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ASSOCIATED BINOMIAL INVERSION FOR UNIFIED

STIRLING NUMBERS AND COUNTING SUBSPACES

GENERATED BY SUBSETS OF A ROOT SYSTEM

By

Tomohiro Kamiyoshi, Makoto Nagura and Shin-ichi Otani

Abstract. We introduce an associated version of the binomial inver-

sion for unified Stirling numbers defined by Hsu and Shiue. This

naturally appears when we count the number of subspaces generated

by subsets of a root system. We count such subspaces of any dimen-

sion by using associated unified Stirling numbers, and then we will

also give a combinatorial interpretation of our inversion formula.

In particular, the well-known explicit formula for classical Stirling

numbers of the second kind can be understood as a special case of

our formula.

Introduction

For a sequence a ¼ ða0; a1; . . .Þ, we define a new sequence b ¼ ðb0; b1; . . .Þ by

bn ¼
Xn
k¼0

ð�1Þn�k � n

k

� �
� ak ¼

Xn
j¼0

ð�1Þ j � n

j

� �
� an�j:

We say that b is the binomial transform of a, and then we have an ¼
Pn

j¼0
n
j

� �
� bj

for any n. This fact is well-known (see, for example, Riordan [7, page 43]), and

we call it the binomial inversion formula. In this paper, we will introduce an

associated version of binomial inversion, and explain some combinatorial inter-

pretation of it.

Let r be a fixed non-negative integer. For non-negative integers n and k with

nb rk, we define the integer Crðn; kÞ by

Crðn; kÞ ¼
n! � ðr!Þ�k

k! � ðn� rkÞ! :
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This appears in various situation of combinatorics; for example, see Wall [8].

We call it the r-associated binomial coe‰cient Crðn; kÞ. Indeed, this is a gen-

eralization of the ordinary binomial coe‰cient, since we have C1ðn; kÞ ¼ n
k

� �
in the case of r ¼ 1, see Remark 1.5(4). Using this, for a sequence a ¼
ða0; a1; . . .Þ, we define the r-associated binomial transform of degree d with residue

p (here d is a non-zero constant and p is a non-negative integer less than r)

by

bn ¼
Xn
j¼0

ð�1Þ j � d j � Crðrnþ p; jÞ � an�j:ð0:1Þ

In this paper, we will give an inversion formula (Theorem 1.14) for r-associated

unified Stirling numbers frðn; kÞ ¼ frðn; k; a; b; gÞ which are also an associated

version of the unified Stirling numbers defined by Hsu and Shiue [4]. It follows

from our inversion formula that the ðrþ 1Þ-associated unified Stirling numbers

frþ1 can be obtained from fr by the r-associated binomial transformation. In

particular, the well-known explicit formula for classical Stirling numbers of

the second kind can be regarded as the binomial transform of the ‘‘0-associated’’

f0.

On the other hand, a kind of 2-associated unified Stirling numbers nat-

urally appear in the context of counting the number of subspaces that are

generated by some roots in a root system; see Corollaries 3.6, 3.16 and 3.21.

Although such subspaces of co-dimension one have been counted in [5], a

combinatorial interpretation of our inversion formula concerns with the num-

ber of subspaces, not only of co-dimension one but also any co-dimension;

so, in this paper, we count such subspaces as distinct sets. To do this, we

gave a standard form of the matrix corresponding to such a subspace in the

case where the root system is classical type (that is, An, Bn, Cn or Dn-type),

see Theorems 3.7, 3.17 and 3.22. For exceptional type, we use the computer

as in [5].

The authors would like to dedicate this paper on the occasion of his

seventieth birthday to Professor Tatsuo Kimura, who gave to the authors much

encouragement and valuable suggestions for their study, or life.

1. Associated Unified Stirling Numbers

1.1. Definition and Some Remarks. In this section we will introduce an

associated version of the unified Stirling numbers defined by Hsu and Shiue [4].

First we define it and give some remarks.
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Definition 1.1. For a positive integer n, we denote by ðgjaÞn the falling

factorial which is defined by

ðgjaÞn ¼ gðg� aÞðg� 2aÞ � � � ðg� ðn� 1ÞaÞ;

and put ðgjaÞ0 ¼ 1 for any a and g if its subscript is equal to zero.

