TSUKUBA J. MATH.
Vol. 42 No. 2 (2018), 191-231

COMPUTATION METHODS OF LOGARITHMIC VECTOR
FIELDS ASSOCIATED TO SEMI-WEIGHTED
HOMOGENEOUS ISOLATED HYPERSURFACE
SINGULARITIES

By

Katsusuke NABESHIMA and Shinichi TAJIMA

Abstract. Methods for computing logarithmic vector fields along
a semi-weighted homogeneous hypersurface with an isolated singu-
larity are considered in the context of symbolic computation. The
main idea of our approach is based on the concept of polar variety
and of algebraic local cohomology. New algorithms are introduced
for computing a set of generators of the modules of logarithmic
vector fields. The keys of the resulting algorithms are a notion of
parametric syzygy system and that of parametric local cohomology
system.

1. Introduction

The concept of logarithmic vector fields along a hypersurface, introduced by
K. Saito [38], is of considerable importance in complex analysis and singularity
theory. Logarithmic vector fields have been extensively studied and utilized by
several authors in diverse fields and in many different problems such as the theory
of Saito free divisors [2, 5, 11, 12], logarithmic comparison problems [8, 9],
singular holomorphic vector fields [3, 16, 39, 41], I-versal deformation theory
[13, 14, 37]. H. Terao [49] and J. W. Bruce [5] studied the modules of the log-
arithmic vector fields along the bifurcation set of a semiuniversal deformation of
an isolated hypersurface singularity and decided its structure. These authors also
gave a method of explicit computation for its free base.
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In singularity theory, A. Aleksandrov [1] and J. Wahl [50] independently
gave, among other results, a closed formula of the generators of logarithmic
vector fields along quasi-homogeneous complete intersection singularities. Later,
H. Hauser and G. Miiller [19, 20] investigated Grobner correspondences and
showed in particular that two germs of hypersurfaces with an isolated singular
point are biholomorphicaly isomorphic if and only if the corresponding Lie
algebras of logarithmic vector fields are isomorphic.

For non-quasi homogeneous cases, no closed formula and no algorithmic
method for computing logarithmic vector fields are known. Structure of loga-
rithmic vector fields has not been studied systematically even for the case of semi-
weighted homogeneous hypersurface isolated singularities. Many problems that
involve logarithmic vector fields still remain unsolved.

In this paper, we consider logarithmic vector fields along semi-weighted
homogeneous hypersurface isolated singularities. Based on results given in [42],
we propose an effective method for computing a set of generators of the module
of logarithmic vector fields. The keys of our approach are the concept of a polar
variety and a set of local cohomology classes associated to the polar variety. We
generaize the proposed method to parametric cases for studying deformation of
hypersurface singularities. An innovation of this paper is a notion of parametric
syzygy system. The resulting algorithms can compute in particular the parameter
dependency of the structure of the module of logarithmic vector fields asso-
ciated to p-constant deformations of weighted homogeneous hypersurface isolated
singularities.

To be more precise, let f be a semi-weighted homogeneous polynomial in
K[xi,...,x,], w.r.t. a weighted vector w e N", where K is the field of rational
numbers or complex numbers. We assume that the polynomial f defines an
g U i) is a regular

Oxp 7 0x3 7" " " 0x,

isolated singularity at the origin and the sequence ( f,
sequence ([24, 25]).

In section 3, we describe an algorithm for computing a basis of local coho-
mology classes associated to the polar variety, namely local cohomology classes
associated to the ideal generated by f ,%,%,,% in the local ring. As we
have given in [31] only an outline of the algorithm, we illustrate here in section 3
a complete algorithm. We also show the effectivity of the proposed algorithm and
how Poincaré polynomials work well, together with results of the benchmark
tests.

In section 4, first we describe relations between logarithmic vector fields and
local cohomology classes and we see that these local cohomology classes can be
used to reveal the structure of logarithmic vector fields. Second, we propose an
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algorithm for computing standard basis of the annihilator ideal of local coho-
mology classes mentioned above. The resulting algorithms will be utilized in the
next section.

In section 5, we provide two different computational methods of logarithmic
vector fields (with parameters). The first method utilizes Lazard’s homogeniza-
tion technique [23]. The second method utilizes a Grobner basis computation of
a syzygy module. We describe these algorithms with many details and examples.
We also present empirical data and comparison of the two computational
methods.

This paper extends our conference paper [31] by many details, algorithms,
computation experiments and examples. The first method, described in section 5,
has been introduced in [31]. The second method is newly obtained in the present
paper.

All algorithms in this paper have been implemented in the computer algebra
system Risa/Asir [35]. All tests presented in this paper, have been performed
on a machine [OS: Windows 7 (64bit), CPU: Intel(R) Core i-7-5930K CPU @
3.50 GHz 3.50 GHz, RAM: 64 GB| and the computer algebra system Risa/Asir
version 20150126 [35].

2. Preliminaries

Throughout this paper, we use the notation x as the abbreviation of n
variables xi,...,x,. The set of natural numbers N includes zero. K is the field
of rational numbers Q or the field of complex numbers C.

Let w= (wy,ws,...,w,) e N" be a weight vector with positive entries (i.e.,
w; > 0 for all i) for a given coordinate system x = (x1,x,...,x,) and & = (&,
Eryooy &) Set oy, = D00 wiey for o = (o, 02, . . ., 0,) € N". The weighted degree
of a term x* = x{"x3*---x is defined by deg, (x*) = |«|,. Let deg,(f) denote
the weighted degree of f, defined to be deg, (f) = max{]a|, | x* is a term of f}.
Let ordy(f) = min{|a|,|x* is a term of f}. (ordy(0) = —1).

DrerFINITION 2.1 ([4]). (i) A nonzero polynomial f in K[x] is weighted ho-
mogeneous of type (d;w) if all terms of f have the same weighted degree
d with respect to w, ie., f = Zla\w:d ¢,x* where ¢, € K.

(i) A polynomial f is called semi-weighted homogeneous (or semi-
quasihomogeneous) of type (d;w) if f is of the form f = f; + g where
fo is a weighted homogeneous polynomial of type (d;w) with an isolated
singularity at the origin, ' = fy or ordy(f — fo) > d.
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DeriNITION 2.2 (weighted term  orders). For two multi-indices A=
(1,22, ) and 2/ = (2], 25,...,2") in N", we write ¢* <¢&* or A' <A if

||y < |Aly, or if ||, = ||, and there exists j € N so that 4! = 4; for i < j and
4y < Gy

DEerFINITION 2.3 (inverse orders). Let < be a local or global term order.
Then, the inverse order <! of < is defined by x* < xf < xf <~ x* where
o, f e N".

Note that if < is a global term order (1 is the minimal term), then <~! is the
local term order (1 is the maximal term). Conversely, if < is a local term order,
then <! is the global term order.

DEFINITION 2.4 (minimal bases). A basis {x”1,...,x"} for a monomial ideal
I is said to be minimal if no x’ in the basis divides other x” for i # j, where
V1o y €N

3. Algorithms for computing algebraic local cohomology classes

In this section we describe algorithms for computing algebraic local coho-
mology classes associated to a polar variety, and give results of the benchmark
tests.

3.1. Algebraic local cohomology

Here we briefly review algebraic local cohomology classes, and give notation
and definitions that will be used in this paper. The details are in [17, 18, 34, 43,
44, 45].

Let S={xe X|f(x) =0} be a hypersurface with an isolated singularity
at the origin O in C", where X is an open neighborhood of the origin O and f
is a holomorphic defining function. Let Oy be the sheaf of holomorphic func-
tions, Oy o the stalk at the origin of the sheaf Oy. Let #7,,(Cx) be the lvocal
cohomology supported at O. Consider the pair (X, X — O) and its relative Cech
covering.v Then, any section of %{"0}(@’)() can be represented as an element of
relative Cech cohomology. All local cohomology classes we handle in this paper
are actually algebraic local cohomology classes that belong to the set defined
by

H{py (K[x]) := lim Exty (K[x]/<x1, X2, . . ., X0 DK, K[X]),
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where {xi,...,x,> is the maximal ideal generated by xi,...,x,. We identify

1
Hy, (K[x]) with K[y, ..., &,]. An algebraic local cohomology class > ¢; [x”l ] is

ial i i A Il Al
represented as a polynomial in n variables ) ;" where x*™' = x{'"" x> .-

xi e, e K, A= (A1,...,4n) e N"and & = (&1,&,,...,&,). The multiplication by
x* is defined as

A—o. .
X“*fi:{é s iiZO(,',.lzl,...,n,
0, otherwise,

where o= (a,...,0,) eN", A=(41,...,4,)eN", and Ll—a= (Ll —a,...,
A — ).

Let fix a global term order < on K[&]. For a given algebraic local coho-
mology class of the form

Y=+ Y et g #0,

&<t

we call éi the head term, ¢, the head coefficient, c,@i the head monomial and é”
the lower terms. Let ht(y), hc(y) and hm(y) denote the head term, the head
coefficient and the head monomial respectively. Furthermore, let Term(y) :=
{E° 1 = enn €, 0 # 0, ¢ € K}, the set of terms of , Coef() := {cc | Y =
> ent el e #0,¢0 € K}, the set of coefficients of ¢ and let LL(y) := {&" €
Term(y) | & # ht(y)}, the set of lower terms of .

Let ¥ be a finite subset of Hp (K[x]). Set ht(¥):= {ht(y)|y e ¥},
Term(¥) := U,y Term(y),  Coef(¥) :=J,cyp Coef(y)) and  LL(¥):=
Uyew LL(¥). Moreover, let ML(¥) denote the set of monomial elements of
Y, SL(V¥) the set of linear combination elements of W. For instance, let ¥ =
{2678, = 3E1 + &, 618 + 61,618,816} in CEy, &), then ML(Y) = {¢{¢3,¢16,)
and SL = {267, — 38} + &, 6185 + &1 )

Let £* be a term and let @ be a set of terms in K[¢] where 2= (4y,...,
n) € N". We call EE a neighbor of &* for each i=1,...,n. We define the
neighbor of ® as Neighbor(®) :={¢p & |pe®,i=1,...,n}.

