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Abstract. Concerning complete orientable minimal surfaces with finite total curvature
in Euclidean three-space, we show for any positive genus the existence of noncongruent ex-
amples having the same symmetry group and conformal type.

1. Introduction. Since 1761, when Langrange first published the "Differential Equa-
tion of the Minimal Surfaces", until the first half of the twentieth century, the theory of
these surfaces had a slow development but had important contributions made, for instance,
by Scherk (1835), Enneper, Weierstrass (1882), Schwarz (1890) and Riemann (1898). In the
case of complete minimal surfaces in Euclidean three-space R3, after Riemann's work more
than a half century had passed until Huber (1957) and Osserman (1964) introduced new im-
portant results (see [7] and [13]). With these, the theory of minimal surfaces gained a new
impulse that still motivates the research in this area.

One main research goal in the theory is the classification of complete minimal surfaces
in R3. All possible examples of such surfaces have been classified under certain special re-
strictions on the conformal type, ends, symmetry group, periodicity and/or total curvature. In
the case of embedded examples with finite total curvature, Schoen's [17] and López-Ros' [11]
theorems classify the cases of one end (plane) and two ends (catenoid). For any embedded
example with three ends and genus one, Costa proved that it must be his own surface or its
deformations found by Hoffman and Karcher (see [3] and [4]). It is not known if there exists
an embedded example with four ends and genus one, while there is an example with four ends
and genus two. Thus the question of a general classification of embedded minimal surfaces is
still wide open.

Even if one forfeits embeddedness, the finite total curvature case still presents difficulties.
For instance, the symmetry group, together with the conformal type, does not characterize
minimal surfaces of genus zero (see [9]). For positive genus, however, having both equal
symmetry group and equal conformal type excludes several close cases, like Costa's [2] and
Chen-Gackstatter's [1] examples. They have the same symmetry group but only the "almost"
same conformal type. This difficulty of finding some coincidence is explained by the fact that,
for each Weierstrass pair on a family of compact Riemann surfaces, the closure of the period
problems commonly succeeds for at most one choice of the parameters for each member of
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the family. Double solutions seem to be rare, except for genus zero or non-orientable cases

(see [9] and [10]).

The present work shows that among complete orientable minimal surfaces in R3 with

finite total curvature and positive genus, the symmetry group and the conformal type together

are still insufficient to characterize the surface. The examples constructed herein are described

as "birdcage-catenoids". The reason for this name comes from the fact that these surfaces are

minimal immersions in R3 of punctured compact Riemann surfaces called "birdcages" (see

[4], [5] or [6]). For x > 1 we describe all "birdcage" Riemann surfaces of genus n 1, n 2,

as follows:

(1) Mx = (h,w) (C )2
W =

h+x h 1

h x · h+1

They form a continuous family parametrized by x, while w and h are meromorphic

functions on Mx. The construction of the "birdcage-catenoids" here is indirectly based on the

Costa surface. As a matter of fact, the Costa surface first inspired Hoffman and Meeks for the

construction of embedded minimal surfaces in R3 (see Figure 2(b) and [5]). For every n 3,

we can think of the "birdcage" of genus n 1 as the Mn-Costa-Hoffman-Meeks surface with

each end compactified to a point. See the n = 3 case in Figure 1.

In this paper we prove the following result

THEOREM 1.1. For every integer n 2 there exist two one-parameter families of

complete orientable minimal surfaces in R3 of finite total curvature such that, for any member

of these families the following hold:

(a) The surface is conformally equivalent to a "birdcage " of genus n 1, punctured at

the points h 1({ 1, 0, 1}). All of its ends are of catenoidal type.

(b) The surface can be positioned to have its symmetry group generated by reflections

in the planes x3 = 0 and sin(kπ/n) · x1 = cos(kπ/n) · x2,k = 1, 2, . . . ,n.

(c) In this same position, the surface has exactly 2 vertical ends and n horizontal ends.

Moreover, there exists a κn > 1 such that every x (1, κn) determines one surface from

each family. Both surfaces have the same symmetry group and conformal type, but they are

not congruent.

REMARK. The case n = 2 generalizes the classical toroidal four-noid (see Figure 4),

of which the symmetry group includes reflection in the planes x1 = x3 and x1 = x3. We

do have two families of rectangular toroidal four-noids, which are included in Theorem 1.1.

A 90•-rotation around the x2-axis does not bring one member into the member with the same

conformal type in the other family. We shall prove this fact at the end of Section 6.

The "birdcage-catenoids" were found during my doctorate in Germany, which was sup-

ported by DAAD-Deutscher Akademischer Austausch Dienst, and CAPES-Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior. My adviser was Professor Hermann Karcher
at the University of Bonn, Germany. I thank him for his dedication, which greatly helped in
the realization of my works (see [15]).
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XT,

FIGURE 1. A "birdcage" of genus 2.