Definition 1.2. Let r be a fixed positive integer. For two real numbers a

and b, we define the constant dr ¼ drða; bÞ by

dr ¼ drða; bÞ ¼
1 if ðb � ajaÞr�1 ¼ 0;

ðb � ajaÞr�1 otherwise:

�

Definition 1.3. Let r be a fixed positive integer, and we fix three real

parameters a, b and g. For positive integers n and k, we define the r-associated

unified Stirling number frðn; kÞ ¼ frðn; k; a; b; gÞ by the following recurrence re-

lation:

frðn; kÞ ¼ f�aðn� 1Þ þ bk þ gg � frðn� 1; kÞ þ dr �
n� 1

r� 1

� �
� frðn� r; k � 1Þ;

where we put frðn; 0Þ ¼ ðgjaÞn for nb 0, and frðn; kÞ ¼ 0 for n < 0.

Note that we have frðn; kÞ ¼ 0 if n < rk.

Definition 1.4. Let Srðn; kÞ be the r-associated Stirling number of the

second kind; that is, the number of partitions of the set N with aN ¼ n, into

k blocks, all of cardinality grater than or equal to r (see Comtet [1, page 221]).

Remark 1.5. Specializing parameters a, b and g, we have the following:

(1) In the case of r ¼ 1, we have dr ¼ 1 for any a and b. Hence f1ðn; kÞ is

nothing but the unified Stirling number defined by Hsu and Shiue [4]:

f1ðn; k; a; b; gÞ ¼ Sðn; k; a; b; gÞ.
(2) If ða; b; gÞ ¼ ð1; 0; 0Þ, then it is the r-associated signed Stirling number of

the first kind: frðn; k; 1; 0; 0Þ ¼ trðn; kÞ. On the other hand, in the case of

ða; b; gÞ ¼ ð�1; 0; 0Þ, it is the r-associated signless Stirling number of the

first kind frðn; k;�1; 0; 0Þ ¼ Trðn; kÞ (see Comtet [1, page 256]); that is,

trðn; kÞ ¼ ð�1Þn�k � Trðn; kÞ.
(3) If ða; b; gÞ ¼ ð0; 1; 0Þ, then we have the r-associated Stirling number of the

second kind: frðn; k; 0; 1; 0Þ ¼ Srðn; kÞ.
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(4) If ða; b; gÞ ¼ ð0; 0; 1Þ, then we have dr ¼ 1; so that it is a generalization

of the binomial coe‰cient (see Wall [8]):

frðn; k; 0; 0; 1Þ ¼
n! � ðr!Þ�k

k! � ðn� rkÞ! ¼: Crðn; kÞ:

We will call this the r-associated binomial coe‰cient. Indeed, C1ðn; kÞ ¼
n
k

� �
for the case of r ¼ 1 is nothing but the ordinary binomial coe‰cient.

1.2. Exponential Generating Function. Now we define the exponential gen-

erating function (GF) of frðn; kÞ ¼ frðn; k; a; b; gÞ by

Fr;kðxÞ ¼
Xy
n¼0

frðn; kÞ
n!

xn ¼
Xy
n¼rk

frðn; kÞ
n!

xn:

Here we note that we are enough to take the sum from n ¼ rk, since we have

frðn; kÞ ¼ 0 if n < rk.

Proposition 1.6. The GF Fr;kðxÞ of the r-associated unified Stirling num-

bers frðn; kÞ, for fixed k, satisfies the following linear di¤erential equation of rank

one:

ð1þ axÞ � d
dx

Fr;kðxÞ ¼ ðbk þ gÞ � Fr;kðxÞ þ
dr

ðr� 1Þ! x
r�1 � Fr;k�1ðxÞ:ð1:1Þ

Moreover Fr;kðxÞ can be expressed as follows:

Fr;kðxÞ ¼
1

k!
� pðxÞ � dkr � qrðxÞk;ð1:2Þ

where we put

pðxÞ ¼
Xy
i¼0

ðgjaÞi
i!

xi; qrðxÞ ¼
Xy
j¼0

ðb � rajaÞj
ðrþ jÞ! xrþj :ð1:3Þ

Proof. From the recurrence relation, we have

d

dx
Fr;kðxÞ ¼

Xy
n¼1

frðn; kÞ
ðn� 1Þ! x

n�1

¼
Xy
n¼1

�aðn� 1Þ � frðn� 1; kÞ
ðn� 1Þ! xn�1 þ ðbk þ gÞ �

Xy
n¼1

frðn� 1; kÞ
ðn� 1Þ! xn�1
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þ dr �
n� 1

r� 1

� �
�
Xy
n¼1

frðn� r; k � 1Þ
ðn� 1Þ! xn�1

¼ �ax � d
dx

Fr;kðxÞ þ ðbk þ gÞ � Fr;kðxÞ þ
dr

ðr� 1Þ! x
r�1 � Fr;kðxÞ;

so that Fr;kðxÞ satisfies the DE (1.1). The power series pðxÞ, qrðxÞ defined in (1.3)

satisfies

ð1þ axÞ � d
dx

pðxÞ ¼ g � pðxÞ;