Note that for a polynomial and a set of polynomials in K[x], we use the same
notation as above, too.

DrrFINITION 3.1 (changing variables). Let G be a set of polynomials in K|[x]
and ge G. A map %7 is defined as changing variables x; into ¢&;, for all ie
{1,...,n}. The inverse map %47 ! is defined as changing variables ¢; into Xx;.
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That is, €7 (g) is in K[&]. The set €77(G) is also defined as €77 (G) = {€¢7 (9) |
g e G}.

For instance, f = —2xjx; +2/5x] +3 € Q[x;,x2] and = 3/2& —2&, +
285 € Q[¢), &, &) Then, 677(f) = =281 +2/56 +3 and 677! () = 3/2x] —
2x7 + 2x3.

3.2. Algorithms for computing algebraic local cohomology classes

Here we illustrate an algorithm for computing a basis of the vector space
Hr(y) associated to a polar variety I'(f) of a hypersurface S.

Let f = fo + g be a semi-weighted homogeneous polynomial of type (d;w) in
K]x], where fy is a weighted homogeneous polynomial of type (d;w) with an
isolated singularity at the origin, and w is a weight vector. Let I'(f) be a polar
variety [24, 46, 47, 48] of the hypersurface S defined to be

of of of
r X )
(N ={rex|Lw=Lm== =0
Set
Hry {lﬁ € Hip) (Klx (%)
of (9 _
~(5)#- ~--—<axn)*w—°}-

Here, the system of coordinates (xj,x»,...,x,) is assumed to be generic
in a sense that Hp(s is a finite dimensional subspace of H"]( [x]). That is,
{ f ,%,..., M} has an isolated common root at the origin.

REMARK 1. Let I = f,%,,%> and m = {x,x2,...,x,» in K[x]. Since

V(I :m®)=V({ )\{O}, if there exists p in the ideal quotient I : m* sucht that
p(0) # 0, then f,” Yo
by computmg a Grobner basis of 7:m* in K[x], one can know whether

% has an isolated common root at the origin. Hence,

f, (‘{; ("c has the isolated common root at the origin or not.

The aim of this subsection is to give an efficient algorithm for computing
a basis of the vector space Hr(y). First we present an algorithm for computing a
basis of Hr (). Second, we des1gn an algorithm for computing a basis of Hr(s) by
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using the basis of Hr ). The essential point of the proposed algorithm is a use of
Poincaré polynomials.
Now we recall the notion of Poincaré polynomial for the ideal < g

) 0xs 0
.50
Ox3 """ 0x, .

DerINITION 3.2, Let f = fy+g be a semi-weighted homogeneous polyno-
mial of type (d;w). Then, the Poincaré polynomial of the ideal < f ,:—Q,;—Q, cee,
(l> is defined by

X,

- D (e = 1) - )
P]"(f)(S) - (Swl _ 1)(Sw2 _ 1)(SW3 _ 1) ... (SWn — 1)

Let Pr(s(s) = >, ms“ be the Poincaré polynomial of the ideal < 7.

. . ) 0xy 0
7. l> We introduce the multiset Dp

FIoE R of weighted degrees as

)

p

Dpy,, = U{dhdi, ooy di}

i=1
m; elements

Notice that Dp, ) = Dp, .
The following two results are essentially same as our previous results pre-
sented in [30, 34].

ProrosITION 3.3.  Using the same notation as above, there exists a basis W
of Hr(y that satisfies the following conditions
(1) Wo consists of weighted homogeneous polynomials.

(11) DPr(/D) = {degw(‘//) | lﬁ € lPO}

As fj is a weighted homogeneous polynomial of type (d;w), the multiset of
weighted degrees of elements of a basis of Hr(s) equal to the multiset Dpr(fb).
The next two lemmas [30, 45] are needed to construct the algorithm.

LemMmA 3.4. Let T be the minimal basis of <Term<{_ g i})> in

) 0x; ) ) 0xy

K[x] and let M be the set of standard monomials of {T). Then, for all & e

€1 (M),
Y o A g A
f*é —(ax)*f =... (ax)*f =

Let MB(Hr(ys)) denote the set €7 (M).
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All monic monomial elements of a basis of the vector space Hr(;) can be
also obtained from the minimal basis of <Term({ 0,%, . ,%}>>

Let Ap, denote the set of exponents of head terms in Hr;) and let 4=
(As--2) €N Let Ay = {1 € Ay, | X < 2}

The following lemma tells us a condition of head terms of Hr(y).

Lemma 3.5. If A€ Ap,, then, for each j=1,2,....n, (A,..., 41,4 —1,
Ajls e s An) is in Agg provided 7; > 1.

The property above, denoted by (C), will be used in Algorithm 1 as a con-
dition to select candidates of head terms. Proposition 3.3 together with Lemma
34 and Lemma 3.5, allows us to design an algorithm to compute a basis of
Hr(f).-

As the set D is finite, the termination is obvious. The correctness follows
from Proposition 3.3 together with Lemma 3.4 and Lemma 3.5.

We illustrate Algorithm 1 with the following example.

ExaMPLE 1. A polynomial fy = x{x; + x5 € C[x1,x2] (W3 singularity) is a
weighted homogeneous polynomial of type (16;(3,4)) and defines an isolated
singularity at the origin of C>. As the sequence ﬁh% is a regular sequence,
we are able to apply Algorithm 1 for computing a basis of Hry (). The variables
&1, &, correspond xj, x;. Let < be the weighted term order s.t. & < &;.

As the Poincaré polynomial of the ideal <fo,%> is

16 16—4
Prsy(s) = ¢ G _13))(552 —4) .

SS-J RN VRN VIS E RS IS € S SN )
450+ s+t s,
we obtain Drg) = {0,3,4,6,7,8,9,10,11,12,13,14,15,17,18,21}. Next we com-
pute the set My of monic monomial elements of Hr(s). By Lemma 3.4,
Mo ={1,&,E,8,6,86,86,86,8,68,68, 658}

D = Dr s \deg,(Mo) = {12,15,18,21}. (See Figure 1 and Figure 2). Set
Y := M,.

The minimum number in D is 12. D is renewed as D\{12} = {15,18,21}.
Select terms whose weighted degree is 12. Then, from Figure 2, L = {ff,f;’}.
Since &3 < & and &3 satisfies the condition (C), set = &} + c(oj3>é§ where ¢(g,3)
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Algorithm 1. Coho_Weighted

Specification: Coho_Weighted( fj, <)
Computing a basis of the vector space Hry).
Input: f; : a weighted homogeneous polynomial of type (d;w) with an isolated singularity at the
origin. <:a weighted term order.
Output: ¥y : a basis of the vector space Hr(y).
BEGIN
Dp,,, — Compute Dp, . from the Poincar¢ polynomial of type (d;w);
M «+ Compute all monic monomial elements of a basis of Hp(s) according to Lemma 3.4;
D — DPr(ro)\degw(M); Yo — M;
while D # ¢ do
k — Select the minimum number from D; D «— D\{k};
L — {¢*|deg, (&) = k,&* ¢ ht(¥o)):
L’ «— Select the 1st and 2nd smallest elements from L w.r.t. <;
L~ L\L;
Flag — 0;
while Flag # 1 do
é;‘ «— Select the greatest element from L’ w.r.t. <;
if 1 satisfies the condition (C) then
Y o— &t +Zﬂ’eL’\{i"}.i"'<i’3 ci/éi, (where ¢,/ is an undetermined coefficient)

P e (B () o)
E—{b=0|beCoef(F)};
A — Solve the system E of linear equations;
if E has a solution then
Y’ «— Substitute A into ;
Yo — Yo U {y'}:
Flag — 1;
end-if
end -if
& « Select the smallest element in L;
L L\[&:
L' — L'U{&}
end-while
end-while
return Wy;
END

is an undetermined coefficient. From f*y =0, {f—{‘;) i =1+4cq3 =0, we

have ¢ 3y = —1/4. Hence, ff -1 /45; is a member of the basis. W is renewed as
Yo U {& — 174831

The minimum number in D is 15. D is renewed as D\{15} = {18,21}. Select
terms whose weighted degree is 15. Then, from Figure 2, L = {515,615;’}. Since
51623 < 615 and 5153 satisfies the condition (C), set y = ff + c(173)51§; where ¢(1 3
is an undetermined coefficient. From fy*y =0, ffl‘; * = (1+4cq 3))¢ =0,
we have ¢(; 3 = —1/4. Thus, 515 — 1/45153 is a member of the basis. W is
renewed as Wo U {&) — 1/4¢,E31.
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I35

Figure 1. Monic monomial elements.
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Figure 2. Weighted degrees.

The minimum number in D is 18. D is renewed as D\{18} = {21}. Select
terms whose weighted degree is 18. Then, from Figure 2, L = {&¢, &7}, Since
ElE < &9 and E1E satisfies the condition (C), set y = &8 + c(2$3>512623 where ¢(3,3)
is an undetermined coefficient. From fj xy = 0, 5’% xy=(1+ 4c<2‘3))512 =0,
we have ¢y 3) = —1/4, and 516 - 1/451265’ is a member of the basis. ¥ is renewed
as Wo U {&8 — 1/4&383).

The minimum number in D is now 21. D is renewed as D\{21} = (.
We Select terms whose weighted degree is 21. Then, from Figure 2, L=
{1,868}, Since &¢5 < ¢ and &) satisfies the condition (C), set y = &/ +
c(373)fl3§§’. From fy*y =0, (ff—g) = (1 +4c(3_3>)fl3 =0, we have c;3 =
—1/4. Thus, 517 - 1/45%6;’ i1s a member of the basis. ¥ is renewed as Wy U
{¢] — 1748083

Therefore,

Wy = Mo U{&} — 1/4E3,E — 1/48,E3,E0 — 1/48385, &) — 1/4683}

is a basis of Hr(p).
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The following theorem that follows immediately from Proposition 3.2 of [34],
shows the relations between a basis of Hr(s) and that of Hry).

Tueorem 3.6.  Let Wo = {py,...,p, } be a basis of the vector space Hr(y)
that satisfies properties given in Proposition 3.3. Then, there exists a basis ¥ =
{¥1,..., ¥, } of the vector space Hryy s.t.