2. Background. In this section we state some well-known theorems on minimal sur-
faces. For details we refer the reader to [8], [12] and [14]. In this paper all surfaces are
assumed to be regular.

THEOREM 2.1 (Weierstrass representation). Let R be a Riemann surface. Let dH be
a meromorphic 1-form on R and g : R C ˆ := C a meromorphic function. Then
X : R R3 given by

X(p):=Re 1, φ2,φ3) ,

where (φ1, φ2, φ3) := (1/2)(g g 1, i(g + g 1), 2)dH, is a conformal regular minimal

immersion provided the poles and zeros of g coincide with the zeros ofdH. Conversely, every

regular conformal minimal immersion X : R • R3 can be expressed in this form for some

meromorphic function g and meromorphic 1-form dH.

DEFINITION 2.1. The pair (g, dH) is called the Weierstrass data on R of the minimal

immersion X : R S = X(R) R3.

DEFINITION 2.2. A complete, orientable minimal surface S is said to be algebraic if

it admits a Weierstrass representation such that R = R — [pi,..., pr}, where R is compact

and both g and dH extend meromorphically to R¯.

DEFINITION 2.3. An end of S is the image of a punctured neighbourhood Vpofapoint
p {p1,..., pr} such that ({p1,..., pr} p) V¯p = . The end is embedded if this image
is embedded for a sufficiently small neighbourhood of p.
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(a) (b)

FIGURE 2. (a) The Costa surface, (b) the M3-Costa-Hoffman-Meeks surface.

THEOREM 2.2. Let S be an algebraic minimal surface of which the genus of R is k

and the number of ends is r (all of them embedded). Then

deg(g) = k + r 1.

REMARK. The function g is the stereographic projection of the Gauss map N : R

S2 of the minimal immersion X. This minimal immersion is well-defined in R3 provided that

Re

for every closed path in R. The function g is a covering map of C and the total curvature of S

is 4πdeg(g).

Wlmms-tipp?pS|p
FIGURE 3. A "birdcage-catenoid" of genus 2.
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3. The involutions of the surface Mx. Here we summarize important involutions of
Mx related to the symmetries of S in R3. The surface Mx is hyperelliptic, but this property
will not lead to a symmetry of S. Figure 5 illustrates the paths I to I V as fixed point sets of
involutions summarized in Table (2).

(2)

symmetry

hyperelliptic

/

II

III

IV

involution

(h, w) ( x/h, w)

(h, w) (h, e¯
 2πi/n w)

(h, w) (h, ¯w)

(h, w) ( h, ¯1/w)
(h, w) (h, ¯w)

h

{ i x, i x }

[1,x]

[x, ]

[0,1]

w

C

e i π / n [0, ]
[1, ]

S1

[0,1]

4. The Gauss map on S and the function g. We are supposing that Figure 3 rep-

resents a surface S in R3 given by a minimal immersion X : R S , where R := Mx

1 ( { 0 , ±1}). Hence, X is given by Weierstrass data (g, dH) on M x . The differential dH on

Mx will be described according to the regular points and the type of ends we want the surface

to have. We shall analyse this differential in the next section.

FIGURE 4. The classical toroidal four-noid.

From Figure 5, one sees that h is like a "height function", in the sense that h = +1 at the

top of Mx, h = 1 at the bottom, h = +x is the upper saddle of Mx, h = x is the lower

saddle, and the middle is exactly where h is pure imaginary. This function is the same as the

one used in [18], and the construction of "birdcage-catenoids" was, in fact, inspired in this

work of Wohlgemuth. There the author added handles to the catenoid. From Figure 3, one

can see the "birdcage-catenoids" of genus n 1 like (n + 2)-noids, to which n handles are

added towards the interior and meet to form the saddles.
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FIGURE 5. A scheme of the surface Mx and the functions h and w on it.

Let us consider the surface S represented in Figure 3, and its unitary normal vector. At
the top catenoidal end of S, the vector is vertical, and we consider that it points downwards.
The top catenoid of S is related to the point B Mx, as shown in Figure 5. Hence we take
g(B) = 0. Based on Figures 3 and 5, we realize that there is another point on path IV, where
the corresponding normal vector on S will be vertical as well. But then, it will point upwards.
Hence, for a certain value y (0, 1), we have that h = y implies g = .

