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ON THE NONEXISTENCE OF STABLE CURRENTS
IN SUBMANIFOLDS OF A EUCLIDEAN SPACE
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Abstract. In 1973, Lawson and Simons conjectured that there are no stable currents in
any compact, simply connected Riemannian manifoldMm which is 1/4-pinched. In this paper,
we regardMm as a submanifold immersed in a Euclidean space and prove the conjecture under
some pinched conditions about the sectional curvatures and the principal curvatures ofMm.
We also show that there is no stablep-current in a submanifold ofMm and thep-th homology
group vanishes when the shape operator of thesubmanifold satisfies certain conditions.

1. Introduction. For any compact Riemannian manifoldMm, a theorem of Federer
and Fleming [1] asserts that any non-trivial integral homology class inHp(M,Z) corresponds
to a stable current. By using techniques from the calculus of variations in geometric measure
theory together with the Federer-Fleming theorem, Lawson and Simons [3] showed that there
are no stable currents in a sphereSm, and there is no stablep-current in submanifolds im-
mersed inSm with sufficiently small second fundamental form. The result of [3] on subman-
ifolds of Sm has been extended to submanifolds of a Euclidean spaceEm or of Sm1 × Sm2 by
Xin [4] and Zhang [5], respectively.

In [3], Lawson and Simons conjectured that there are no stable varifolds, in particular,
there are no stable currents in any compact, simply connected Riemannian manifoldMm

which is 1/4-pinched. As variants of the above conjecture, there have been many results on
stable minimal submanifolds and stable harmonic maps. However, the original conjecture by
Lawson and Simons is still open. In 1985, with comparison theorems, Howard [2] proved
that there is a constantδ(m, p) > 1/4 such that there is no stablep-current inMm when
Mm is δ(m, p)-pinched. However, the expression ofδ(m, p) is complex and unfortunately
lim m→∞ δ(m, p) = 1.

In this paper, we regard such a compact Riemannian manifoldMm as a submanifold
immersed in a Euclidean spaceEm+k with essential codimensionk. We shall prove that there
are no stable currents inMm if one of the following conditions is satisfied:

1) The sectional curvaturesKM > (k/4)(λ0−µ0)
2, whereλ0 andµ0 are the maximum

and the minimum of the principal curvatures ofMm, respectively;
2) λµ > (1/4)(λ − µ)2, whereλ andµ are any two principal curvatures ofMm.
The condition 1) indicates that Lawson-Simons’ conjecture is true ifk(λ0 −µ0)

2 ≤ 1 on
Mm.
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With condition 2), we can prove that if any two principal curvaturesλ,µ of a compact
submanifoldMm(m > 3) in Em+k satisfy the inequality 3− 2

√
2 < λ/µ < 3 + 2

√
2, then

Mm is homeomorphic to a sphere.
Let Nn be a compact submanifold immersed in the manifoldMm satisfying the above

condition 1) or 2) andS ap-rectifiable set inNn. By using the shape operatorsAλ associated
with the immersionNn → Mm, we introduce a selfadjoint linear operatorQA on p-space
TxS ⊂ TxN . We shall show that there is no stablep-current inNn if, for anyx ∈ Nn and any
p-subspaceV in TxN , tr QA ≤ 0.

2. Preliminaries. We use the same notation as in [3, 5] throughout this paper. In this
section, we recall several formulas employedin [5]. Also, we prove three lemmas which will
be used in the proof of our main theorems.

Let Mm be anm-dimensional compact Riemannian manifold with metric〈 , 〉 and Levi-
Civita connection∇. Denote by(S, ξ) an oriented,p-rectifiable set inMm. The set of recti-
fiablep-currents is defined by


p(M) =
{
S =

∞∑
n=1

nSn

∣∣∣∣Sn = (Sn, ξn),M(S) =
∞∑

n=1

n Hp(Sn) < ∞
}

.

S ∈ 
p(M) is called an integralp-current if S and the boundary∂S are both rectifiable
currents. The space of integralp-currents is denoted by�p(M). The direct sum�∗(M) =⊕

p �p(M) together with the boundary operator∂ : �∗(M) → �∗(M) forms a differential
chain complex.

FEDERER-FLEMING THEOREM [1]. For each p ≥ 0 there is a natural isomorphism

Hp(�∗(M)) ∼= Hp(M,Z) .