@) vi=pi+vi, i=1,....r,

(i) deg,(p;) > deg,(vi).

The theorem says that, in semi-weighted case, the weighted degree of the
basis of Hr(s) is completely determined by the Poincaré polynomial Pr(s)(s)
o

Y 0xy [

associated to the ideal < f ,%,
Theorem 3.6 together with Lemma 3.4 allows us to design an efficient
algorithm to compute a basis of Hr(y).

Algorithm 2. Coho_SemiW

Specification: Coho_SemiW( /', <)
Computing a basis of the vector space Hr).
Input: / = fp + ¢ : a semi-weighted homogeneous polynomial of type (d;w) where f is a weighted-
homogeneous polynomial of type (d;w); <:a weighted term order.
Output: ¥ : a basis of the vector space Hr(y).
BEGIN
¥y < Coho_Weighted( /o, <);
M + Compute all monic monomial elements of a basis of Hr(s) according to Lemma 3.4;
T —Y\M; ¥— M,
while 7 # & do
p — Select an element whose head term is the smallest in ht(7) w.r.t. <, from T}
T — T\{p}:
if Vie{2,37...,;1},(%)*;7:0)/\(f*p:O) then
VY —Yu{ph
else ) ) )
L {¢"|deg, (") < deg,(p), &* ¢ ht(¥)}; ()
Ve pt Do alh
P e () ()]
E —{b=0]|beCoef(F)};
A — Solve the system E of linear equations;
' < Substitute 4 into ;
Y —Yu{y'}
end-if
end-while
return ¥;
END
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REMARK 2. In [33] the conditions of lower monomials are introduced. It is
possible to improve Algorithm 2 by utilizing the conditions at (). In fact, our
implementations contain these optimizations.

As the algorithm Coho_Weighted terminates, Algorithm 2 also terminates.
The correctness is also guaranteed by the algorithm Coho_SemiW and Theorem
3.6.

We illustrate Algorithm 2 with the following example.

EXAMPLE 2. A polynomial f = fy + x¢ € Clxy, xo] (W3 singularity) is a semi-
weighted homogeneous polynomial of type (16;(3,4)) where fy = x{x, + x3. From
Example 1, Wo= MoU{&f — 1/48, & — 1/46,6, &7 — 1/4¢185,¢] — 174883}
We compute the set M of monic monomial elements of Hr(;. By Lemma 3.4,
M= My. Set T=C\M = {& — 148, &) — 143, &8 —1/483E3,&] —1/48383)
and ¥ = M.

Take the element whose head term is the smallest, w.r.t. <, in ht(7'), that
is & —1/4&;. Set p fl - 1/452 and T is renewed as T\{&| — 1/4&3}. Since p
satisfies f x p = a\
as WU (¢! - 1/45}.

Take the element whose head term is the smallest, w.r.t. <, in ht(7T), that
is & — 1/4¢,E5. Set p =& —1/4¢,& and T is renewed as T\{&] — 1/4&,8}.
Since p satisfies f * p = (m) xp =0, fl — 1/45162 is a member of the basis. ¥ is
renewed as W U {& — 1/4¢,83).

Take the element whose head term is the smallest, w.r.t. <, in ht(7T), that
is &0 —1/481¢3. Set p =8 —1/4¢3¢3 and T is renewed as T\{&$ — 1/4&383).
Then, as fxp=1+#0 and (‘f ) xp =0, we have to decide additional lower

ox

terms of p. L = {¢*|deg,(&") < 18,&* ¢ ht(P)} = {&3,&,83, 816,85} Set o =
p+ 6’(0.,3)523 + C(1ﬁ3)f1f§ + 0(4,1)5?52 + 6(0,4)53 and solve [f ¥y =cunt+contl=

0, (f—f) x = (C 4,1) +4c (0,4) )&, +4C(0.’3) +4C(1’3)fl = O} Then, we obtain €0,3) =

13 =0, cun) = —4/3, co.a) = 1/3. Hence, & — 1/4E1E3 — 4/3¢1E, +1/3¢3 is a
member of the basis. ¥ is renewed as ¥ U {516 — 1/451253 4/35462 + 1/3{3}
Set p= 517 — 1/45?5;’. Then, as fxp=2¢; #0 and (a\{) xp =0, we have
to decide additional lower terms of p. L = {&*|deg, (%) < 21,&* ¢ ht(‘W)} =
{8,68,606,8,68,8,88,648,48). Set ¥ =p+coé +cayéié +
canEiE + co.0)E + 1 nE1E + 0,58 + e Eiér + eanéiés +canélés  and
solve [ fey=0, () Y= o}. Then, we obtain & — 1/4E3&3 4+ 1/3¢,& —

— 1/4&) is a member of the basis. ¥ is renewed
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4/36?52 as a member of the basis. ¥ is renewed as ‘I’U{ff—l/4§ff§’+
1/36&3 - 4/3806,}.

Therefore, W =M U{¢&] — 1/483,&) — 1/46,83,&) — 1/4618 — 4/3¢1E, +
1/383,&] — 1/AE0&8 + 1/3&,E3 — 4/38)5,} is a basis of Hry).

In our previous paper [45], an algorithm has been introduced for computing a
basis of the vector space Hp of local cohomology classes in H[p, (K[x]) anni-
hilated by the zero-dimensional ideal <{fi,..., f;> generated by F = {fi,..., f;} C
K[x]. The algorithm mentioned above can also compute a basis of Hr) by
giving {f,aYZ ,%} as an input data.

The algorithm Coho_SemiW has been implemented in the computer algebra
system Risa/Asir. Here we give results of the benchmark tests. Table 1 shows a
comparison of the implementation of Coho_SemiW with our previous Risa/Asir
implementation [45] (Prev. alg.) in computation time (CPU time). x;, x», x3 are
variables. The time is given in second. (The term order is the total degree lexi-
cographic term order s.t. &3 < & < &1.) u(f) is the Milnor number of f at the
origin. 7(f) is the Tjurina number of f at the origin. Note that in Prob. 5,
(x} +x9)* +3x/® is a weighted homogeneous polynomial.

As is evident from Table 1, the algorithm Coho_SemiW results in better
performance compare to our previous algorithm. In semi-weighted cases, as a
Poincaré polynomial tells us candidates of head terms and a number of elements
of a basis of Hr(s), the computation cost of selecting candidates of head terms
and lower terms, becomes smaller than that of our previous algorithm.

Prob. | Semi-weighted homogeneous polynomial f* | u(f) | =(f) | Prev. alg. | Coho_SemiW

1 (x} + x5 + x7a ‘(2) + x}x3 + 2x] 71 67 0.8424 0.0312
2 (6] 4+ x7)% 4+ 320 + x00x5 + 3xyx)* 117 99 1.42 0.234

3 (¥} + x33)% + xf — 5x7x30 125 115 2.278 0.2496
4 (x} +x2+x1x2) + x8x$ + 3x]1x3 163 137 29.8 1.716

5 (xf 4+ x3)* + 3x)6 525 | 525 393.8 0.8112
6 (xt+x9)* 4 3x)6 4 dxSx3 525 | 439 1132 36.84
7 (3x + x] + x2x3)* + x4+ 3x3x3 351 293 816.1 46.32
8 O3+ x0d +x) + 28 4+ 53 + xx] 280 | 221 3760 75.08

Table 1. Comparison of the algorithm [45] and Coho_SemiW.
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3.3. Parametric local cohomology systems

We turn to the parametric cases. Let f = fy + g be a semi-weighted homo-
geneous polynomial of type (d;w) with parameters ¢ = (¢1,...,,) € K™, where fy
is the weighted homogeneous part and K is an algebraic closure of K. We assume
that for generic values of the parameters 7, f; has an isolated singularity at the
origin.

In order to treat the parametric cases, we require the following notation and
definitions. Let ¢ = (t1,f,...,t,) denote parameters in K”. For qi,...,q, € K[f],
V(qi,...,q:) € K™ denotes the affine variety of qi,...,q,, i.e., V(qi,...,q) =
{ae K"|q1(@) = =q(a)=0} and V(0):= K™ We call an algebraically
constructible set of the form V(qi,...,¢,)\V(q],....q.) C K™ with g1,...,q,
qi,-.-,qL € K[f], a stratum. (Notation A, A", A" Ay,...,A;,By,..., By are fre-
quently used to represent strata.)

We define the localization of K[f] w.r.t. the stratum A C K™ as follows:
K1)y ={c/b|c,beK][t],b(t) #0 for t€ A}. Then for every aec A, the specializa-
tion homomorphism a; : K[t],[x] — K[x] (07 : K[1],[¢] — K[¢] or a5 : (K[]4[x])"
— (K[x])®, s € Nso) is defined as the map that substitutes @ into m variables ¢.
When we say that o;(h) makes sense for & € K(¢)[x], it has to be understood that
h e K[t],[x] for some A with d € A and for F C K[{],[x], 64(F) = {oa(h)|h e F}.

In order to treat parametric polynomial systems, we require comprehensive
Grobner systems.

DrrFINITION 3.7 (CGS). Let fix a term order. Let F be a subset of (K[f])[x],
Aj,...,A, strata in K™ and Gi,...,G, subsets of (K[f])[x]. A finite set ¥ =
{(A1,G1),...,(As,Gy)} of pairs is called a comprehensive Grébner system (CGS)
on AjU---UA, for (F) if 6,(G;), a € A;, is a Grobner basis of the ideal {g,(F))
in K[x] for each i=1,...,/. We simply say % is a comprehensive Grobner
system for (F> if AjU---UA, = K™,

There exist several implementations [21, 27, 29] for computing comprehensive
Grobner systems.

As f has parameters, the structure of the vector spaces Hr(s) may change
with the values of parameters 7. In order to deal with this issue, we introduce now
a notion of parametric local cohomology system of Hr ().