At the upper saddle of S, which corresponds to A Mx, the unitary normal vector is
vertical and points downwards. Due to the (360• /n) -rotational symmetry of S around the x3-
axis, the vector has a branch of order n 2 at this saddle. Therefore, g assumes the value 0 at
A with branch order n 2. Due to the horizontal reflectional symmetry of S with respect to
the plane x3 = 0, it is easy to localize the other poles and zeros of g. They are all represented
in Figure 6(d).

For a complete minimal surface of finite total curvature, genus n 1 and n + 2 embedded
ends we have

n+2 n+2
deg(g) = n 1 + 1 + —— = 2n ,

which is consistent with our analysis of g. Now, based on Figure 6(d), it is easy to write down
the following equation:

(3)
h + y x h

g = · · — w.
h y x + h

Of course, both sides of (3) are a priori just proportional. However, since the unitary
normal vector on S is horizontal at the corresponding path III on Mx, and it points at the
opposite sense of the x1-axis at C, we have g(C) = 1. Therefore, from (3) we have that
h = implies g = 1 · n+ 11. Moreover, it is easy to verify the consistence of (3) regarding
the expected behaviour of g on paths I through IV, and on the image of these paths under the
involutions of Mx.
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5. The height differential dH on Mx. In this section we are going to write explicitly

the meromorphic differential dH on Mx in terms of the function h and the exact differential

dh. First of all, we need to localize the poles and zeros of dH under the assumption that S is

the image of a minimal immersion X : R ^^ R3, with prescribed characteristics.

Based on Figures 3 and 6(b) one sees that, at the vertical catenoidal ends of S, we have

g = 0 (top) and g = (bottom). Hence dH has a simple pole at these points. At the

horizontal catenoidal ends of S, g is finite and different from zero. Hence dH has a pole of

order 2 at these points. We recall that S is supposed to be regular. We saw that at the saddles

g = 0 (top) or g = (bottom), both are of order n. Consequently, dH has a zero of order n

at each of these saddles.

" . . •••"••••••., ' ' •••„ . '» . . . . . o . . . g ^ • • • ° " - . ^ y " * " ° H

•- : • • - - ' - - . / - ' - • • •• . • . • • • ; • • ^ - o " 1 . > ' • • ' • ; • - - - • • ' ,

,,\ ./ »A / "• \ ./ ^-' \ <) / o" \ 'i /
— — o~~~—--^o < J ~ - — - ^ 6

n"1

(a) (b) (c) (d) (e)

FIGURE 6. (a) Poles and zeros of w, (b) of h, (c) of dh, (d) of g, (e) of dH.

There are other points where dH must be zero. They were discussed in the last section

and correspond to h = ±y, where y (0, 1). The unitary normal vector on S is vertical at

these points, and since we want S to be regular, dH must be zero there. Let us see now if this

last assertion concludes our analysis about the poles and zeros of dH, which is summarized

in Figure 6(e). We first recall that

(4) deg(dH) = χ (Mx) = 2(n 2),

which is consistent with Figure 6(e). Moreover, we know that the poles of dH are taken only

at the ends of S, and their orders agree with the expected values of g assumed there. Thus, dH

has exactly 2(n + 1) poles and from (4) it must have exactly 2(2n 1) zeros on Mx (including

their multiplicities). Hence Figure 6(e) is consistent with the complete analysis of poles and

zeros of dH.

Now, from Figures 6(b-e), it is easy to write down an explicit formula for the differential

dH:

h2 y2 dh

( 5 ) d H =
Of course, both sides of (5) are a priori just proportional. But along the path III, repre-

sented in Figure 3, the third coordinate of S is expected to be constant. In other words, the

value x3 = Re/ / / 7, dH must be the same, for any path ///' III. Therefore, Re(dH) must

be zero on this path, and then both sides of (5) are equal up to a non-zero real proportional

constant. We choose this constant to be 1, for another value would just rescale the surface S.
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At this point we remark that (3) and (5) lead to concrete Weierstrass data (g, dH) on the

surface Mx defined in (1). Now the surface S represented in Figure 3 can be explicitly defined

as the minimal immersion of R = Mx h 1({0, ±1}) in R3, given by the Weierstrass data

(3) and (5). However, we must verify if this definition of S is consistent with Figure 3. First

of all, S must have the expected symmetry curves supposed at the beginning. Afterwards, we

must prove that S has no periods, as Figure 3 suggests. This second task will be subject of the

next section. Now we are going to verify the symmetries of S.

From (3) and (5) one can analyse the behaviour of g and dH on the paths I through IV

indicated in Figure 3. This analysis is summarized in Table (6). From Table (6) it is easy to

see that the paths I through IV are geodesics of S. Since (dg/g) · dH R on any of these

paths, the geodesics are in fact reflectional symmetry curves of S (see [8]).

