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ON THE UNIQUE EXTREMALITY OF QUASICONFORMAL MAPPINGS
WITH DILATATION BOUNDS
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Abstract. Concerning the problem of extremality of quasiconformal mappings with
dilatation bounds, we discuss the unique extbiy of the problem and prove the if part of a
conjecture on the unique extremality ([G1], [R1]). To this end, we need to investigate a new
extremal problem in the infinitesimal setting. In particular, we give a complete description of
the unique infinitesimal extremality of partially zero Beltrami differentials.

1. Introduction. The problem of extremality of quasiconformal mappings with di-
latation bounds has been much investigated in the literature. In this paper, we will discuss the
unigue extremality of the problem and prove the if part of a conjecture concerning the unique
extremality. To make this precise, we state the problem as follows.

Let R" and R be two hyperbolic Riemann surfaces covered by the unit disk {z :
|z| < 1} in the complex plane. Let a compact, possibly empty, sub$@f R’ be given in
such away thaR’ \ E’ has positive measure, a non-negative measurable furigtionon £’
(known as a dilatation bound function) witld || < 1, and a quasiconformal mappitgof
R’ onto R such that the complex dilatatigh of F satisfiesi(w)| < b(w) for a.e.w € E’.

We denote byQ(F, E’, b) the class of all quasiconformal mappingof R’ onto R such that

G is homotopic taF' (modd R’) and that the complex dilatatidnof G satisfiegd(w)| < b(w)

for a.e.w € E’. Hered R’ is the ideal boundary aR’ in the standard sense (see [G2]). Then
F, E’ andb determine the extremal maximal dilatati&n(F, E’, b) > 1, defined as

(1.1) K(F,E',b) =inf(K[G|IR'\E'l: G € Q(F, E',b)},

whereK[G|R’ \ E’] is the maximal dilatation o on R" \ E’. To avoid triviality, we will
always assume thak (F, E’, b) > 1, that is, Q(F, E’, b) contains no mapping which is
conformal inR’ \ E’. An elementG of Q(F, E’, b) is called extremal ifK[G|R' \ E'] =
K (F, E', b), and uniquely extremal iK[G'|R’ \ E’'] > K[G|R' \ E’] for any otherG’ €
Q(F, E', b). If Fis (uniquely) extremal irQ(F, E’, b), we occasionally say simply thatis
(uniquely) extremal.
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As stated above, there have been many literatures on the problem of extremality of qua-
siconformal mappings with dilatation bounds (see, for example, [F], [FS], [G1], [R1], [Sal-
5]). Among others, it is known that there always exists at least one extremal mapping in
Q(F, E', b), and a complete characterization of the extremality also appeared in the litera-
ture. For our purpose, we recall this precisely as follows.

As usual, we denote b@ (R) the space of all integrable holomorphic quadratic differen-
tials on the surfac®, and byM (R) the unit ball of the space® (R) of all essentially bounded
Beltrami differentials orR. Now we letEy = {w € E’ : b(w) = 0}. For the mapping-, let
wu denote the complex dilatation of the inverse mappfng F Y kr =||R \ E'|loo, and
set

n zeR\F(E"\Ep,

1.2 =
(2 e {kw(z)/b(f(z)) e F(E'\Ep.

Then we have the following result (see, for example, [Sa4]).

PropPOsSITION 1.1. F isextremal if and only if the Beltrami differential T satisfiesthe

condition
sup” // TFQ
R\F(Ep)

While Proposition 1.1 complely characterizes the extremality of the mappingless
is known for the unique extremality. In several articles (see, for example, [G1], [R1]) it has
been pointed out that the unique extremality fofis closely related to the uniqueness of
the Hahn-Banach extension of the linear functiodal € (Q(R)|R \ F(Ep))* induced by
T =18, A(P) = ffR\F(Eg)) t¢. In fact, it was conjectured that is uniquely extremal if
and only if A; has a unique norm-preserving extension to a bounded linear functional from
O(R)|R\ F(Ep) to LY(R\ F(Eg)). HereQ(R)|R\ F (Ep) means the restriction B\ F(Eg)
of O(R).

WhenE’ is the empty set, the unique extremality has been much discussed recently (see
[BLMM], [BMM], [MM], [R4], [Sh1], [Sh2]), and the conjecture was proved affirmatively
in [BLMM]. In this paper, we will study the unique extremality for a general Bgtproving
that the if part of the conjecture is still true in this general case.

i@ € QR), 1Pllg\F(Ey) = 1} = [ItFlloo -

THEOREM 1.1. Let F be extremal (intheclass Q(F, E', b)). If A; (t = tF) hasa
unique norm-preserving extension to a bounded linear functional from Q(R)|R \ F(E) to
LY(R\ F(E})), then F isuniquely extremal.

In order to prove Theorem 1.1, we need to investigate a new extremal problem in the
infinitesimal setting, namely, the extremal problem for partially zero Beltrami differentials.
In Section 2, we will introduce such an extrempabblem and explain how these two extremal
problems are related to each other. In Sect®aad 4, we will give a complete description of
the unique infinitesimal extremality of partially zero Beltrami differentials. In Section 5, we
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shall establish a fundamental inequality, which will be used to prove Theorem 1.1 in Section
6.
The author would like to thank the referee for his many valuable suggestions.

2. Partially zero Beltrami differentials. In this section, we will introduce a some-
what new extremal problem in an infinitesimal setting, which, as will be seen, is closely re-
lated to the extremal problem of quasiconformal mappings with dilatation bounds. Indeed, in
the unit disk case, such an extremal problembyeen introduced and dissed in [SC], where
it was used to prove the existence of hon-decreasable dilatations in a non-zero infinitesimally
equivalent class. For completeness and for generality, we will repeat some discussions from
[SCl.