DerFINITION 3.8, Let A;, B; be strata in K™ and S; a subset of (K[, )[¢]
where l <i</and1<j<k Set¥ ={(A1,S1),...,(As,S/)}and Z = {By, ...,
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B, }. Then, a pair (&, 2) is called a parametric local cohomology system (PLCS)
of Hriyy on AjU---UA,UBjU---UBy, if for all ie{l,...,/} and aeA,,
0;(Si) is a basis of the vector space Hr,(s)), and for all je{l,...,k} and

beB;, {x e X|o;(f)(x) = al;<% (x) == 05(%)(@ =0l is not zero-
dimensional for any sufficiently small neighborhood X of O, where Hr. () =
{v e Hiy (KW oa(f) w v = oa(L) s = = 0a(L) v = 0}.

In the case where the weighted homogeneous part f; contains parameters,
there is a possibility that f; has non-isolated singularities for some values of the
parameters.

Let Jo—d% % ro_lpoh % _

0= (OI‘ 0= fo, .. ) and g—{(Al,Gl),...,

x0T o, x0T o,
(A;,G/)} is a CGS on K™ for Jy (or I'y). Since for all a € A;, 6,(G;) is a Grobner
basis, the dimension of Jy (or T'y), on A;, can be easily computed. Because, as fj is
weighted homogeneous, {Jy) (or <I'y)) is weighted homogeneous, and thus {Jy)
(or T'y) is zero dimensional on A in K[x] if and only if {Jy) is zero dimensional
on A in the ring Oy o of convergent power series.

As Algorithm 2 consists of only linear algebra computation, by utilizing the
Gaussian elimination method with parameter [40], the algorithm can be naturally
extended to parametric cases. Here, we give an outline of an algorithm for com-
puting parametric local cohomology systems of Hr(y).

Algorithm 3. Para_SemiW

Specification: Para_SemiW( /', <)

Computing a parametric local cohomology system of Hr ).

Input: /' = f; + ¢ : a semi-weighted homogeneous polynomial of type (d;w) with parameters where fq
is a weighted homogeneous polynomial of type (d;w); <:a weighted term order.

Output: (¥,2): a PLCS of Hr(y).

BEGIN
% + Compute strata on which fo has non-isolated singularities;
9, — Compute strata on which <f{)7(f"—<_‘;,4..,§7/,‘/"> is not of zero dimension;

S — Compute a PLCS of Hr(s) on K"™\(Up, ¢ 5,0, Bi):
& « Compute a PLCS of Hrs from %;
END

Note that as we described in Remark 1 of subsection 3.2, &, &, can be
obtained by utilizing comprehensive Grdébner systems.

We illustrate a PLCS of Hrs) with the following examples. In the examples,
variables &;, &, correspond to variables xj, xj.
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EXaMPLE 3. A polynomial f = x+x3 + tx1x3 € (C[f])[x1,x2] is semi-
weighted of type (20;(5,4)) where x|, x, are variables and ¢ is a parameter.
(The weight vector is w = (5,4).) Then, a PLCS of Hr(, = {weH[za](K[x]H
[y = (5—@) Y = O} w.r.t. the weighted term order, is the following:

— if the parameter 7 belongs to C, then the set

W= {1,5,8,8,6,66,6E,80,616, 88,8, 66,88,
4/252E5 — 16/12508,E + B0 — 4/512422
+16/252E3, — 64/12583E8,4/2502&F + E¢é?

— 451538, + 16250283, &3¢, — 4513}

is a basis of Hr(s. In this case, the parameter space C has not been
decomposed.

EXAMPLE 4. A polynomial f = x3 + x5 + sx?x3 € (C[s])[x1, x2] is weighted

homogeneous of type (9;(3,1)) where x;, x, are variables and ¢ is a parameter.
(A weight vector is w=(3,1).) Then, a PLCS of Hy = {werO](K[xm
[y = (‘?f) x Y = 0} w.r.t. the weighted term order, is the following:

oxz

— if the parameter s belongs to V(4s3 +27), then f has non-isolated sin-
gularity,
— if the parameter s belongs to V(s), then

{17627 é%vég7é§a 525’ 6375’27) élaélea élé%a 61537 élég»élég»f]égv
68,8 66,88.88,88.68,88.84)

is a basis of Hr(s), and
— if the parameter s belongs to C\V(4s* + 27s), then

{1,6,8,8,8,5,8,8,6,86,68,68, 88,648,868, 68,8, Eé,
&&= 3/ (2988 +9/(45)EGE +1/286,°¢) - 3/(45)&)7,
& =3/(29)EE] +9/(457)EET + 1/2858, — 3/ (497,
GE —3/(298E — /3656 +1/28, 680 = 3/(29)68 +1/28),
& —3/(29)EE0 +1/28, 657 —1/3583}

is a basis of Hr(y).
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Prev. alg. Para_SemiW
Semi-weighted homogeneous polynomial No. str. time No. str. time
1 x;‘xz + xé’ + t1x1x25 + tlezxg + t3x1x214 15 0.2184 1 0.0156
2 | xExp X+ x5+ 03N + hxdad 7 0.156 1 0.0936
3 xfx; + x23 + x2x32 + slxzxf + t1x1x33 9 0.312 2 0.0312
4 | xt+x)+nxx] + bxix 8 0.3774 1 0.0312
51 (xf + x84+ x3x3)7 4+ xPxd + n1x xS + tox]x 28 19.17 1 0.2652
6 | (xf+x8+x2x3) + xfxd + nx!'od + oox!'x3 — > 1h 1 1.997
7| xt+sixad + soxfxd + x5 — > 1h 11 2.886
8 x;‘ + slexf + slezxg + ng + tlx;) + tzleo — > 1h 11 2.98

Table 2. Comparison of the algorithm [33] and Para_SemiW.

The algorithm Para_SemiW has been implemented in the computer algebra
system Risa/Asir. We give results of the benchmark tests. Table 2 shows com-
parisons between the implementation of Para_SemiW and our previous Risa/Asir
implementation (Prev. alg.) of the algorithm® [33] in numbers of strata (No. str.)
and computation time (CPU time). x;, x2, x3 are variables and sy, 2, 11, f2, #3 are
parameters. The time is given in second. > 14 means it takes more than 1 hour.

As is evident from Table 2, the algorithm Para_SemiW results in better per-
formance in contrast to our previous algorithm [33]. For semi-weighted homo-
geneous polynomials, the algorithm is quite effective and gives a suitable de-
composition of the parameter space depending on the structure of the parametric
local cohomology classes. As results, the algorithm Para_SemiW gives small
numbers of strata.

4. Logarithmic vector fields and local cohomology

Here, we show the relations between logarithmic vector fields and local
cohomology classes. Second, we review a method to compute a standard basis of
the annihilator ideal of a certain subspace of Hr(s), which will be exploited to
construct an algorithm for computing logarithmic vector fields.

"Tn our previous paper [33], an algorithm for computing a PLCS of Hy has been introduced where
F={fi.f2,..., fs}. By the algorithm, we are able to compute a PLCS of Hr(, if we input F =

{ f ,%, . i} The term order is the total degree lexicographic term order s.t. £, < --- < & < ¢;.

20Xy
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Recall that S ={xe X |f(x) =0} is a hypersurface with an isolated sin-
gularity at the origin O in X.

4.1. Logarithmic vector fields

DeriNiTION 4.1 ([38]). A holomorphic vector field

0 0
e P e

ai(x) e Oy, i=1,...,n, is logarithmic along S if v(f) belongs to the ideal {f)
generated by f in Oy.

Let Zery(—log S) denote the sheaf of logarithmic vector fields along S and
Qery o(—log S) the stalk at O of Zery(—log S).

Let nr: Hr(y) — Hr(s) be the map defined by nr(y) = ((5—{1) 1 and let
Hg(s) denote the image of the map nr:

Hop) = { <%) * Y ’ Ye HF(/')}'

Let Anng, ,(Hr(s)) denote the annihilator ideal in Oy o of Hr(s):

Anng, ,(Hr(s)) = {a(x) € Oy o|a(x)* Y =0, Yoy € Hr(p)}.

o @ 2
LemmA 4.2, Anng, ,(Hrs)) :< ’%’F_{s”ﬁ)»
_ n _ (o _ _ (o _
PROOF.  As Hr(y) = {¥ € Hipy (KIx)) |+ = ()« =+ = (&) v = 0},
the Grothendieck local duality theorem on residue [17] implies that Anng, ,(Hr(s))
_ < s g> 0
10Xy 0x3 " T 0, /)"

The following theorem is of basic importance.

THEOREM 4.3 ([42]). Let a(x)e€ Ox o. Then, the following conditions are
equivalent.
(i) a(x) € Anng, ,(Ho(s))-
(i) There exists a logarithmic vector field v along S (v € Dery o(—log S)) such
that

¢ (o)

v= a(x)ﬁ_x]

where ay(x),...,a,(x) € Ox o.
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Proor. It is sufficient to show that the annihilator ideal, in the local ring
Ux,0, of Hg(s is the ideal quotient < L/ i><i> Let a(x) € Ox 0.

Y 0xp 0 * ) 0x, 0xy

Then, a(x) is in the annihilator ideal Anng, ,(Hg(s)) if and only if

e (L) o9) = (L)) w0, v,

Since Anng, ,(Hr(s)) = < f v o ,%>, the condition above is equivalent to

9 0xp 0 0x3?

the following.

ax) el f o o g\ . /o
"oxy 0xy T ox, ) \oxi/
Namely Anng, ,(He(r)) = < ,%,%, o ,%> : <L(){ > which completes the proof.

O

A logarithmic vector field v generated over Oy o by

a) () = (@3)() -G 6)

(1 <i< j<mn), is called trivial.

LemMa 4.4. Let v' = ay(x )0;2"" 4 ay(x):= be a germ of holomorphic
vector field. If v' is a logarithmic vector field along S, then v' is trivial.

ProOOF. Since ( f ot m ,%) is a regular sequence, this lemma follows
immediately from the deﬁnmon of regular sequences. O

This yields the following.

PROPOSITION 4.5.  Let v = a(x)%cl + ax(x )E <+ ay(x) ‘; be a logarithmic

vector field along S. Then, the following conditions are equivalent.
(1) v is trivial.

