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VARIATIONAL PROBLEMS OF NORMAL CURVATURE TENSOR
AND CONCIRCULAR SCALAR FIELDS
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Abstract. We consider the integral of (the square of) the length of the normal curva-
ture tensor for immersions of manifolds into real space forms, especially into spheres. The
first variation formula is given and the Euler-Lagrange equation is expressed in terms of the
isothermal coordinates when the submanifold is two-dimensional. The relations between the
critical surfaces and Willmore surfaces are discussed. We also give formulas concerning the
residue of logarithmic singularities ofS-Willmore points or estimate it by a conformal invari-
ant.

We show that if a compact critical surface satisfies certain conditions and the immersion
is minimal, then the Gauss curvature is a non-negative constant and the immersion is a stan-
dard minimal immersion of a sphere or a constant isotropic minimal immersion of a flat torus.
To prove this result, we study two-dimensional Riemannian manifolds admitting concircular
scalar fields whose characteristic functions are polynomials of degree 2. Moreover, the case
that the characteristic functions are polynomials of degree 3 is studied.

Introduction. In the 1960’s, Willmore proposed studying the functional

L[φ] =
∫
M

(η2 −K)dv

on the space of immersionsφ : M → R3 of a compact orientable surfaceM into a three-
dimensional Euclidean spaceR3, whereη is the mean curvature ofφ, K the Gauss curvature
of the induced metric anddv the volume element. The functionalL[φ] is called the Willmore
functional and a critical surface is called aWillmore surface.

Around 1980, Bryant [5] studied Willmore surfaces in a three-dimensional sphereS3

and contributed to the subject. He defined a conformal Gauss map of a surfaceM in S3

into the de Sitter space of all oriented small spheres ofS3 and showed thatM is a Willmore
surface if and only if the conformal Gauss map is harmonic. Furthermore, he obtained a
duality theorem for Willmore surfaces inS3. Ejiri [11] introduced the notion ofS-Willmore
surfaces and generalized Bryant’s duality theorem toS-Willmore surfaces inSn. He also
proved that Willmore surfaces of genus 0 inS4(1) areS-Willmore surfaces and classified
them. Recently, Hélein [13] constructed a Weierstrass type representation of all Willmore
immersions in terms of closed one-forms. In the studies mentioned above, the most important
fact about Willmore surfaces is thatL[φ] is invariant under conformal transformations of the
ambient space. The Willmore functional is generalized to submanifolds in a Euclidean space
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or a sphere. One is Pinkall’s conformal invariant ([20]) and the other is given in Rigoli [21].
The generalized Willmore functional dealt with in this paper coincides with the latter. For a
general presentation of the problem, see [26].

It is well-known that, for a submanifoldMm in a space form, the normal curvature tensor
R⊥ ∈ C∞(

∧2
T ∗M⊗ (T ⊥M)∗ ⊗T ⊥M) is invariant under conformal transformations of the

ambient space. Therefore the functional

R⊥
q [φ] =

∫
M

‖R⊥‖qdv

on the space of immersionsφ : Mm → M̃(c) is also a conformal invariant ifq = m/2.
However, for the most part, we shall deal with the functionalR⊥

2 [φ], because it is the Yang-
Mills integral of the normal bundle. We shall also deal with the case thatq = 1 whenM
is a surface. We here note that the geometric meaning ofL[φ] andR⊥

2 [φ] for surfaces is as
follows: The integrand ofL[φ] is equal, up to a constant factor, to the sum of the square of
lengths of major and minor axes of the curvature ellipse in the normal space at each point. On
the other hand, the integrand‖R⊥‖2 of R⊥

2 [φ] is equal to the square of the area encircled by
the curvature ellipse up to a constant factor.

Guadalupe and Rodriguez [12] studied the integral of the normal curvature and obtained
some inequalities relating the area of the surface and the integral of the square of the length of
the mean curvature vector with topological invariants. Their integral of the normal curvature
is different from ours. We should note thatR⊥

1 [φ] (resp.R⊥
2 [φ]) is the integral of the absolute

value (resp. the square of the length) of the normal curvaure.
In Section 1, we give the fundamental formulas in the theory of submanifolds in a real

space form. We also rewrite the corresponding formulas in terms of isothermal coordinates
when the submanifold is two-dimensional.

In Section 2, we obtain the first variation formulas ofL[φ] andR⊥
q [φ]. The Euler-

Lagrange equation ofL[φ] has already known as mentioned above. However, the computation
in this paper seems to be briefer than that of [22]. The Euler-Lagrange equation ofR⊥

q [φ]
is given in Theorem 2.7. The functionalR⊥

2 [φ] is a conformal invariant if the submanifold
is of dimension 4 and is the Yang-Mills integral. We shall prove in Theorem 2.8 that if
φ : M4 → M̃(c) is an immersion of a 4-dimensional compact oriented manifoldM4 into an
n-dimensional space form̃M(c) and the normal connection is self-dual or anti-self-dual, then
φ is a critical immersion ofR⊥

2 [φ]. We should note that sinceR⊥
2 [φ] is a functional defined

on a space of immersions, the normal bundle and the induced metric vary withφ.
In Section 3, we reduce the Euler-Lagrange equation ofR⊥

q [φ] (q = 1 and 2) to the
situation that the submanifold is a surface. The result is given in Theorem 3.1.

In Section 4, we shall study critical surfaces ofL[φ] andR⊥
2 [φ]. We give formulas

relating the sum of residues of logarithmic singularities of S-Willmore points in a compact
oriented Willmore surface with conformal invariants. In particular, the conformal invariant
appeared in the formula (4.8) is the Willmore integral. We conclude this section by showing
Theorem 4.8 that is stated as follows:
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Letφ : M2 → Sn(c) be a minimal immersion of compact surfaceM2 intoSn(c). If φ is a
critical immersion ofR⊥

2 [φ] and the curvature ellipses are circles, then the Gauss curvature is
constant and the immersion is a standard minimal immersion of a sphere, a constant isotropic
minimal immersion of a flat torus.

To complete the proof of Theorem 4.8, we need to study concircular scalar fields in
Section 6.

In Section 5, we shall consider the equation satisfied by concircular scalar fields on a
two-dimensional manifoldM as the Euler-Lagrange equation of the functional

FJ [g ] =
∫
M

J(K)dvg ,

whereJ is a function onR. Moreover, we shall introduce Tashiro’s work concerning concir-
cular scalar fields.

In Section 6, by making use of elliptic functions, we classify complete two-dimensional
manifolds admitting concircular scalar fields whose characteristic functions are polynomials
of the scalar field which are of degree 2 or 3. The classification is given in Theorem 6.3. The
proof of Theorem 4.8 is completed by using Theorem 6.4.

The author would like to express his hearty thanks to Professor M. Okumura who in-
troduced to him the results by Tashiro [24] explained in Section 5 and to the referee for his
valuable comments.

1. Submanifolds in a space form. Let φ : M → M̃ be an immersion of anm-
dimensionalC∞ manifoldM into ann-dimensional Riemannian manifold̃M. We shall de-
note the Riemannian metric oñM by g̃ and the induced metric onM by g . Indicesi, j, k, l run
over the range{1, . . . ,m}, λ,µ, ν, κ the range{1, . . . , n} andu, v the range{m+ 1, . . . , n}.
The differentialdφ of the mapφ can be regarded as aC∞ section of the bundleT ∗M⊗φ∗T M̃,
namelydφ ∈ C∞(T ∗M ⊗ φ∗T M̃) and, in terms of local coordinates{x1, . . . , xm} (resp.
{y1, . . . , yn}) in M (resp. inM̃), it is represented as

dφ = ∂φλ

∂xi
dxi ⊗ ∂

∂yλ
, (yλ = φλ(x1, . . . , xm)) ,(1.1)

where we use the so-called Einstein summantion convention. The induced metricg is given
by

g (X, Y ) = g̃ ((dφ(X), dφ(Y ))(1.2)

for any vector fieldsX andY tangent toM.
LetN : T ⊥M → φ∗T M̃ be the inclusion map of the normal bundleT ⊥M into φ∗T M̃.

Then it is regarded as aC∞ section of Hom(T ⊥M,φ∗T M̃). The connection onφ∗T M̃ in-
duced from the Levi-Civita connection oñM and the normal connection onT ⊥M induce a
connection∇ on Hom(T ⊥M,φ∗T M̃). Then the Weingarten equation forφ becomes

∇N = −dφ ◦A ,(1.3)
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whereA ∈ C∞(T ∗M ⊗ TM ⊗ (T ⊥M)∗) and, for a normal vector fieldξ ,Aξ ∈ C∞(T ∗M ⊗
TM) is the shape operator correspnding toξ . The relation betweenAξ and the second funda-
mental formh ∈ C∞(S2T ∗M ⊗ T ⊥M) is given by

g (AξX, Y ) = g̃ (h(X, Y ), ξ)(1.4)

for vector fieldsX and Y tangent toM. We shall putH = N ◦ h, which belongs to
C∞(S2T ∗M,φ∗T M̃). The Gauss equation is given by

∇dφ = H ,(1.5)

∇ being the induced connection on the bundleT ∗M ⊗ φ∗T M̃.
Let M̃ be a space formM̃(c) of constant sectional curvaturec. Then the structure equa-

tions of Gauss, Codazzi, Ricci are given, respectively, by

g (R(X, Y )Z,W) = c{g (X,W)g (Y,Z)− g (X,Z)g (Y,W)}
+ g̃ (H(X,W),H(Y,Z)− g̃ (H(X,Z),H(Y,W)) ,

(1.6)

(∇h)(X, Y,Z) = (∇h)(Y,X,Z) ,(1.7)

R⊥(X, Y )ξ = h(X,AξY )− h(Y,AξX)(1.8)

for X,Y,Z,W ∈ TM andξ ∈ T ⊥M (cf. [9]), whereR⊥ ∈ C∞(
∧2

T ∗M ⊗ (T ⊥M)∗ ⊗
T ⊥M) is the normal curvature tensor. We note that∇ in (1.7) is the induced connection
on (T ∗M)2 ⊗ T ⊥M. In the sequel, we shall use the same notation∇ for each connection
induced on various vector bundles constructed fromTM, T ⊥M andφ∗T M̃ except for the
two-dimensional case, and shall not state to which vector bundle various tensors belong. From
(1.6), we have formulas for Ricci tensor Ric and scalar curvatureρ:

Ric(X, Y ) = c(m− 1)g (X, Y )+mg̃ (h(X, Y ), η)−
∑
i

g̃ (h(X,Xi), h(Y,Xi)) ,(1.9)

ρ = cm(m− 1)+m2‖η‖2 − ‖H‖2 ,(1.10)

whereη is the mean curvature vector field defined by

η = 1

m

∑
i

h(Xi,Xi) ,

{X1, . . . , Xm} being an orthonormal frame tangent toM.
Next, we deal with orientedC∞ surfaces differentiably immersed in a sphereSn(c) =

{p ∈ Rn+1|‖p‖ = 1/
√
c}. Using isothermal coordinatesz = x+√−1y, we write the induced

metricg as

g = 2F(z, z̄)|dz|2 ,(1.11)

whereF is a positiveC∞ function. We note thatF becomes real analytic if the immersion
φ is minimal, has parallel mean curvature vector or makesM to be a Willmore surface (cf.
[11]). The area element is given by
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dv = 2Fdx ∧ dy = √−1Fdz ∧ dz̄ .(1.12)

For integersp andq, let Ep,q be the complex line bundle overM whose elements are
equivalence classes of(U, z, P,w), where

(a) U is an open domain inM andP ∈ U ,
(b) z is a local isothermal parameter defined inU andw ∈ C,
(c) (U, z, P,w) ∼ (U ′, z′, P ′, w′) if and only if

(i) P = P ′ ∈ U ∩ U ′, and
(ii) w′ = w((∂z/∂z′)(P ))p((∂z/∂z′)(P ))q .

See [8] for details. We shall sometimes use the complex conjugationEp,q → Eq,p in our
computation. Ifα = ᾱ for α ∈ Ep,q , then it is said to be real. For instance,F(= F(z, z̄)dz⊗
dz̄) is inE1,1 and real. The Gauss curvatureK of g is given by

K = − 1

F
∂∂̄ logF = 1

2

 logF ,(1.13)

where∂ = ∂/∂z, ∂̄ = ∂/∂z̄ and
 = −2F−1∂∂̄. The metricg induces Levi-Civita connec-
tion∇ on the bigraded algebraE = ∑

p,q E
p,q with tensor product. The covariant differential

operator∇ decomposes into∇′ and∇′′, where∇′ (resp.∇′′) is a differential operator of bide-
gree (1, 0) (resp. (0, 1)). The operators∇′ and∇′′ are defined by

∇′α = (∂α(z, z̄)− p∂ logF · α(z, z̄))(dz)p+1 ⊗ (dz̄)q ,

∇′′α = (∂̄α(z, z̄)− q∂̄ logF · α(z, z̄))(dz)p ⊗ (dz̄)q+1
(1.14)

for α = α(z, z̄)(dz)p ⊗ (dz̄)q ∈ C∞(Ep,q). In particular, we have∇′F = 0 = ∇′′F . For the
Ricci identity, we have

[∇′,∇′′]α = (q − p)KF ⊗ α .(1.15)

All higher order derivatives ofφ will be considered as functions with values inCn+1 =
Rn+1 ⊗R C. Let the symmetric producta = (a1, . . . , an+1) andb = (b1, . . . , bn+1) in Cn+1

be defined by

〈a,b〉 =
n+1∑
h=1

ahbh .(1.16)

Then the Hermitian product onCn+1 is given by〈a, b̄〉. The norm ofα ∈ Ep,q ⊗ Cn+1 is
defined as

|α|2 = F−(p+q)〈α, ᾱ〉 .(1.17)

We immediately have

〈∇′φ,∇′φ〉 = 0 , 〈∇′′φ,∇′′φ〉 = 0 , 〈∇′φ,∇′′φ〉 = F .(1.18)

Let x1 = x andx2 = y. We putHij = H(∂/∂xi, ∂/∂xj ), whereH is the second
fundamental form of the immersionφ : M → Sn(c). If we considerHij as a vector inCn+1,
then we see that the Gauss equation (1.5) becomes
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∇′2φ = 1

4
(H11 −H22 − 2

√−1H12)(dz)
2 .(1.19)

The right hand side is a vector normal toM in Sn(c), which we shall denote byγ . The mean
curvature vector fieldη satisfies

η = cφ − 1

2

φ ,(1.20)

because
φ = −(2/F )∇′∇′′φ. Taking a local orthonormal cross sections{N3, . . . , Nn} in
T ⊥M and regarding them asCn+1-valued functions, we have(

∂Nu + ηu∂φ + 1

F
γ u∂̄φ

)
dz = ωvuNv ,(1.21)

whereη = ηvNv, γ = γ vNv andωvu is the components of the normal connection extended
to the complexificationCT ⊥M of the normal bundle. Forξ ∈ C∞(Ep,q ⊗ CT ⊥M), we may
define the covariant differentiation ofξ by

′∇⊥ξ = (′∇ξu + ωuvξ
v)Nu ,

′′∇⊥ξ = (′′∇ξu + ω̄uv ξ
v)Nu ,(1.22)

whereξ = ξuNu = ξu(z, z̄)(dz)p ⊗ (dz̄)qNu. Then the Weingarten equation (1.3) becomes

∇′ξ − ′∇⊥ξ = −〈ξ, η〉∇′φ − 1

F
〈ξ, γ 〉∇′′φ ,(1.23)

in virtue of (1.21).
The structure equation (1.6) through (1.8) ofGauss, Codazzi and Ricci are the following:

K = c + ‖η‖2 − |γ |2 ,(1.24)
′′∇⊥γ = F ′∇⊥η ,(1.25)

R⊥ξ = 1

F
{〈ξ, γ̄ 〉γ − 〈ξ, γ 〉γ̄ } ,(1.26)

for ξ ∈ C∞(Ep,q ⊗ CT ⊥M), where

R⊥ = ∇′ω̄ − ∇′′ω + [ω, ω̄] ∈ C∞(E1,1 ⊗ Hom(CT ⊥M,CT ⊥M)) .