Moreover, for each α ∈ Hp(�∗(M)) there exists a current S ∈ α of “ least mass”, that is,
M(S) ≤ M(S ′) for all S ′ ∈ α.

Let φt : Mm → Mm be a 1-parameter group of local diffeomorphisms generated by
a smooth vector fieldX ∈ C(T M). A currentS ∈ 
p(M) is said to be stable if for each
X ∈ C(T M) there is anε > 0 such that

M(φt∗S) ≥ M(S)

for all |t| < ε. This implies that for anyX ∈ C(T M) we have

d

dt
M(φt∗S)

∣∣∣∣
t=0

= 0 ,
d2

dt2M(φt∗S)

∣∣∣∣
t=0

≥ 0 .

Let (S, ξ) be an oriented,p-rectifiable set. Thenξ is an Hp-measurable section of∧p
T M over S with the property that forHp-almost allx ∈ S, ξx is a simplep-vector

of unit length representingTxS. For such a pair(S, ξ), let

Qξ(X) = d2

dt2
‖φt∗ξ‖

∣∣∣∣
t=0

.
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Then the second variation formula derived by Lawson and Simons [3] can be given by

(2.1)
d2

dt2
M(φt∗S)

∣∣∣∣
t=0

=
∑
n

n

∫
Sn

Qξn(X) dHp(x) .

If X = ∇f for somef ∈ C3(M), and{ei, eα} (i = 1, 2, . . . , p; α = p + 1, . . . ,m) is an
orthonormal basis ofTxM with ξ = e1 ∧ · · · ∧ ep, then (see [3, p. 436])

(2.2) Qξ (X) =
[ ∑

i

〈aX(ei), ei〉
]2

+ 2
∑
i,α

〈aX(ei), eα〉2 +
∑

i

〈∇X, eiX, ei〉 ,

whereaX(ei) = ∇ei X and∇X, ei X = ∇X∇ei X − ∇∇Xei X.

For ap-rectifiable setS in Mm, it is known that forHp-almost all pointsx ∈ S, there
exists an approximatep-spaceTxS ⊂ TxM, to S. Now we introduce an operatorQA onTxS

and establish the relationship betweenQA andQξ .
Letϕ : Mm → Em+k be an isometric immersion ofMm into the Euclidean(n+k)-space

Em+k andD the Levi-Civita connection ofEm+k . Denote byV (Em+k,M) the normal bundle
of Mm in Em+k. For a smooth sectionν ∈ C(V (Em+k,M)), let Aν be the shape operator
determined byν. At x ∈ Mm, Aν : TxM → TxM is a selfadjoint linear operator, which is
defined by

AνX = −(DXν)T ,

whereX ∈ C(T M). Let {νλ} be an orthonormal basis of the normal spaceVx(Em+k,M) and
Aλ = Aνλ . For a given integerp ∈ (0,m), let V be ap-dimensional subspace inTxM and
{ei} an orthonormal basis ofV . Define a selfadjoint linear mapQA : V → V associated with
the immersionϕ by

(2.3) QAX =
∑
λ

[
2

(∑
i

〈A2
λX , ei〉ei − B2

λX

)
− (tr Aλ − tr Bλ)BλX

]
,

whereX ∈ V andBλ is a map onV associated withAλ defined by

(2.4) BλX =
∑

i

〈AλX, ei〉ei .

QA is independent of the choice of bases ofVx(E
m+k,M) andV . Its trace is given by

(2.5) tr QA =
∑

i

〈QAei, ei〉 =
∑
λ

[
2
∑
i,α

〈Aλei, eα〉2 − (tr Aλ − tr Bλ)tr Bλ

]
,

where{eα} is an orthonormal basis ofV ⊥ which is the orthogonal complement ofV in TxM.
Let (S, ξ) be an oriented,p-rectifiable set. Atx ∈ S, we associate a tangentp-space

V = TxS ⊂ TxM. Choose an orthonormal basis{ei, eα} of TxM such that{ei} is a basis of
V andξ = e1 ∧ · · · ∧ ep. We now considerQξ given by (2.2) as a quadratic form defined on
the set

(2.6) θ = {vT ∈ C(T M) | v ∈ Em+k , vT (x) = orthogonal projection ofv ontoTxM} .
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Note that atx ∈ Mm, {ei, eα, νλ} is an orthonormal basis ofEm+k. Therefore,

tr Qξ =
∑

i

Qξ (ei) +
∑
α

Qξ (eα) +
∑
λ

Qξ (νλ) .