. 0 %) 0
(i) a(x) e<fv%’%v“'v$,{,,>~

In the next subsection, we consider an algorithm for computing a standard
basis of the ideal Anng, ,(Hg(s)) which will be utilized to reveal the structure of
logarithmic vector fields along S.
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4.2. Local cohomology and standard bases

Here, we present an algorithm for computing standard bases as an appli-
cation of the algorithms Algorithm 2 and 3.
Let us consider first, for simplicity, the case where f has no parameters.

DEerFINITION 4.6 ([30]). Let < be a global term order on K[¢], ¥ a finite
subset of Hp, (K[x]) and ¥ an element of SL(¥) with ht()) = 7 where y € N”.
Let c(,,) € K denote the coefficient of the lower term & of v, ie., ¥ =& +
o< "

Let E be a set of terms in K[¢], then, for & e 2, the transfer SBy is defined
by the following:

{SBT(H) — Y e emsLew) CenX” in K[x], if gf e LL(¥),
By (&%) = in K[x], if &* ¢ LL(¥).
The set SBy(E) is also defined by SBy(E) = {SBy (&%) | &% € E}.

The next theorem describes how to compute a standard basis of
Anng, ,(He(s)) from a basis of the vector space Heyy).

Tueorem 4.7 ([30, 45]).  Let @ be a basis of the vector space Hg sy such that,
Sor all p € @, he(p) =1 and ht(p) ¢ LL(D). Let < be a global term order in K[E]
and B be the minimal basis of {Neighbor(ht(®))\ht(®)> in K[£]. Then, SB¢(E) is
a reduced standard basis of Anne, ,(He(ys)) w.r-t. the local term order <~ in the
ring Ox ¢ the ring of power series.

EXAMPLE 5. Let us consider Example 2. f = x}x; + x5 + xf € Cxy, x2] (W13
singularity) is a semi-weighted homogeneous polynomial of type (16;(3,4)). The
set ¥ is a basis of the vector space Hr(,) and the set

() = {(af) lﬂwe‘l’}—{4,462,2/351,6,—852—é§+2/3512}-

The basis @ of the vector space Heg( /) that satisfies, for all i € nr(¥), he(y) =1
and ht(y) ¢ LL(zp(¥)) w.r.t. the lexicographical term order < s.t. & <&, is
{1,&,,&,,E —3/2¢2}. The minimal basis © of (Neighbor(ht(zr(¥)))\ht(zr(¥)))
is {¢],806,63).

Therefore, SBy(®) = {x},x1x2,x5 + 3/2x}} is the reduced standard basis of
Anng, ,(He(p)) wrt. < ! in the local ring.

We turn to the parametric cases. In order to treat standard bases with
parameters, we introduce now a notion of parametric standard basis.
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DErFINITION 4.8, Let F be a subset of (K[f])[x], Aj,...,A, strata in K™,
Si,...,S, subsets of K(7){x} and < a local term order. A finite set & =
{(A1,S81),...,(As,S;)} of pairs is called a parametric standard basis on
AU ---UA, of (F) wrt < if §; C (K[f],)[x] and 04(S;) is a standard
basis of the ideal {(g;(F)) in K{x} w.rt. < for each i=1,...,/ and aeA;
where K(7) is the field of rational functions and K{x} is the ring of power
series.

As the method for computing standard bases from a basis of Hg(s) consists
of only linear algebra computation, the method can be generalized to parametric
cases, like Algorithm 3. This algorithm is the same as our previous algorithm
[30], essentially. Notably the algorithm also performs simultaneously a decom-
position of a given stratum into finer strata according to the structure of result-
ing vector spaces. We sketch the resulting method for computing a parametric
standard basis of Anng, ,(Hg(s)) in Algorithm 4.

Algorithm 4. PSB

Specification: PSB(f, <)

Computing a parametric standard basis of Anng, ,(Ho(,(s)) W.I.t. <.

Input: f :a semi-weighted homogeneous polynomial of type (d;w) with parameters .

<:a local term order.

Output: (2,9) :

2 ={(A1,P1),(A2, P2),...,(As, P;)} is a parametric standard basis on Aj UA, U---UA,, of the ideal
Anng, ,(Ho(p)) wr.t. <. For all @€ A;, o;(P;) is the reduced standard basis of Anng, ,(Ho(s,(s))
wrt <, 1 <i</.

2 ={Bi,By,...,B;} is a set of strata s.t. the weighted homogeneous part of f does not define an
isolated singularity at the origin on B; for 1 <i <k.
BEGIN

(¥,9) — Para_SemiW(f,<,) where <, a weighted term order.
9~ {(A ()| (A¥) € 7} 2 — &
while 7' # & do
Select (A',®') from &', &' — S"\{(A",®")};
v 1(EM . E™) where Term(®') = {&™,..., &%} and ™ <71... <71em,
A «— Compute a maximal linearly independent subset of ®' whose coefficient matrix is the row
reduced echelon matrix w.r.t. v on A;
while # # ¢ do
Select (A", ®) from #; # «— H\{(A", D)};
(A", P) « Compute the reduced standard basis P of Anng, ,(He(s) on A” from @;
2 — PU{A,P)};
end-while
end-while
return(2, 2);
END
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The correctness and termination of Algorithm 4 follow from Algorithm 3
and Theorem 4.7. We have implemented the algorithm for computing parametric
standard bases of Anng, ,(Hg(s)), in the computer algebra system Risa/Asir.

We illustrate parametric standard bases of Anng, ,(He(s)) with Example 6.

ExAaMPLE 6. Let us consider Example 3, again. W is the basis of the vector
space Hr(s) and mp(¥) = {(i) | e‘P} is {—~4/52,—4/2502¢, + 16/2503¢,,
—4/2502E] + 16/ 12563 &, + 4E3 — 64/1251%E5,4,48,, 465}, Hence, we obtain a
PLCS of Hgs) from the set zr(¥). The maximal linearly independent subset of
Hg(s) whose coefficient matrix is a row reduced echelon matrix w.r.t. the total
degree lexicographic term order < s.t. &, < ¢&;, is the following;

— if the parameter ¢ belongs to V(¢), then ® = {&5,¢2,&,,1} is a basis of

Hos), and

— if the parameter ¢ belongs to C\V(¢), then ® = {& —1/2527 +

4/12563¢,8,, 85,8y, &1, 1} is a basis of Hes).

By Algorithm 4, the reduced standard basis of Anng, ,(Ho(s) w.r.t. <! is
easily obtained from a PLCS of Hg(y), as follows;

— if the parameter ¢ belongs to V(z), then {x|,x3} is the reduced standard

basis, and

— if the parameter ¢ belongs to C\V(z), then {x}+1/252x3,x1x; —

4/12563x3,x3} is the reduced standard basis.

5. Main results

Here we introduce our main results that are algorithms for computing loga-
rithmic vector fields along S. We present two computation methods. The main
difference is; the first method involves syzygy computation in a “Jocal” ring, and
the second method performs syzygy computation in a “global” ring. We will
compare the first and the second methods in numbers of strata and computation
time.

5.1. Method 1

In order to explain the main idea of the method, let us consider first, for
simplicity, the case where f has no parameters. Assume that the reduced standard
basis {q1,42,...,¢,} of the annihilating ideal Anng, ,(Hg(s)) W.r.t. a local term
order < and a standard basis M; of the module of syzygies w.r.t. the generators
q]%,%, g f in Oy o for each j=1,2,...,r, are given. Note that, the

> Oxn
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module order is POT (“top down” order, see [10]) with <. Then, we have the
following theorem.

THEOREM 5.1.  Under the setup above, there exists a vector (cj,c¢j,,...,¢Cj,,
¢j,..) € M such that c;, contains a term of degree 0, i.e., a non-zero constant term
is in c¢j,. The holomorphic vector field

0

0 0
Y=gzt (Cjz/le)afxzﬂL"‘+ (Cjn/cjl)axn

is logarithmic along S, for each je{l,...,r}.
ProOF. As the coefficients of % are generated by the reduced standard basis
{q1,...,¢,} wr.t. <in Oy ¢ by Theorem 4.3, there exists a (c;,¢j,,...,¢j,,Cj.,) €

M; that satisfies the property because M; is a standard basis w.r.t. POT with <.
Since (C/l 1y Ciys v oy Gy Cfn+l) is a syzygy,

/A o
G 4qj axl + G ax2 + + G 0xn - L./n\]f'
Hence, v;(f) € {f) holds. O

COROLLARY 5.2. Using the same notation as in Theorem 5.1, let M be a

. . o of .
standard basis of the module of syzygies w.r.t. the generators oo a S i

6){2

Ox 0. Set T = {cz 4.4 c,,% ’ (¢, ey CnyCnrl) € M} w.r.t. a POT module
order with <. Then, {v\,v2,...,0,} UT is a set of generators of Zery o(—log S).

PrOOF. By Proposition 4.5, wvj,vs,...,v, and elements of 7 generate
Qery o(—log S) over Oy o. O

ReEMARK. For an arbitrary defining polynomial of a hypersurface, a set of
generators of the logarithmic vector fields with polynomial coefficients can be
directly computed as a syzygy module over the polynomial ring, which also
generates the logarithmic vector fields with analytic coefficients because of the
flatness of the power series ring over the polynomial ring. However, it is difficult
in general to extract local analytic properties of the module Zery, o(—log S) from
the generators obtained by the syzygy computation in the polynomial rings. Note
also that if we construct logarithmic vector fields directly by computing standard
bases of the module of syzygies w.r.t. the generators g ¥ Y f in Oy o,

0x1 7 0x ) 0xp ?
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then the output of the computation are, in general, not suitable to know the
local analytic properties of logarithmic vector fields. See for instance, Example 7.
In contrast, the proposed method that utilize the standard basis {q1,q2,...,¢:}
gives a nice set of generators of Zery o(—log S) for analyzing complex analytic
properties, near the singular point in question, of logarithmic vector fields.

In the non-parametric case, it is possible to compute a standard basis of a
module of syzygies w.r.t. a given local term order in Oy ¢. In fact, the computer
algebra system SINGULAR [15] has a command of computing them.

Now we turn to the parametric case. Before describing the algorithm, we
introduce a notion of parametric syzygy systems.