Let Eo, which will be fixed through out Sections 2 through 4, be a compact, possibly
empty, subset ok such thatR \ Eg has positive measure, ap@ € L°°(R) be a Beltrami
differential which vanishes on the sgt. Recall that two elementg andv in L°°(R) are
infinitesimally equivalent, denoted hy ~ v, if [, u¢ = [[ve forall ¢ € Q(R). We
denote by Beltuo) the set of all elements in L°°(R) infinitesimally equivalent tq.p and
set

(2.1) Belt(uo, Eo) = {1 € Belt(uo) ; n(z) =0 a.e.z € Eo},

(2.2) ol £g = inf{litlloc ; 1 € Belt(uo, Eo)} .

An elementu € Belt(no, Eo) is called infinitesimally extremal if it|lco = [|l1toll £, @and
uniquely infinitesimally extremal if for any other € Belt(uo, Eo), [Vllco > llitllco- If 1o
is (uniquely) infinitesimally extremal in Belto, Eo), we occasionally say simply tha is
(uniquely) infinitesimally extremal.

We then have the following basic result.

THEOREM 2.1. There always exists at least one infinitesimally extremal Beltrami dif-
ferential in Belt(wo, Eo). Furthermore, if Belt(wo, Eg) contains more than oneinfinitesimally
extremal Beltrami differential, then it must contain infinitely many.

PROOF 1. Letu, € Belt(uo, Eo) satisfy ||iunllco = llitollg, asn — oo. When re-
stricted onR \ Eo, (1,,) is @ bounded sequencelii°(R \ Ep). By the *-weak compactness,
there exists a subsequence, also denoteggpy; which convergesto a limjt € L*°(R\ Eo)
in the *-weak topology, that is[[R\EO Und — ffR\EO we foranye € LY(R \ Eg). Now,
wheng e Q(R), since, € Belt(uo, Eo), [[ g g, tnd = [[gind = [[g1od, we
obtain thatffR\Eo ne = [[rmno¢. Extendingu to Eo be zero, we conclude that
Belt(xo, Eo). On the other hand, sincg,,) converges tau in the *-weak topology|| it |lco <
liminf |, lleo = lltoll £y, Which implies thaje € Belt(uo, Eo) is infinitesimally extremal.

Suppose now that andv are two distinct infinitesimally extremal Beltrami differentials
in Belt(up, Eg). For0 < ¢t < 1, setu, = tu + (1 — t)v. Itis then easy to see that is
infinitesimally extremal in Beliwo, Eo).
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LEMMA 2.1. For any u € Belt(uo, Eo), it holds that

o[/

PROOF 2. Letu € Belt(uo, Eo) be given. For any € Belt(o, Eo) andg € Q(R)
with [|¢llr\E, = 1, since[[R\Eo wo = f/R\EO v, it follows that|//R\E0 1ol < v]lco

which implies that
Su R =1
03 p{ / / e R 161z }

< inf{|lvllec; v € Belt(ro, E0)} = [Iuoll & -

On the other hand, since the $¢tR\ Eo; ¢ € Q(R)} is a closed subspace bt(R\ Eo),
by the Hahn-Banach theorem and the Riesz representative theorem, there exists some
L*°(R \ Ep) such that

(2.4) // up = // vgp forallgp € Q(R)
R\Eo R\Eg
and that
//R\Eo

;¢ € Q(R), lPllr\E, = 1} = llmoll £ -

(2.5) SUIO{ 19 € O(R), lPllR\E, = 1} = [Ivlleo -

Extendingv to be zero onEp, we obtain from (2.4) that € Belt(uo, Eo). Then (2.3) and

(2.5) imply that
//R\Eo

The proof of Lemma 2.1 also shows that Belt(o, Eo) is infinitesimally extremal,
which gives another proof of the existence part of Theorem 2.1. An immediate consequence
of Lemma 2.1 is the following theorem.

SUIO{ 19 € OR), lPllR\E, = 1} = llmoll £ -

THEOREM 2.2. u € Belt(uo, Ep) isinfinitessimally extremal if and only if

o []

Now, we point out how the two extremal grlems are related to each other. Noting
Proposition 1.1 and Theorem 2.2, we find thatis extremal inQ(F, E’, b) if and only
if the Beltrami differentialzx is infinitesimally extremal in Beltr, F(Ep)). On the other
hand, if u € Belt(uo, Ep) is infinitesimally extremal, then we can conclude by the proof
of Lemma 2.1 thaj is uniquely infinitesimally extremal if and only if the linear functional
Ay € (Q(R)|R \ Eo)* induced byu, A,(¢) = ffR\Eo we, has a unique norm-preserving
extension to a bounded linear functional frgmR)|R \ Eoto L1(R \ Eg). Thus, the conjec-
ture in the Introduction is equivalent to the one tlfais uniquely extremal irQ (F, E’, b) if
and only if r is uniquely infinitesimally extremal in Beltr, F(E()). Hence Theorem 1.1
can be restated as follows.

19 € O(R), lPllR\E, = 1} = lltlloo -
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THEOREM 2.3. Giventheclass Q(F, E’, b), if tr isuniquely infinitesimally extremal
inBelt(tr, F(Ep)), then F isuniquely extremal.