We note that the components ofR⊥ are given by

R⊥
u
v =

√−1

2
R⊥

12u
vdz⊗ dz̄ ,(1.27)

and hence it is pure imaginary. We finally note that Ricci identity forξ ∈ C∞(Ep,q⊗CT ⊥M)
is

[′∇⊥, ′′∇⊥]ξ = (q − p)KF ⊗ ξ + R⊥ξ .(1.28)

2. Variation of the length of normal curvature tensor. Let φ be an immersion of
an orientedm-dimensional manifoldM into ann-dimensional Riemannian manifold̃M. We
shall assume thatm ≥ 2.
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DEFINITION. By a compactly supported variation ofφ, we mean aC∞ mapΦ :
(−ε, ε)×M → M̃, (whereε > 0), such that

(a) each mapφt = Φ(t, ·) : M → M̃ is an immersion andφ = φ0,
(b) the closure of the set{p ∈ M |φt(p) �= φ(p) for somet ∈ (−ε, ε)} is compact.

The variation vectorV of Φ is a vector field alongφ which is defined by

V = dΦ

(
∂

∂t

)∣∣∣∣
t=0

.

Thus, if we putW = dΦ(∂/∂t), thenW(0, p) = V (p) for everyp ∈ M. We decomposeW
into the tangential and normal components:

W = dφt (T )+Ntζ ,(2.1)

whereNt is the inclusion map of the normal bundle(T ⊥M)t into φ∗
t T M̃ with respect to the

immersionφt . We note thatT andζ depend ont , but we omitt from them. On(−ε, ε)×M,
we define an operatorδt by

δtf = ∂f

∂t
, δt

(
∂

∂yλ

)
Φ

= WµΓ̃µ
ν
λ

(
∂

∂yν

)
Φ

, δt
∂

∂xi
= 0(2.2)

for everyλ andi, wheref is aC∞ function on(−ε, ε)×M, Γ̃µνλ are Christoffel’s symbols
of the Levi-Civita connection ofM̃ and(∂/∂yλ)Φ is the natural local frame inΦ∗T M̃. We
extendδt as a derivation to the tensor bundle

∑
T rs (M)⊗Φ∗T pq (M̃).

LEMMA 2.1. Let g t be the induced metric φ∗
t g̃ on {t} × M for each t ∈ (−ε, ε).

Let LT denote the Lie derivative with respect to T and (Ht)ζ be defined by (Ht)ζ (X, Y ) =
g̃ (Ht(X, Y ),Nt ζ ) for X,Y ∈ TM, where Ht is the second fundamental form of the immer-
sion φt . Then we have

δtg t = LT g t − 2(Ht)ζ .(2.3)

PROOF. We first note that

δt g̃ = 0 ,(2.4)

since

δt (g̃ λµdy
λ ⊗ dyµ) = Wν ∂

∂yν
g̃ λµdy

λ ⊗ dyµ

− g̃ λµW
κΓ̃κ

λ
νdy

ν ⊗ dyµ − g̃ λµW
κΓ̃κ

µ
νdy

λ ⊗ dyν

= Wν∇ν g̃ λµdyλ ⊗ dyµ = 0 .

It follows from (2.4) that

(δtg t )(X, Y ) = δt (g t (X, Y )) = δt (g̃ (dφt (X), dφt (Y )))

= g̃ ((δtdφt )(X), dφt (Y ))+ g̃ (dφt (X), (δtdφt )(Y ))
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for everyX,Y ∈ TM. Since

δtdφt = δt

(
∂Φλ

∂xi
dxi ⊗

(
∂

∂yλ

)
Φ

)

=
(
∂Wλ

∂xi
+WνΓ̃ν

λ
µ
∂Φµ

∂xi

)
dxi ⊗

(
∂

∂yλ

)
Φ

= ∇W ,

we have, from (1.5),

(δtg t )(X, Y ) = g̃ (∇XW, dφt (Y ))+ g̃ (dφt (X),∇YW)
= X · g̃ (W, dφt (Y ))− g̃ (W, (∇ t

Xdφt )(Y ))− g̃ (W, dφt (∇ t
XY ))

+ Y · g̃ (dφt (X),W) − g̃ ((∇ t
Y dφt )(X),W) − g̃ (dφt(∇ t

Y X),W)

= X · g t (T , Y )− g t (T ,∇ t
XY )+ Y · g t (X, T )− g t (∇ t

YX, T )

− g̃ (Ntζ,Ht (X, Y ))− g̃ (Ht(Y,X),Nt ζ )

= (L
T
g t )(X, Y )− 2(Ht)ζ (X, Y ) ,

where∇ t is the induced connection on the bundleT ∗M ⊗ φ∗
t M̃ over{t} ×M. �

LEMMA 2.2. Let g −1
t be the inverse matrix of the metric g t and dvt be the volume

form onM with respect to g t . Then we have

δtg −1
t = −g −1

t {L
T
g t − 2(Ht)ζ }g −1

t ,(2.5)

δtdvt = {divT −mg̃ (η, ζ )}dvt ,(2.6)

divT denoting the divergence of the vector field T .

PROOF. Since

0 = δt (g tg
−1
t ) = (δtg t )g

−1
t + g t (δtg

−1
t ) ,

substituting (2.3) into the first term, we obtain (2.5). We denote the determinant ofg t by gt
and(i, k)-cofactor by�ik. Then∂

√
gt /∂t = (∂gt /∂t)/2

√
gt and

∂gt /∂t =
m∑
k=1

{
∂(g t )1k
∂t

�1k + ∂(g t )2k
∂t

�2k + · · · + ∂(g t )mk
∂t

�mk

}

=
∑
k

∑
i

(δtg t )ik(g t )
ikgt = gt (LT g t − 2(Ht)ζ )ik(g t )

ik

= 2{divT −mg̃ (η, ζ )}gt .
Thus we have (2.6). �

LEMMA 2.3. The variation δtHt of the second fundamental form Ht is given by

(δtHt )(X, Y ) = (∇ t∇W)(X, Y )+ R̃(W, dφt (X))dφt (Y )− dφt ((δtΓ )(X, Y ))(2.7)

for every X,Y ∈ TM, where δtΓ = (∂Γj
i
k(t))/∂t)dx

j ⊗ dxk ⊗ ∂/∂xi , Γj ik(t) being
Christoffel’s symbols of the Levi-Civita connection of g t .
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PROOF. From (1.5), we have

(δtHt )(X, Y ) = (δt∇ t dφt )(X, Y )

for X,Y ∈ TM, where we note that

∇ t dφt =
(

∂2

∂xi∂xj
Φλ + ∂Φν

∂xi
Γ̃ν

λ
µ
∂Φµ

∂xj
− Γi

k
j (t)

∂Φλ

∂xk

)
dxi ⊗ dxj ⊗ (∂/∂yλ)Φ .

Therefore, using the Ricci formula

[δt ,∇ t ]dφt = R̃(W, dφt (X))dφt (Y )− dφt ((δtΓ )(X, Y ))

andδtdφt = ∇W , we obtain (2.7).

REMARK. In our later computation, we shall take an inner product ofδtHt with normal
vectors and so we need not computeδtΓ . Here, we only note thatδtΓ is a tensor field given
by

2g t ((δtΓ )(X, Y ), Z) = (∇ t k)(X, Y,Z)+ (∇ t k)(Y,Z,X) − (∇ t k)(Z,X, Y ) ,

wherek = LT g t−2 (Ht)ζ . This will be necessary for the computation of the second variation
formula.

We next compute the first and second terms of the right hand side of (2.7). Hereafter, we
assume that̃M is a Riemannian manifold̃M(c) of constant sectional curvaturec.

LEMMA 2.4. For every X,Y ∈ TM, we have

R̃(W, dφt (X))dφt (Y ) ≡ cg t (X, Y )Ntζ moddφt (TM) ,(2.8)

(∇ t∇W)(X, Y ) ≡ Nt {(∇ t ht )(X, Y, T )+ ht (∇ t
XT , Y )+ ht (X,∇ t

Y T )

+ (∇ t∇ t ζ )(X, Y )− ht (X,A
t
ζ Y )} moddφt (TM) .

(2.9)

PROOF. SinceM̃ = M̃(c), we have

R̃(W, dφt (X))dφt (Y ) = cg̃ (dφt (X), dφt (Y ))W − g̃ (W, dφt (Y ))dφt (X)

≡ cg t (X, Y )Ntζ moddφt (TM) .

Equation (2.9) is proved as follows:

∇YW = ∇ t
Y (dφt (T )+Ntζ )

= Ht(Y, T )+ dφt (∇ t
Y T )− dφt (A

t
ζ Y )+Nt∇ t

Y ζ .
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Therefore, ifX ∈ TpM andY is a vector field onM such that∇XY = 0 atp, then

(∇ t∇W)(X, Y ) = ∇ t
X∇YW

= ∇ t
X{Ntht (Y, T )+ dφt (∇ t

Y T )− dφt (A
t
ζ Y )+Nt∇ t

Y ζ }
≡ Nt(∇ t ht )(X, Y, T )+ Ntht (Y,∇ t

XT )

+Ht(X,∇ t
Y T )−Ht(X,A

t
ζ Y )+Nt∇ t

X∇ t
Y ζ

= Nt {(∇ t ht )(X, Y, T )+ ht (X,∇ t
Y T )+ ht (Y,∇ t

XT )

− ht (X,A
t
ζ Y )+ (∇ t∇ t ζ )(X, Y )} moddφt (TpM) ,

whereAtζ is the shape operator ofφt with respect toζ . �

It follows from (2.7) through (2.9) that

(δH)(X, Y ) ≡ N{(∇∇ζ )(X, Y )+ cg (X, Y )ζ + (∇h)(T ,X, Y )
− h(X,AζY )+ h(∇XT , Y )+ h(X,∇Y T )} moddφ(TM),

(2.10)

where we have putδ = δt |t=0 and so on. For the mean curvature vectorη, we have

δ(Nη) ≡ N

{
1

m
(−
ζ + S⊥ζ )+ cζ + ∇T η

}
moddφ(TM) ,(2.11)

S⊥ being the symmetric transformationT ⊥M → T ⊥M defined by

g̃ (S⊥ξ, ξ ′) = trace(AξAξ ′) .

Here we take an orthonormal local frame field{Nu} in T ⊥M. The equation (2.11) is proved
as follows:

δ(Nη) = 1

m
δ

{
g ijHij λ

(
∂

∂yλ

)
φ

}

= 1

m

{
(δg −1)ijHij

λ

(
∂

∂yλ

)
φ

+ g ij (δH)ij λ
(
∂

∂yλ

)
φ

}

≡ 1

m
{−(∇iT j + ∇j T i)+ 2hij uζ

u}Hij λ
(
∂

∂yλ

)
φ

+ 1

m
N(−
ζ − S⊥ζ + cmζ +m∇T η)+

2

m
(∇iT j )Hij

λ

(
∂

∂yλ

)
φ

= 1

m
N(−
ζ + S⊥ζ )+ cNζ + N∇

T
η moddφ(TM) ,

because of (2.5) and (2.10). Let{Xi}i=1,... ,m be an orthonormal base inTpM.

LEMMA 2.5. Let S be the symmetric transformation of TM defined by g (SX, Y ) =∑
i g̃ (H(X,Xi),H(Y,Xi)). Then the variation of the length of the second fundamental form
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and the mean curvature vector are given by

δ‖H‖2 = 2
∑
i,j

g̃ (H(Xi,Xj ), (∇∇ζ )(Xi,Xj ))+ 2
∑
i

Hζ (SXi,Xi)

+ 2mcg̃ (η, ζ )+ d‖H‖2(T ) ,

(2.12)

δ‖η‖2 = − 2

m
g̃ (
ζ, η)+ 2

m
g̃ (S⊥ζ, η)+ 2cg̃ (ζ, η)+ d‖η‖2(T ) ,(2.13)

respectively.

PROOF. Since

‖H‖2 = Hij
λHkl

µg ikg j l g̃ λµ and ‖η‖2 = g̃ (Nη,Nη) ,

equations (2.12) and (2.13) are derived from (2.4), (2.5), (2.10) and (2.11) by a routine calcu-
lation. �

Next, we shall compute the variation of the length of the tensor fieldL, which we define
byL = h−ηg , and the normal curvature tensorR⊥. We note thatNL andR⊥ are conformally
invariant, that is,N∗L∗ = NL and(R⊥)∗ = R⊥ under the changẽg ∗ = e2f g̃ . This fact is
well-known. However, for reader’s convenience, we give the proof. By a straightforward
computation, we have

H ∗(X, Y ) = H(X, Y )+ g (X, Y )ξf ,

whereξf is the normal component of the gradient vector off . Hence the mean curvature
vector satisfies

N∗η∗ = e−2f (Nη + ξf ) ,

from which it follows that

N∗L∗(X, Y ) = H ∗(X, Y )− g ∗(X, Y )N∗η∗

= H(X, Y )− g (X, Y )Nη

= NL(X, Y ) .

DefineLξ by

g (LξX, Y ) = g̃ (L(X, Y ), ξ) .

Then we can easily show that

L∗
ξX = A∗

ξX − g̃ ∗(η∗, ξ)X
= AξX + g̃ (ξf , ξ)X − g̃ (η + ξf , ξ)X

= LξX

Since

NR⊥(X, Y )ξ = H(X,AξY )−H(Y,AξX)

= NL(X,LξY )−NL(Y,LξX) ,
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we have(R⊥)∗ = R⊥. Since

‖L‖2 = ‖H‖2 −m‖η‖2 ,(2.14)

equations (2.12) and (2.13) imply that

δ‖L‖2 = 2
∑
i,j

g̃ (L(Xi,Xj ), (∇∇ζ )(Xi,Xj ))+ 2
∑
i

g̃ (h(SXi ,Xi), ζ )

− 2g̃ (S⊥η, ζ )+ d‖L‖2(T ) .

(2.15)

Therefore we have the following result which was obtained in [21] and [22].

THEOREM 2.6 ([21, 22, 26]). The Euler-Lagrange equation of the conformally in-
variant functional

L[φ] =
∫
M

‖L‖mdv

is

�(‖L‖m−2L)− ‖L‖m−2
{
(m− 1)Q⊥η −

∑
i,j

Ric(Xi,Xj )L(Xi,Xj )

}
= 0 ,(2.16)

where Q⊥ : T ⊥M → T ⊥M is the symmetric transformation defined by

g̃ (Q⊥ξ, ξ ′) =
∑

g̃ (L(Xi,Xj ), ξ)g̃ (L(Xi,Xj ), ξ ′)

and �B = −(∇i∇jBij
u)Nu for any section B of T ∗M ⊗ T ∗M ⊗ T ⊥M .