Making use of the proof given in [5], we obtain

LEMMA 1 [5]. Let Mm be a submanifold immersed in Em+k . Then

tr Qξ = tr QA.

LEMMA 2. Let x1, x2, . . . , xm; y1, y2, . . . , ym be real numbers satisfying

(2.7)
∑
a

(xa)
2 =

∑
a

(ya)
2 = 1 ,

∑
a

xaya = 0 .

Then for given real numbers k1, k2, . . . , km, we have(∑
a

kaxaya

)2

≤ 1

4
(kmax − kmin)

2 ,

where kmax = max1≤a≤m{ka}, kmin = min1≤a≤m{ka}.
PROOF. In order to get the maximum of the functionf = (

∑
a kaxaya)

2 under the
constraints (2.7), partially differentiating

F =
(∑

a

kaxaya

)2

+ C1

[∑
a

(xa)
2 − 1

]
+ C2

[∑
a

(ya)
2 − 1

]
+ C3

∑
a

xaya

with respect to each variable and equating to zero, we obtain

2kaya

∑
b

kbxbyb + 2C1xa + C3ya = 0 ,

2kaxa

∑
b

kbxbyb + 2C2ya + C3xa = 0 ,

whereC1, C2, C3 are Lagrange multipliers. Setu = ∑
a ka(xa)

2, v = ∑
a ka(ya)

2, w =∑
a kaxaya. Then the above equations can be rewritten as

(2.8) 2wkaya + 2C1xa + C3ya = 0 ,

(2.9) 2wkaxa + 2C2ya + C3xa = 0 .

By using the constraints (2.7), from (2.8) and (2.9) we have

2w2 + 2C1 = 0, 2wv + C3 = 0; 2wu + C3 = 0 , 2w2 + 2C2 = 0 .

Hence,

(2.10) C1 = C2 = −w2 = −f , C3 = −2wv = −2wu .

If w = 0, thenf = 0.
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Now assume thatw �= 0. ThenC1 = C2 �= 0, andC3 = −2wv = −2wu givesu = v.

From (2.8) and (2.9) we obtain

2C1[(xa)
2 − (ya)

2] = 0 .

Hence,(xa)
2 − (ya)

2 = 0, a = 1, 2, . . . ,m. Without loss of generality, we may suppose

xs = ys (s = 1, . . . , k); xt = −yt (t = k + 1 , . . . ,m) .

Then (2.8) or (2.9) implies

(2wks + 2C1 + C3)xs = 0 (s = 1, . . . , k) ,

(2wkt − 2C1 + C3)xt = 0 (t = k + 1, . . . ,m) .

Now,
∑

a xaya = ∑
s(xs)

2 − ∑
t (xt )

2; from (2.7 ) we have
∑

s(xs)
2 = ∑

t (xt )
2 = 1/2.

Hence there are at least ans0 and at0 such thatxs0 �= 0 andxt0 �= 0. Therefore we obtain

(2.11) 2wks0 + 2C1 + C3 = 0 , 2wkt0 − 2C1 + C3 = 0 .

From (2.11) and (2.10) we get

ks0 = −2C1 + C3

2w
= w + u , kt0 = 2C1 − C3

2w
= u − w ,

which imply thatw = (1/2)(ks0 − kt0). Consequently,f = w2 ≤ (1/4)(kmax − kmin)
2.

A similar argument proves the following

LEMMA 3. Let x1, x2, . . . , xm; y1, y2, . . . , ym be real numbers satisfying∑
a

(xa)
2 =

∑
a

(ya)
2 = 1 ,

∑
a

xaya = 0 .

If given real numbers k1, k2, . . . , km satisfy

kakb >
1

4
(ka − kb)

2 (resp.,≥) , a, b = 1, 2, . . . ,m ,

then

2

(∑
a

kaxaya

)2

−
∑
a

ka(xa)
2
∑

b

kb(yb)
2 < 0 (resp.,≤) .

3. Main results. In this section, we assume thatMm is an immersed submanifold in
Em+k with essential codimensionk, i.e.,Mm can be immersed inEm+k, but not inEm+l with
l < k.