In order to prove Theorem 2.3, we need to investigate the unique infinitesimal extremality
of partially zero Beltrami differentials, which will be done in Sections 3 and 4. Here we want
to discuss a special case. Recall that the boundary dilatatien isfdefined to be

(2.6) b(uo) = Inf{||u|R\ E||~ ; forall u € Belt(up) and compact subsesin R} .

It can be defined equivalently as (see [EGL], [GL])

2.7)
//R HoPn

Recall that a sequende, ) in Q(R) is said to be degeneratingdf, — 0 locally uniformly
in R. Clearly,b(uo) < llioll£o-

b(uo) = sup{ limsup ; all degenerating sequenc@s,) with ||¢, || — 1} .

n— oo

THEOREM 2.4. Let u beinfinitesimally extremal in Belt(wo, Eo). If b(1o) < llnoll £y,
then w isuniquely infinitesimally extremal. Furthermore, there exists some element ¢ € Q(R)
with |||l r\E, = 1 suchthat u = [|llecl@l/d X R\Ey, Where x stands for the characteristic
function of a set.

PrROOF 3. Sincey is infinitesimally extremal, it follows from Theorem 2.2 that there
exists a sequend@,) in Q(R) with ||¢,||r\ £, = 1 such that

@9 ‘ //R\Eo o

Since Ep is compact inR, it follows that (¢, ) is a bounded sequence (W(R). Otherwise,
there would exist some subsequence, also denotéd,bysuch that|¢, || — co asn — oco.
Letting ¢, = ¢./l¢nll, we obtain||$,|| = 1. So there exists a subsequence, still denoted
by (én), such thatp, tends locally uniformly inR to someg in Q(R). By Fatou’s Lemma,
¢l < 1. Then, for any subseft of R, noting that 0< |¢, — ¢| — |fn| + |@] < 2|¢|, we
conclude by Lebesgue’s dominated convergence theorengha® || 7 — ||én | F+ @l F — O
asn — oo. If F = Eg, then| ¢y, —<;3||~EO — 0. On the other han(ﬂg)in”Eo = (gl £o/ I Pnll =
(lnll = D/llpnll — 1, so we havelo || g, = 1, which contradict§¢|| < 1.

Now, since(¢,) is a bounded sequence@R), there exists a subsequence, also denote
by (¢,), which converges to some functigne Q(R) locally uniformly in R. By the same
reasoning as above, we have

(2.9) Nim (lgn = ¢llr = lIdnllr +lollF) =0

= oo -

for any subsef’ of R. In particular, we have

(2.10) nleoo ldn — dllrRvE, =1 — @l R\Eg -
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Under the assumption thatio) < [lxoll £, We want to show thafe| z\g, = 1. Sup-
pose to the contrary théipp|| z\ £, < 1, and set

$n — ¢

Gl Py

Then(y,) is a sequence i@ (R) which satisfies thafy, | r\g, = 1, ¥» — 0 locally uni-
formly in R and that

(2.11) ‘ //R\Eo WY

Since Eg is compact inR, ||y,|| — 1, so (2.11) implies thab(uo) = b(n) = |tlleo =
lteoll £,- This is a contradiction.

Consequently|l¢|lr\e, = 1, which implies from (2.8) and (2.10) thgfy‘R\EO up =
lillc @and hence that = |lulleol@l/Pxr\E, @S required. Finally, it is easy to see thais
uniquely infinitesimally extremal.

= lntlloo -

REMARK 2.1. For simplicity, we say that a Beltrami differentia} which vanishes on
the compact seky is a Strebel differential (with respect fy) if b(io) < llioll£,-

3. Characterization of unique infinitesimal extremality. In this section we will
characterize the unique infinitesimal extremality of partially zero Beltrami differentials un-
der certain condition. In its proof, we need the following fundamental inequality. Recall that
o is a Beltrami differential orkR which vanishes on the compact subget

LEMMA 3.1. Let u and v be two Beltrami differentials in the class Belt(uo, Eg). If
Vileo < lltlloc, then

(3.1) // |u—v|2|¢|s8||u||oo<||u||oo||¢||R\Eo—Re// mb)
R\Eg R\Eg

for all ¢ € Q(R).

REMARK 3.1. WhenEg = ¢, Lemma 3.1 was proved in [BLMM](see also [R2],
[R3]), and called the infinitesimal delta inequality. For completeness, we give here a short
proof using a discussion from [GL].

PROOF OF LEMMA 3.1. Letk = |ullewo. FOr anygp € Q(R), ffR\Eglub =
f[R\EO v¢. Therefore, Lemma 3.1 follows from the following calculation.
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[ vt [
R\Eg R\Eo
2], s e ]

R\Ep R\Ep

—k—
— 2/[ (|u|2+k2 2kReu£>|¢| +2// <|v|2+k2 - 2kReui>|¢|
R\Eo ¢ R\Eo 1]

= 2// (2k2|¢| — 2kRep¢) + 2// (2k2|¢| — 2kRev¢)
R\Eo R\Eg

(o ff ol 0)

For a Beltrami differentialc in the class Beliuwg, Eo), the setR(n) = {z € R; |u(z)| =
llillo} is called the extremal set fpr. We introduce the Reich’s functiond] on Q(R)|R\ Eg
induced byp, 8,(¢) = llnlloolldllr\e, — Re ffR\EO wo. We say thate satisfies Reich’s
condition on aseE C R\ Eq if there exists a sequencg,) in Q(R) such thabd, (¢,) — 0
and liminf|¢,(z)| > 0 for almost allz in E. We are in a position to prove the main result of
this section.