(6)

symmetry

/

II

III

IV

IV

(1,x)

(x, )

iR

(0,y)

(y,1)

g

e iπ/n (0, )

( 1,0)

S1

( , 1)(0, )

dH

R

R

iR

R

R

6. Solution of the period problems. By summing up our conclusions mentioned

above, we have that (1) defines a compact Riemann surface Mx of genus n 1, with Weier-

strass data (3) and (5) on it, and the corresponding image S of the minimal immersion

X : R ^^ R3 has the symmetries that Figure 3 suggests. What we do not know yet is if

S has no periods, as indicated in Figure 3.

We recall thatX(p) := Re/ ' ' (φ1, φ2, φ3) for any p R andafixed p0 R. Therefore,

if §{(j>\, φ2, φ3) is pure imaginary for every closed curve on R, then the period problems will

be solved. Let us begin with the analysis of integrals on closed curves around each puncture

of R. Due to the symmetries of S, which were just proved in the last section, it suffices to

consider only the points B and D (see Figure 5). The point B is the intersection of paths I

and IV. They are planar symmetry curves on S. Therefore, a small curve on Mx around B is,

after homology, invariant under reflections in I and IV .By virtue of this, the period vector

Re/(0i, φ2, φ3) is perpendicular to the planes in R3, in which the images of I and IV are

contained. But (3) implies that these planes are not parallel, because g is the stereographic

projection of the unitary normal vector on S. Since the period vector Re/(0i, φ2, φ3) must

be perpendicular to both planes, we conclude that it is zero.

For a small curve around D = III IV, we apply the same argument as above and

conclude that the period vector will be also zero in this case. Now we must consider curves

which are generators for the first homology group of Mx. It is enough to analyse only two of

these curves, and if their periods are zero, the symmetries of S will then imply that the whole
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FIGURE 7. The surface Mx and the curve γ on it.

surface has no periods. One of these two curves is a connected component of the lifting of

h• II by the function h. From Figure 5, on sees that this lifting is crossed by paths I and III.

After applying the same argument as above, we shall have that the period vector is also zero

in this case, since it must be perpendicular to both planes in which the images of I and III are

contained. It remains to analyse the other closed curve, which can be considered as the curve

y represented in Figure 7, together with its image under reflection in path II or IV. By the

same way, this will also imply that the period vector on the closed curve will be perpendicular

to the plane x2 = 0. Therefore, the only remaining task is the proof of Re / γφ2 = 0.

In this section it will be shown that, under certain conditions, one really has Re / γφ2 =

0. We are working with two different real variables, x and y, which are present in (3) and (5).

Nevertheless, only the variable x appears in (1), which defines our compact Riemann surface

Mx. We are going to prove the following proposition.

PROPOSITION 6.1. For each natural n 2 the following holds:

(a) There exists a unique κn > 1 such that for every x (1, κn] the period problem has

exactly two solutions y1(x) andy2(x). For x > κn, the period problem is not solvable.

(b) The functions y1 and y2 are increasing and decreasing with x, respectively. Both

are continuous and y1 y2, where the equality holds only for x = κn.

(c) limx 1 y1(x) = 0 and limx 1 y2(x) = 1.

The proof of Proposition 6.1 requires some preliminaries. First of all, define

(7) P(n,x,y) = 2Re φ 2 .
Jy

We recall that paths I through I V form the border of a hyperbolic quadrilateral on Mx (see

Figure 5). The interior of this quadrilateral is brought to the quadrant {z : 0 < Arg(z) < π/2}

of Cˆ. Under the Möbius transformations (x h)/(x +h), (1 h)/( 1+h) and their inverses, this
quadrant is always brought to open regions of C which exclude the real negative semi-axis.
Therefore, the branch of the n-th root given by neit := eit/n is well-defined and continuous
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on these regions. Hence, we fix this branch and define

(8) F(x, h) :=
x + h

By using (3), (5) and φ2 = (i/2)(g + g 1)dh, we can rewrite (7) as the parabola

(9) P = ay2 + by + c ,

where

(F + F 1)dhf (
,x) : = R e / +(10) a(n

ly

(F F 1)dh
(11) b(n, x):=2Re I ^ — , and

(12) _ v .,. ., . . .
ly K 1 - '

In the proof of Proposition 6.1 we analyse the case x . To this end, the following

definitions will be helpful:

F( ,h) :=

and a(n, ), b(n, ), c(n, ) and P(n, , y) defined as in (9) through (12).

Now we are going to remark two important results about the coefficients of the parabola

(9), which are technical lemmas that we prove in [16] and in the Appendix (Section 7):

LEMMA 6.1. The functions a, b and c defined above satisfy the following properties:

(a) b is negative and increasing with x.