Let {νλ} be an orthonormal basis of the normal spaceVx(E
m+k,M), and associate the

shape operatorAλ = Aνλ . From the Gauss equation inMm, the sectional curvature of the
2-planeX ∧ Y ⊂ TxM is

(3.1) K(X ∧ Y ) =
∑
λ

[〈AλX,X〉〈AλY, Y 〉 − 〈AλX, Y 〉2] ,

whereX andY are mutually orthogonal unit vectors inTxM.
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THEOREM 1. Let Mm be a compact submanifold in Em+k . Denote by λ0 and µ0 the
maximum and the minimum of the principal curvatures of Mm, respectively. If the sectional
curvatures of Mm satisfy

(3.2) KM >
k

4
(λ0 − µ0)

2 ,

then there are no stable currents in Mm and Hp(M,Z) = 0 for any p ∈ (0,m).

PROOF. For each fixed indexλ, there is an orthonormal basis{Ea} in TxM such that

(3.3) AλEa = kλaEa , a = 1, 2, . . . ,m .

Let (S, ξ) be an orientedp-rectifiable set inMm. With a pointx ∈ S, associate a tangent
p-spaceV = TxS ⊂ TxM. Choose an orthonormal basis{ei, eα} of TxM such that{ei} is a
basis ofV . Also, let

(3.4) ei =
∑
a

ea
i Ea , eα =

∑
a

ea
αEa .

Then

(3.5)
∑
a

(ea
i )2 = 1 ,

∑
a

(ea
α)2 = 1 ,

∑
a

ea
i ea

α = 0 ,

and

Aλei =
∑
a

ea
i kλaEa .

Hence we have

〈Aλei, eα〉 =
∑
a

ea
i ea

αkλa .

From Lemma 2 we see thatf = (
∑

a ea
i ea

αkλa)
2, under the constraints (3.5), has the maximum

(1/4)(kmax − kmin)
2, wherekmax = max1≤a≤m{kλa}, kmin = min1≤a≤m{kλa}. Therefore,

(3.6) 〈Aλei, eα〉2 ≤ 1

4
(λ0 − µ0)

2 .

In (3.6), λ0 andµ0 are the maximum and the minimum of the principal curvatures ofMm,
respectively, which are independent of the indexλ.

Combining (3.1) and (2.5), we obtain

(3.7) tr QA = −
∑
i,α

K(ei ∧ eα) +
∑
λ,i,α

〈Aλei, eα〉2 .

From (3.6) and (3.7), the condition (3.2) implies trQA < 0.
Let θ be the set given by (2.6). IfvT ∈ θ, vT is the gradient∇f of the functionf (x) =

〈v, x〉 onMm. ForX ∈ θ , let φt be the flow generated byX and set

QS (X) = d2

dt2
M(φt∗S)

∣∣∣∣
t=0

,
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whereS ∈ 
p(M). Then from (2.1) we have

(3.8) tr QS =
∑
n

n

∫
Sn

tr QξndHp(x) .

From Lemma 1, we get trQξn = tr QA < 0. Hence, trQS < 0. This implies that there is
no stablep-current inMm for anyp ∈ (0,m). Federer-Fleming’s theorem then shows that
Hp(M,Z) = 0, p = 1, 2, . . . ,m − 1.

A similar argument as in Theorem 1 proves the following

THEOREM 2. Let Mm be a compact submanifold immersed in a simply connected
space form Nm+k(c) with c ≥ 0 . Denote by λ0 and µ0 the maximum and the minimum
of the principal curvatures of Mm, respectively. If the sectional curvatures of Mm satisfy

KM >
k

4
(λ0 − µ0)

2 − c ,

then there are no stable currents in Mm and Hp(M,Z) = 0 for 1 ≤ p ≤ m − 1.

THEOREM 3. Let Mm be a compact submanifold immersed in Em+k . If any two prin-
cipal curvatures λ,µ of Mm satisfy

λµ >
1

4
(λ − µ)2,

then there are no stable currents in Mm and Hp(M,Z) = 0 for p = 1, 2, . . . ,m − 1.