ð1þ axÞ � d
dx

qrðxÞ ¼ b � qrðxÞ þ
1

ðr� 1Þ! x
r�1;

respectively. Since dr is a constant, we see that the GF Fr;kðxÞ defined in (1.2)

satisfies the DE (1.1). r

Remark 1.7. Although we give the GF of frðn; kÞ as the product of power

serieses (1.3), we can rewrite them as follows: If a0 0, then we have pðxÞ ¼
ð1þ axÞg=a. In addition, we see that the r-th derivative of qrðxÞ is the function

ð1þ axÞb=a�r, and that qrðxÞ can be expressed as the following hyper geometric

series:

qrðxÞ ¼
xr

r!
� 2F1 1;� b

a
þ r; rþ 1;�ax

� �
;

hence this is a polynomial in the case where �b=aþ r is a negative integer.

On the other hand, if a ¼ 0, we have

qrðxÞ ¼
xr

r!
� 1F1ð1; rþ 1; bxÞ:

Thus we see that qrðxÞ ¼ xr=r! when a ¼ 0 and b ¼ 0. In the case of

ðb � ajaÞr�1 0 0, we see that dr � qrðxÞ can be expressed by the following power

series:

dr � qrðxÞ ¼ ðb � ajaÞr�1 � qrðxÞ ¼
Xy
j¼r

ðb � ajaÞj�1

j!
x j:ð1:4Þ

Note that d1 � q1ðxÞ for r ¼ 1 is a primitive function of ð1þ axÞb=a�1 if

a0 0.
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Remark 1.8. Specializing parameters a, b and g, we have the following:

(1) If ab0 0 and ðb � ajaÞr�1 0 0, then we have

Fr;kðxÞ ¼
1

k!
� ð1þ axÞg=a � 1

bk
� ð1þ axÞb=a �

Xr�1

j¼0

ðbjaÞj
j!

x j

 !k
:ð1:5Þ

This is a generalization of [4, Theorem 2] which is given by Hsu and

Shiue.

(2) If a ¼ 0 and b0 0, we have ðb � ajaÞr�1 0 0; so that ðb � ajaÞj�1 ¼ b j�1

for each jb 1. Hence the GF can be expressed as

Fr;kðxÞ ¼
1

k!
� egx � 1

b
�
Xy
j¼r

1

j!
ðbxÞ j

 !k
ð1:6Þ

¼ 1

k!
� egx � 1

bk
� ebx �

Xr�1

j¼0

1

j!
ðbxÞ j

 !k
:

This can be understood as the limit of (1.5) as a ! 0.

(3) If a0 0 and b ¼ 0, we have ðb � ajaÞr�1 0 0; so that ðb � ajaÞj�1 ¼
ð�1Þ j�1 � ð j � 1Þ! � a j�1 for each jb 1. It follows from (1.4) that

Fr;kðxÞ ¼
1

k!
� ð1þ axÞg=a � 1

a
�
Xy
j¼r

ð�1Þ j�1

j
ðaxÞ j

 !k

¼ 1

k!
� ð1þ axÞg=a � 1

ak
� logð1þ axÞ �

Xr�1

j¼1

ð�1Þ j�1

j
ðaxÞ j

 !k
:

This can be understood as the limit of (1.5) as b ! 0.

(4) In the case of a ¼ 0 and b ¼ 0, we have dr ¼ 1. Then the GF is given by

Fr;kðxÞ ¼
1

k!
� egx � xr

r!

� �k
:

Therefore, in this case, the r-associated unified Stirling numbers can be

explicitly given by the formula

frðn; kÞ ¼
n! � ðr!Þ�k

k! � ðn� rkÞ! � g
n�rk:

In addition, when g ¼ 1, this is the r-associated binomial coe‰cient

Crðn; kÞ mentioned in Remark 1.5(4).
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In fact, if a ¼ 0 or b ¼ 0, then frðn; kÞ can be expressed by r-associated

Stirling numbers of the first or second kind, respectively.

Proposition 1.9. If a ¼ 0 and b0 0, then frðn; kÞ ¼ frðn; k; 0; b; gÞ can be

expressed by r-associated Stirling numbers Srðn; kÞ of the second kind:

frðn; k; 0; b; gÞ ¼
Xn
j¼rk

n

j

� �
� b j�k � gn�j � Srð j; kÞ:ð1:7Þ

In addition, in the case of g ¼ 0, the terms of the right-hand side of (1.7) vanish

only except j ¼ n, we have frðn; k; 0; b; 0Þ ¼ b n�k � Srðn; kÞ. Here we should con-

sider 00 ¼ 1.