(b) 0 < b < 2a for every x > 1.

(c) a is positive and decreasing with x.

(d) c is positive and increasing with x.

(e) a, b andc are continuous atx = 1 andc|x=1 = 1 + (b + c)/a |x=1 = 0.

(f) The function a + b + c is positive and increasing with x.

LEMMA 6.2. The functions a, b and c, defined by (10) through (12), are continuous

at x = . Moreover, P(n, , y) > 0for every y (0, 1).

At this point we are ready to present

PROOF OF PROPOSITION 6.1. We recall (9) and consider the normalized parabola

P := a 1P for y [0, 1]. The vertex of P is always in [0, 1] × R, by (b) of Lemma 6.1.
From (a), (c), (d), (e) and (f) of Lemma 6.1, we conclude that the function 1 + (b + c)/a is
positive and increasing with x. The same holds for c/a. Since P crosses the axes {0} × R and
{1} × R at c/a and 1 + (b + c)/a, respectively, we obtain the following:

1. The discriminant := (b/a)2 4c /a is positive if and only if P = 0 for exactly
two different values y = y1 and y = y2 in the interval (0, 1), where y1 < y2.
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2. = 0 if and only if P has a double zero at some y (0, 1).
3. < 0 if and only if P has no zeros.
From (e) of Lemma 6.1 it follows that P(n, 1, 0) = P(n, 1, 1) = 0. Since is con-

tinuous, the above-mentioned functions y1(x) and y2(x) are also continuous where they are
defined. Moreover, limx 1 y1(x) = 0 and limx 1 y2(x) = 1. We are going to prove that y1
and y2 are increasing and decreasing with x, respectively. We denote by a prime differentia-
tion with respect to x. Now define b := b/a and c := c/a. Therefore,

(13) A' = 2bb'-4c'.

We can rewrite (13) as follows:

(14) A' = 2b(b' + c') (2b + 4)c'.

From (c), (d) and (f) of Lemma 6.1 we have

(15) c' > 0 and (b + c)' > 0.

From (a), (b) and (c) of Lemma 6.1 we have

(16) (2b˜+ 4) < 0 and b <˜0.

By applying (15) and (16) to (14), it follows that A' < 0. Since y1 = b/˜2 and
y2 = b/˜2 + , the functions y1 and y2 are both continuous, increasing and decreasing
with x, respectively, as far as they are real.

The only remaining task is to show that there exists a positive κn > 1 such that (ΚN) =

0. This is an immediate consequence of Lemma 6.2. •

From Proposition 6.1 it follows that the "birdcage-catenoids" corresponding to y1 (x)

and y2(x) are not congruent for any x (1,κn). First of all, we compute the logarithmic

growth of their vertical ends. According to [4, pp. 21-22], the logarithmic growth is minus

the residue of dH at h = 1. We easily compute them as (1 y12)/2 and (1 — j | ) / 2 for each

surface. After rescaling both surfaces in order to get them with the same vertical logarithmic

growth, we then compute the change δx3 (yj) of their x3-coordinates along the curve h(t) = t,

x < t < :

t2 y2 1 y2 f00 t2

) d t and ( ) | /

Since (y2 — y\)t > (y2 — y\) implies (1 y22)(t2 y12) < (1 y12)(t2 y22), we see that

δx3(y1) < δx3(y2). Hence, the two surfaces cannot be congruent.

This argument is not enough for n = 2, because in this case we have the same number

of vertical and horizontal ends. Moreover, g becomes unbranched at h = ±x. Hence, up to

rescaling, the two solutions from Proposition 6.1 could differ by a rigid motion in R3. Now

we prove that this is possible only when y1 = y2. Let us find the values of h that give g = ±i.

Take y = y1. From (1) and (3) an easy computation gives us

h4 + [x 2y1(x + 1) + y2]h2 +xy2 = 0,
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with a total of four roots, as expected. Of course, for y = y2we get

- 2y2(x yj]h2 xy22 = 0 .

Suppose that the surfaces associated to y1 and y2 are rescaled in such a way that a 90•-

rotation around the x2-axis brings one into the other. The set of points in the torus where

g = ±i remains invariant and lie on a circumference in R3. Therefore, both fourth-order

equations must have the same roots. In particular, xy12 = xy22, which implies that y1 = y2 and

x = Κ2. This must be the classical toroidal four-noid, because the 90•-rotation around the x2-

axis, followed by a reflection in x3 = 0, gives a reflection in the plane x1 = x3. Analogously,

we obtain the reflection in the plane x1 = x3.

7. Appendix. The proof of Lemma 6.1 can be found in [16]. This last section is

devoted to the proof of Lemma 6.2.