DeriNiTION 5.3 (PSS).  Let fix a term order. Let fj,...,f; be a subset of
(K[1])[x], Ay,...,A, strata in K™ and Gy, ..., G, subsets of (K[f])[x]. A finite set
4 ={(A1,Gy),...,(As,G,)} of pairs is called a parametric syzygy system (PSS)
on A U---UA, of (fi,...,f;) if 0,(G;), ae A;, is a standard basis (or Grobner
basis) of the module of syzygies w.r.t. the generators a,(f1),0.(f2),...,04(f;) in
K[[x]] (or K[x]) for each i=1,...,/. We simply say ¥ is a parametric syzygy
system of (fi,...,f;) if AjU---UA, = K",

We write for clarity a parametric syzygy system in a local ring as PSS, (for
standard bases) and parametric syzygy system in a global ring as PSSy, (for
Grébner bases).

It is easy to see that Theorem 5.1 can be generalized to the parametric case
by PSSy,. The outline of the algorithm for computing logarithmic vector fields is
therefore the following.

Step 1. Compute a parametric standard basis of the annihilator ideal

Anng, ,(Hge(s)) by Algorithm 1.
Step 2. Compute a PSSy, of (qj o o f

0x170xy 7" " " 0x,?

the standard basis of Anng, ,(Ho(s))-
Step 3. Select an element (¢, ¢z, ..., ¢y, cpr1) from a PSSy, in Oy, whose first

f ) where g; is an element of

component has a non-zero constant term.
Step 4. Set v; = g7+ (2/c) 7+ + (cn/cl)%.

In step 2, it is necessary to compute a PSSy, of (q]%,%,,g—{l, ) in the
rings of power series. However, to the best of our knowledge, there is currently
no implementation of such syzygy computation. Thus, we provide a new alter-

native efficient algorithm for computing the PSSy, in the rings of power series.
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n [28], an efficient algorithm for computing PSS, in a “polynomial ring”,
has been introduced. One can generalize the algorithm to a local ring by using
Lazard’s homogenization technique [23]. The algorithm of parametric syzygies is
described in Appendix A.

Note that as we apply Lazard’s homogenization technique, we obtain a
standard basis of the module of syzygies w.r.t. a local “fotal degree” term order
<. Thus, we compute, beforehand, a parametric standard basis of Anng, ,(Hgs))
w.r.t. the same term order <.

The complete algorithm for computing logarithmic vector fields along S with
parameters, is Algorithm 5.

The correctness clearly follows from Algorithm 4 (PSB) and Theorem 5.1.
As we use the Lazard’s homogenization technique, it follows from [28] and
Algorithm 4 that the algorithm for computing a PSSy, at (x), terminates. Since
the set # and .# have only finite number of pairs, the algorithm terminates. Note
that the part of (A) will be used in Algorithm 8, too.

We illustrate the algorithm with the following examples.

ExampLE 7. Let us consider Example 5. From Example 5, the reduced
standard basis of Anng, ,(Ho(s ) wrt. < Uis {x},x1x2,x +3/2x}}. Then, a
39 o f

syzygy basis of (xl 0
{(9 + 64x3, —6x7 + 96x7x7 4 12x7 x5 — 8x3, —384x7x; — 48x7 + 32x3),
(—24x7 — 16x7x7,4x7 + 3x2, 6x7x5 4+ 4x7x3,0),
(—24x7x; — 3x7 — 2x3,2x8 — 36x1x3 — 4xxz, 144xx; + 16x7),
(=3x7 + 16x3,2x8 — dx}xy + 24x7x3, 16xT — 96x7x3),
(x] +4x3, —6xF — 4x8x,,0)}.
We take (9 + 64xs, —6x7 4+ 96x7x3 + 12x7x, — 8x3, —384xTx; — 48x7 + 32x3)
(because the first component has a non-zero constant term) and set

A

G
v =x} F (—6x7 +96x7x3 + 12x7x2 — 8x3) /(9 + 64x3) - e

As 1/(9 4 64xy) = 1/45°7(—64/9)'x}, v is a holomorphic vector field

s of a

X3 =2 o + (—6x7 +96x7x3 4 12x7x7 — 8x3) Y (—64/9)'x

0
i=0
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Algorithm 5. Method 1

Specification: Method1( f, <)

Computing bases of Zery o(—log S).

Input: f :a semi-weighted homogeneous polynomial of type (d;w) with parameters .

<:a local term order.

Output: (V",9) :

7 ={(A,V1),..., (A, Vy)}, Vi is a set of logarithmic vector fields along S on A; for each ie
{1,...,/}.

2 = {By,...,Bi} is a set of strata s.t. the weighted homogeneous part of f does not define an isolated
singularity at the origin on B; for 1 <i<k.

BEGIN

L — & (2,9) — PSB(f,<);

7 « Compute a PSSy, of (—E—’ ) in Oy:

while 7 # J do

Select {(Ag, M)} from T; 7 — T\{(Ao,M)}; Ly — &;
while M # & do
Select (ca, ..., ¢y Cur1) from M; M — M\{(c2,...,Cn,cnt1)}s (&)
Ly {cz%+~~+cn§” ;
end-while

end-while
L — 7N {(A(),L())};

while 2 # & do
Select (A,{q1,...,¢:}) from 2; 2 — P\{(A, {q1,-...q:})};
/*{qi,...,q;} is the reduced standard basis*/
for each je{l,...,r} do o )
A — Compute a PSSy, of (qj%,%,:zﬂ ,f) on A; (x)
S — &
while .7 # (& do
Select (A', M) from #; M — M\{(A',M)};
(c1y..-yCny1) < Select an element from M whose 1st component is a nonzero constant;
U<—qj%"‘(CZ/C])%JF"'JF(C;Z/CI)%;
while 7~ # ¢ do
Select (A", V) from v v~ — v \{(A",V)};
if A'NA” # & then
S —FSU{A'NA" VU{vh};
end-if
end-while
end-while
YV —
end-for
end-while
return (77, 2);
END
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Likewise, we take the following vector from a syzygy basis of (x1x2 a ,”2 , f )
(9 4 64x7, 8x7 + 2x7x + 96x3 + 12x3, —8x7 — 384x3 — 48x,).

Moreover we take the following vector from a syzygy basis of <x2 + 3/2x1 o

("cz f)
(27 — 292x7 — 27x3,4x] — 629x7x7 — 27x3 — 438x1x3 + 54x1x2,

2624x7 + 1752x1x3 + 216x1).

Hence, we have the following as non-trivial logarithmic vector fields

Uy = XX - + (8x‘1t + 2x12x2 + 96x23 + 12x§)/(9 + 64x7) -i,

5_361 6x2

0
v3 = X3 + 3/2x} o 4 (4x7 — 629x7x2 — 27x7 — 438x1x;5 + 54x1x2)/

(27 — 292x2 — 27x,) - pr

Thus, v, vy, v3 and trivial vector fields generate Zery o(—log S).

Note that the expansion of a polynomial (9 + 64x,)x3 is 9x7 + 64x7x,. If the
expansion of a polynomial is given, then we cannot obtain the really important
factor x7. If we compute logarithmic vector fields with expanded polynomials
in coefficients (for example the command “syz” of SINGULAR [15]), then as, in
general, a coeflicient polynomial cannot be factored into polynomials, we cannot
get really important information as outputs and we need further computation to
find the essential factor. In contrast, our algorithm tells us the essential informa-
tion on coefficients a;(x)’s, at the isolated singularity, by computing a standard
basis of an annihilating ideal Anng, ,(Hg(s)). This is a significant feature of the
proposed algorithm.

The next example handles a parametric case.

ExampLE 8. Let us consider Example 3 and Example 6, again. Now, we
know a parametric standard basis of the annihilator ideal Anng, ,(Ho(s)) W.r.t.
<~! where < is the local total degree lexicographic term order s.t. x, < xj.

— If the parameter ¢ belongs to V(¢), then {x;,x3} is the reduced standard

basis. Compute a PSSy, of <x1 Z ,ff ,f) on V(7). Then, {(—5,4x,,20),

LX] 0Xp
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(5x3,—4x},0)} is the PSSy. Select (—5,4x2,20) and set

0 d
U1 :x16—xl—4/5)€26—xz

which is an Euler logarithmic vector field. Next, we compute a PSSy,
of (x“i i ,f) on V(7). Then, {(0,—x] —x3,5x3),(—5,4x3,0)} is the

2 0x1 0x>

PSS Select (—5,4x7,0) and set

3 6
1

0
0y :xﬁa—m—4/5x v

which is a trivial logarithmic vector field. Thus, v; and trivial vector fields
generate Zery, o(—log S).

If the parameter ¢ belongs to C\V(7), then {x}+1/25x3,x1xs —
4/125¢3x3,x3} is the reduced standard basis. By the same way, we can
obtain the following three non-trivial logarithmic vector fields wuy, up, us;

up = (x7 +1/25¢ x2)£+1/25((64t6x13—(16t5x2+625t)x12

— (118074 x2 — 12500x,)x; + 6417x3 — 1253x3) /(625 — 641*x,)) i
2

0
uy = (x1x2 — 4/125£x3) pl J125((—2561"x7 + (641°x; + 2500£%)x7
1
— (SOt + 3125tx7)x1 — 25615x3 — 590014 x2

0
+62500x3) /(625 — 64t*x3)) =—,
6X2

A

—_ ail +(((641*x3 — 500)x3 — 1633233 + 202x3x,

+ 64175 — 5251x3) /(625 — 64*x,)) %
2

5.2. Method 2

Here we introduce another new algorithm for computing logarithmic vector

fields along S. The key ideal of the new algorithm is the next lemma.

LemMa 5.4. Let fi,fs,...,fr be polynomial in K[x] s.t. {xe X|fi(x)=

falx) =

- = fy(x) =0} = {O} where X be a neighborhood of the origin O of C".

Let Jp be an ideal generated by fi, fa, ..., fr in Ox o (local ring) and I be an ideal



Computation methods of logarithmic vector fields 219

generated by fi, fo,...,fr in K|x] (global ring). Let h be a polynomial in K|x|,
s.t. he So. Then, there exists a polynomial ge I : {h) s.t. g ¢ m, where I : {h) =
{g e K|[x]|ghel} is the ideal quotient and m = {x1,x3,...,X,y is the maximal
ideal in Oy o.