PROOF. We see from (2.6) that

d

dt
L[φt ]|t=0 =

∫
δ(‖L‖mdv)

=
∫ {

m

2
‖L‖m−2δ‖L‖2 + ‖L‖m(divT −mg̃ (η, ζ ))

}
dv .

Using (2.15), we have

m

2
‖L‖m−2δ‖L‖2 = m‖L‖m−2

{∑
i,j

g̃ (L(Xi,Xj ), (∇∇ζ )(Xi,Xj ))

+
∑
i

g̃ (h(SXi,Xi), ζ )− g̃ (S⊥η, ζ )+ 1

2
d‖L‖2(T )

}
.
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Hence

m

2
‖L‖m−2δ‖L‖2 + ‖L‖m(divT −mg̃ (η, ζ ))

= m
∑

g̃ (‖L‖m−2L(Xi,Xj ),∇∇ζ(Xi,Xj ))
+m‖L‖m−2{g̃ (∑

h(SXi,Xi)− S⊥η − ‖L‖2η, ζ
)}

+ m

2
‖L‖m−2d‖L‖2(T )+ ‖L‖mdivT

= m
∑

g̃ (‖L‖m−2L(Xi,Xj ),∇∇ζ(Xi,Xj ))
+m‖L‖m−2g̃

( −
∑

Ric(Xi,Xj )L(Xi,Xj )+ (m− 1)Q⊥η, ζ
) + div(‖L‖mT ) ,

where we have used

S⊥η = Q⊥η +m‖η‖2η ,

g (SX, Y ) = −Ric(X, Y )+ c(m− 1)g (X, Y )+mg̃ (h(X, Y ), η) .

Integrating by parts and using Stokes’ formura, we obtain (2.16). �

Thus if the Ricci tensor is proportional to the metric tensor, then (2.16) reduces to

�(‖L‖m−2L)− (m− 1)‖L‖m−2Q⊥η = 0 .

In particular, we have the following result obtained in [21, 25].

COROLLARY. If m = 2, then (2.16)reduces to


η −Q⊥η = 0 .(2.17)

PROOF. We have only to show�L = (m − 1)
η. We can easily show that by using
the Codazzi equation (1.7). �

DEFINITION. Willmore surface is a surface satisfying (2.17) immersed in a space form.

Let us consider a variational problem for another conformal invariantR⊥. We shall
compute the Euler-Lagrange equation for the functional

R⊥
q [φ] =

∫
‖R⊥‖qdv .

We note that ifq = m/2, thenR⊥
m/2[φ] is a conformal invariant. However we are also

interested in the caseq = 2 for any dimensionm, because the right hand side of the definition
of R⊥

2 [φ] is a Yang-Mills integral.
Here we explain the geometric meaning of‖R⊥‖ in the case thatq = 1 andm = 2 (cf.

[12]). For arbitrarily fixed pointp ∈ M, the curvature ellipseEp at p is defined as the set
{h(X,X)|X ∈ TpM, ‖X‖ = 1}. This is an ellipse lying on the plane�p which pass through
η and is spanned by the normal vectorsa = (h11 − h22)/4F andb = h12/2F in the normal
spaceTp⊥M. We easily see that 4|γ |2(= 2‖L‖2) is equal to 4(‖a‖2 + ‖b‖2) and hence is
equal to the sum of the square of lengths of major and minor axes. The square of the area
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surrounded byEp in �p is equal toπ2(‖a‖2‖b‖2 − 〈a,b〉2). It follows that it is equal to

π2(|γ |4 − |〈γ, γ 〉|2)/4 atp. Since|R⊥|2 = F−2 ∑
u,v R⊥

u
vR⊥

u
v , we see from (1.26) that

(area)2 = π2|R⊥|2/8 = π2‖R⊥‖2/16 atp.

THEOREM 2.7. Let C ∈ C∞(T ∗M ⊗ T ∗M ⊗ T ⊥M) be defined by

C(X, Y ) =
m∑
i=1

R⊥(Y,Xi)h(X,Xi) .

If q ≥ 2, then the Euler-Lagrange equation of the functional

R⊥
q [φ] =

∫
‖R⊥‖qdv

is given by

�(‖R⊥‖q−2C)− 1

2
‖R⊥‖q−2

{∑
i,j

P (Xi,Xj )h(Xi,Xj )− m

2q
‖R⊥‖2η

}
= 0 ,(2.18)

where P is defined by

P(X, Y ) = −
∑

trace(R⊥(X,Xi)R⊥(Y,Xi)) .

In particular, if q = 2, then (2.18)becomes

�C − 1

2

{∑
i,j

P (Xi ,Xj )h(Xi,Xj )− m

4
‖R⊥‖2η

}
= 0 .(2.19)

If q = 1 and R⊥ �= 0 anywhere on M, then we have

�(‖R⊥‖−1C)− 1

2
‖R⊥‖−1

{ ∑
i,j

P (Xi,Xj )h(Xi,Xj )− m

2
‖R⊥‖2η

}
= 0 .(2.18’)

PROOF. Since

d

dt
R⊥
q [φt ]

∣∣∣∣
t=0

=
∫

‖R⊥‖q−2
{
q

2
δ‖R⊥‖2 + ‖R⊥‖2(divT −mg̃ (η, ζ ))

}
dv ,

we need to computeδ‖R⊥‖2. DefineDt by

Dt = (Ht)ik
µ(Ht)jl

λ(g t )
kldxi ⊗ dxj ⊗

(
∂

∂yλ

)
Φ

⊗
(
∂

∂yµ

)
Φ

.

Then, from (1.8), we have

‖Rt⊥‖2 = {(Dt )ij λµ − (Dt)ji
λµ}{(Dt)klνκ − (Dt )lk

νκ}(g t )ik(g t )j l g̃ λν g̃ µκ .
Therefore

1

2
δ‖R⊥‖2 = {(δD)ij λµ − (δD)ji

λµ}{Dklνκ −Dlk
νκ}g ikg j l g̃ λν g̃ µκ

+ (Dij
λµ −Dji

λµ)(Dkl
νκ −Dlk

νκ)(δg −1)ikg j l g̃ λν g̃ µκ .
(2.20)
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Next we computeδD:

δD = δ

(
Hik

µHjl
λg kldxi ⊗ dxj ⊗

(
∂

∂yλ

)
φ

⊗
(
∂

∂yµ

)
φ

)

= {(δH)ikµHjlλg kl +Hik
µ(δH)jl

λg kl +Hik
µHjl

λ(δg −1)kl}

dxi ⊗ dxj ⊗
(
∂

∂yλ

)
φ

⊗
(
∂

∂yµ

)
φ

.

Using (2.5) and (2.10), we obtain

(δD)ij
λµ ≡ ∇i∇kζ vNvµHj kλ + ∇j∇kζ vNvλHikµ

+ c(Hij
λNv

µζ v +Hij
µNv

λζ v)

+ T l(∇lhikvNvµhj kλ + ∇lhjkvNvλhikµ)
+ ∇iT kDjkµλ + ∇j T kDikλµ mod(dφλ, dφµ) .

Substituting this result into the first term of the right hand side of (2.20) and puttingDij
uv =

hik
vhj

ku, we have

1

2
δ‖R⊥‖2 = 4∇i∇kζ vhj kuR⊥ij

uv + 2Pij hij uζ u

+ 2(2T k∇ihklvhj lu + 2∇j T kDikuv − ∇iT kR⊥
kj
uv)R⊥ij

uv .

(2.21)

The third term of the right hand side of (2.21) is equal to

2T kR⊥
iju

v∇iR⊥j
kv
u .

The second Bianchi identity forR⊥ implies that this is equal to(∇T ‖R⊥‖2)/2. It follows that

δ‖R⊥‖2 = 8∇i∇kζ vhj kuR⊥ij
uv + 4Pij hij uζ u + T i∇i‖R⊥‖2 .

Integrating by parts and using Stokes’ formula, we have

d

dt
R⊥
q [φt ]

∣∣∣∣
t=0

=
∫

{4q∇k∇i (‖R⊥‖q−2hj
kuR⊥ij

uv)

+ 2q‖R⊥‖q−2Pij h
ij
v −m‖R⊥‖qηv}ζ vdv .

Here we note that we can use Stokes’ formula under the assumption thatq ≥ 2. However, if
q = 1, then

∇i (‖R⊥‖q−2hj
kuR⊥ij

uv)ζ
v and ‖R⊥‖q−2hj

kuR⊥ij
uv∇kζ v

may not converge to 0 as a point approaches to the zeros ofR⊥. Thus, whenq = 1, we need
the assumption thatR⊥ does not vanish. �

Whenm = 4 andq = 2,R⊥
2 [φ] is a conformal invariant and the Yang-Mills integral in

the vector bundleT ⊥M.

THEOREM 2.8. Let φ : M4 → M̃(c) be an immersion of a four-dimensional compact
oriented manifold M4 into an n-dimensional space form M̃(c). If the normal connection is
self-dual or anti-self-dual, then φ is critical for the functional R⊥

2 [φ].
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PROOF. Let ε = 1 or −1 according as the normal connection is self-dual or anti-self-
dual. Let{X1, . . . , X4} be an orthonormal basis inTpM associated with the orientation of
M4. Then the assumption that the normal connection is self-dual or anti-self-dual is equivalent
to

R⊥(X1,X2) = εR⊥(X3,X4) , R⊥(X1,X3) = εR⊥(X4,X2) ,

R⊥(X1,X4) = εR⊥(X2,X3) .
(2.22)

(cf. [3, p. 370]) Self-dual and anti-self-dual connections are Yang-Mills instanton. Thus the
normal curvature tensorR⊥ satisfies∇iR⊥

iju
v = 0 (cf. [19, p. 21]). Thus we see from

Codazzi equation (1.7) that

�C = −∇i∇j (hi
puR⊥

jpu
v)

= −∇i (hi
pu∇jR⊥

jpu
v) = 0 .

The second term of (2.19) vanishes. In fact,∑
i,j

P (Xi,Xj )h(Xi,Xj )− ‖R⊥‖2η =
∑
i,j

P (Xi,Xj )L(Xi,Xj ) ,

and (2.2) implies thatP(Xi,Xj ) = αδij for everyi andj , for instance

P(X1,X2) = −trace(R⊥(X1,X3)R
⊥(X2,X3)+ R⊥(X1,X4)R

⊥(X2,X4))

= −trace(R⊥(X4,X2)R
⊥(X1,X4)+ R⊥(X1,X4)R

⊥(X2,X4))

= 0 .

�

3. Two-dimensional cases. Let φ : M2 → Sn(c) be an immersion of an oriented
surfaceM2 into ann-dimensional sphereSn(c) of constant sectional curvaturec. We shall
rewrite (2.18), (2.18’) and (2.19) in terms of the isothermal coordinatez = x + √−1y. Since
g 11 = g 22 = 2F andg 12 = 0, Christoffel’s symbols of the Levi-Civita connection are given
by

Γ1
1
1 = −Γ2

1
2 = Γ1

2
2 = 1

2
∂1 logF , Γ1

1
2 = −Γ1

2
1 = Γ2

2
2 = 1

2
∂2 logF ,(3.1)

where∂1 = ∂/∂x and∂2 = ∂/∂y. The coefficientsΓivu of the normal connection with respect
to an orthonormal local frame field{Nu} in T ⊥M are defined by∇⊥

∂i
Nu = Γi

v
uNv and so the

relation betweenωvu andΓivu is

Γ1
v
u = �vu + �̄vu , Γ2

v
u = √−1(�vu − �̄vu) , (ωvu = �vudz) .(3.2)

Therefore, we have

∇1
⊥ξu = ∂1ξ

u + Γ1
u
vξ
v

= (∂ + ∂̄)ξu + (�uv + �̄uv)ξ
v

= ′∇⊥ξu + ′′∇⊥ξu ,
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where we have put′∇⊥ξ = ′∇⊥ξudz⊗Nu and′′∇⊥ξ = ′′∇⊥ξudz̄⊗Nu. Similarly, we have

∇2
⊥ξu = √−1(′∇⊥ξu − ′′∇⊥ξu) .

Moreover, a straightforward computation shows that

∇1∇1ξ
u = ′∇⊥′∇⊥ξu + ′∇⊥′′∇⊥ξu + ′′∇⊥′∇⊥ξu + ′′∇⊥′′∇⊥ξu ,

∇2∇2ξ
u = −′∇⊥′∇⊥ξu + ′∇⊥′′∇⊥ξu + ′′∇⊥′∇⊥ξu − ′′∇⊥′′∇⊥ξu .

It follows that


η = − 1

F
(′′∇⊥′∇⊥η + ′∇⊥′′∇⊥η) .(3.3)

The tensor fieldL has the components:

L11
u = γ u + γ̄ u , L22

u = −(γ u + γ̄ u) , L12
u = √−1(γ u − γ̄ u) .(3.4)

Therefore the components ofQ⊥ are given by

Q⊥
u
v = 1

F 2
(γ uγ̄ v + γ̄ uγ v) .(3.5)

Using (1.26), (1.28), (3.3) and (3.5) we have

−
η +Q⊥η = 1

F
(′′∇⊥′∇⊥η + ′∇⊥′′∇⊥η)+Q⊥η

= 2

F

′′∇⊥′∇⊥η + 1

F 2
(〈η, γ̄ 〉γ − 〈η, γ 〉γ̄ )+ 1

F 2
(〈η, γ̄ 〉γ + 〈η, γ 〉γ̄ )

= 2

F
(′′∇⊥′∇⊥η + 1

F
〈η, γ̄ 〉γ ) .

Thus we can rewrite (2.17) as

′′∇⊥′∇⊥η + 1

F
〈η, γ̄ 〉γ = 0 ,(3.6)

or equivalently

′′∇⊥′′∇⊥γ + 〈η, γ̄ 〉γ = 0(3.7)

which is the defining equation of Willmore surfaces ([11, 25, 26]).
Next we treat (2.18), (2.18’) and (2.19) with the isothermal coordinate. First, we compute

the components of the tensor fieldC. Using (1.27), we have

C11
v = R⊥

1ku
vh1l

ug kl = 1

2F
R⊥

12u
vh12

u

= 1

F
R⊥

u
v(γ u − γ̄ u) .
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Similarly, the other components are the following:

C12
v =

√−1

F
R⊥

u
v(γ u + γ̄ u + 2Fηu) ,

C21
v =

√−1

F
R⊥

u
v(γ u + γ̄ u − 2Fηu) ,

C22
v = − 1

F
R⊥

u
v(γ u − γ̄ u) .