2

ol 1] |

ke ke
¢

—k—

THEOREM 3.1. Let u be a Beltrami differential in the class Belt(ug, Eg) with || =
llit]lco @lMost everywhereon R \ Eg. Then the following conditions are equivalent:

(@) w isuniquely infinitesimally extremal in the class Belt(uo, Eo).

(b) wisinfinitesimally extremal inthe classBelt(w.o, Eo) and, for every compact subset
E of R\ Eg with positive measure and every r > 0, uxg + (1/(1 + r))uxr\£ is a Strebel
differential (with respect to Ep).

(c) For every measurable subset £ of R \ Eg with positive measure, there exists a
sequence (¢,) in Q(R) with ||, || r\ £, = 1 such that

(nunoo—Re//R\EOm)///E P

(d) nu satisfies Reich’s conditionon R \ Ejp.

PROOF 4. Suppose that is uniquely infinitesimally extremal. For every compact sub-
setE of R\ Eg with positive measure and every- 0, letu(r, E) = uxe+(1/(1+r) W xr\E-
We need to show that(r, E) is a Strebel differential, that is (. (r, E)) < || (r, E) |l £q-

It is easy to see thab(u(r, E)) < |ulleo/(1 + r). Suppose to the contrary that
b(u(r, E)) = |lu(r, E)| g,- Letv(r, E) be an infinitesimally extremal Beltrami differential in
the class Belju(r, E), Eo). Then|v(r, E)llcc = 1(r, E)llEy = b(u(r, E)) < |Itlloo/ (1 +
r). Clearly,v = u—u(r, E)+v(r, E) = (r/(1+r)uxr\E +v(r, E) € Belt(uo, Eg). Since
Wlloo < 7/ (L+ ) Iitllco + IV, E)loo < lIt]loo, We conclude by the unique infinitesimal
extremality ofu thatv = p, thatis,u(r, E) = v(r, E) is infinitesimally extremal. Since
] = ||l @almost everywhere oR \ Ejg, this case cannot occur. So (a) implies (b).
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Now, let 1 satisfies the condition (b). By Theorem 2.4, there exists an elegnent)
in Q(R) with ||¢(r, E)|lr\£, = 1 such that the infinitesimally extremal Beltrami differential
v(r, E) in Belt(u(r, E), Eg) has the form|v(r, E)|col¢ (r, E)|/$(r, E) xr\E,- ON the other
hand, sinceu is infinitesimally extremal in Beljwo, Eg), andv = u — u(r, E) + v(r, E) =
(r/(A+r)uxr\e +v(r, E) € Belt(uo, Eo), we havel|ullco < [Vlleo < (r/(L+r)li1tlloo +
lv(r, E)lloc, SOIIV(r, E)lloe > lltlloc/(1+ 7). Consequently,
4 lloo

L < e, Bl = ReffR\Eov(r, E)$(r. E)

1
=Re// u(r,E>¢(r,E>=Re// u¢(r,E)+Re—// 1 E).
R\Eo E 1+r R\EQ\E
Thus,

(3.2) ||u||oo—Re// M¢(r,E)=Re// mqs(r,E)snunoor// 6(r. ).
R\Eo E E

For each measurable subgeof R with positive measure, choose a compact subseft
E with positive measure. Then for any> 0, there exists an elemegtr, E) in Q(R) with
l¢(r, E)llr\E, = 1 such that

(3.3) lutlloo — Re// pé(r. By < ||u||oor//~ 16, B)| < itlloor // 6. ).
R\ Eo b E
Forn > 1, setr = 1/n and¢, = ¢(r, E). Then we conclude by (3.3) that

0< <|Iu|loo —Re// /uﬁn)/// Iba] < lltlloo o
R\Ep E n

So (b) implies (c).

Finally, let the condition (c) be satisfied. Suppose tl@t not uniquely infinitesimally
extremal. Then there would exist somén the class Beliug, Eo) such that|v|c < l|4]loo
and thatjv — | > ¢o > 0 on some positive measure subgetf R \ Eg. Note that for this
setE, there exists a sequengg,) in Q(R) with ||¢,||r\£, = 1 such that

(3.4) (uuuoo - Re//R\EO m)/f/E 9a] > 0.

On the other hand, by Lemma 3.1 we have that

eé// ] s// v — w2l sC||u||oo<||u||oo—Re// wn),
E R\Eg R\Ep

which contradicts (3.4). So (c) implies (a).
We will prove the equivalence of (a) and (d) in the next section (Theorem 4.1).

REMARK 3.2. From the proof we see that it holds that=8{r)=(a) for any Beltrami
differential i in the class Belfuo, Ep). The condition|u| = |u|le @lmost everywhere in
R \ Ep is only used in the proof of (&(b). Indeed, when satisfies the condition (a)
(without the condition thatu| = ||i]lc @lmost everywhere iR \ Eg), (b) still holds for
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those compact subselsof R \ Eg with positive measure antit| E | oo = || it]loo- We will use
this fact in the next section.

REMARK 3.3. We say that is uniquely infinitesimally extremal with respect oC
R\ Eg with positive measure if for any othere Belt(io, Eg) With [[V]so < |t]lcos # = Vv
almost everywhere ofl. Examining the proof ofc) = (a), we find that if the condition (c) is
satisfied for every compact subgebf S C R\ Eg with positive measure, themis uniquely

infinitesimally extremal with respect t&.

4. Characterization of unique infinitessimal extremality (continued). We continue
to discuss the unique infinitesimal extremality of partially zero Beltrami differentials. We will
modify the discussion in [BLMM].