Proof. If a ¼ 0 and b0 0, then it follows from (1.6) that the exponential

GF Fr;kðxÞ of frðn; kÞ ¼ frðn; k; a; b; gÞ can be expressed as follows:

Fr;kðxÞ ¼ egx � b�k �Hr;kðbxÞ;ð1:8Þ

where Hr;kðxÞ is the GF of Srðn; kÞ ¼ frðn; k; 0; 1; 0Þ:

Hr;kðxÞ ¼
Xy
n¼0

Srðn; kÞ
n!

xn ¼ 1

k!
�
Xy
j¼r

x j

j!

 !k
:

Comparing coe‰cients of xn in (1.8), we have

frðn; kÞ
n!

¼ b�k �
Xn
j¼0

gn�j

ðn� jÞ! �
Srðn; kÞ

j!
� b j;

thus we obtain our assertion. r

In the case of a0 0 and b ¼ 0, similarly we have the following:

Proposition 1.10. If a0 0 and b ¼ 0, then frðn; kÞ ¼ frðn; k; a; 0; gÞ can be

expressed by signless r-associated Stirling numbers Trðn; kÞ of the first kind:

frðn; k; a; 0; gÞ ¼
Xn
j¼rk

n

j

� �
� ð�aÞ j�k � ðgjaÞn�j � Trð j; kÞ:ð1:9Þ

In addition, in the case of g ¼ 0, the terms of the right-hand side of (1.9) vanish

only except j ¼ n, we have frðn; k; a; 0; 0Þ ¼ ð�aÞn�k � Trðn; kÞ.
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1.3. Binomial Inversion Formula. We will define the r-associated binomial

transformation, which is defined by using the r-associated binomial coe‰cient.

Definition 1.11. Let d be a non-zero constant and p a non-negative integer

less than r. For a sequence a ¼ ða0; a1; . . .Þ, we define a new sequence b ¼
ðb0; b1; . . .Þ by the equation (0.1). We call b the r-associated binomial transform of

degree d with residue p. Then we have the inverse

an ¼
Xn
j¼0

d j � Crðrnþ p; jÞ � bn�j:ð1:10Þ

That is to say, we have the following:

Proposition 1.12. For two sequences a ¼ ða0; a1; . . .Þ and b ¼ ðb0; b1; . . .Þ, the
equation (0.1) holds for any n if and only if we have (1.10) for any n.

Proof. We consider generating functions such as

AðxÞ ¼
Xy
n¼0

an

ðrnþ pÞ! x
rnþp; BðxÞ ¼

Xy
n¼0

bn

ðrnþ pÞ! x
rnþp:

Suppose that (0.1) holds for any n. Then we have

AðxÞ ¼
Xy
n¼0

Xn
k¼0

dn�k

ðrnþ pÞ! �
ðrnþ pÞ! � bk

ðr!Þn�k � ðn� kÞ! � ðrnþ p� rðn� kÞÞ!
xrnþp

¼
Xy
k¼0

Xy
n¼k

bk

ðrk þ pÞ! x
rkþp � d

r!

� �n�k

� xrðn�kÞ

ðn� kÞ!

¼ BðxÞ � exp d

r!
xr

� �
:

Therefore BðxÞ ¼ AðxÞ � expð�d � xr=r!Þ and we see that (1.10) holds for any n;

vice versa. r

Now we will explain the binomial inversion (Theorem 1.14) for r-associated

unified Stirling numbers. The structure of inversion formula is as follows:

Proposition 1.13. For each non-negative integer r, we let ArðxÞ be a function

in x depending only on r, and put Gr;kðxÞ ¼ Bk � ArðxÞk for a positive integer k,
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where Bk is a constant or function depending only on k. Let

Gr;kðxÞ ¼
Xy
n¼0

grðn; kÞ
n!

xn

be the GF of a sequence grðn; kÞ. Suppose that, for Arþ1ðxÞ and ArðxÞ, there exists

a constant ar satisfying the condition for di¤erence

ArðxÞ � Arþ1ðxÞ ¼
ar

r!
xr:ð1:11Þ

Then we have the following identities:

grþ1ðn; kÞ ¼ k! � Bk

Xk
j¼0

ð�1Þ j � a j
r

ðk � jÞ! � Bk�j

� Crðn; jÞ � grðn� rj; k � jÞ;ð1:12Þ

grðn; kÞ ¼ k! � Bk

Xk
j¼0

a j
r

ðk � jÞ! � Bk�j

� Crðn; jÞ � grþ1ðn� rj; k � jÞ;ð1:13Þ

where Crðn; jÞ is the r-associated binomial coe‰cient mentioned in Remark 1.5

(4).