PROOF. As I has a minimal primary decomposition and {xe X | fi(x) = ---
= fi(x) =0} = {0}, I can be written as I = IyNn N L N---N 1, where Iy, [, ...,
I, are primary ideals and V(Iy) = {O}, O ¢ V(I;) for each ie {1,...,r}. Notice
that Jp = Ox,0 ® I, where ® is a tensor product. Recall that V(I :<{ly)) =
Ui<icr Yi).  Since, hely=IyNK[xy,...,x,), we have V(I:<{h))C
Ui<i<, Vi), which immediately implies that there exists a polynomial g € K[x]
s.t. ghel and ¢(0) # 0. O

Let {qi,...,q:} be the reduced standard basis of the annihilating ideal of
Hg(py w.r.t. a local term order <. Then, by the proof of Theorem 4.3, for each

je{l,...;r},

of <6f af of ,f>.

T ox, 0xy 0x3’ " Ox,

0xy ? 0x3 Y 0x, 7

Therefore, there exists gje<af ad oL ><qj%> with ¢;(0) # 0. Since,

gj(qj%)e<%,%,...,%,f>, gj(qj%) can be written as

0 of of .
gj<qja_i:>:p25_i+"'+pna_i(n+pn+1f

where pa, ..., pn, pni1 € K[x]. The condition ¢;(O) # 0 implies that ¢; = p;/g; and
p;/y;, are well-defined as elements of Uy o for j=2,...,n. Hence, if we have
polynomial g;, p2,..., pn, Pnt1, then qj% can be written as follows

G = (12/9) L+ () 2t (e f9) .

This implies

of of 0
%’87{1— (Pz/gj) 'OTJ;_ "'—(Pn/gj)' /

el

0x,
in Oy, o, namely,
0 0 0
v = qf'a_x1+ (—102/91')a—xz+“'vL (—pn/gj)a—xn

is a logarithmic vector field along S.
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The denominator g; can be obtained by using an algorithm for computing
ideal quotients, and polynomials p,, ..., p,, psr1 can also be obtained in a poly-
nomial ring K[x] by utilizing an algorithm for computing syzygies.

Algorithm 6. OneElement

Specification: OneElement( /', ¢)

Computing a logarithmic vector field along S.

Input: f :a semi-weighted homogeneous polynomial of type (d;w).

g€ KIx]: g €SB where SB is a reduced standard basis of Anng, ,(Ho(r))-

Output: v =g +d2m2 ~+d,,%: v is logarithmic along S.

BEGIN N N

I: G+ Compute a Grobner basis of <m ,{1 . 7(%”,f> : <q%> in K[x];

2: g < Select a polynomial g from G s.t. g(O) # 0; -

3: Syz «— Compute a Grobner basis of a module of syzygies w.r.t. the generators (gqm) :{Z %
f, w.rt. a POT module order in K[x]"";

4: (c1y.. . CnyCuy1) < Select (c1,...,Cn,cny1) from Syz s.t. ¢; contains a nonzero constant;

5: For each i€ {2,...,n},
di — ci/(c19);

return qﬁerz% o dy

END

THEOREM 5.5. Algorithm 4 outputs a logarithmic vector field along S and
terminates.

Proor. We prove that there exists a vector (ci,...,¢y, Chp1) In Syz s.t. ¢
is a nonzero constant. By Lemma 5.4, there exists g € G s.t. g(O) # 0. Since
g(qaxl) <:{2,f£ ..,%, '>, there exist pa,..., pn, pur1 € K[x] s.t. g(qofl):
Lt 4 put punif Let (... uy,uni1) be a syzygy of (i )
ie., u (‘Z:Jr -+ uy af +up 1 f =0. Then

o) (2L oL

of of .
+ u2l+ +un_f+un+1.f = 07 1.e.,
Oox X2 6x,,

of of of
<gq6—x1> + (12 —Pz)a—xz+ o (u —Pn)a—xn+ (tns1 — pus1)f =0.
HCHCC, (1,M2 — P25 Un = Py Upyl — pn+1) is a Syzygy of (gq@gl)7%7 s 7@Y'X a.f
As Syz is a Grobner basis of the syzygy module w.r.t. a POT order in K[x ]"+1
and (L,up — pa, ... Uy — Puytni1 — Pnr1) € {Syz), there exists an element (cy, ...,
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Cns Cnt1) € Syz such that the first component is a nonzero constant. Therefore,
obviously,

A

of

It (@) St o+ (@ (19)

A €<
As an algorithm for computing Grébner bases terminates in K[x], Algorithm 4
also terminates. U

COROLLARY 5.6. Using the same notation as in Theorem 5.5 and Corollary
5.2, let V. ={v| for each ie{l,...,r},v = OneElement(f,q;)}. Then, VUT is a
set of generators of Yery o(—log S).

Proor. By Proposition 4.5 and Theorem 5.5, obviously, elements of VU T
generate Zery, o(—log S) over Oy o. O

Let us consider parametric cases. It is possible to extend Algorithm 6 to
parametric cases, naturally, by utilizing CGS and PSSy, as follows.

Algorithm 7. ParaOneElement

Specification: ParaOneElement( /', g, A)
Computing a logarithmic vector field along S with parameters on A.
Input: f :a semi-weighted homogeneous polynomial of type (d;w) with parameters.
(¢,A) : €SB and (A,SB) € 2 where 2 is an output of Algorithm 4.
Output: V" = {(A,{v1}),..., (A, {o/})}: v; = q%+d,zﬁ+ e +dm% is a logarithmic along S on
A;, for each je{l,...,/}.
BEGIN o N )
¥~ @ 4 — Compute a CGS of (... 2L 1) (q) on A; (0)
while ¥ # & do

(A, G) < Select (A’,G) from %; ¥ — G\{(A',G)};

g < Select a polynomial g from G s.t. g(0) #0;

Y —C PSSy, of gy gL A';

% «— Compute a gb O 99 A A 1f on B

while % # & do

(A", Syz) « Select (A",Sy) from %; % — #\{(A",Syz)};

(€1, yCnyCni1) < Select (c1,...,¢n,cpy1) from Syz s.t. ¢; is a nonzero constant;
for each ie {2,...,n} do
di — Ci/((‘l!/);
end-for
YV YU (A”,{q%+d2%+~-+dn%})};
end-while
end-while
return 7"

END
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REMARK. At (), an algorithm for computing CGS of ideal quotients is
required. This algorithm is described in [22]. It is possible to compute CGS of the
ideal quotients.

The consideration above yields the following new algorithm for computing
logarithmic vector fields along S with parameters.

Algorithm 8. Method 2

Specification: Method2(f', <)

Computing bases of Zery o(—log S).

Input: f :a semi-weighted homogeneous polynomial of type (d;w) with parameters .

<:a local term order.

Output: (7", 9):

7 ={(AL,V1),..., (AL V)}, Vi is a set of logarithmic vector fields along S on A; for each

ie{l,...,I}.

2 = {By,...,Bi} is a set of strata s.t. the weighted homogeneous part of f does not define an isolated
singularity at the origin on B; for 1 <i <k.

BEGIN

(A) of Method 1

while 2 # & do
Select (A,{q1,...,q:}) from 2; Z? — P\{(A,{q1,...,4:})}; /*standard basis*/
for each ;j from 1 to r do
4" «— ParaOneElement(f', ¢;,A); & — ;
while 7" # & do
Select (A', V) from v v «— M\{(A",V)};
while ¥ # & do
Select (A”,L) from ¥; ¥ «— L\{(A",L)};
if AANA" # ¢ then & — S U{(A'NA",VUL)}; end-if
end-while
end-while
L —
end-for
end-while
retun (77, 92);
END

Let us remark that the first part of Method 2 is the same as (A) of Method 1.
The correctness follows from Theorem 5.5. Since the set ¥ and .# have only
finite number of pairs, the algorithm terminates.

We illustrate the algorithm with the following examples.

EXAMPLE 9. A polynomial f = fy+ x% (W5 singularity) is a semi-weighted
homogeneous polynomial of type (16;(3,4)) in Clxj,x2] where fy= x{x; + x3
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is a weighted homogeneous polynomial. From Example 5, SB = {xf,xpc%x% +
3/2x7} is the reduced standard basis of Anng, ,(Hg(s)) W.r.t the local weighted
degree lexicographic term order < with the coordinate (xj,x).

For each element of SB, we apply the algorithm OneElement for computing

logarithmic vector fields.

1. Take x; from SB. Then, {27 — 256x7,9 + 64x,} is a Grobner basis of the
ideal quotient <%, f >: (x%)g—il w.r.t. the total degree lexicographic
term order <;; (global term order) with the coordinate (x,x2). Set g =
9 + 64x, and compute a Grobner basis of a module of syzygies w.r.t. the

generators g(x;) O 4 £ Then, the Grobner basis (w.r.t. <) is

0X| ) 0xg

{(—1,6x] — 96x7x3 — 12x{x5 + 8x3, 384x7 x| + 48x7 — 32x3),
(0,x7 + oy + x5, —xf — 4x3)}.

From the first element, we get

v = —x; 2 + (6x] — 96x7x3 — 12x7x2 4 8x3) /(9 + 64x7) 2
6x1 8x2
as a logarithmic vector field along S because the first component of the
first element is a constant.

2. Take x;x7 from SB. Then, {27 —256x7,9 + 64x,} is a Grdbner basis of
<%,f> : <x1x§ %> w.r.t. <y4. Set g =9+ 64x, and compute a Grobner
basis of a module of syzygies w.r.t. the generators g(xlxg)%,%, f. Then,
the Grobner basis (w.r.t. <) is

{(—1, —8x] — 2x{xy — 96x5 — 12x3, 8x7 + 384x7 + 48x2),
(0,8 + xjxs + x5, —x} —4x3)}

Hence, we get

0 0

vy = —xlxga—xl—i— (—8x] — 2x7x2 — 96x3 — 12x3)/(9 + 64x2>6_x2
as a logarithmic vector field along S.