Using (3.1) and (3.2), we have

∇kCjk
v = g lk(∂lCjkv − Γl

i
jCik

v − Γl
i
kCji

v + Γl
v
uCjk

u)

= 1

2F
{∂1Cj1

v + ∂2Cj2
v − (Γ1

i
1 + Γ2

i
2)Cji

v − Γ1
i
jCi1

v − Γ2
i
jCi2

v

+ Γ1
v
uCj1

u + Γ2
v
uCj2

u}
= 1

2F
{(∂ + ∂̄)Cj1

v + √−1(∂ − ∂̄)Cj2
v

− (Γ1
1
jC11

v + Γ1
2
jC21

v + Γ2
1
jC12

v + Γ2
2
jC22

v)

+ (�vu + �̄vu)Cj1
u + √−1(�vu − �̄vu)Cj2

u}
= 1

2F
{∂(Cj1

v + √−1Cj2
v)+ ∂̄(Cj1

v − √−1Cj2
v)+ 4

√−1Γ1
2
jR

⊥
u
vηu

+ �vu(Cj1
u + √−1Cj2

u)+ �̄vu(Cj1
u − √−1Cj2

u)} .
It follows that

∇kC1k
v = 1

F

{
− 1

F

′∇⊥(R⊥
u
vγ̄ u)+ 1

F

′′∇⊥(R⊥
u
vγ u)

− ′∇⊥(R⊥
u
vηu)+ ′′∇⊥(R⊥

u
vηu)

}
,

∇kC2k
v =

√−1

F

{
1

F

′∇⊥(R⊥
u
vγ̄ u)+ 1

F

′′∇⊥(R⊥
u
vγ u)

− ′∇⊥(R⊥
u
vηu)− ′′∇⊥(R⊥

u
vηu)

}
.

(3.8)

Moreover, we compute∇j∇kCjk
v. Since

∇j∇kCjk
v = g j l∇l∇kCjk

v

= g j l(∂l∇kCjk
v − Γl

i
j∇kCik

v + Γl
v
u∇kCjk

u)

and from (3.8)

∇kC1k
v + √−1∇kC2k

v = 2

F

{
− 1

F

′∇⊥(R⊥
u
vγ̄ u)+′′ ∇⊥(R⊥

u
vηu)

}
,
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we have

∇j∇kCjk
v

= 1

2F
{∂(∇kC1k

v + √−1∇kC2k
v)+ ∂̄(∇kC1k

v − √−1∇kC2k
v)

+ �vu(∇kC1k
u + √−1∇kC2k

u)+ �̄vu(∇kC1k
u − √−1∇kC2k

u)}
= 1

F 3 {′′∇⊥′′∇⊥(R⊥
u
vγ u)+ ′∇⊥′∇⊥(R̄⊥

u
vγ̄ u)} + 1

F 2R⊥
w
vR⊥

u
wηu.

We thus obtain

−�C = 2

F 3
�[′′∇⊥′′∇⊥(R⊥γ )] + 1

F 2
(R⊥)2η ,(3.9)

where�[ ] means the real part of[ ].
The second term of (2.19) is computed as follows:∑

i,j

P (Xi,Xj )h(Xi,Xj ) = R⊥
ikuvR

⊥
j
kuvhijwNw

= 1

8F 3
(4F 2|R⊥|2h11

w + 4F 2|R⊥|2h22
w)Nw

= 2|R⊥|2η .
Here we note that|R⊥|2 = F−2〈R⊥, R̄⊥〉 = ‖R⊥‖2/2. Therefore we have obtained

THEOREM 3.1. The Euler-Lagrange equation of the functional

R⊥
2 [φ] =

∫
‖R⊥‖2dv

for immersion φ : M2 → Sn(c) of an oriented surface M2 is given by

2

F 3
�[′′∇⊥′′∇⊥(R⊥γ )] + 1

F 2
(R⊥)2η + 1

2
|R⊥|2η = 0 .(3.10)

For the conformally invariant functional

R⊥
1 [φ] =

∫
‖R⊥‖dv ,

the Euler-Lagrange equation is given by

�(‖R⊥‖−1C) = 0(3.11)

under the condition that R⊥ does not vanish anywhere on M .

COROLLARY. If the normal curvature tensor is parallel, then the immersion φ is crit-
ical for the functional R⊥

1 [φ]. Moreover, if φ is minimal, then φ is critical for the functional
R⊥

2 [φ].
PROOF. We immediately have

∇1R
⊥

12u
v = −2

√−1(′∇⊥R⊥
u
v + ′′∇⊥R⊥

u
v) ,

∇2R
⊥

21u
v = −2 (′∇⊥R⊥

u
v − ′′∇⊥R⊥

u
v) .
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It follows that the normal curvature tensor parallel if and only if′′∇⊥R⊥ = 0. From the
assumption, we see that′′∇⊥R⊥ = 0 and so|R⊥| is constant. IfR⊥ = 0, then it is trivial
thatφ is critical. Assume thatR⊥ �= 0. Then we see from (3.9) that (3.11) is equivalent to

2

F
�[′′∇⊥′′∇⊥(R⊥γ )] + (R⊥)2η = 0 .(3.12)

Since

′′∇⊥′′∇⊥(R⊥γ )+ ′∇⊥′∇⊥(R̄⊥γ̄ ) = R⊥(′′∇⊥′′∇⊥γ − ′∇⊥′∇⊥γ̄ )
= FR⊥(′′∇⊥′∇⊥η − ′∇⊥′′∇⊥η)
= −FR⊥R⊥η ,

we have (3.12). �

The following proposition shows that (3.12) is equivalent to the defining equation (3.7)
of Willmore surfaces under appropriate assumptions.

PROPOSITION 3.2. We assume that ‖R⊥‖ is a non-zero constant and the curvature
ellipse is a circle at every point. Then (3.7) is equivalent to (3.12).

PROOF. We first note that the curvature ellipse is a circle if and only if〈γ, γ 〉 = 0.
Thus from the assumption, we haveR⊥γ = F |γ |2γ and

|R⊥|2 = F−2〈R⊥, R̄⊥〉
= F−4

∑
u,v

(γ̄ uγ v − γ uγ̄ v)(γ uγ̄ v − γ̄ uγ v)

= 2(|γ |4 − |〈γ, γ 〉|2) = 2|γ |4 ,
which is a non-zero constant. Assume that (3.7) holds. Then

′′∇⊥′′∇⊥(R⊥γ ) = F |γ |2′′∇⊥′′∇⊥γ
= −F |γ |2〈η, γ̄ 〉γ .

Therefore we have

′′∇⊥′′∇⊥(R⊥γ )+ ′∇⊥′∇⊥(R̄⊥γ̄ ) = −F |γ |2{〈η, γ̄ 〉γ + 〈η, γ 〉γ̄ } .
Since

(R⊥)2η = F−1R⊥{〈η, γ̄ 〉γ − 〈η, γ 〉γ̄ }
= 〈η, γ̄ 〉|γ |2γ + 〈η, γ 〉|γ |2γ̄ ,

we have (3.12). Conversely, assume that (3.12) holds. Then

0 = F−1{′′∇⊥′′∇⊥(R⊥γ )+ ′∇⊥′∇⊥(R̄⊥γ̄ )} + (R⊥)2η
= |γ |2(′′∇⊥′′∇⊥γ + ′∇⊥′∇⊥γ̄ )+ |γ |2{〈η, γ̄ 〉γ + 〈η, γ 〉γ̄ } .
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Since
′′∇⊥′′∇⊥γ − ′∇⊥′∇⊥γ̄ = F(′′∇⊥′∇⊥η − ′∇⊥′′∇⊥η)

= −FR⊥η
= 〈η, γ 〉γ̄ − 〈η, γ̄ 〉γ ,

we obtain (3.7). �

4. Critical surfaces. First, we shall study Willmore surfaces. Letφ : M → Sn(c) be
an isometric immersion of a compact oriented surfaceM into Sn(c). DefineΨ ∈ C∞(E3,0 ⊗∧2 CT ⊥M) by Ψ = γ ∧ ′∇⊥η. The immersionφ : M → Sn(c) is called aS-Willmore
surface if γ ∧ γ̄ �= 0 andΨ = 0 everywhere onM. It is known thatS-Willmore surfaces
are Willmore surfaces and there exist Willmore surfaces which are notS-Willmore surfaces
([10, 11]). In the following, we shall obtain an integral formula for the sum of residues of
logarithmic singularities of log|Ψ |2. We note that the Willmore surface equation (3.6) and
Codazzi equation (1.25) imply thatΨ is a holomorphic section ofE3,0 ⊗ ∧2 CT ⊥M, that
is, ′′∇⊥Ψ = 0 and hence eitherΨ is identically zero, or else the zeros ofΨ can be at most
isolated. Define the symmetric product of twop-vectorsξ = ξ1∧· · ·∧ξp andζ = ζ1∧· · ·∧ζp
in

∧
CT ⊥M by

〈ξ, ζ 〉 = 1

p!det(〈ξA, ζB〉)A,B=1,... ,p .(4.1)

Then we have

LEMMA 4.1. Let φ : M → Sn(c) be a compact oriented Willmore surface such that
Ψ �= 0 identically. Let Σ denote the set {p ∈ M|Ψ(p) = 0} and 2jp the real analytic order
of the zero of |Ψ |2 at p ∈ Σ . Set N = ∑

p∈Σ jp. Then we have

−2πN = 6πχ(M)+
∫ {

2

|Ψ |2 (|Ψγ |2 − |Ψ γ̄ |2)+ A

|Ψ |4
}
dv ,(4.2)

where Ψγ = {〈′∇⊥η, γ 〉γ − 〈γ, γ 〉′∇⊥η}/2, Ψ γ̄ = {〈′∇⊥η, γ̄ 〉γ − 〈γ, γ̄ 〉′∇⊥η}/2 and
A = |′∇⊥Ψ |2|Ψ |2 − |〈′∇⊥Ψ, Ψ̄ 〉|2.

PROOF. OnM\Σ, we have

F−1∇′∇′′ log |Ψ |2

= F−4

|Ψ |4
{
(〈′∇⊥Ψ, ′′∇⊥Ψ̄ 〉 + 〈Ψ, ′∇⊥′′∇⊥Ψ̄ 〉)|Ψ |2 − F−3〈Ψ, ′′∇⊥Ψ̄ 〉〈′∇⊥Ψ, Ψ̄ 〉}

= 1

|Ψ |2F
−4〈Ψ, ′∇⊥′′∇⊥Ψ̄ 〉 + A

|Ψ |4 .
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Using the Ricci identity (1.28), we have

3FKΨ̄ ξ + R⊥Ψ̄ ξ
= ′∇⊥′′∇⊥(Ψ̄ ξ)− ′′∇⊥′∇⊥(Ψ̄ ξ)
= (′∇⊥′′∇⊥Ψ̄ − ′′∇⊥′∇⊥Ψ̄ )ξ + Ψ̄ (′∇⊥′′∇⊥ξ − ′′∇⊥′∇⊥ξ)
= (′∇⊥′′∇⊥Ψ̄ − ′′∇⊥′∇⊥Ψ̄ )ξ + Ψ̄R⊥ξ

for every normal vectorξ . It follows that

′∇⊥′′∇⊥Ψ̄ = 3FKΨ̄ + R⊥Ψ̄ − Ψ̄R⊥ .

Thus we obtain

F−4〈Ψ, ′∇⊥′′∇⊥Ψ̄ 〉
= 3K|Ψ |2 + 2F−4

∑
R⊥

w
uΨ̄ wvΨ uv

= 3K|Ψ |2 + 2F−5
∑

(γ̄ wγ u − γ wγ̄ u)Ψ̄ wvΨ uv

= 3K|Ψ |2 + 2(|Ψγ |2 − |Ψ γ̄ |2) .

(4.3)

The residue of the logarithmic singularities of log|Ψ |2 is given by

−2πN = lim
ε→0

∫
Σε

(
F−1 ∇′∇′′ log |Ψ |2

)
dv ,

whereΣε denotes the complement inM of anε-neighborhood of all points ofΣ. In virtue of
the Gauss-Bonnet formula: ∫

Kdv = 2πχ(M) ,

we obtain (4.2). �

THEOREM 4.2. Let φ : M → Sn(c) be a compact oriented Willmore surface. Assume
that Ψ �= 0 identically. Then we have

4π(3χ(M)+ N ) ≤
∫ |R⊥|2

|γ |2 dv .

The equality holds if and only if 〈Ψγ, γ̄ 〉 = 0 and ′∇⊥Ψ is proportional to Ψ .

PROOF. We compute the first term of the integrand of (4.2) onM\Σ. Since

|Ψγ ∧ γ |2 = 1

4
|〈γ, γ 〉|2|Ψ |2 ,

we have

|Ψγ |2|γ |2 = 1

2
|〈γ, γ 〉|2|Ψ |2 + |〈Ψγ, γ̄ 〉|2 .
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We also have

|Ψ γ̄ |2 = 1

4
F−7〈〈′∇⊥η, γ̄ 〉γ − 〈γ, γ̄ 〉′∇⊥η, 〈′′∇⊥η, γ 〉γ̄ − 〈γ, γ̄ 〉′′∇⊥η〉

= 1

4
{|γ |4|′∇⊥η|2 − |〈′∇⊥η, γ̄ 〉|2|γ |2} = 1

2
|γ |2|Ψ |2 .

It follows that

1

|Ψ |2 (|Ψγ |2 − |Ψ γ̄ |2) = −|R⊥|2
4|γ |2 + |〈Ψγ, γ̄ 〉|2

|Ψ |2|γ |2 ,(4.4)

where we have used

|R⊥|2 = 2(|γ |4 − |〈γ, γ 〉|2) .
Therefore we see from (4.4) and the non-negativity ofA that

F−1 ∇′∇′′ log |Ψ |2 = 3K − |R⊥|2
2|γ |2 + 2

|〈Ψγ, γ̄ 〉|2
|Ψ |2|γ |2 + A

|Ψ |4

≥ 3K − |R⊥|2
2|γ |2 .

(4.5)

Integrating (4.5), we have the desired inequality. �

Surfaces with isotropicγ in S4(c) areS-Willmore surfaces, becauseγ and γ̄ form an
orthogonal basis ofCT ⊥M and

F 〈′∇⊥η, γ 〉 = 〈′′∇⊥γ, γ 〉 = 0 .

This fact was proved in [11]. We also have

THEOREM 4.3. Let φ : M → S5(c) be a Willmore surface whose curvature ellipse is
a circle everywhere. Then it is a S-Willmore surface.

This is immediately derived from the following lemma.

LEMMA 4.4. Let φ : M → S6(c) be a Willmore surface whose curvature ellipse is a
circle everywhere. If Ψ �= 0 identically, then γ , γ̄ , ′∇⊥η and ′′∇⊥η form a basis of CT ⊥M
on M\Σ and satisfy

〈′∇⊥η, γ 〉 = 0 , 〈′∇⊥γ, γ 〉 = 0 , 〈′∇⊥η,′ ∇⊥η〉 = 0 .(4.6)

PROOF. Since〈γ, γ 〉 = 0, we get

〈′∇⊥η, γ 〉 = 0 , 〈′∇⊥γ, γ 〉 = 0 ,

and so, using (3.6),

0 = ∇′′〈′∇⊥η, γ 〉 = 〈′′∇⊥′∇⊥η, γ 〉 + 〈′∇⊥η, F ′∇⊥η〉
= F 〈′∇⊥η, ′∇⊥η〉 .
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Therefore we see that the subspace spanned byγ and ′∇⊥η in CT ⊥M is isotropic. Since
Ψ = γ ∧ ′∇⊥η �= 0, vectorsγ , γ̄ , ′∇⊥η and′′∇⊥η form a basis ofCT ⊥M onM\Σ. �

THEOREM 4.5. Let φ : M → S6(1) be a compact oriented Willmore surface. Assume
that Ψ �= 0 identically and the curvature ellipse is a circle everywhere. Then we have

−2πN = 6πχ(M)−
∫

|γ |2dv +
∫ |α|2

|Ψ |2dv ,(4.7)

where α = 〈′∇⊥′∇⊥η, γ 〉 = −〈′∇⊥η, ′∇⊥γ 〉. In particular, if M is a topological sphere,
then we have ∫

|γ |2dv = 12π + 2πN .(4.8)

PROOF. By Lemma 4.4, we can set

′∇⊥′∇⊥η = aγ + bγ̄ + c ′∇⊥η + d ′′∇⊥η ,
′∇⊥γ = a′γ + b′γ̄ + c′ ′∇⊥η + d ′ ′′∇⊥η .