Proof. From the condition ArðxÞ ¼ ar � xr=r!þ Arþ1ðxÞ, we have

Gr;kðxÞ ¼ Bk

Xk
i¼0

k

i

� �
� ar

r!
xr

� �k�i

� Arþ1ðxÞ i

¼ Bk

Xk
i¼0

Xy
l¼0

k

i

� �
� ar

r!

� �k�i

� 1
Bi

� grþ1ðl; iÞ
l!

xlþrðk�iÞ

¼ Bk

Xy
n¼0

Xk
j¼0

k

k � j

� �
� ar

r!

� �j

� 1

Bk�j

� n!

ðn� rjÞ! �
grþ1ðn� rj; k � jÞ

n!
xn:

Here we note that

k

k � j

� �
� ar

r!

� �j

� 1

Bk�j

� n!

ðn� rjÞ! ¼
k! � a j

r

ðk � jÞ! � Bk�j

� Crðn; jÞ;

thus we obtain (1.13). Similarly we can prove (1.12). r

Theorem 1.14. For r-associated unified Stirling numbers frðn; kÞ ¼ frðn; k;
a; b; gÞ, if ðb � ajaÞr 0 0, then we have the following:
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frþ1ðn; kÞ ¼
Xk
j¼0

ð�1Þ j � d j
r � Crðn; jÞ � frðn� rj; k � jÞ;

frðn; kÞ ¼
Xk
j¼0

d j
r � Crðn; jÞ � frþ1ðn� rj; k � jÞ:

Proof. The GF of frðn; kÞ was given by Proposition 1.6. Here we let Bk ¼
pðxÞ=k! and ArðxÞ ¼ dr � qrðxÞ, where pðxÞ and qrðxÞ are the same as in (1.3).

Then ArðxÞ and Arþ1ðxÞ satisfy the condition for di¤erence with ar ¼ dr. Thus

Proposition 1.13 implies our theorem. r

Our theorem is a generalization of the identities (4.5) and (4.6) in Howard

[3], or Riordan [6, page 102]. Here we will translate this fact to matrix language.

For a non-negative integer p, we define a lower-triangular matrix Mr;p, M
þ
r;p, Cr;p

and C 0
r;p (of any size) as follows:

Mr;p ¼ ð frðrði � 1Þ þ p; i � jÞÞij ; C 0
r;p ¼ ðð�drÞ i�j � Crðrði � 1Þ þ p; i � jÞÞij ;

Mþ
r;p ¼ ð frþ1ðrði � 1Þ þ p; i � jÞÞij; Cr;p ¼ ðd i�j

r � Crðrði � 1Þ þ p; i � jÞÞij :

Then Theorem 1.14 implies the following:

Corollary 1.15. We have Mr;p ¼ Cr;p �Mþ
r;p and Mþ

r;p ¼ C 0
r;p �Mr;p. More-

over, the matrix Cr;p is invertible, and we have C�1
r;p ¼ C 0

r;p.

Thus we see that ðrþ 1Þ-associated frþ1’s are obtained from r-associated fr’s

by the r-associated binomial transformation of degree dr. We will give a combi-

natorial interpretation of the above inversion formula in the next section; see

(3.11), (3.20) and (3.28).

1.4. An Interpretation in the Case of r ¼ 0. Although we have let r be a

positive integer, here we will dare to consider the case of r ¼ 0. Here we assume

that b is not equal to zero. Then, since the binomial coe‰cient n�1
r�1

� �
should be

zero for r ¼ 0, we will understand the recurrence relation for frðn; kÞ as follows:

f0ðn; kÞ ¼ f�aðn� 1Þ þ bk þ gg � f0ðn� 1; kÞ:

Thus we have f0ðn; kÞ ¼ ðbk þ gjaÞn � f0ð0; kÞ, and we see that its initial value

should be taken as f0ð0; kÞ ¼ ðbk � k!Þ�1 from the view point of the GF (1.6),

106 Tomohiro Kamiyoshi, Makoto Nagura and Shin-ichi Otani



because q0ðxÞ in (1.3) can be considered to be the function b�1 � ð1þ axÞb=a.
Therefore our 0-associated unified Stirling numbers are given explicitly:

f0ðn; kÞ ¼
ðbk þ gjaÞn

bk � k!
:

Hence, putting Bk ¼ ð1þ axÞg=a=k! and ArðxÞ ¼ b�1 �
Py

j¼rðbjaÞj � x j=j! for

r ¼ 0; 1, we see that Proposition 1.13 (also Theorem 1.14) is still valid for

Gr;kðxÞ ¼ Bk � ArðxÞk with r ¼ 0; 1. Therefore we have the inversion formula

between r ¼ 0 and r ¼ 1.