3. Take x3 +3/2x? from SB. Then, {27 —256x%,9 + 64x,} is a Grobner

basis of <‘7f f> : <(x§ + 3/2x12)%> w.rt. <g4. Set g =9+ 64x, and

T‘Q’
compute a Grobner basis of a module of syzygies w.r.t. the generators
g()q)%,%,f. Then, the Grébner basis (w.r.t. <)
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{(1,-96x7 — 88x7x7 — 9x7 4 146x1x3 + 18x1x2,96x; — 584x1x; — 72x1),

(0, —x? - xfx - xg,xjt + 4x§)}.

Hence, we get

0
v3 = (x2 + 3/2x) Fro + (—96x7 — 88x7x7 — 9x;
1

0
+ 146x1x3 + 18x1x2)/(9 + 64x7) —
5)(2
as a logarithmic vector field along S.
Therefore, vy, va, v3 and trivial vector fields generate Zery o(—log S).

The next example handles a parametric case.

ExampLE 10. A polynomial f = fy+ t1x5x3 + X3 € C[x1, x2,x3] (Si7 sin-
gularity) is a semi-weighted homogeneous polynomial of type (24;(7,4,10))
where fy = x7x3 + xox7 + x5 and 1, £, are parameters.

By applying the method [32] for computing Tjurina stratification, the list of
Tjurina numbers of f is obtained as follows.

— If (1, ) € V(#1, 1n), then the Tjurina number 7(f) of f at the origin, is 17.

— If (11, ) e V(11)\V (11, 1), then the Tjurina number z(f) of f at the origin,

is 16.
— If (11,1,) e C2\V(1;), then the Tjurina number 7(f) of f at the origin,
is 15.

Let us consider logarithmic vector fields along S with the parameters.

Algorithm 4 outputs

2 = {(V(t1,1),{x5, x2x3,6x5 + x3,x1}), (V(t1)\V (11, 12),
{xg,xf + 18/7t2x25,x1x2,x1X3, —72/712x25 + X1X3,6x25 + x%}),
(CA\V(t1), {x8, x1x2, %7 + 18/7t2x3 — 1/711x5, X1 X3,
—72/7t255 + 4/ 7115 + x2%3,6x3 + x3})}

as a parametric standard basis of Anng, ,(Ho(,(s)))-
Notice that the decomposition of the parameter space C? is the same as the
Tjurina stratification.
1. Take (V(11,1),{x$,x2x3,6x5 +x7,x1}) from 2. Then, on V(1,1,), the
algorithm outputs the following non-trivial logarithmic vector fields
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along S:
0 0 0 0 0
Y1 =37 10 4 6X3 + X3) =— — 2x1 X3 —
11 { X1 — oy + X35 +4x, — 0X2 ( X5 +x3)ax1 X1X3 axz,
0 0
—Txox3— + 12x1x3 — o —‘r 2X1X) —

0x) 0xy’

0 0 0
—7x§ — = 2x;x3 — 42 —
X5 o, X1X3 xa + 2x1X2X3 axz}
and the following trivial logarithmic vector fields along S:

0 0
Vi = {(—6x12x3 - 5)62)6%)6—)Cg + (—xlzxz - 2x§X3)a—xz,

0 0 0
(6x§ + x%) e + (—xlz — 2x2x3) et (x12x3 + xg + xzxg) axz}
Hence, if (t1,1) € V(t1,%2), then ¥7; U ¥1, generates Zery o(—log S).

2. Take (V(t)\V(t1,12), {x5, X2 + 18/712x3, X1 X2, X1 X3, =72/ Ttrx5 + X1 X3,
6x5 +x7}), from 2. Then, on V(1;)\V(#1, %), the algorithm outputs the

following non-trivial logarithmic vector fields along S:

A

0 0
V3 = {(6)6; +x§)6__ 2X1X3 —

0
_7\(— 5 _
” e ( 7)( 72/7[2)62 + X2X3)

0X|
+ 12x1x03 — + (2x1x2 — 248 x1x3) =—

i
14929925° x3 — 16807) (x1x3) — + (—740881,x% x5 + 127008223 x2
3 0 2 2°42°Y3

X1

G

— 21772813 x3x3 + 37324843 x2x5 + 149299215 x3 — 24010x3) .

+ (= 12348603 + 2116863x5 x5 — 3628843 x3x3 + 6220813 x3x3

0

+ 74649613 x2x3 — 9604x2x3 + 144061,x7) —— P
X2

0
14929925 x3 — 16807)x1x2 — + (1270082 xF x5 — 21772883 x3x2
2°V3 (9 2V2 2V2V2

+37324818x2x3 + 149299213 x,x% — 24010x,x5 + 123481,x2) 65
X3
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(21168t2x2 — 36288t3x2 + 62208t2x2x3 + 746496t2x2x3

0
= T(x7 +18/712x3) =—

G
— 9604x3 + 2058123 — 24696£5x3) o
1

0x

a ja)
— 10x1x3a—m + (—4x1x2 + 612x1X3) ai )

(—149299265x3 + 16807)x5 — + (493921, x3 — 8467263x3X3

0
axl
+ 14515265 x3x3 — 24883215 x5 + 4802x3 ) x|
+ (823200x5 — 1411265 x5 x1 + 2419265x3 x5 — 4147285 x5 X3

+ (49766455 x5 — 4802x3)x2 — 9604£2x3) X ai}
X2

and the trivial logarithmic vector fields along S are 77,.
Hence, if (t1,) e V()\V(4,1), then 73 U7¥], generates
@erx‘o(—log S)
3. Take the last segment from £.%. In this case, the algorithm decomposes
C>\V(1,) into 4 strata

V()\V(t1, 1), V(48 +270)\V (11, 12), V(6418 + 9126515 + 396913)\V (11, 12),
CH\V(2561{°t, + 5376¢]t + 40500¢{5 + 1071631, 13).

This decomposition happens when we compute a Groébner basis of an

ideal quotient <%,(§£} f > < ;> in Algorithm 6, namely, for each

stratum, the structure of the ideal quotient is different from others.
Due to the saving of pages, we omit the output of logarithmic vector

fields along S, because the output is quite huge.

The algorithm Method 2 (with total degree lexicographic term order s.t. x3 <
X < x1) has been implemented in the computer algebra system Risa/Asir. Here we
give results of the benchmark tests. Table 3 shows a comparison of the imple-
mentation of Method 1 with Method 2 in numbers of strata (No. strata) and
computation time (CPU time). x;, xp, x3 are variables and si, 52, f, £ are
parameters. The time is given in second. > 3/ means it takes more than 3 hours.
Note that in Prob. 5, if 51 # 0 As3 —4 5 0, then x} + 51373 + s5x7x3 + x5 is a
weighted homogeneous polynomial.
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Method 1 Method 2
Prob. Semi-weighted homogeneous poly. No. strata time No. strata time
1 X7+ x0x3 + X8 + 11x1x8 2 0.0468 2 0.0312
2 x?xz + \; + x2x§ + x?x3 + tlxlx_% 12 0.4050 2 0.078
3 X13X3 + xg‘ + xzx32 + slxzxf + 11x1x33 14 0.4056 5 0.3276
4 xIx3 + x5 + s10x] + fxil 4+ x1? 9 3.292 3 0.4836
5 xt +s1x3x3 4+ soxdxg + x5 24 1.451 15 1.045
6 x? + xzx32 + xz” + t1x1x§ + tlexg 12 26.08 5 3.931
7 xfxz + x215 + tlxlxz” + tlelez 18 43.6 6 8.19
8 x13x2 + x12x§ + leo + tlxzn + [2)6212 — > 3h 9 510.5

Table 3. Comparison of Method 1 and Method 2.

In all tests of Table 3, Method 2 results in better performance compared to
Method 1. The essential point of Method 2 is computing Grébner bases of ideal
quotients, instead of standard bases. In general, a size of output of PSS, in
Algorithm 7 is smaller than that of PSSy in Algorithm A (Lazard’s homoge-
nization technique). Thus, the numbers of strata of Method 2 is smaller than that
of Method 1.

We can use various term order in Method 2 unlike Method 1.

In this paper, we have introduced two algorithms for computing loga-
rithmic vector fields along a semi-weighted homogeneous isolated hypersurface
singularity.
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Appendix A. Parametric syzygies

Here, we describe how to compute PSSy, in a “local ring”. Our main idea
for computing PSSy, is to combine the algorithm for computing PSSy in a
polynomial ring [28] with Lazard’s homogenization technique [23].
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DErFINITION A.l1. Let g = Zfi:o gi € K[x] be a polynomial of total degree
d where g; is a homogeneous polynomial of degree i. Then, ¢"(xo,x)=
sz: 0 9i(x)x¢~" is a homogeneous polynomial of total degree d in K[xo,x] where
Xo is the extra variable. We call g” the homogenization of g. Let ¢ be a ho-
mogenization of g, i.e., ¢ = ¢g”. The dehomogenization of ¢ is ¢° = ¢(1,x), i.e.,
¢¢ = g"(1,x) = g(x).

We generalize the algorithm [28] to compute PSS, in a local ring by using
Lazard’s homogenization technique [23]. The following algorithm outputs PSSg,.

Algorithm A. PSYZg,

Specification: PSYZg,((f1,. .., f5),A)
Computing a PSSy, of (fi,...,fs) on A.
Input: fi,..., f; : polynomials with parameters 7, A C K.
Output: {(A1,G]),...,(A/,G))}: For all ae A/, 6;(G/) is a standard basis of a syzygy module of
(fi,..., f;) in K{x} where G; is a subset of ((K[f]){x})’, 1<i</ and A=A;U---UA,.
BEGIN
1”, . ,fX’7 «— Homogenize fi,..., f;;
{(A1,G1),...,(As,G;)} — Compute PSSy, of (f{,..., f") on A w.r.t. a total degree term order s.t.
Xo > x in a polynomial ring, by [28];
{(A1,G]),...,(A/,G))} — Dehomogenize G; for each 1 <i</, ie., G/ ={q°|q € Gi};
return{(A, G{),...,(As,G))};
END

The correctness and termination follow from [23] and [28].
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