PROOF. As in the proof of Theorem 1, for each fixed indexλ, from (3.3) and (3.4) we
have

Aλei =
∑
a

ea
i kλaEa , Aλeα =

∑
a

ea
αkλaEa ,

whereea
i andea

α satisfy the conditions (3.5). Hence we have

〈Aλei, eα〉 =
∑
a

ea
i ea

αkλa ,

trAλ =
∑

i

〈Aλei, ei〉 +
∑
α

〈Aλeα, eα〉 =
∑
i,a

(ea
i )2kλa +

∑
α,a

(ea
α)2kλa ,

trBλ =
∑

i

〈Aλei, ei〉 =
∑
i,a

(ea
i )2kλa .

Therefore

2
∑
i,α

〈Aλei, eα〉2 − (trAλ − trBλ)trBλ

=
∑
i,α

[
2

(∑
a

ea
i ea

αkλa

)2

−
∑
a

(ea
i )2kλa

∑
b

(eb
α)2kλb

]
.

(3.9)
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From Lemma 3 and the assumption of Theorem 3, (3.9) then implies that

2
∑
i,α

〈Aλei, eα〉2 − (trAλ − trBλ)trBλ < 0 .

Hence, from Lemma 1, we obtain trQξn = trQA < 0. Consequently, from (3.8), we have
trQS < 0. �

REMARK 1. The inequalityλµ > (1/4)(λ − µ)2 is equivalent to

[λ − (3 − 2
√

2)µ][λ − (3 + 2
√

2)µ] < 0 ,

which is also equivalent to

(3.10) 3 − 2
√

2 <
λ

µ
< 3 + 2

√
2 .

By the same proof as used for the second part of Theorem 1 in [6], we can prove the
following

THEOREM 4. Let Mm (m > 3) be a compact connected and orientable submanifold
immersed in Em+k . If any two principal curvatures λ,µ of Mm satisfy the inequality (3.10),
then Mm is homeomorphic to a sphere.

THEOREM 5. Let Mm be a submanifold in Em+k . Suppose that its principal curvatures
satisfy one of the following conditions:

C1. λµ ≥ (1/4)(λ − µ)2,

C2. the sectional curvatures KM ≥ (k/4)(λ0 − µ0)
2,

where λ0 and µ0 are the maximum and the minimum of the principal curvatures of Mm,
respectively. Let Nn be a compact submanifold immersed in Mm and p ∈ (0, n) a given
integer. If, for any x ∈ Nn and any p-subspace V in TxN , the selfadjoint map QA on V

associated with the immersion Nn → Mm satisfies

trQA < 0 ,

then there is no stable p-current in Nn and Hp(N,Z) = Hn−p(N,Z) = 0.

PROOF. Let ∇, ∇̄,D be the Levi-Civita connections ofNn,Mm,Em+k , respectively.
Associated with the immersionNn → Em+k, the shape operatorA

′
ν determined byν ∈

C(V (Em+k,N)) is given by
A

′
νY = −(DY ν)T ,

whereY ∈ C(TN). In particular, ifν ∈ C(V (M,N)),

(3.11) A
′
νY = −(DY ν)T = −[∇̄Y ν + h̄(ν, Y )]T = −(−AνY + ∇⊥

Y ν)T = AνY ,

where h̄ is the second fundamental form of the immersionMm → Em+k. Also, if ν ∈
C(V (Em+k,M)), then

(3.12) A
′
νY = −(−ĀνY + ∇̄⊥

Y ν)T = (ĀνY )T .

At x ∈ Nn, we take an orthonormal basis{νλ, ηa} of Vx(Em+k,N) so that{νλ} and{ηa} are
bases ofVx(M,N) andVx(Em+k,M), respectively. LetAλ = Aνλ andĀa = Āηa . Denote by
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QA′
the selfadjoint linear operator onV associated with the immersionNn → Em+k defined

by (2.3). It follows from (3.11) and (3.12) that

(3.13) trQA′ = trQA + Ā(V ) ,

where

Ā(V ) =
∑
a,i,α

[2〈Āaei , eα〉2 − 〈Āaeα, eα〉〈Āaei , ei〉] .

By using Lemma 3 with the condition C1, or Lemma 2 with C2, we then obtainĀ(V ) ≤
0. If trQA < 0, then (3.13) implies trQA′

< 0, and from (3.8), trQS < 0. The proof is
completed.

REMARK 2. If Mm = Em, thenKM = λ0 = µ0 = 0 in Em, and Theorem 4 reduces
to Theorem 1 of Xin [4].
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