Taking the symmetric product of the both hand sides of the above equation andγ (′∇⊥η), we
obtain

F 2b = α|′∇⊥η|2
2|Ψ |2 , F 3d = −α〈′∇⊥η, γ̄ 〉

2|Ψ |2 ,

F 3b′ = α〈′′∇⊥η, γ 〉
2|Ψ |2 , Fd ′ = −α|γ |2

2|Ψ |2 .

It follows that

′∇⊥′∇⊥η ∧ Ψ = αF−3

2|Ψ |2 {F |′∇⊥η|2γ̄ ∧ Ψ − 〈′∇⊥η, γ̄ 〉′′∇⊥η ∧ Ψ } ,

′∇⊥γ ∧ Ψ = αF−3

2|Ψ |2 {〈′′∇⊥η, γ 〉γ̄ ∧ Ψ − F 2|γ |2 ′′∇⊥η ∧ Ψ } .

(4.9)

The following general formula for decomposable 2-vectors are easily proved:

〈p ∧ s1, q̄ ∧ t̄1〉〈p ∧ s2, q̄ ∧ t̄2〉 − 〈p ∧ s1, q̄ ∧ t̄2〉〈p ∧ s2, q̄ ∧ t̄1〉
= 3

2
〈p, q̄〉〈p ∧ s1 ∧ s2, q̄ ∧ t̄1 ∧ t̄2〉 .

(4.10)

Using this formula, we computeA defined in Lemma 4.1. We have

′∇⊥Ψ = θ ∧ δ + γ ∧ ω ,
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where we have putθ = ′∇⊥γ , δ = ′∇⊥η andω = ′∇⊥′∇⊥η. ThenA is computed as follows:

A = |θ ∧ δ + γ ∧ ω|2|γ ∧ δ|2 − |〈θ ∧ δ + γ ∧ ω, γ̄ ∧ δ̄〉|2
= |θ ∧ δ|2|γ ∧ δ|2 − |〈θ ∧ δ, γ̄ ∧ δ̄〉|2

+ |γ ∧ ω|2|γ ∧ δ|2 − |〈γ ∧ ω, γ̄ ∧ δ̄〉|2
+ F−4〈θ ∧ δ, γ̄ ∧ ω̄〉|γ ∧ δ|2 − F−7〈θ ∧ δ, γ̄ ∧ δ̄〉〈γ̄ ∧ ω̄, γ ∧ δ〉
+ F−4〈γ ∧ ω, θ̄ ∧ δ̄〉|γ ∧ δ|2 − F−7〈γ ∧ ω, γ̄ ∧ δ̄〉〈θ̄ ∧ δ̄, γ ∧ δ〉

= 3

2
{|δ|2|δ ∧ θ ∧ γ |2 + |γ |2|γ ∧ ω ∧ δ|2

− 2�[F−7〈δ̄, γ 〉〈ω ∧ γ ∧ δ, θ̄ ∧ γ̄ ∧ δ̄〉]} .

Thus we have

A = 3

2
{|γ |2|′∇⊥′∇⊥η ∧ Ψ |2 + |′∇⊥η|2|′∇⊥γ ∧ Ψ |2

− 2�[F−7〈γ, ′′∇⊥η〉〈′∇⊥′∇⊥η ∧ Ψ, ′′∇⊥γ̄ ∧ Ψ̄ 〉]} .
(4.11)

To compute three terms of the right hand side of (4.11), we use (4.1) and (4.9). The first term
is computed as follows:

|γ |2|′∇⊥′∇⊥η ∧ Ψ |2

= |γ |2|α|2
4|Ψ |4 〈|′∇⊥η|2γ̄ ∧ ′∇⊥η ∧ γ − 〈′∇⊥η, γ̄ 〉′′∇⊥η ∧ ′∇⊥η ∧ γ,

|′∇⊥η|2γ ∧ ′′∇⊥η ∧ γ̄ − 〈′′∇⊥η, γ 〉′∇⊥η ∧ ′′∇⊥η ∧ γ̄ 〉

= |γ |2|α|2
12|Ψ |4 {|′∇⊥η|4|γ |2|Ψ |2 − |′∇⊥η|2|〈′∇⊥η, γ̄ 〉|2|Ψ |2}

= |γ |2|α|2
12|Ψ |2 |′∇⊥η|2{|′∇⊥η|2|γ |2 − |〈′∇⊥η, γ̄ 〉|2}

= 1

6
|γ |2|α|2|′∇⊥η|2 .

Similarly, the second and third terms become

|′∇⊥η|2|′∇⊥γ ∧ Ψ |2 = 1

6
|′∇⊥η|2|γ |2|α|2 ,

2�[F−7〈γ, ′′∇⊥η〉〈′∇⊥′∇⊥η ∧ Ψ, ′′∇⊥γ̄ ∧ Ψ̄ 〉] = 1

3
|α|2|〈′∇⊥η, γ̄ 〉|2 .

Substituting these equations into (4.11), we getA = |α|2|Ψ |2. SinceΨγ = 0, (4.2) reduces
to (4.7).
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Furthermore, ifM is a topological sphere, thenα vanishes. To prove this result, we have
only to show thatα is a holomorphic differential of degree 4. By (3.6), we obtain

∇′′〈′∇⊥η, ′∇⊥γ 〉
= 〈′′∇⊥′∇⊥η, ′∇⊥γ 〉 + 〈′∇⊥η, ′′∇⊥′∇⊥γ 〉
= −F−1〈γ̄ , η〉〈γ, ′∇⊥γ 〉 + 〈′∇⊥η, F ′∇⊥′∇⊥η + 2KFγ − R⊥γ 〉
= 1

2
F∇′〈′∇⊥η, ′∇⊥η〉 = 0 .

�

Second, we study surfaces satisfying (3.10).If the normal connection is flat, then (3.10)
trivially holds. By the same proof as that of Proposition 3.2, we obtain

LEMMA 4.6. Under the assumption that the curvature ellipses are circles of constant
radius onM , (3.10)is equivalent to

′′∇⊥′∇⊥η + F−1〈η, γ̄ 〉γ + F

2
|γ |2η = 0 .(4.12)

PROOF. SinceR⊥γ = F |γ |2γ and|γ | is constant, we have
′′∇⊥′′∇⊥(R⊥γ ) = F |γ |2 ′′∇⊥′′∇⊥γ .

Using

(R⊥)2η = |γ |2(〈γ̄ , η〉γ + 〈γ, η〉γ̄ ) ,
we obtain

1

F
{′′∇⊥′′∇⊥(R⊥γ )+ ′∇⊥′∇⊥(R̄⊥γ̄ )} + (R⊥)2η

= |γ |2(′′∇⊥′′∇⊥γ + ′∇⊥′∇⊥γ̄ + 〈γ̄ , η〉γ + 〈γ, η〉γ̄ )
= |γ |2{F(′′∇⊥′∇⊥η + ′∇⊥′′∇⊥η)+ 〈γ̄ , η〉γ + 〈γ, η〉γ̄ } .

It follows from the Ricci identity (1.28) that

2

F
�[′′∇⊥′′∇⊥(R⊥γ )] + (R⊥)2η + F 2

2
|R⊥|2η

= |γ |2{F(2′′∇⊥′∇⊥η + R⊥η)+ 〈γ̄ , η〉γ + 〈γ, η〉γ̄ + F 2|γ |2η}

= 2F |γ |2
(

′′∇⊥′∇⊥η + F−1〈γ̄ , η〉γ + F

2
|γ |2η

)
.

Whenγ = 0, φ is totally umbilical and hence (4.12) holds. Thus (3.10) is equivalent to
(4.12). �

An isometric immersionφ : M → M̃ is said to beconstant isotropic if ‖H(X,X)‖2 is
constant on the unit tangent bundle ofM. In the case thatM is a surface, we easily see thatφ is
constant isotropic if and only if it is pseudo-umbilical (〈γ, η〉 = 0), the curvature ellipses are
circles (〈γ, γ 〉 = 0) and‖η‖2 + |γ |2/2 is constant. In [23], we determined constant isotropic
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surfaces inS5(c). All of them are of constant Gauss curvature. In connection with this result,
we state

THEOREM 4.7. Let φ : M → Sn(c) be a pseudo-umbilical immersion of a surfaceM .
If the curvature ellipses are circles of constant radius on M and φ satisfies (3.10), then M is
of constant Gauss curvature.

PROOF. Since〈′∇⊥η, γ 〉 = 0, we have, from (4.12),

0 = ∇′′〈′∇⊥η, γ 〉
= 〈′′∇⊥′∇⊥η, γ 〉 + 〈′∇⊥η, F ′∇⊥η〉
= −F

2
|γ |2〈η, γ 〉 + F 〈′∇⊥η, ′∇⊥η〉

= F 〈′∇⊥η, ′∇⊥η〉 .
Thus we see that

0 = ∇′′〈′∇⊥η, ′∇⊥η〉
= −|γ |2〈η, ′∇⊥η〉 = −1

2
|γ |2∇′‖η‖2 .

If γ = 0, thenφ is totally umbilical. If ‖η‖2 is constant, thenK is constant because of the
Gauss equation (1.24). �

REMARK. If φ : M → Sn(c) is a constant isotropic minimal immersion, then the
assumption thatφ is pseudo-umbilical and satisfies (3.10) is trivially satisfied (cf. (4.12)).
Minimal surfaces of constant Gauss curvature inSn(c) were determined in [6].

In the next theorem, we characterize a part of minimal surfaces of constant Gauss curva-
ture inSn(c) by the conditions thatM is compact,φ is critical for the functionalR⊥

2 and the
curvature ellipses are circles everywhere.

THEOREM 4.8. Let φ : M → Sn(c) be a minimal immersion of compact surfaceM . If
φ satisfies (3.10)and the curvature ellipses are circles everywhere, then the Gauss curvature
ofM is constant and the immersion is a standard minimal immersion of a sphere or a constant
isotropic minimal immersion of a flat torus (cf. [6,17,23]).

PROOF. If R⊥ ≡ 0, thenγ = 0 and soφ is totally umbilical. Assume thatR⊥ does
not vanish identically. Equation (3.10) reduces to

�[′′∇⊥′′∇⊥(R⊥γ )] = 0 .

It follows that

(∇′′∇′′|γ |2)γ + (∇′∇′|γ |2)γ̄ = 0 .

Vectorsγ andγ̄ are linearly independent onΣ ′ = {p ∈ M|R⊥(p) �= 0}. Thus∇′∇′|γ |2 = 0
on Σ ′. Sinceφ is real analytic,M\Σ ′ is discrete inM. Hence∇′∇′|γ |2 = 0 onM. It
follows that∇′∇′K = 0 onM in virtue of the Gauss equation (1.24). In the subsequent
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sections, we study a two-dimensional Riemannian manifold(M, g ) which admits a function
satisfying∇∇f = τg . In Section 6, we prove that if the Gauss curvatureK of a compact
two-dimensional Riemannian manifold satisfies∇′∇′K = 0, thenK is constant. From this
and the result of [6], we have the assertion. �

REMARK. For any standard minimal immersion of a sphere, the curvature ellipses are
circles. On the other hand, there are minimal immersions of flat tori such that curvature
ellipses are not circles (cf. [6]).

Next, let us assume that the mean curvature vector of the immersionφ : M → Sn(c) is
parallel. Chen [9] and Yau [27] proved that if the mean curvature vector ofφ is parallel, then
M is one of the following surfaces:

(1) a minimal surface inSn(c),
(2) a minimal surface of a small hypersphere ofSn(c),
(3) a surface with constant mean curvature in a three-dimensional sphere ofSn(c).

In the following collorary, we show that ifφ is not totally umbilical, then the conditon for the
curvature ellipses excludes the case (3) and the equation (3.10) excludes the case (2) from our
conclusion.

COROLLARY. Let φ : M → Sn(c) be an immersion of a compact surface M . If φ
satisfies (3.10), the mean curvature vector is parallel and the curvature ellipses are circles
everywhere, then the Gauss curvature of M is constant and the immersion is a standard mini-
mal immersion of a sphere, a constant isotropic minimal immersion of a flat torus or a totally
umbilical immersion.

PROOF. In the case (3), the normal connection is flat (cf. [9, p. 106]). Since〈γ, γ 〉 = 0,
we haveγ = 0. Thusφ is totally umbilical in the case (3). IfR⊥ = 0 in the case (2), then
γ = 0 and henceφ is totally umbilical. Assume thatR⊥ does not vanish identically in the
case (2). Take the symmetric product of both hand sides of (3.10) andη. Then we have

2�[F−3∇′′∇′′〈R⊥γ, η〉] + F−2〈(R⊥)2η, η〉 + 1

2
|R⊥|2‖η‖2 = 0 .

Since

R⊥η = ′∇⊥′′∇⊥η − ′′∇⊥′∇⊥η = 0 ,

we see thatη = 0 on the open dense setΣ ′, where we note thatφ is real analytic. Therefore
we haveη = 0 onM. �

5. Equation ∇∇f = τg . In the proof of Theorem 4.8, we used the result that a
compact surface whose Gauss curvature satisfies∇′∇′K = 0 is of constant curvature. The
equation∇′∇′K = 0 can be rewritten as a tensor equation∇∇K = τg , τ being aC∞
function onM. In the present and next sections, we shall study a complete two-dimensional
Riemannian manifoldM which admits a functionf satisfying∇∇f = τg (cf. [4, 15, 18,
24]).
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LetM be a two-dimensionalC∞ manifold. We assume thatM is compact and orientable.
Let M denote the set of Riemannian metrics onM. Furthermore, letM1 denote the subset
{g ∈ M| ∫M dvg = 1} andM2 the subset{g ∈ M1|dvg = µ}, whereµ is a positive density
onM with total volume

∫
M µ = 1 (cf. [3]). In the compact openC∞ topology,M is an

open convex cone in the setC∞(S2T ∗M) of all C∞ sections ofS2T ∗M. We consider the
following functionalFJ fromM to R:

FJ [g ] =
∫
M

J(K)dvg ,

whereJ = J (x) is a function defined onR, J (K) the compositionJ ◦ K anddvg the area
element ofg ∈ M. The Euler-Lagrange equation is given by

∇∇J̇ (K)+ {�J̇ (K)−KJ̇ (K)+ J (K)}g = 0(5.1)

for a critical pointg ∈ M, where∇ denotes the covariant derivative with respect tog , the
Laplace operator is defined by
 = −g ij∇i∇j andJ̇ (K) the compositeJ̇ ◦K. The equation
(5.1) for the caseJ (x) = x2 is well-known (cf. [3], Chapter 4). However, for the sake of
completeness, we give the proof in the following.