f1ðn; kÞ ¼
Xk
j¼0

ð�1Þ j � a j
0 � C0ðn; jÞ � f0ðn; k � jÞ;ð1:14Þ

where we note that the ‘‘0-associated’’ binomial coe‰cient

C0ðn; jÞ ¼
n! � ð0!Þ�j

j! � ðn� 0Þ! ¼
1

j!

does depend only on j. Since we have a0 ¼ b�1, the inversion formula (1.14) can

be rewritten as follows:

f1ðn; kÞ ¼
Xk
j¼0

ð�1Þ j � ðb�1Þ j � 1
j!
� ðbðk � jÞ þ gjaÞn

bk�j � ðk � jÞ!

¼ 1

bk � k!
�
Xk
j¼0

ð�1Þ j � k!

j! � ðk � jÞ! � ðbðk � jÞ þ gjaÞn

¼ 1

bk � k!
�
Xk
l¼0

ð�1Þkþl � k

l

� �
� ðbl þ gjaÞn:ð1:15Þ

Thus we gain the explicit formula for 1-associated unified Stirling numbers with

b0 0. In particular, putting ða; b; gÞ ¼ ð0; 1; 0Þ, we conclude that our inversion

formula between f1 and f0 gives the famous formula for Stirling numbers of

the second kind. Note that the explicit formula (1.15) has been given by He

[2, Corollary 2.3].

2. Counting Subspaces Generated by Subsets of a Root System

2.1. Preliminaries for Counting Subspaces. In [5], we have counted the

number of subspaces, which are generated by subsets of a root system, of only
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co-dimension one. Here we will generalize the result. In this subsection, we give

preliminaries for counting such subspaces of any co-dimension.

Notation 2.1. For k column vectors w1; . . . ;wk A Rn, we denote by

Mðw1; . . . ;wkÞ the n� k matrix aligning them, and by Lðw1; . . . ;wkÞ the subspace

of Rn generated by them:

Mðw1; . . . ;wkÞ ¼ ½w1 jw2 j � � � jwk�; Lðw1; . . . ;wkÞ ¼ hw1;w2; . . . ;wkiR:

On the other hand, we sometimes write by LðMÞ the subspace of Rn generated by

the column vectors w1; . . . ;wk of an n� k matrix M ¼ Mðw1; . . . ;wkÞ.

Notation 2.2. We write A@B if a matrix B can be obtained from a matrix

A by right-elementary transformation (i.e., elementary transformation for col-

umns) and/or permutation of rows. On the other hand, we write AFB if B

can be obtained from A only by right-elementary transformation; thus we have

LðAÞ ¼ LðBÞ if AFB.

Notation 2.3. For a non-zero vector x ¼ ðxiÞni¼1 A Rn, we put supp x ¼
fi; xi 0 0g. Then we will call sðxÞ ¼ min supp x the starting of x and eðxÞ ¼
max supp x its ending.

Definition 2.4. If an n� k matrix M can be, by right-elementary trans-

formation and/or permutation of rows, expressed as

M@
X O

O Y

" #
;ð2:1Þ

we call it to be reducible. Here X is an l �m matrix and Y is ðn� lÞ � ðk �mÞ
(1a la n� 1, 1ama k � 1). Then we say that M is the direct sum of X and

Y , and denote it by X lY . We will similarly define the direct sum of some

(more than two) matrices. If M is not reducible, we call it to be irreducible.

Definition 2.5. We say that a matrix M ¼ Mðx1; x2; . . . ; xkÞ is sincere if M

does not have a row consisting of zeros; that is, for any number i ð1a ia nÞ,
there exists j ð1a ja kÞ such that i A supp xj. A subspace L ¼ LðMÞ is also

called sincere if the corresponding matrix M is sincere.

Definition 2.6. An n� k matrix M is called to be full-rank if we have

rank M ¼ minfn; kg.
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Remark 2.7. For the terminology defined in the above, the following facts

are fundamental:

(1) For an n� k matrix M with nb 2 and kb 2, if there exists a column u

of M satisfying sðuÞ ¼ eðuÞ, then M is reducible. In particular, each

identity matrix of degree more than one is reducible.

(2) If M@M 0 and M is irreducible (resp. sincere, full-rank), then M 0 is also

irreducible (resp. sincere, full-rank); these properties are kept under any

permutation of rows and/or right-elementary transformation.