In general, for a bounded linear functional with real parti on a subspac#& of a
normed spacé&, we may define

Axo) = inf {A(y) + IAlllly — xoll}
yey

and

A(x0) = supia(y) — lIAlllly — xoll} -
yeY

The analysis in the proof of the Hahn-Banach theorem leads to the following lemma.

LEMMA 4.1. A has a unigue norm-preserving extension from Y to X if and only if
A(xo) = Axo) forall xop e X \ Y.

We say that satisfies the unique approximation propertyx@te X \ Y if there exists
sequencesy,1) and(y,2) in Y such that

A(yn1 = yn2) = IAIUlya1 = xoll + llyn2 — xol)) +0(1) .
Then we have

LEMMA 4.2. A hasa unique norm-preserving extension from Y to X if and only if A
satisfies the unique approximation property at eachxp € X \ Y.

We now proceed to discuss the unique infinitesimal extremality of a Beltrami differential.
Let, as beforeuo be a Beltrami differential orR which is zero on the compact subg&i.
Then we have

LEMMA 4.3. If u € Belt(uo, Ep) satisfies Reich’sconditiononaset E C R\ Eo, then
w isuniquely infinitesimally extremal in the class Belt(wo, Eg) with respect to E.

PROOF 5. Suppose that is not uniquely infinitesimally extremal with respect £
Then there would exist somein the class Beliug, Eg) such that|v||s < ||u|lco and that
v — u| > g0 > 0 on some positive measure subgedf E. It follows from Lemma 3.1 that

@.1) eé/f 6| 5// v — 12161 < Cllitllsodu (@)
i R\Eo
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forall ¢ € Q(R).

On the other hand, singesatisfies Reich’s condition of, there exists a sequengg,;)
in Q(R) such that liminf¢,| > 0 almost everywhere i& and thats,,(¢,) — 0. Applying
Fatou’s Lemma, we then obtain a contradiction from (4.1).

LEMMA 4.4. If wisuniquely infinitesimally extremal in the class Belt(co, Eo), then
satisfies Reich’s condition on its extremal set.

PROOF 6. Suppose that is uniquely infinitesimally extremal in the class Belb, Eo),
and letE = R(u) be its extremal set. Without loss of generality, we may assume that
lulle = 1. Take¢ € Q(R) such that|gllr\g, = 1, and lety = |p[uxg. Clearly,

v € LY R\ Eg) and
// mﬁ=// 1ol = 1Vl R\Eq -
R\Eg E

Sincep is uniquely infinitesimally extremal in Bélto, Eo), A, (¥) = ffR\Eo wy is
the unique norm-preserving extension frgnaR)|R \ Eoto L1(R \ Ep). By Lemma 4.1, for
the real park, = ReA,, noting that||A,|| = [|A,]l = l1lle = 1, there exists a sequence
(¢n) In Q(R) such that, (¢n) — g — VlIR\Ey — Au(¥), that s,

Re// W+ e — Wl Eg — Re// jihn — 0.
R\Ep R\Ep

Consequently,
0< 5, (dn) = dnll £y — Re // s
R\Eo

<V lr\E, + llpn — VllR\E, — RE // Hbn
R\Eo

=Re// uw+||¢n—w||R\Eo—Re// jihn — 0.
R\Ep R\Eo

On the other hand, since

05//E(|w|+|¢n—w|—|¢n|>
< IVlrR\Eg + @0 — ¥ llR\E) — lIPnllR\Eq

< W lREs + 60 — ¥liR\E, — Re // ji — 0,
R\Ep

we may assume without loss of generality that + |¢, — ¥| — |¢,] — O for almost all
z € E. Hence liminflg,(2)| > [ (2)| = |¢(z)| > O for almost allz € E.

An immediate consequence of Lemmas 4.3 and 4.4 is the following theorem, which gives
another characterization of the unique infinitesimal extremality of Beltrami differentials with
constant absolute value @h\ Eg (see Theorem 3.1).
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THEOREM 4.1. If u € Belt(o, Eo) satisfies the condition that || = ||it]lcc @lmost
everywherein R \ Eg, then p is uniquely infinitesimally extremal in Belt(uo, Eo) if and only
if 1 satisfies Reich’s conditionon R \ Ep.

We are now in a position to characterize the unique infinitesimal extremality for an ar-
bitrary Beltrami differential. Lejx € Belt(ug, Eo). We say that a Beltrami differential is
an admissible variation qf if n equals zero otky, [|7]lco < ||t]lcc, @nd if there exists some,

possibly empty, subsét of R \ Eg such thatu| < ko < k = ||t]|co @lmost everywhere i
andu =ninR\ E.

LEMMA 4.5. If i is (uniquely) infinitesimally extremal in the class Belt(wo, Eo), then
every admissible variation n of  is (uniquely) infinitesimally extremal.

PROOF 7. Suppose is infinitesimally extremal in the class B@ltp, Eg), andn is any
admissible variation of.. Then there exists a subsgtof R \ Eg such thafu| < kg < k =
lit]lco @lmost everywhere ik andu = nin R \ E. Take any real number> 2k/(k — ko).
Then, for any Beltrami differentia}’ in the class Bely, Eg), tiu + n' — n € Belt(tu, Ep).
Sincer p is infinitesimally extremal, we have

th = tilloo < 10 lloo + It = Nlloo
< 117 lloo + MaXx{(t — Dk, tko + k) = [In’lloo + (¢ — Dk,

SO|17 |leo = k > |Inllco, that is,n is infinitesimally extremal.
If u is uniquely infinitesimally extremal in the class Belb, Eo), the above reasoning
also shows thag is uniguely infinitesimally extremal.