Let g (t) be a smooth curve(−ε, ε) → M such thatg (0) = g . We computeF ′
J [g ] :=

(d/dtFJ [g (t)])(0). Since

F ′
J [g ] =

∫
M

J̇ (K)
∂K

∂t
(0)dvg +

∫
M

J(K)(dvg (t))
′(0) ,

we have to compute(∂K/∂t)(0) and(dvg (t))′(0). Let k ∈ TgM be defined byk = g ′(0).
Then it is easy to show that (

∂

∂t
g ij

)
(0) = −kij

and hence

g′(0) = (trk)g ,

whereg(t) = det(g ij (t)), g = g(0) and trk = kij g ij . Therefore we have

(dvg (t))
′(0) = g′(0)

2
√

g
dx1 ∧ dx2 = 1

2
trkdvg .

The derivative(∂Γj ik/∂t)(0) of the coefficients of Riemannian connection∇ is given by(
∂

∂t
Γj

i
k

)
(0) = 1

2
g ip(∇j kpk + ∇kkjp − ∇pkjk) .

Using this equation in the derivation of the Rimannian curvature tensorRijk
l :

∂

∂t
{K(g jkδli − g ikδ

l
j )} =

(
∂

∂t
Rijk

l

)
(0)

=
{
∂

∂t

(
∂

∂xi
Γj

l
k − ∂

∂xj
Γi
l
k + Γi

l
pΓj

p
k − Γj

l
pΓi

p
k

)}
(0) ,
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we get

2

(
∂

∂t
K

)
(0) = ∇i∇j kij +
trk −Ktrk .

By integration by parts, we have

2F ′
J [g ] =

∫
M

{J̇ (K)(∇i∇j kij +
trk −Ktrk)+ J (K)trk}dvg

=
∫
M

[∇i∇j J̇ (K)+ {
J̇(K)−KJ̇(K)+ J (K)}g ij ]kij dvg .
(5.2)

The equation (5.1) is the necessary and sufficient condition for thatF ′
J [g ] = 0 for

arbitraryk ∈ TgM. The equation (5.1) implies that


J̇(K) = 2{KJ̇(K)− J (K)}
and hence is rewritten as

∇∇J̇ (K) = {J (K)−KJ̇ (K)}g .(5.3)

We now introduceC∞ functions onM

f = J̇ (K) , τ = J (K)−KJ̇ (K) .

Then (5.3) becomes

∇∇f = τg ,(5.4)

which shows thatf is aconcircular scalar field onM (cf. [24]).
Recall thatTgM1 = {k ∈ TgM| ∫ trkdvg = 0} andTgM2 = {k ∈ TgM|trk = 0}.

Thusg is a critical point ofFJ |M1 (resp.FJ |M2) if and only if the orthogonal projection
of the left hand side of (5.1) ontoTgM1 (resp.TgM2) is zero. Thus ifg is a critical point
for the functionalsFJ ,FJ |M1 or FJ |M2, then we have a concircular scalar field onM. The
function τ , called thecharacteristic function of f , can be considered as a functionτ (f ) of
f if J̇ is strictly monotone, i.e.,̈J �= 0 anywhere onR. In fact, we haveτ = −
f/2 and
covariantly differentiating the both hand sides of (5.4) and using the Ricci identity, we obtain

∇
f = 2K∇f .
Under the assumption thaẗJ �= 0,K is represented asK = U(f ) with U = J̇−1. Thusτ is
given by

τ = −
∫
U(f )df ,(5.5)

where the integral constant is chosen in such away that
∫
M
τdvg = 0. Since

∇‖∇f ‖2 = 2τ (f )∇f ,
the length of∇f is given by

‖∇f ‖2 = 2
∫
τ (f )df .(5.6)
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We have shown the following.

THEOREM 5.1. The critical point g ∈ M of the functional FJ is characterized by
(5.3). If g is a critical point for FJ ,FJ |M1, or FJ |M2, then the function f := J̇ (K) is a
concircular scalar field on M . If J̈ �= 0, then the characteristic function τ and the length of
∇f are given by (5.5)and (5.6), respectively.

Next, letM be a complete two-dimensional Riemannian manifold with a metricg . We
assume thatM admits aC∞ functionf satisfying (5.4), namely a concircular scalar field with
the characteristic functionτ . Letm denote the number of the isolated stationary points of the
gradient field gradf . Tashiro proved the following results (cf. [24, pp. 251–257]):

(1) The stationary points are isolated andm ≤ 2.
(2) According tom = 0,1 and 2,M is diffeomorphic to the direct product of a

complete one-dimensional Riemannian manifoldZ andR, a Euclidean spaceR2 and a two-
dimensional sphereS2.

(3) The integral curves of gradf are geodesics. Denoting byW the set of the stationary
points, we can take a local coordinates{u, θ} onM\W such thatu-curves coincide with the
integral curves andθ is a local coordinate onZ (m = 0) or the unit circle in the tangent space
at P ∈ W (m = 1,2); in other words,{u, θ} is the geodesic polar coordinates aroundP .
Moreover, in terms of{u, θ}, f is represented as a functionf (u) of only u, andg has the
form

g = du2 + a(u)2dθ2 , a(u) = cf ′(u) > 0 ,

wherec is some constant.

REMARK. Tashiro obtained stronger results than those stated above forn(≥ 2)-dimen-
sional Riemannian manifolds.

In (3), the domainI of a is (−∞,∞), [0,∞) and[0, L], respectively, ifm = 0,1 and
2, whereL = dist(P,Q) andW = {P,Q}. Sincef ′(u) �= 0 on the interior ofI , we have the
inverse functionu = u(f ) of f , defined onf (I). The equation (5.4) implies thatτ depends
only on u. Therefore, by taking the composition ofτ (u) andu(f ), we see thatτ can be
regarded as a function off . Since

dτ

df
∇f = ∇τ = −1

2
∇�f = −K∇f ,

the curvatureK is given by

K = −a
′′

a
= U(f ) ,(5.7)

whereU(f ) := −dτ/df .
We want to compute∇∇K under the assumption thatd2τ/df 2 �= 0 everywhere onf (I).

Let ˙ denote differentiation with respect tof . Since

∇K = U̇(f )∇f ,
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we have, from (5.4),

∇∇K = Ü(f )∇f ⊗ ∇f + U̇∇∇f

= Ü(f )

U̇(f )2
∇K ⊗ ∇K + U̇(f )τ (f )g .

Our assumption implies that there exists the inverse function ofU(f ), denoted byv, and
hencef = v(K). It is easily shown that

Ü(f )

U̇(f )2
= −d

2v/dK2

dv/dK
.

By usingv, we have

U̇(f )τ (f ) = − 1

dv/dK

∫
U(f )df = − 1

dv/dK

∫
K
dv

dK
dK

= 1

dv/dK

{∫
v(K)dK −Kv(K)

}
.

Defineϕ andψ on the range ofK by

ϕ(K) = 1

d2J/dK2

{
J (K)−K

dJ

dK

}
, ψ(K) = −d

3J/dK3

d2J/dK2 ,

whereJ (K) = ∫
v(K)dK and the indefinite constant of the integral is chosen in such a way

thatτ (f ) = ∫
v(K)dK −Kv(K). ThenK satisfies

∇∇K = ϕ(K)g + ψ(K)∇K ⊗ ∇K .(5.8)

We have shown the following.

THEOREM 5.2. If M admits a concircular scalar field f with the characteristic func-
tion τ and d2τ/df 2 �= 0 anywhere on f (I), then the curvature K satisfies (5.8).

We finally start from the assumption thatK satisfies (5.8). Substituting (5.8) into the
Ricci identity:

∇h∇i∇jK = ∇i∇h∇jK −K(δ
p
h g ij − δ

p
i g hj )∇pK ,

we easily obtain

ϕ̇(K)∇hKg ij + ψ̇(K)∇hK∇iK∇jK + ψ(K)∇iK∇h∇jK
= ϕ̇(K)∇iKg hj + ψ̇(K)∇iK∇hK∇jK + ψ(K)∇hK∇i∇jK

−K(δ
p

h g ij − δ
p

i g hj )∇pK ,
where˙ denotes differentiation with respect toK. Transvecting withg hj and using (5.8)
again, we have

{ϕ̇(K)+K + ψ(K)
K + ϕ(K)ψ(K)+ ψ2(K)‖∇K‖2}∇K = 0 .

Substituting


K = −2ϕ(K)− ψ(K)‖∇K‖2
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into this, we obtain

ϕ̇(K)+K − ϕ(K)ψ(K) = 0(5.9)

on the set of non-critical points ofK.
Assume thatϕ(K) �= 0 at an arbitrary critical point ofK. Then the critical points are

isolated and (5.9) holds onM. Consider a nontrivial functionv = v(K) satisfying

d2v

dK2 + ψ(K)
dv

dK
= 0 .

DefineJ (K) by

J (K) = Kv(K)+ v̇(K)ϕ(K) .(5.10)

Then, in virtue of (5.9),

J̇ (K) = v(K)+ {K − ϕ(K)ψ(K)+ ϕ̇(K)} v̇(K)
= v(K) .

Therefore, if we set

v(K) = C

∫
e−Ψ (K)dK , Ψ (K) =

∫
ψ(K)dK(5.11)

with some non-zero constantC, thenJ (K) defined by (5.10) satisfieṡJ(K) = v(K) and
hence

∇∇J̇ (K) = v̈(K)∇K ⊗ ∇K + v̇(K)∇∇K
= {J (K)−KJ̇(K)}g ,

because of (5.8) and (5.10).

THEOREM 5.3. If the Gauss curvature K of a compact, orientable, two-dimensional
Riemannian manifold M satisfies (5.8) and ϕ(K) �= 0 at any critical point of K, then the
metric of M is a critical point of the functional FJ where J̇ = v and v is defined by (5.11).

6. Surfaces admitting a concircular scalar field. All facts in this section about el-
liptic functions are well-known; for instance, see [1, 7, 14].

If the equation∇∇f = τg is restricted to a geodesic, then it reduces to an ordinary
differential equationf ′′ = τ (f ). Whenτ is a linear function off , then the Riemannian
manifold which admits the concircular scalar fieldf was determined in [18, 24]. So we
study the cases thatτ is a polynomial of degree 2 or 3 with constant coefficients under the
assumption thatM is a complete two-dimensional Riemannian manifold, although the results
are easily generalized to the case that the dimension is not restricted.

We consider real solutions of the following differential equations with constant real co-
efficients:

f ′′ = 6f 2 − 1

2
g 2 ,(6.1)

f ′′ = ε(2f 3 + 6a2f + 2a3) ,(6.2)
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whereε = ±1. Since, making use of solutions of (6.1), we can obtain those of (6.2), we first
deal with (6.1). We have from (6.1)

(f ′)2 = 4f 3 − g 2f − g 3 ,(6.3)

whereg 3 is a constant real number. The roots of the polynomial

p(x) = 4x3 − g 2x − g 3

will be denoted bye1, e2 ande3. The discriminantD is given by

D = 16(e1 − e2)
2(e2 − e3)

2(e3 − e1)
2

= g 2
3 − 27g 3

2 .

We have the relations:

e1 + e2 + e3 = 0 , e1e2 + e2e3 + e3e1 = −1

4
g 2 , e1e2e3 = 1

4
g 3 .(6.4)

Sincef is a function defined onM, f restricted to a geodesic is defined onR. So we
have to exclude solutions which diverge at a finite numbert0 ∈ R from nontrivial solutions of
(6.1). We shall set the initial conditions for solutions in the most suitable ones in each case,
so that every solution is obtained by the change of variable:t → t + d.

In the case thatD > 0, the roots are real numbers. First, we assume thatD > 0 and
e3 < e2 < e1. Clearly, the real solutionf satifiese3 ≤ f ≤ e2 or e1 ≤ f . In the case that
e3 ≤ f ≤ e2, the solution with initial conditionsf (0) = e3 andf ′(0) = 0 is given by

f (t) = ℘(t + ω′) ,(6.5)

where℘ is the Weierstrass elliptic function with periods 2ω ∈ R and 2ω′ ∈ √−1R (cf. [1, p.
105]):

ω =
∫ ∞

e1

dx√
4x3 − g 2x − g 3

, ω′ = √−1
∫ ∞

−e3
dx√

4x3 − g 2x + g 3

.(6.6)

We note that℘(ω) = e1, ℘ (ω + ω′) = e2 and℘(ω′) = e3. Using the Jacobi elliptic
functions, (6.5) becomes

f (t) = e3 + (e2 − e3)sn2(
√
e1 − e3t) ,(6.7)

where the modulusκ is given byκ2 = (e2 − e3)/(e1 − e3).
In the case thate1 ≤ f , the solution with initial conditionsf (0) = e1 andf ′(0) = 0 is

given by

f (t) = ℘(t + ω) .(6.8)

In this case, we have limt→−ω f (t) = ∞.
Second, we consider the case thatD = 0. Assume thate3 < e2 = e1. Then the real

solutionf satisfiese3 ≤ f < e1 or f ≥ e1. In the case thate3 ≤ f < e1, the solution with
initial conditionf (0) = e3 andf ′(0) = 0 is given by

f (t) = e3 + (e1 − e3) tanh2(
√
e1 − e3t) ,(6.9)
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which is the limit solution of (6.7) asκ2 → 1. We note that limt→∞ f (t) = e1. If f ≥ e1,
then the solution with limt→∞ f (t) = e1 and limt→∞ f ′(t) = 0 (ω = ∞) is given by

f (t) = e1 + (e1 − e3)
1

sinh2(
√
e1 − e3t)

,(6.10)

which shows that limt→0 f (t) = ∞. Next, assume thate3 = e2 < e1. In this case,κ = 0 and√
e1 − e3ω = π/2. The real solutionf satisfiesf ≥ e1. The solution with initial condition

f (0) = e1 andf ′(0) = 0 is given by

f (t) = e1 + (e1 − e3) tan2(
√
e1 − e3t) .(6.11)

Thus limt→t0 f (t) = ∞, wheret0 = π/(2
√
e1 − e3). Assume thate1 = e2 = e3. From (6.4),

we see thate1 = e2 = e3 = 0. Therefore the solution is

f (t) = 1

t2
,(6.12)

for which we have limt→0 f (t) = ∞.
Third, let us assume thatD < 0. One of the roots, saye2, is real and the others are

conjugate complex numbers. We also see that the periods 2ω and 2ω′ are conjugate complex
numbers and soω + ω′ is real, which is given by

ω + ω′ = −
∫ ∞

e2

dx√
4x3 − g 2x − g 3

(6.13)

(cf. [1]). In this case, the real solution withf (0) = e2 andf ′(0) = 0 is given by

f (t) = ℘(t + ω + ω′) .(6.14)

Thus we have limt→−(ω+ω′) f (t) = ∞. In consequence, we have

LEMMA 6.1. Among the nonconstant solutions of (6.1), the solutions which are de-
fined on the whole line R are (6.7) in the case (D > 0, e3 < e2 < e1), and (6.9) in the case
(D = 0, e3 < e2 = e1), up to a change of variable : t �→ t + d and a scalar multiple of f .

