 0, or equivalently,

F@)  flole)
3.19 — 2w/ —160 —
(3.19) XV —I8ED @) ~ voto@)

foranye € E(M). From this equation, we get

1, if |c|is even,
(3.20) exp<27w—1/69> = {_1, if |c|is odd,

for any closed patla in M, which implies thatyy(c) = +1 for anyo € I'. Let¢ be an
arbitrary closed path i andc its projection ontaVf. Then, sincex € I, xo(c) is equal to
1 and hencér| must be even from (3.20). Consequendyis bipartite.

The other direction is obvious from Lemma 3.3, siftand— P are unitarily equivalent
whengG is bipartite.
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For the next proposition we choose inner products

(fr9dg= Y FOg®@o),

xeV(M)
(3.21) \ -
(. mq = 5 Z w(e)n(e)q(e)polo(e))go(t(e)),
ecE(M)
wheregy is the same as in (3.11). We define the opergjarCt(M, C) — C%(M, C) by
(3.22) So(x) == > w(e)g(e)po(t(e)).
eeE (M)

Itis easy to see that the operadgris the dual one of, that is,{(df, @)y = (f, 4w)4.
In order to compute the HessianXxf(x) at x = 1, we take a curve;; = x;z in I such
that xo = 1 and consider the equation

{Lt(/’t(x) =M (x),
lpolly = (o, 1)g = 1,
whereL; = L,, andi1(z) is the maximal eigenvalue df;. In particular,
(3.24) Lowo(x) = A1(0)¢o(x) (= A1(Deo(x)) .
Now we compute the Hessian bf at the trivial charactet.

(3.23)

PROPOSITION 3.5. Let w € HY(M, R) be a g-harmonic 1-form, that is, 8,0 = 0.
Then,

(3.25) Hesg—111(0, w) = —877||w|2 .

PROOF Letg, be defined as in (3.23). Observe that
(Lig, g =Y Y. qle)exp2rv/=Liw(e)g;(t(e)go(o(e))

x€V(M) ecEx (M)
= Z @ (x) Z q(e)(l—Zﬂ\/—_lta)(e) —2712t2a)(e)2)(p0(t(e))
xeV(M) ecEx(M)
+ 0%
(3.26)
=) (Pt(x)()»l(o)(ﬂo(x)+27'r«/—_1t5(]a)(x)

xeV(M)
—2n%? Yy q(e)a)(e)zgoo(t(e))) +0(%
ecEy(M)
= 21(0){gr. 1)g — 4r??||wll7 + O ()

ast — 0. Here we used the fact thatis g-harmonic.
Differentiating both sides of the equation

(3.27) (Ltor, g = () {er, L)y
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and puttingg = 0, we obtain

(3.28) 21(0)(@g, 1)y = 21(0) (90, 1)y + 21(0)(¢p. 1)y -
Then we have.} (0) = 0.
Differentiating again and putting= 0, we obtain
(3.29) 210)(gg, 1)g — 87%[llZ = 21(0) (g0, 1)g + 21(0) (¢, 1)y -

Then we have.}(0) = —872||o|2. B

4. Proof of thetheorems. The assertion of Theorem 1.1 in the case whgrs bi-
partite can be proved in almost the same way as in the case @hengon-bipartite (see [5]).
Here we give a proof only for the non-bipartite case. Throughout this section, we assume that
G is non-bipartite.

For anyx, y € V(G) we can take a fundamental s€tsuch thatc, y € F. Let

(4.1) froy = @(x, x0)s, (x) TU S,y € £2

xX.a?
whered;(y) € £2(V(M)) is the delta function supported by(x) andU is the one defined in
Section 2. Itis easy to check that

| x(@)a(e) ifz=o0x,
(4.2) Jax (@) = { 0 otherwise

Now we obtain an integral representationgf(x, y).