Lemma 2.8. For a matrix M of size n� k with kb 2, we let M@
M1 l � � �lMq be a direct sum of irreducible matrices, and put

PMQ ¼ M1 lM2 l � � �lMq and tðPMÞ ¼ ½ tY1 j tY2 j � � � j tYq�;ð2:2Þ

where each Mi, Yi is of size ni �mi, ni � k, respectively. Then each Yi is irre-

ducible. Moreover, if ni b 2, then the ending of each column of Yi is di¤erent from

its starting unless it is the zero vector.

Proof. We make an ni � k matrix fMiMi ¼ ½O jMi jO� by adding some zero

vectors to Mi. Then fMiMi is irreducible. Thus so is Yi, because we have Yi F fMiMi

by the assumption. Since ni b 2, our assertion follows from Remark 2.7(1)

immediately. r

Notation 2.9. We denote the standard basis of Rn by e
ðnÞ
1 ; e

ðnÞ
2 ; . . . ; e

ðnÞ
n . We

will sometimes omit the superscripts (write as e1; e2; . . . ; en for simply) if they are

clearly in Rn.

Definition 2.10. Let k be a positive integer, and k ¼ m1 þ � � � þmq a rep-

resentation as a sum of q positive integers. Then we call ðm1; . . . ;mqÞ a partition

of k into q summands.

3. Standard Form Attached to Subspaces

3.1. An-type. In this subsection, we denote by F ¼ FðAnÞ the root system

of type An, which can be regarded as a finite subset of E ðnþ1Þ:

F ¼ FðAnÞ ¼ fGðeðnþ1Þ
i � e

ðnþ1Þ
j Þ A E ðnþ1Þ; 1a i < ja nþ 1g;

where E ðnþ1Þ is the hyperplane of vectors orthogonal to tð1; 1; . . . ; 1Þ A Rnþ1; that

is, E ðnþ1Þ ¼ fx ¼ ðxiÞnþ1
i¼1 A Rnþ1; x1 þ x2 þ � � � þ xnþ1 ¼ 0g.
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Notation 3.1. We denote by RðmÞ the ðmþ 1Þ �m matrix such that

RðmÞ ¼ Mðv1; v2; . . . ; vmÞ with vi ¼ e
ðmþ1Þ
i � e

ðmþ1Þ
iþ1 A Rmþ1 for i ¼ 1; 2; . . . ;m:

For such a matrix RðmÞ, the following fact is fundamental:

Lemma 3.2. Let m ¼ ðm1; . . . ;mqÞ and m 0 ¼ ðm 0
1; . . . ;m

0
qÞ be partitions of a

positive integer k into q summands with the condition

m1 a � � �amq and m 0
1 a � � �am 0

q:ð3:1Þ

Put M ¼ Rðm1Þl � � �lRðmqÞ and M 0 ¼ Rðm 0
1Þl � � �lRðm 0

qÞ. If M@M 0, then

we have m ¼ m 0.

Proof. For a positive integer m, we note that the reduced row echelon form

(rref ) of tRðmÞ is given by ½Im j nðmÞ� with the vector nðmÞ ¼ tð�1; . . . ;�1Þ A Rm,

where Im denotes the identity matrix of degree m. Hence we have

M@ t½Ik j nðm1Þl � � �l nðmqÞ� and M 0 @ t½Ik j nðm 0
1Þl � � �l nðm 0

qÞ�:

Suppose that m0m 0. Since, for each matrix, its rref is uniquely determined

by the theory of Linear Algebra, we see that tðnðm1Þl � � �l nðmqÞÞS tðnðm 0
1Þ

l � � �l nðm 0
qÞÞ; thus we obtain MSM 0. r

Proposition 3.3. Let L ¼ Lðw1;w2; . . . ;wkÞ be the subspace generated by k

roots w1;w2; . . . ;wk A F, and M ¼ Mðw1;w2; . . . ;wkÞ the corresponding matrix. If

M is full-rank, sincere, and irreducible, then we can take positive roots v1; v2; . . . ; vk
as a basis of L, where each vi is of the form vi ¼ e

ðnþ1Þ
i � e

ðnþ1Þ
iþ1 A Rðnþ1Þ. That is to

say, for such M, we have k ¼ n, and MFRðnÞ.