Now we can prove the following general characterization theorem for the unique infini-
tesimal extremality of Beltrami differentials.

THEOREM 4.2. Let 1 € Belt(uo, Eo). Thefollowing conditions are equivalent:

(1) wisuniquely infinitesimally extremal in Belt(uo, Eo).

(2) n isinfinitesimally extremal in Belt(wo, Eo) and, for every r > 0, every admis-
sible variation n of n, and every compact subset £ of R(n) with positive measure, nxg+
(/A 4+ r)nxr\E isa Strebel differential.

(3) For every admissible variation n of n and every compact subset E of R(n) with
positive measure, there exists a sequence (¢,,) in Q(R) with ||¢, || z\ £, = 1 such that

(||n||oo—Re//R\Eo,,¢n)///E o0,

(4) Every admissible variation n of w is uniquely infinitesimally extremal with respect
to R(n).

(5) Every admissible variation n of n isuniquely infinitesimally extremal.

(6) Everyadmissiblevariation n of u satisfiesreich’s condition on R(n).

(7) A, satisfiesthe unique approximation property at each ¢ € LY(R\ E0)\ Q(R)|R\
Eo.
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PrROOF 8. (1)is equivalentto (7) by Lemma 4.2.

(1) = (2). Sincep is uniquely infinitesimally extremal, it is definitely infinitesimally
extremal, and every admissible variatiprof x is also uniquely infinitesimally extremal by
Lemma 4.5. Hence (2) can be proved by the same method as in the pr@of ef (b) of
Theorem 3.1 (see remark 3.2).

(2) = (3). Sinceu is infinitesimally extremal, every admissible variatigrof u is
also infinitesimally extremal by Lemma 4.5h@&refore (3) can be proved by the same method
as in the proof ofb) = (¢) of Theorem 3.1.

(3) = (4). This can be proved by the same method as in the proaf)os (a) of
Theorem 3.1(see remark 3.3).

(4 = (1). Suppose that is not uniquely infinitesimally extremal. Then there would
exist somev in the class Beliug, Eg) such that|v]e < |[#lleo @and thatjy — | > g9 > 0
on some positive measure compact sulisef R \ Eg. Noting thatu itself is an admissible
variation ofu, we conclude that the s¢t € E; |u(z)| = ||nlleo} Must be a set of measure
zero. So we may assume that for sokge< k = ||it]loo, the setE = {z € E : |u(z)| < ko} is
compact and has positive measure.

Definen = k((u —v)/lu —vDxz + X R\ - Thenpn is an admissible variation of.
Now setn’ = n + v — u. Theny' € Belt(n, Eg). Noting that

/_k/'L_U . 4y — _
Nk e T e w=

= 1) =Xz +VXp\ 5>

we get|n’| < maxX{|k — |u — v||, k} = k, which implies thatl|'|lcc < k. Since|n| = k
on E, andy is uniquely infinitesimally extremal with respect to its extremal sulkeh, we
conclude thaty = n and consequently that = v on E C E, which is a contradiction.

(1) = (5). This follows directly from Lemma 4.5.

(5) = (6). This follows directly from Lemma 4.4.

(6) = (4). This follows directly from Lemma 4.3.

5. A fundamental inequality. In this section, we establish a fundamental inequality
parallel to the delta inequality in [BLMM], which will be used to prove Theorem 2.3 in the
next section. We shall repeat some discussion from [BLMM] for completeness.

LEMMA 5.1. Let G be a quasiconformal mapping in the class Q(F, E’, b). Let, as
before, 1, ¥, 1 and v denote the complex dilatations of the mappings F, G, f = F~! and
g = G~ 1, respectively. If kg < kp, then

2
// ] < C(kF||¢”R\F(E(’)) - Re// TF¢) ,
R\F (Ep) R\F(E})

for all ¢ € Q(R). The constant C depends only on kr and ||5|| -

ACf) —9(f)
1— a(f)v(f)
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PROOF 9. Sett = tp, k = kp, a = a(f), B = v(f). SinceG € Q(F, E',b), it
follows from the main inequality of Reich-Strebel (see [G2]) that

// |¢|<// |¢||1—H¢/|¢|IZ|1+,B(M/Ol)(cb/lcbl)(l—ﬁa/lfﬁl)/(l—H¢/|¢|)|2
R JJRr 1—|pnl? 1— |82 ,

forall ¢ € Q(R), or equivalently (see [R2], [R3]),

(@—BL—af) u /] lo — B2
5.1 R — .
G- e[/Rufwm%ufwm%a¢5 R A= lapa—1pR "

Noting thatu /o = —3f /of ande = B = 0 onR \ F(E}), we obtain from (5.1) that

(@—pB)L—af) n [/ lo — BI?
5.2 R — .
2 e/vaH@(l—mFxl—wF)a¢5 Rwu@(l—mﬁx1—mﬁﬂw

Adding Ref[R\F(Eé)((,B —a) A —apf)/(L—a|d A —|B1%))(Ja|/a)|¢| to both sides of the
above inequality, we conclude that

/] d—kmﬁa—ﬂﬁ+%1—wﬁmaﬁ—wFMw
R\F(E) 2la|(1—[a|?)(1 - (81
(@—pL-ap) 1
R — - ,
= e//mm%wi—mﬁxrﬂm%ammw e

or equivalently,

/y (1= Jale — B ¢
rR\F(Ey 2l L+ a)(L—|BI?)