PROOF OF LEMMA 6.2. We are going to divide the demonstration in three steps.

Step I. The function P(n, x, y) is continuous at x = .

First, we need to make some estimates. Consider 0 < ε < 1. Then,

\h\ <
2 + ε

(i) 1 ε

(ii)

x h

1+ε
h

< 1 + ε ,

1
x h - 1 - e •

+ ε < 1 + ε, from (i) and (ii) we obtain

l T £ x h

1
2ε

< 1
2ε

1 ε 1 + ε

For η := 2Ε/( 1 ε) we conclude that

1

x + h

x + h

(n 1)/n l + ε
< 1 +

2ε

x h
< 1 +

2ε

x + h
and

x+h\{n-
x h

1 < rj.

Let M = M(x, ε) := εx/(2 + ε). We are going to consider h • γ(t) = y + it, for

0 < t < , and split up the curve γ in such a way that γ = γ1 γ2, where \hoy\\ < M and

|h • yi\ > M.

TheMöbius transformations (x h)/(x + h) and (x + h)/(x h) bring the curve h•γ to

half circumferences in C whose radii are smaller than (x + y)/(x y). Moreover, for x 3y

the inequality (x + y)/(x y) 2 holds. Hence, since |h • γ2| M, we have

(17)
x + h

< 2 ( n 1)/n' + 1 < 3 onh•γ2,
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Similarly, it is easy to conclude that
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x
1 < 3 on h • γ2.

(19)
\-h 1/n

1 y

<

1 y

l + h

From (17) through (19) we conclude that

(20) |P(n,x,y) P(n, ,y)| <

where

h =
l + y f (|h h y|2)|dh|

on h•γ.

+ 3I2,

(|h + y|2 + |h y|2)|dh|

1 y

γ2

\h2-h*\

The quotients (h ± y)/(h ± 1) are Möbius transformations which bring the curve h • γ =

a + it,0 t < , to half circumferences in Cˆ. Their radii are smaller than (1 + y)/( 1 y).
Hence, |h ± y|2/|h2 1| (1 + y)2/( 1 y)2 and therefore

h <
l + y dt

I?
l + y ' r dt

Jhoyi *1 y h•γ1y
2 + t2 \i-y Y2

Now observe the following: |h•γ1(t)| = |y + it| M implies that t M + y, and

|h•γ2(t)| = |y + it| M implies thatt M y. Because of this, if 0 < ε < 1, M > 1 and

x 3y, then we have

(21)

(22)

h <
l + y

1 y

l
- arctan
y

h<

M + y (1+y)3π

y y(1 y)3 ,

+y)3

(1 y)3(M y)

By applying (21) and (22) to (20) we then get

|P(n,x,y) P(n, ,y) | η π +

M y
We recall that M = M(x, ε) = εx/(2 + ε) and observe the following:

2 + ε 1
(24) x > 2 +ε and ε < 1 imply

M > ,
s

and hence
1

M y
<2ε,

rj < As .

Definek := y 1(1 y) 3(1 + y)3(4π + 6y) and consider ε=min{1/3, ε/k˜} for any givenε >

0. Finally, by applying (24) to (23), we see that for a given ε > 0, there exists N = (2 + ε)/ε2

such that x N implies that |P(n, x, y) P(n, , y)| < s. Hence, P is continuous at

X = .

Step II. The functions a, b and c are continuous at x = .

We have just proved that for any ε > 0 there exists N > 0 such that if x N, then

P(n, x, y) P(n, , y)| < s. Equivalently, for any sequence of positive real numbers {rm}
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such that limm rm = + , it follows that limm P(n, rm, y) = P(n, , y). This last

assertion holds if and only if P(n, rm, y) is a Cauchy sequence. Thus, for every ε > 0 there

is an N > 0 such that ifm1,m2 N, then

(25) | P ( n , r m 1 , y ) P ( n , r m 2 , y ) | < ε .

Without loss of generality, we may suppose rm2 > rm1. From (9) and (25) we then have

|(a(rm2) a(rm1))y2 + (b(rm2) b(rm1))y + (c(rm2) c(rm1))| < ε ,

which can be rewritten as

|[(a + b + c)(rm2) (a + b + c)(rm1)]y2

(26)
+ (b(rm2) b(rm1))(y y2) + (c(rm2) c(rm1))(1 y2)| < ε .

Now apply y = 1/2 to (26). From Lemma 6.1 it follows that every term of the sum inside the

modulus in (26) is positive. Therefore, we have

|(a + b + c)(rm2) (a + b + c)(rm1)| < 4ε ,

(27) 3
|b(rm2) b(rm1)| < As, \c{rm2) c(rm1)| < ε. ˜

From (27) it follows that a(rm), b(rm) and c(rm) are Cauchy sequences. Of course, this
conclusion does not depend on the choice of y (0, 1). Hence, wedefinea := limm a(rm),
and similarly b and ĉ . Together with (25) and (26), this implies that for any y R

P(n, , y) = ay + by + c .