Let us turn to the differential equation (6.2). We assume that the polynomial

q(x) = x4 + 6a2x
2 + 4a3x + a4

has at least a real root. We denote the minimum of the real roots byx4. The nontrivial
solutions of (6.2) satisfy

(f ′)2 = εq(f ) .(6.15)

First, assume thatx4 is a simple root. Letx1, . . . , x4 be the roots ofq(x). Putf =
x4 + 1/z. Then we have

(z′)2 = −εα(z− α1)(z− α2)(z− α3) ,
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whereα = (x1 − x4)(x2 − x4)(x3 − x4) > 0 andαi = (xi − x4)
−1 (i = 1,2,3). Furthermore

we putz = Ay + B. Then

(y ′)2 = −εαA
(
y + B − α1

A

)(
y + B − α2

A

)(
y + B − α3

A

)
.(6.16)

So if we defineA andB by A = −4ε/α andB = (α1 + α2 + α3)/3, respectively, then we
can rewrite (6.16) as

(y ′)2 = 4(y − e1)(y − e2)(y − e3) ,(6.17)

where

ei = αi − B

A
(i = 1,2,3) if ε = 1 ,

e1 = α3 − B

A
, e2 = α2 − B

A
, e3 = α1 − B

A
if ε = −1 .

This means that a part of real solutions of (6.15) can be obtained by settingf = x4+1/(Ay+
B) for a real solutionsy of (6.17). We note thatA,B ∈ R and

e1 = 1

4
(2a2 − x1x4 − x2x3) , e2 = 1

4
(2a2 − x2x4 − x1x3) ,

e3 = 1

4
(2a2 − x3x4 − x1x2) if ε = 1 ,

(6.18+)

e1 = −1

4
(2a2 − x3x4 − x1x2) , e2 = −1

4
(2a2 − x2x4 − x1x3) ,

e3 = −1

4
(2a2 − x1x4 − x2x3) if ε = −1 .

(6.18−)

Let us consider the case thatx4 < x3 < x2 < x1 (real). By (6.18) we see thate3 < e2 <

e1. The solutions of (6.15) corresponding to (6.7) are

f+(t) = x3(x2 − x4)− x4(x2 − x3)sn2(
√
e1 − e3t)

(x2 − x4)− (x2 − x3)sn2(
√
e1 − e3t)

,(6.19+)

f−(t) = x1(x2 − x4)+ x4(x1 − x2)sn2(
√
e1 − e3t)

(x2 − x4)+ (x1 − x2)sn2(
√
e1 − e3t)

,(6.19−)

according asε = ±1. The solutionf+ (resp.f−) attains the minimumx3 (resp.x2) at t = 0
(resp.t = ω ), the maximumx2 (resp.x1) at t = ω (resp. t = 0) and is a periodic function
with period 2ω. The solutions corresponding to (6.8) are

f+(t) = x1(x2 − x4)− x2(x1 − x4)sn2(
√
e1 − e3t)

(x2 − x4)− (x1 − x4)sn2(
√
e1 − e3t)

,(6.20+)

f−(t) = x3(x2 − x4)− x2(x3 − x4)sn2(
√
e1 − e3t)

(x2 − x4)− (x3 − x4)sn2(
√
e1 − e3t)

.(6.20−)

The solution (6.20+) diverges att = t0 such that sn2(
√
e1 − e3t0) = (x2 − x4)/(x1 − x4).

The solution (6.20−) attains the maximumx3 at t = 0, the minimumx4 at t = ω and is a
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peiodic function with period 2ω. The function℘(t) is certainly a real solution of (6.3) which
coincides with (6.8) up to a change of variable: t �→ t + ω. The solutions corresponding to
℘(t) are

f+(t) = x4(x1 − x3)− x3(x1 − x4)sn2(
√
e1 − e3t)

(x1 − x3)− (x1 − x4)sn2(
√
e1 − e3t)

,(6.21+)

f−(t) = x4(x1 − x3)+ x1(x3 − x4)sn2(
√
e1 − e3t)

(x1 − x3)+ (x3 − x4)sn2(
√
e1 − e3t)

.(6.21−)

The solution (6.21+) attains the maximumx4 at t = 0 and limt→t0 f
+(t) = −∞, where

sn2(
√
e1 − e3t0) = (x1 − x3)/(x1 − x4). The solution (6.21−) coincides with (6.20−) up to a

change of variable :t �→ t + ω.
Next, we consider the casex4 < x3 < x2 = x1. We havee3 < e2 = e1 if ε = 1 and

e3 = e2 < e1 if ε = −1. The solutions corresponding to (6.9) (i.e., the limit of (6.19+) as
κ2 → 1) and (6.11) (the limit of (6.20−) asκ → 0) are

f+(t) = x3(x1 − x4)− x4(x1 − x3) tanh2(
√
e1 − e3t)

(x1 − x4)− (x1 − x3) tanh2(
√
e1 − e3t)

,(6.22+)

f−(t) = x3(x1 − x4)− x1(x3 − x4) sin2(
√
e1 − e3t)

(x1 − x4)− (x3 − x4) sin2(
√
e1 − e3t)

,(6.22−)

respectively. The function (6.22+) satisfiesf+(0) = x3, which is the minimum, and
limt→±∞ f+(t) = x1. For (6.10), we can show that ifε = 1, there existst0 such that
Ay(t0) + B = 0. Indeed, the range of the function (6.10) is[e1,∞) and−B/A = (a2 +
x4

2)/2> (a2 + x1
2)/2 = e1 if ε = 1. Thus we have limt→t0 |f+(t)| = ∞ for the limit solu-

tion of (6.20+) asκ2 → 1. Since 0< (x1 − x3)/(x1 − x4) < 1, we also see that there exists
t0 such that limt→t0 |f+(t)| = ∞ for the limit solution of (6.21+) asκ2 → 1. On the other
hand, (6.22−) attains the maximumx3 at t = 0 and the minimumx4 at t = π/(2

√
e1 − e3).

The limit solution of (6.21−) asκ → 0 coincides with (6.22−) up to a change of variable :
t �→ t + π/(2

√
e1 − e3).

Consider the case thatx4 < x3 = x2 < x1. Then we havee3 = e2 < e1 (ε = 1) and
e3 < e2 = e1 (ε = −1). Thus the solutions corresponding to (6.11) and (6.9) are

f+(t) = x1(x2 − x4)− x2(x1 − x4) sin2(
√
e1 − e3t)

(x2 − x4)− (x1 − x4) sin2(
√
e1 − e3t)

,(6.23+)

f−(t) = x1(x2 − x4)+ x4(x1 − x2) tanh2(
√
e1 − e3t)

(x2 − x4)+ (x1 − x2) tanh2(
√
e1 − e3t)

,(6.23−)

respectively. The solution (6.23+) is the limit of (6.20+) as κ → 0. Since 0< (x2 −
x4)/(x1 − x4) < 1, there existst0 such that limt→t0 |f+(t)| = ∞. For (6.23+), the func-
tion f+(t + π/(2

√
e1 − e3)) is the real solution which is the limit of (6.21+) and satisfies

f+(0 + π/(2
√
e1 − e3)) = x4. For this solution, there existst0 such that limt→t0 |f+(t +
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π/(2
√
e1 − e3))| = ∞. The solution (6.23−), which is the limit of (6.19−) asκ2 → 1, attains

the maximumx1 at t = 0 and limt→±∞ f−(t) = x2, which is the infimum. The solutionf−
which attains the minimumx4 at t = 0 and satisfies limt→±∞ f−(t) = x3 is given by

f−(t) = x4(x1 − x3)+ x1(x3 − x4) tanh2(
√
e1 − e3t)

(x1 − x3)+ (x3 − x4) tanh2(
√
e1 − e3t)

,(6.24−)

which is the limit of (6.21−) asκ2 → 1.
In the case thatx4 < x3 = x2 = x1, we havee1 = e2 = e3 and hence the solutions

corresponding to (6.12) are

f+(t) = x4 − 4x1
3t2

1 − 4x1
2t2

,(6.25+)

f−(t) = x4 + 4x1
3t2

1 + 4x1
2t2

.(6.25−)

We have limt→±1/(2x1) |f+(t)| = ∞ for (6.25+). We note thatf+(t) > x1 (resp.< x4) if
|t| > 1/(2x1) (resp. |t| < 1/(2x1)). The solution (6.25−) attains the minimumx4 at t = 0
and limt→±∞ f−(t) = x1, which is the infimum.

In the case thatx4 < x2 andx3 = x̄1 /∈ R, we see thate2 is real ande3(= ē1) is not
real. The real solution withf±(0) = x2 corresponds to (6.14) and that withf+(0) = x4 to
y(t) = ℘(t). The range of (6.14) and℘ is [e2, ∞) and−B/A > e2 if ε = 1. Thus we see
thatf+(t) = x4 + 1/(Ay(t) + B) diverges at somet0. The solutionf− corresponding to
(6.14) is given by

f−(t) = x4 + 1

A℘(t + ω + ω′)+ B

= x2|x1 − x4| + x4|x1 − x2| + (x2|x1 − x4| − x4|x1 − x2|)cn(γ t)

|x1 − x4| + |x1 − x2| + (|x1 − x4| − |x1 − x2|)cn(γ t)
,

(6.26−)

(cf. [7, p. 86]), whereγ = √|x1 − x2||x3 − x4| and the square of the modulusκ of cn(γ t) is
equal to(|e1 − e2| + �[e1 − e2])/(2|e1 − e2|). The solutionf− attains the minimumx4 at
t = ω + ω′ and the maximumx2 at t = 0. The period is equal to 2(ω + ω′). We shall make
use of the following equation:

A = 4

|x1 − x4|2(x2 − x4)
, Ae2 + B = 1

x2 − x4
.(6.27)

Next, assume thatx4 is a real double root(x4 = x3). Consider the case thatx4 = x3 <

x2 < x1. Setf̃ (t) = −f (t). Thenf̃ satisfies

(f̃ ′)2 = ε(f̃ 4 + 6a2f̃
2 − 4a3f̃ + a4) .

The roots of the polynomial̃q(x) = x4 + 6a2x
2 − 4a3x+ a4 arex̃4 = −x1, x̃3 = −x2, x̃2 =

x̃1 = −x4. We note thatei (i = 1,2,3) does not change. Therefore the real solutions with
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initial conditionf±(0) = x2 can be obtained by making use of (6.22+) and (6.22−):

f+(t) = x2(x1 − x4)− x1(x2 − x4) tanh2(
√
e1 − e3t)

(x1 − x4)− (x2 − x4) tanh2(
√
e1 − e3t)

,(6.28+)

f−(t) = x2(x1 − x4)− x4(x1 − x2) sin2(
√
e1 − e3t)

(x1 − x4)− (x1 − x2) sin2(
√
e1 − e3t)

,(6.28−)

respectively. We note thatf+ attains the maximumx2 at t = 0 and limt→±∞ f+(t) = x4.
The solution (6.28−) attains the maximumx1 at t = π/(2

√
e1 − e3) and the minimumx2 at

t = 0. The other real solution in this case with initial conditionf+(0) = x1 (or x4) satisfies
limt→t0 |f (t)| = ∞ for somet0 ∈ R.

In the case thatx4 = x3 < x2 = x1, we directly solve (6.15). Sinceq(f ) ≥ 0, there does
not exist a nontrivial solution ifε = −1. Using the relationx1 + x4 = 0, we have the solution
with initial conditionf+(0) = 0:

f+(t) = ±x1 tanh(x1t) ,(6.29+)

which satisfiesx4 < f
+(t) < x1. Moreover, we have the solution such that limt→0 |f+(t)| =

∞:

f+(t) = ±x1 coth(x1t) .(6.30+)

We consider the case thatx4 = x3 andx2 (= x̄1) is not real. In this case, there is not a
nontrivial solution ifε = −1. We putf = x4+2/(y+α1+α2), whereαi = 1/(xi−x4) (i =
1,2). We note thatα2 = ᾱ1 and soα1 + α2 is real. Then we have

(y ′)2 = α{y2 − (α2 − α1)
2} , (α = (x1 − x4)(x2 − x4) > 0) .(6.31)

It is easy to solve (6.31). If we putα2 − α1 = √−1b, then the solution is

y = ±b sinh(
√
αt) .

Thus we have

f+(t) = x4 + 2

±b sinh(
√
αt)+ α1 + α2

,(6.32+)

and hence there existst0 ∈ R such thatf (t) diverges ast → t0.
If x4 is a triple root, then the solutions of (6.15) are given by

f+(t) = x1 − 4x4
3t2

1 − 4x4
2t2

,(6.33+)

f−(t) = x1 + 4x4
3t2

1 + 4x4
2t2

,(6.33−)

We obtain these solutions by setting̃f (t) = −f (t) in (6.25).
If x4 is a real quadruple root, then

f+(t) = x4 ± 1

t
,
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and hence limt→∓0 |f+(t)| = ∞.
The remainding case is that the polynomialq has not a real root. Sinceq(f ) > 0, (6.15)

has no solutions ifε = −1. If x4 = x̄3 = x̄2 = x1, then(f ′)2 = (f − x1)
2(f − x̄1)

2 and
hencef+(t) = �x1± (�x1) tan{(�x1)t+ c}, which shows that there existst0 such thatf+(t)
diverges ast → t0.

Finally, we deal with the case thatx4 = x̄3, x̄2 = x1 andx1 �= x4. We reduce∫
df√|f − x4|2|f − x1|2

= ±t(6.34)

to a Jacobi normal form (cf. [1, pp. 106–109]). If�x1 = �x4, then�x1 = 0, so that (6.34)
becomes ∫

df√
(f 2 + b1

2)(f 2 + b4
2)

= ±t ,(6.35)

wherebi = �xi (i = 1,4). Suppose that�x1 �= �x4. We putci = �xi (i = 1,4). Let us set
f = (py + q)/(y + 1), wherep andq (p > q) are roots of the equation:

X2 + 1

2c1

(
b4

2 − b1
2)X − 1

2

(
2c1

2 + b1
2 + b4

2) = 0 .

Then the integral of (6.34) becomes

p − q

|p − x1||p − x4|
∫

dy√
(y2 + α2)(y2 + β2)(

α =
∣∣∣∣ q − x1

p − x1

∣∣∣∣, β =
∣∣∣∣ q − x4

p − x4

∣∣∣∣
)
.

(6.36)

Since the integrals of (6.35) and (6.36) reduce to the normal form:∫
du√

(1 − u2)(1 − κ2u2)
(κ2 = (α2 − β2)/α2)

by puttingy2 = β2u2/(1 − u2), a straightforward computation shows that

f+(t) = q + pβtn(γ t)

1 + βtn(γ t)

(
γ 2 = 1

4
(|x4 − x1| + |x4 − x2|)2

)
.(6.37+)

In particular, there existst0 such thatf (t) diverges ast → t0.
Summing up, we obtain

LEMMA 6.2. Among the nonconstant solutions of (6.2), the solutions which are de-
fined on the whole line R are, up to a change of variable : t �→ t + d and a scalar multiple of
f , (6.19+), (6.19−) and (6.21−) in the case (x4 < x3 < x2 < x1), (6.22+) and (6.22−) in the
case (x4 < x3 < x2 = x1), (6.23−) and (6.24−) in the case (x4 < x3 = x2 < x1), (6.25−)
in the case (x4 < x3 = x2 = x1), (6.26−) in the case (x4 < x2, x3 = x̄1 /∈ R), (6.28+) and
(6.28−) in the case (x4 = x3 < x2 < x1), (6.29+) in the case (x4 = x3 < x2 = x1) and
(6.33−) in the case (x4 = x3 = x2 < x1).
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REMARK: All solutions given in Lemmas 6.1 and 6.2 are characterized by the property
that their ranges coincide with open, open half or closed bounded intervalsI such that the
infimum and supremum are real roots of the polynomialp(x) or q(x) and there are no real
roots in the interiorI .