(@—pL-ap) 1
(5.3) SRe[/MH%)a_wm%afﬂm%aOMWP—M@

+f/ wﬁ—mﬁlw
R\F(E 2= 1812

We first assume that| > k/2 onR \ F(Ep), thatis,|a| = |u| > k/2 onR \ F(E’') and
la| = |u| = b(f)/20nF(E’\ Ep). Note that onR \ F(E’)

(1— e — B2 (1—nmnhwmea—ﬁFW

54
-4 2L+ b= 182 7 4

|.
Using the identity
llw] — w|? = 2w|(Jw| — Rew),

we get
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(@—p)L—apf) 1
Re = -
A= aD A 1pD & M1~ 1)
lo — Blll—ap| 1 1/2
—{2 —R
o5 = A DA 8D ] 2P nlI9] - Repe))
' B {4/(1— 1612.)2VI/%/ | — B2lg|/KIG] — ReTg in F(E'\ Ep)

4/(1 - k*2/1/ky | — BI?|¢|/kIp] — Retg in R\ F(E')
4

<
~ k(L — (maxk, [|blls})?)2
We also have
1812 — |a|? < 2/(k(1— [Ib1%)(klp| — Retg) in F(E'\ EY)
2el1— 181D "~ | 2/(k(1 - k2)) (k|| — Retg) in R\ F(E')

Ve — BI%1¢1VkIg] — Retg.

(5.6)
2

<

= k(1= (maxk, [Ibll})?)
It follows from (5.3) through (5.6) that
(5.7)

/ / e — B1%|¢|
R\F(E})

< ik, ||b||oo>( // e, V1 PPRIVET =R + [ 1 sy 4101 ~ Rer¢)) ,
0

(klp| — Rete).

where

32
k(1 — (maxk, [Ibllec})?)3
Using the Cauchy-Schwartz inequality, we obtain from (5.7) that

// la — BI2I¢| < Ca(k, [|blloo)
R\F(E})
(5.8) « (//f o — 12| /f (k|| — Retg)
R\F(EE)) R\F(EE))
+// (k1| — Refcb)).
R\F(E})

By (5.8) it sufficies to show the lemma assuming tﬁﬁk\p(%) (k|lp| — Ret¢) # 0. Letting

r2=// |a—ﬁ|2|¢|/ff (klp| — Retg),
R\F(E}) R\F(E})

Ci(k, [bllc) =
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(5.8) then implies that < C1(k, ||b|loo)(1 + 1/¢), which implies that is bounded, so

(5.9) // lee — B?I¢| < Calk, ||b||oo)// (k|¢| Rer¢).
R\F(Ep)

Consequently,

(510) //R\F(EO)

Now we suppose that the s&t = {z € R\ F(EO), |r| < k/2} has positive mea-
sure. Choose some non-zero elemgnt Q(R’). We define a Beltrami differentiaj on R’
as follows: Whernw € R’ \ f(E), fi(w) = 0. In the case whew < f(E) N (R \ E’),
if a(w) # v(w), thenn(w) is the unique point on the hyperbolic circle (¢, i(w)) =
p(0, k/2) whose hyperbolic distance t@(w) is a minimal; if a(w) = v(w) # 0, then
n(w) = ap(w), wherea is a positive constant, such thatw) is on the hyperbolic cir-
cle p(¢, ii(w)) = p(0,k/2); if (w) = v(w) = 0O, thenj(w) = kY (w)|/(2¢(w)). In
the case whem € f(E) N E', if fi(w) # P(w), thens(w) is the unique point on the
hyperbolic circlep(¢, f(w)) = p(0, b(w)/2) whose hyperbolic distance iqw) is a min-
imal; if i(w) = v(w) # 0, n(w) = ap(w), wherea is a positive constant, such that
n(w) is on the hyperbolic circle (¢, i(w)) = p(0, b(w)/2); if (w) = P(w) = 0, then
7(w) = b(w)|¥(w)|/2y¥ (w)). Let H be a quasiconformal mapping @&l with complex
dilatations, and setFy = F o H™1, G1 = G o H~1. We also denote bji1, 11, i1 andvy the
complex dilatations of, F{l =Ho f,G; andGIl = H o g, respectively.

(klcbl Rez¢).

Noting that
n—p oF n—p oF
(5.11) n1 = T~:Of=MXR\E+( —Of XE »
1—pano 1— i oF
we conclude that
n— [
ln1l = (nlxr\E + — f‘XE
1—un

(5.12)
k b(f)
= |ulxr\E + S X(R\F(ENNE + 5 XF(ENNE -

So|uil = k/2onR\ F(E') and|u1| > b(f)/2 on F(E’\ E;). On the other hand, since
|1(H o f)| = |u1|, we conclude that

ki=kp = @1lH R\ H(E)lloo = I1alR\ F(ENlloc =k,

and
i1l = lin(Ho foFo H Y <b(foFoH Yy =b(H™) on H(E).
Similarly,
-9 3G 7i—7 3G
513 V], = — — O = VXGo f(R\E +( — O >XGO‘E7
(5.13) 1575¢°¢ 10e 17555 °9 ) X6er®
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so we obtain by the assumptiég < kr = k and the definition of; thatkg, < kg < &,
|91] < b(H~Y) on H(E’) and hence51 € Q(F1, H(E'), b(H™1)).
Let f1 = F; . Then by definition,

-1
TL= Try = RAXR\Fy(H(ENE) t k1na/b(H ™™ 0 fU)XFyr(ENEp)
= MAXR\F(ENEY) T kiea/b(f)XFENE)) -

so|r1| > k/20nR\ F(Ey) = R\ F1(H (Ey)). Noting thatGloFl‘1 = GoF~1, we conclude
by (5.10) that

(514) //R\F(E’

forall ¢ € Q(R).