Therefore, a = a ( ) and the analogue holds for b and cˆ. This concludes the second step of
our demonstration.

Step III. P(n, , y) > 0 for every y (0, 1).
Among all demonstrations in this work, the proof of this last step is the most geometrical.

In the case when x = , we are going to verify that P(n, , y) can be analysed on "(n+2)-
noids" (see Figure 8).

From Steps I and II, we may "simplify" the Mx equation in (1) and work with wn =
(1 h)/( 1 + h). Such simplification does not correspond to a "limit surface" of the birdcage
family, since the genus of wn = (1 h)/( 1 + h) is zero. For this reason, we shall use different
notation. Let us first consider the following branched covering of the sphere:

(28) Izl
h˜+ 1

We want to deduce Weierstrass data (G, dH) on the sphere at (28), which lead to "(n+2)-
noids" with the same euclidean symmetries as the birdcages of genus n 1. For this, the
arguments used to derive (3) and (5) can be analogously applied, and one obtains the following
formulas:

(29) G = h˜+y·z,
h-y
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FIGURE 8. A "five-noid" with the same euclidean symmetries as the birdcages of genus 2.

(30) dH =
h2-y2

h2

dh

l-h2

From (28) we have h = (1 zn)/( 1 + zn). If we define λ := (1 + y)/( 1 y), then a simple

calculation shows that (29) and (30) are equivalent to

(31)
λzn

(32) d # = — n 2 dz =

z(zn 1)2 zn + z n 2

Of course, (32) is valid up to a proportional constant, which is 6λ/( 1 + λ2) in this case. This

constant is irrelevant for our purpose. Moreover, by considering z as the standard complex

coordinate on Cˆ, from Figure 9 it is easy to verify (31) and (32).
Now we are going to make use of the following geometrical argument. The curves

z1(t) = t, z2(t) = te iπ/n and z3(t) = e itπ/n for 0 t 1 lead to planar geodesics

of the "(n+2)-noid". The images of z1 and z2 under G are both straight lines which cross at

0 C and make a (180• /n)-angle. Therefore, the corresponding geodesics on the "(n+2)-

noid" lie on two different vertical planes of R3, which are not parallel. If we position our

"(n+2)-noid" as shown in Figure 8, we can even specify these two planes, namely, x2 = 0 and

sin(π/n) · x1 = cos(π/n) · x2. The third geodesic, which corresponds to the curve z3, lies

in the plane x3 = 0. Figure 10 illustrates the image under G of the shaded sector bordered by

z1, z2 andz3.
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FIGURE 9. The Weierstrass data G and dH˜ for the "five-noid" on the sphere.
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FIGURE 10. T h e i m a g e u n d e r G of t h e sec tor b o r d e r e d b y z1,z2 and z 3 .

An easy calculation then leads to

, - K 2

In Figure 10, the curve γ represents the shortest geodesic connecting h = y (or equivalently,

z = nλ 1) and z = e iπ/n. This geodesic is entirely inside the circular sector, otherwise

the symmetries of the "(n+2)-noid" could bring its pieces there, and γ would be a piecewise

shortest curve, and hence regular. Now consider

= Re t
20

Then, x2(1) = R e / 0 2 and x'2(t) = Re[<h(.y(.t))y'(.t)]. An easy calculation shows that

(33)

?^. Moreover, since Im{y'(0)} R*L, we conclude that

is negative.

Let Γ be the composition of the minimal immersion in R3, given by (G, dH)˜, with the
curve γ. Then, x2'(f) is the second component of the normal vector F"{t) on the surface,

restricted to the geodesic Γ. Clearly, the modulus of this normal vector is given by \F"{t)\.

We are going to show that | F"{t) | never vanishes for t (0, 1). Let us look at the formula of
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the Gaussian curvature for minimal surfaces:

K =
dG/G

dH

Based on Figures 9 and 10, one sees that neither G nor dH have poles or zeros inside the

circular sector. Moreover, dG has 2(n + 1) poles in total, and since deg(dG) = 2, the

number of zeros of dG must be 2n. If dG had a zero inside the sector, the symmetries of the

"(n+2)-noid" would imply that dG should have at least 4n zeros, which is a contradiction.

Therefore, the zeros of dG must be on the curves z1, z2 or z3, and on their images under the

symmetries of the "(n+2)-noid". This implies that the Gaussian curvature of the "(n+2)-noid"

does not vanish inside the sector. Therefore, \F"{t)\ is always positive, for 0 < t < 1.