Let us return to the study of the manifoldM admitting a concircular scalar fieldf .
Tashiro [24] determinedM when the polynomial is of degree≤ 1. We consider the case that
the characteristic functionτ is a polynomial off whose degree is less than 3 in the following
theorem.

THEOREM 6.3. LetM be a complete two-dimensional Riemannian manifold, and sup-
pose that it admits a nontrivial concircular scalar field f whose characteristic function is a
polynomial of f . If the degree is 2 or 3, then M is homothetic to one of the following man-
ifolds. The function f given in the list coincides with the concircular scalar field f up to a
linear transformation : f �→ λf + µ.

[I] (deg= 2). R2 with a metric:
ds2 = du2 + 1

e1 − e3
tanh2(

√
e1 − e3u)sech4(

√
e1 − e3u)dθ

2

in terms of the geodesic polar coordinates {u, θ} in R2, where e1 > e3 and 2e1 + e3 = 0. It
is isometric to the surface of revolution which is obtained by rotating the unit speed curve:

x(u) = 1√
e1 − e3

tanh(
√
e1 − e3u)sech2(

√
e1 − e3u) ,

z(u) = 1

6e1
2

∫ f (u)

e3

1

e1 − ξ

√
(2e1 − ξ)(2e1

2 + ξ2)dξ

in the x-z plane around the z-axis in R3, where f (u) = e3 + (e1 − e3) tanh2(
√
e1 − e3u).

[II ] (deg= 3). (1) R × Z with a warped product metric:
ds2 = du2 + x1

4sech4(x1u)dθ
2 ,

where θ is a local coordinate in a complete one-dimensional manifold Z, x1 is a positive
constant and f+(u) = x1 tanh(x1u).

(2) R2 with a metric:
ds2 = du2 + a(u)2dθ2 ,

where {u, θ} is the geodesic polar coordinates in R2. The function a is one of the following:
(i)

a(u) = 2(f+)′(u)
(x3 − x1)2(x3 − x4)

,

f+(u) = x3(x1 − x4)− x4(x1 − x3) tanh2(γ u)

(x1 − x4)− (x1 − x3) tanh2(γ u)
,

γ = √
e1 − e3 = 1

2

√
(x1 − x3)(x1 − x4) ,
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where x1, x3, x4 are constants satisfying x4 < x3 < x1 and 2x1 + x3 + x4 = 0,
(ii)

a(u) = −2(f−)′(u)
(x3 − x1)2(x1 − x4)

,

f−(u) = x1(x3 − x4)+ x4(x1 − x3) tanh2(γ u)

(x3 − x4)+ (x1 − x3) tanh2(γ u)
,

γ = √
e1 − e3 = 1

2

√
(x1 − x3)(x3 − x4) ,

where x1, x3, x4 are constants satisfying x4 < x3 < x1 and x1 + 2x3 + x4 = 0,
(iii)

a(u) = 2(f−)′(u)
(x1 − x4)3

,

f−(u) = x4 + 4x1
3u2

1 + 4x1
2u2

,

where x1, x4 are constants satisfying x4 < x1 and 3x1 + x4 = 0.
(3) S2 with a metric:

ds2 = du2 + a(u)2dθ2 ,

in terms of the geodesic polar coordinates {u, θ} whose center is a critical point of f . The
function a is one of the following:

(i)

a(u) = (f+)′(u)
x2(x1

2 − x2
2)
,

f+(u) = x4 + 1

A℘(u+ ω′)+ B
= −x2

{
x1 + x2 − 2x1sn2(γ u)

}
(x1 + x2)− 2x2sn2(γ u)

,

γ = 1

2
(x1 + x2) ,

where 0 < x2 < x1, A = −2/{x1(x1
2 − x2

2)}, B = (5x1
2 − x2

2)/{6x1(x1
2 − x2

2)} and the
modulus of the Jacobi elliptic function sn is equal to 2x1x2/(x1 + x2).

(ii)

a(u) = −(f−)′(u)
x2|x1 − x2|2 ,

f−(u) = x4 + 1

A℘(u+ ω + ω′)+ B
= x2cn(γ u) ,

γ = |x1 − x2| ,
where x2 > 0, x1( �= 0) is a pure imaginary, A = 2/(x2|x1+x2|2), B = (5x2

2−x1
2)/(6x2|x1+

x2|2) and the modulus of the Jacobi elliptic function cn is equal to x2/|x1 + x2|.
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PROOF. Recall the results proved by Tashiro ((1) through (3) in Section 5). The integral
curves of gradf are geodesics. When the concircular scalar fieldf is restricted to a geodesic,
it satisfies (6.1) (resp. (6.2)), after a suitable linear transformationf �→ λf +µ, if the degree
of the polynomialτ (f ) is 2 (resp. 3). Thusf restricted to a geodesic is one of the solutions
given in Lemmas 6.1 and 6.2.

Suppose that the degree ofτ (f ) is equal to 2. Then we see from Lemma 6.1 that the
numberm of the critical points of the concircular scalar fieldf is 1 or 2. Ifm = 1, thenf
restricted to the geodesicγ which coincides with the integral curve of gradf is given by (6.9).
If m = 2, thenf |γ is given by (6.7). Sinceds2 = du2 + a(u)2dθ2 (see (3) in Section 5)
and the metricds2(= g ) is smooth at the critical pointP ∈ W , we require the functiona to
satisfy

a(0) = 0, a′(0) = 1 , a(2k)(0) = 0 (k = 1,2, . . . ) ,(6.38)

(see [2, p. 96] and [16, Proposition 2.7]). Iff |γ is given by (6.9), thena = cf ′ is an odd
function and satisfies the conditiona′(0) = 1 by settingc = 1/{2(e1 − e3)

2}. Let f |γ be
given by (6.7). Since we have from (6.4)

a′(0) = c℘ ′′(ω′) = c

(
6℘(ω′)2 − 1

2
g 2

)
= 2c(e1 − e3)(e2 − e3) ,

we have to putc = 1/{2(e1 − e3)(e2 − e3)}. Furthermore, sinceds2 gives the smooth metric
g at another critical pointQ ∈ W , we also requirea to satisfy

a(ω) = 0 , a′(ω) = −1 , a(2k)(ω) = 0 (k = 1,2, . . . ) .

However we have

℘ ′′(ω + ω′) = 2(e2 − e3)(e2 − e1)

and hence

a′(ω) = cf ′′(ω)

= −e1 − e2

e1 − e3
= κ2 − 1> −1 .

We conclude that the casem = 2 does not occur if the degree is equal to 2. It is easy to see
thatR2 with metric given in [I] is isometric to a surface of revolution.

Suppose that the degree ofτ (f ) is equal to 3. Ifm = 0, thenf |γ is the function given
in (6.29+) andM is isometric toR × Z with warped product metric given in [II](1)(i).

Assume thatm = 1. Thenf |γ is one of the functions given by (6.22+), (6.23−),
(6.24−), (6.25−), (6.28+) and (6.33−). By replacingf with −f , we see that the solutions
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(6.28+), (6.24−) and (6.33−) are essentially the same as (6.22+), (6.23−), (6.25−), respec-
tively. Therefore, if we set

c =




2/{(x3 − x1)
2(x3 − x4)} for (6.22+) ,

−2/{(x1 − x3)
2(x1 − x4)} for (6.23−) ,

−2/(x4 − x1)
3 for (6.25−) ,

so thata satisfies (6.38), we obtain the cases [II](2)(i), (ii) and (iii).
Next, assume thatm = 2. The functionf |γ is one of the functions given by (6.19+),

(6.19−), (6.21−), (6.22−), (6.26−) and (6.28−). By replacingf with −f , we see that the
solutions (6.21−) and (6.28−) are essentially the same as (6.19−) and (6.22−), respectively.
In order thata satisfies (6.38), it is necessary that the constantc satisfies

c =




2/{(x1 − x3)(x2 − x3)(x3 − x4)} for (6.19+) ,

−2/{(x1 − x2)(x1 − x3)(x1 − x4)} for (6.19−) ,

−2/{(x1 − x3)
2(x3 − x4)} for (6.22−) ,

−2/{(x2 − x4)|x1 − x2|2} for (6.26−) .

We denote by 2L the period of the even functions (6.19+), (6.19−), (6.22−) and (6.26−). At
another critical point whereu = L, we require

a(L) = 0 , a′(L) = −1 , a(2k)(L) = 0 (k = 1,2, . . . ) ,(6.39)

(see [2, p. 96]). We can easily show that the above four solutions satisfy (6.39) except for
a′(L) = −1. We first consider (6.19+). Noting thatL = ω, x1 + x2 + x3 + x4 = 0 and

a′(ω) = cf ′′(ω) = − (x2 − x1)(x2 − x4)

(x3 − x1)(x3 − x4)
,

we see thata′(L) = −1 if and only ifx3 = −x2. ThusM is diffeomorphic toS2 and

a(u) = (f+)′(u)
x2(x1

2 − x2
2)
,

f+(u) = −x2
{
x1 + x2 − 2x1sn2((x1 + x2)u/2)

}
(x1 + x2)− 2x2sn2((x1 + x2)u/2)

,

where we note that
√
e1 − e3 = (x1 + x2)/2. We have obtained the case [II](3)(i). We then

consider (6.19−). Noting thatL = ω and

a′(ω) = cf ′′(ω) = − (x2 − x3)(x2 − x4)

(x1 − x3)(x1 − x4)
,

we havex2 = −x1 andx4 = −x3 from the equationa′(L) = −1. However, sincex4 < x3 <

x2 < x1, this case does not occur. We now consider (6.22−). Noting thatL = π/(2
√
e1 − e3)

and

a′(L) = cf ′′(L) = − (x1 − x4)
2

(x1 − x3)2
,
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we see thatx4 + x3 = 2x1 if and only if a′(L) = −1. Since 2x1 + x3 + x4 = 0 and
x4 < x3 < x2 = x1, this case deos not occur. Finally, we consider (6.26−). Noting that
L = ω + ω′ and using (6.27), we have

a′(L) = cf ′′(L) = −|x1 − x4|2
|x1 − x2|2 .

Thusa′(L) = −1 if and only ifx4 = −x2( �= 0). Sincex3 = x̄1 andx1+x2+x3+x4 = 0, we
see thatx1(= −x3) is a pure imaginary. ThusM is diffeomorphic toS2 and (6.26−) becomes

f−(u) = x4 + 1

A℘(u+ ω + ω′)+ B
= x2cn(γ u) .

This case is [II](3)(ii).
We have completed to examine all cases. �

COROLLARY. Let M be a complete two-dimensional Riemannian manifold. If the
Gauss curvatureK satisfies ∇∇K = τg , thenK is constant orM is isometric to R2 with the
metric whose curvature is given by K = −x ′′/x, x being the function given in [I] of Theorem
6.3.

PROOF. Since∇∇K = τg , we have−
K = 2τ and∇
K = 2K∇K = ∇K2. It
follows that−2τ = K2 − λ, whereλ is a constant. Thus we have

∇∇K = −1

2
(K2 − λ)g .(6.40)

We putf = −K/12 andg 2 = λ/12. Then (6.40) becomes

∇∇f =
(

6f 2 − 1

2
g 2

)
g .(6.41)

The characteristic functionτ (f ) is a polynomial off of degree 2. Thus the assertion is
obtained from Theorem 6.3. �

Now we consider the functional onM1:

F2[g ] = c

∫
M

(δ −K)2dvg (c �= 0) ,(6.42)

δ being a constant. Suppose thatg is a critical point ofF2. Thenf = J̇ (K) = 2c(K − δ) is
a concircular scalar field ifK is not constant. Thus, from the above Corollary, we conclude
the following:

THEOREM 6.4. Let M be a compact orientable two-dimensional Riemannian mani-
fold. If the metric g of M is critical with respect to F2, then the Gauss curvature is constant.

Next for a given real numberδ, we consider the functional onMε
K,δ = {g ∈ M|0 ≤

δ − εK onM}:
Fε

3/2[g ] = c

∫
M

(δ − εK)3/2dvg (c �= 0) .(6.43)
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If the metricg is critical for the functionalFε
3/2, thenf = J̇ (K) satisfies (5.3) and hence

∇∇f = ε

(
4

27c2
f 3 − δf

)
g .(6.44)

Thus it is convenient to putc = √
2/(3

√
3). If the metricg is critical for the functional

Fε
3/2|M1, then

∇∇f = ε(2f 3 − δf + 2a3)g ,(6.45)

where the constanta3 is chosen in such a way that
∫
M
(2f 3 − δf + 2a3)dvg = 0.

THEOREM 6.5. LetM be a manifold diffeomorphic to S2. Let δ be a real number such
that δ ≥ 4π if ε = 1 and |δ| < 4π if ε = −1. If a metric g on M is critical with respect
to Fε

3/2|M1, then the Gauss curvature of g is equal to 4π (constant), g is the metric given

in [II ](3)(i) of Theorem 6.3, where x1 = √
δ + 4π/

√
2 and x2 = √

δ − 4π/2, or the metric
given in [II ](3)(ii), where x1 = √−1

√
4π − δ/

√
2 and x2 = √

4π + δ/
√

2. They are on the
boundary of Mε

K,δ ∩ M1.

PROOF. SinceM is diffeomorphic toS2, it suffies for the proof to consider the solu-
tions,f+ in [II](3)(i) and f− in [II](3)(ii), of the equation (6.45). In both cases, we have
a3 = 0, δ = x1

2 + x2
2. UsingK = f ′′′/f ′, we also have 6f 2 = δ − εK. Since the metric is

normalized as Vol(M) = 1, we have, by the equationa = cf ′,

1 = Vol(M) =
∫ 2π

0

∫ L

0
a(u)dudθ

=
{

4π/(x1
2 − x2

2) (ε = 1) ,

4π/(|x1 − x2|2) (ε = −1) .

It follows thatx1 andx2 are equal to the values in the assertion. Since the maximum ofK is
equal toδ in the case [II](3)(i) and the minimum ofK is equal to−δ in the case [II](3)(ii), the
metrics are on the boundary ofMε

K,δ ∩ M1. �

SinceJ (K) = c(δ − εK)3/2,K satisfies

∇∇K = 2

3
(δ − εK)(2δ + εK)g − ε

2(δ − εK)
∇K ⊗ ∇K ,(6.46)

(cf. (5.8)). However, the coefficient of∇K ⊗ ∇K has a singular point whereK = εδ and
K is critical. The coefficient(= ϕ(K) in (5.8)) of g vanishes at the critical point. It seems
to be interesting that we determine complete two-dimensional Riemannian manifolds whose
Gauss curvatureK satisfies (6.46), or, more generally, complete Riemannian manifolds which
admit a function satisfying the equation of the type (5.8), (where we should assume thatψ(f )

possesses a singular point).
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