LEMMA 4.1. Letdy bethenormalized Haar measure on . Then,

1
4.3) pn(x,y) = L(x0. %) /;:<P)’(lfy,x7 Jexdxdx -

PROOFE Observe that

(P;fy,xs fx,x)x = Z ( Z Dn(z, w)fy,x(w)>fx,x(2)z(x0, 2)

zeF ~weV(G)

= Y palx,w)fy  (W)e(xo, x)

(4.4) weV(G)

= Y ) palx,ow) fy x (ow)e(xo, x)
weF oel’

=Y pulx, o9)x(@)a(0)E(x0, X) .
oel’

Then integrating over™ both sides of the equation above, and noting the orthogonality rela-
tions of unitary characters, we obtain

/ﬁ(P;fy,x,fx,X)de = E(XOax)/ﬁ an(x,ay)x(ff)ot(a)dx

(4.5) oer
= £(x0, X)pn(x,y).

This is the desired integral representation. O
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In the same way, we obtain the following integral representatign ©f, y).
LEMMA 4.2. LetA, = P, —I. Then,

1
/;‘<etAX Sy Feodxdx

(4.6) pi(x,y) = o)

Now we recall the Laplace method. (See [2] for instance.)

THEOREM 4.3 (The Laplace method).Let K be a compact set of R€, and let f and
g bereal-valued continuous functions on K. Suppose that f attains the unique maximum at
xo intheinterior of K, f isof C2-classin aneighborhood of xg and the Hessian of f at xg is
negative definite. Then

2\ k/2

@.7) / W g(ydx ~ —— L0 (_n) e
K | detHesg (xo)|Y2 \ n

asn — oo. If, inaddition, | f| also attains the unique maximum at xg, then

g(x0) (27Tf(xo)>k/ 2
| det Hesg (xg)|1/2

(4.8) / Fx)"g(x)dx ~ f(x0)"
K
asn — o0.
Now we are in a position to prove the theorems stated in Section 1.

PROOF OF THEOREMS 1.1 AND 1.3. We enumerated the eigenvalues Ryf by
{2 GOYY,, and now let{p, ;}, be the corresponding normalized eigenfunctions with
respecttd| - ||,,. We assumed that is non-bipartite and hence, from Proposition 3.4, we get
(4.9) max{|1i(x)||12<i < Nandy € I'} < x2(1).
By the spectral decomposition &, we have
N
(4.10) P =200 @xi)x - Pxi

i=1
and so by (4.9) together with Lemma 4.1

1 Y .
Dn(x,y) = t(x0. %) Z N Ai(x) (fy,xa (ﬂx,i>x(§0x,iv fx,x)de

(4.11) 0o /I

1

~ )\. n ) B k] d
T /F 2O Uy Ox.15 010 ey
asn — oQ.
Now, we take an orthonormal basis, ..., wx of 711" with respect to| - ||,. Putting

w = x1w1 + - -+ + xxwg, We have a local coordinate systém, ..., xx) of a neighborhood

of the trivial character. In this coordinate system, sitgeis the normalized Haar measure,
we get
1

Vol (1)

(4.12) dx =dyxe = dxy...dxy.
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Applying the Laplace method to (4.11), we obtain

(4.13) Pn(x,y) ~

1 (/i eralen, fran (Zﬂ)»l(l))k/z A (D"

£(x0,x) |det(Hesg—111)|'/2 n Vol, (")

We now considepg € £2(V(M)) in (3.24) such thatigollo = 1. Sinceps1 = Ugo and
fr.1=U(a(x, x0)8z(x)), we have

1
m(f% P1,1)1(p1,1, fr,101
1
(4.14) - mw(“(% x0)8x(y))s Upo)1 - (Ugo, U(ee(x, x0)87(x)))1

1
= m(a(y, X0)87(y)» 90)0 - (@0, (X, X0)87(x))0

= £0x, )20 (X))o () -

Since{a),»}f.‘:l is an orthonormal basis with respect|to ||,, we obtain| detHesg_1A1| =
(872)k by Lemma 3.5. Consequently, we get

£0x, y)Y200(r (x))po(m () A (1)"+H/2

(4.15) Pa(x,y) ~ -
! Vol (1) (4mn)k/2
asn — o0.
For continuous time random walks, using Lemma 4.2, we obtain the conclusion in the
same manner as above. O
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