Now consider again Figure 10. The shaded region at the right-hand side is the stere-

ographic projection of the unitary normal on the corresponding region of the "(n+2)-noid".

Since \r"{t)\ > 0 for t (0, 1), we conclude that the sign of x2(t) is always the same for

t (0, 1). Therefore,

(34) either x'2'(t)<0, t (0, 1),

(35) or x'2'(t)>0, t (0, 1).

If (34) is valid, then (33) implies that x'2(t) < 0 for t (0, 1) and consequently P(n, ,y) =

2x2(1) > 0 from (7). If (35) holds, then we are still able to obtain the same conclusion,

namely P(n, , y) > 0, if we prove that x 2 (l) 0. In this case, x'2 then assumes no

maximum in (0, 1) and hence x'2(t) < 0 for t (0, 1), which again implies that P(n, , y) =

2x2(1) > 0.

From Figure 10 one sees that π/n π/2 < Arg{y'(l)} < π/n. Moreover, an easy

calculation leads to

(l + e ) .

Thus, n > 3 implies that π < Arg{02(K(l))/(l)} < π/2 and therefore, x 2 (l) 0. For

n = 2 we have x'2(l) = 0. •

REFERENCES

[ 1 ] C. C. CHEN AND F. GACKSTATTER, Elliptische und Hyperelliptische Funktionen und vollständige Mini-

malflächen von Enneperschen Typ, Math. Ann. 259 (1982), 359-369.

[ 2 ] C. COSTA, Example of a complete minimal immersion in R of genus one and three embedded ends, Bol. Soc.

Brasil. Mat. 15 (1984), 41-54.

[ 3 ] C. COSTA, Uniqueness of minimal surfaces embedded in R3 with total curvature 12π, J. Differential Geom.

30 (1989), 597-618.

[ 4 ] D. HOFFMAN AND H. KARCHER, Complete embedded minimal surfaces of finite total curvature, Encyclopae-

dia of Math. Sci. 90, Ed. R. Osserman, 5-93, Springer-Verlag, Berlin, Heidelberg, 1997.

[ 5 ] D. HOFFMAN AND W. MEEKS, A complete embedded minimal surface in R3 with genus one and three ends,

J. Differential. Geom. 21 (1985), 109-127.



254 V. RAMOS BATISTA

[ 6 ] D. HOFFMAN AND W. MEEKS, Embedded minimal surfaces of finite topology, Ann. of Math. 131 (1990),

1-34.

[7 ] A. HUBER, On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32

(1957), 13-72.

[ 8 ] H. KARCHER, Construction of minimal surfaces, Surveys in Geometry, University of Tokyo (1989), 1-96,

and Lecture Notes 12, SFB256, Bonn, 1989.

[ 9 ] F. J. LÓPEZ, The classification of complete minimal surfaces with total curvature greater than 12π, Trans.

Amer. Math. Soc. 334 (1992), 49-74.

[10] F. J. LÓPEZ AND F. MARTÍN, Complete nonorientable minimal surfaces with the highest symmetry group,

Amer. J. Math. 119 (1997), 55-81.

[11] F. J. LÓPEZ AND A. ROS, On embedded complete minimal surfaces of genus zero, J. Differential Geom. 33

(1991), 293-300.

[12] J. C. C. NITSCHE, Lectures on minimal surfaces, Second edition, Dover, New York, 1986.

[13] R. OSSERMAN, Global properties of minimal surfaces in E3 and En, Ann. of Math. (2) 80 (1964), 340-364.

[14] R. OSSERMAN, A survey of minimal surfaces, Second edition, Dover Publications, New York, 1986.

[15] V. RAMOS BATISTA, Construction of new complete minimal surfaces in R3 based on the Costa surface, Doc-

toral thesis, University of Bonn, 2000.

[16] V. RAMOS BATISTA, The use of unitary functions in the behaviour analysis of elliptic integrals, Technical

Report 03/03, University of Campinas, 2003. http://www.ime.unicamp.br/rel_pesq/2003/rp03-03 .html.

[17] R. SCHOEN, Uniqueness, symmetry and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983),

791-809.

[18] M. WOHLGEMUTH, Higher genus minimal surfaces by growing handles out of a catenoid, Manuscripta Math.

70 (1991), 397–428.

INSTITUTE OF MATHEMATICS

STATISTICS AND COMPUTER SCIENCES

UNIVERSITY OF CAMPINAS

P.O.BOX: 6065
1 3 0 8 3 - 9 7 0 CAMPINAS-SP

BRASIL

E-mail address: valerio@ime.unicamp.br