3Re// ms—Re// rl¢§(3k/2+k/2)// |¢|=2k// 16|
E E E E
Hence

3Re/f 140}
R\F(E))
=2Re// rqb—i—Re// T¢+3Re// TP
R\F(Ep\E R\F(Ep\E
<2k// |¢|+Re/f r1¢+Re// r1¢+2k//
R\F(Eo)\E R\F(Eo)\E

= 2k||plip\r(y + RE // 16,

R\F(E)

—‘ |p] < C3(k, |1Dlloo) // (k|| — Rer1¢)
- R\F(E))

that is,

(5.15)  kliollr\r(y — Re // 71 < 3(k||¢||R\F(E(’)) —Re // T¢> .
R\F(E}) R\F(E})
Finally, we obtain from (5. 14) and (5.15) that

/./R\F(EO) = IB

1-wp

This completes the proof of Lemma 5.1.

(k|¢| Rer¢).

6. Proof of Theorem 2.3. In this section we will prove Theorem 2.3, an equivalent
form of Theorem 1.1. We first note the following

LEMMA 6.1. Giventheclass Q(F, E’, b), if T isuniquely infinitesimally extremal in
Belt(tr, F(E()), then F isuniquely extremal with respect to the extremal set R(tr) = {z €
R; |tr(2)| = kr} infollowing sense: If G isany other mapping intheclass Q(F, E’, b) with
kg < kr, thenthe complex dilatations of F and G must coincide onthe set f(R(tF)).
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PrROOF 10. Suppose the contrary. Then there would exist some magpinghe class
Q(F, E', b) with kg < kp such that the complex dilatatiopsand? of the mappings” and
G satisfy the condition that(iz(f) — 9(f))/(1 — a(f)V(f))| > €0 > 0 on some compact
subsetE of R(tr) with positive measure. By Lemma 5.1, for alle Q(R), it holds that

(6.1) &5 // | < C(kF||¢||R—F(E6) —Re // TF¢> .
E R\F(Ep)

On the other hand, sinag- is uniquely infinitesimally extremal in Beltr, F(E)), by
our Theorem 4.2, (6.1) implies that the ¢ehas measure zero. This is a contradiction.

Now we prove Theorem 2.3. Let the clagsF, E’, b) be given, andx and . be the
complex dilatations of the mappings and f = F~1, respectively. Suppose that=
is uniquely infinitesimally extremal in Beltr, F(E()). We want to show thak is uniquely
extremal.

Suppose the contrary. Then there would exist some map@ing: F in the class
Q(F, E', b) with k¢ < kp. Let 9 andv denote the complex dilatations of the mappings
G andg = G~1, respectively. Then the sé& = {z € R : (f) # i(f)} has positive mea-
sure. On the other hand, Lemma 6.1 implies thag uniquely extremal with respect ®(t),
so the sefz € E; |t| = k = kr} has measure zero. Hence there exists a conkgaat k
such that the sef = {z € E; |1(z)| < ko} has positive measure. We may assume thist
compact.

Now we define a Beltrami differentia} on R’ as follows: Whenw € R’ \ f(E),
fi(w) = 0; whenw € f(E)N (R'\ E'), fi(w) is the unique point on the hyperbolic circle
(¢, (w)) = p(0, k) whose hyperbolic distance igw) is a minimal; wherw € f(E)NE',
n(w) is the unique point on the hyperbolic circle (¢, i(w)) = p(0, b(w)) whose hyper-
bolic distance td (w) is @ minimal. LetH be a quasiconformal mapping @& with complex
dilatations, and setFy = F o H™1, G1 = G o H~1. We also denote bji1, 11, i1 andvy the
complex dilatations of, Fl‘1 =Ho f, G andGI1 = H o g, respectively.

Noting that

n—p oF (fz—ﬁ oF )
6.2 1= —~——0° = | ——=——=—o Eo
(6.2) w 1_ 7 OF f HXR\E 1_ 5 dF f)xg
we conclude that

i— it

[al = [lx ~+‘——Of Xi

(6.3) RE 11— £

= |“|XR\E + kXEﬂ(R\F(E’)) + b(f)XEﬂF(E’) .

Since|fi1(H o f)| = |p1l, we conclude thaty = kp, = k, and|ji1| < b(H Yy onH(E).
Similarly,
n—7v d0G

©9 = VXGofR\E) T <—1 — 579G © 9) XGof(E)>

(6.4) v =
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so we have by the assumptiégg < kr = k and the definition of; thatkg, < kg < &,
|91] < b(H™Y) on H(E’) and hence&51 € Q(F1, H(E'), b(H™1)).
Now by definition,

TL = TRy = [AXR\Fy(H(E')\H(E}) T kipa/b(H 1o JOXFy (1 EYNH(EY)
(6.5) = uixr\F(ENEY + k1 /b(f) XFEnEy
= TXR\E + 'u‘lXEﬁ(R\F(E/)) + kﬂl/b(f)XEmF(E/) .

Thereforers = 1 onR\ E, ||71lloe = lITlloos @and|71] = ||71]lec ON E. In particular,ty is

an admissible variation af and hence is uniquely infinitesimally extremal. Then Lemma 6.1
implies thatF; is uniquely extremal with respect to the extremal Béty), that is,i1(f1) =
71(f1) ONR(11). S0G1 0 F{ ' = G o F~Yis conformal inE andi(f) = ji(f) on E, which

is a contradiction. This completes the proof of Theorem 2.3.
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