Proof. Since our assertion for k ¼ 1 is trivial, we consider the case of

kb 2. By appropriate right-elementary transformation, we may assume that 1 ¼
sðw1Þa sðw2Þa � � �a sðwkÞ. Here, if sðwiÞ ¼ sðwiþ1Þ, replacing the ði þ 1Þ-th
column of M by w 0

iþ1 ¼ wiþ1 þ wi or wiþ1 � wi, we have sðwiÞ < sðw 0
iþ1Þ. Thus

we may assume that

1 ¼ sðw1Þ < sðw2Þ < � � � < sðwkÞ:ð3:2Þ

Moreover, we may assume that M satisfies the following condition:

eðwiÞ0 sðwjÞ for arbitrary indices i and j:ð3:3Þ
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Indeed, if there exist indices i and j satisfying eðwiÞ ¼ sðwjÞ, then we have

1a i < ja k by the condition (3.2), and we can change wi for w 0
i ¼ wi þ wj or

wi � wj if necessary, so that eðw 0
i Þ > sðwjÞ. Now, we again let M1 ¼ Mðw1;w2; . . . ;

wkÞ be the matrix satisfying conditions (3.2) and (3.3), which is obtained from M

by appropriate right-elementary transformation. Then, since M is irreducible, we

see that M1 satisfies, in addition, the following condition

sðwkÞ < eðw1Þ ¼ eðw2Þ ¼ � � � ¼ eðwkÞ:ð3:4Þ

Since M1 is also sincere, we have sðwiÞ ¼ i and eðwiÞ ¼ k þ 1 for each i ¼
1; 2; . . . ; k; that is,

sðwkÞ ¼ k < eðw1Þ ¼ eðw2Þ ¼ � � � ¼ eðwkÞ ¼ k þ 1 ð¼ nþ 1Þ:

Thus we conclude that k ¼ n; so that, applying [5, Lemma 3.1], we obtain our

assertion. r

Theorem 3.4. Let L ¼ Lðw1;w2; . . . ;wkÞ be the subspace generated by k

roots w1;w2; . . . ;wk A F of type An ðnb 1Þ, and M ¼ Mðw1;w2; . . . ;wkÞ the cor-

responding matrix. Assume that M is full-rank and sincere, then there exists

a partition ðm1; . . . ;mqÞ of k into q ð¼ nþ 1� kÞ summands satisfying M@
Rðm1Þl � � �lRðmqÞ. These Rðm1Þ; . . . ;RðmqÞ are uniquely determined from L,

up to numbering.

Proof. If M is irreducible, our theorem follows from Proposition 3.3.

Suppose that M is reducible; then we have an irreducible decomposition as in

(2.2) with a permutation P and an invertible Q. In (2.2), each Mi, Yi is an

ni �mi, ni � k matrix, respectively, and they are full-rank, sincere, and irre-

ducible. Then, by Lemma 2.8 each column of Yi is either the zero vector or a

root of type Ani�1. Thus, applying Proposition 3.3 to each Mi, we see that

M@M1 l � � �lMq FRðm1Þl � � �lRðmqÞ:ð3:5Þ

Since each RðmiÞ has ni ¼ mi þ 1 rows, the number of rows of the right-hand side

of (3.5) is equal to nþ 1 ¼ m1 þ � � � þmq þ q. Thus we have q ¼ nþ 1� k,

because M has k ¼ m1 þ � � � þmq columns. The uniqueness of decomposition

in the right-hand side of (3.5) follows from Lemma 3.2. Thus we obtain our

theorem. r

Remark 3.5. We call the right-hand side of (3.5) a standard form of L. For

each subspace generated by some roots of type An, its standard form is uniquely

111Associated Stirling numbers and counting subspaces



determined under the condition m1 a � � �amq; so that, to classify such subspaces,

we are enough to discriminate the standard forms.

Corollary 3.6. The number a0ðn; kÞ of distinct sincere k-dimensional sub-

spaces generated by some roots in F � E ðnþ1Þ � Rnþ1 of type An is given as

follows:

a0ðn; kÞ ¼ S2ðnþ 1; qÞ ¼ S2ðnþ 1; nþ 1� kÞ:ð3:6Þ

Proof. We consider the decomposition as in the right-hand side of (3.5).

From nþ 1 rows, we select some rows to place q blocks Rðm1Þ;Rðm2Þ; . . . ;RðmqÞ.
Since each block has more than one rows, the number of such ways are presented

by using the 2-associated Stirling number S2ðnþ 1; qÞ. r

Theorem 3.7. Let L ¼ Lðw1;w2; . . . ;wkÞ be the subspace generated by k

roots w1;w2; . . . ;wk A F of type An ðnb 1Þ, and M ¼ Mðw1;w2; . . . ;wkÞ the cor-

responding matrix. Assume that M is full-rank and has s zero rows. Then there

exists a partition ðm1; . . . ;mqÞ of k into q ð¼ nþ 1� k � sÞ summands satisfying

M@
Rðm1Þl � � �lRðmqÞ

O

" #
;

where O denotes the zero matrix of size s� k. These Rðm1Þ; . . . ;RðmqÞ are

uniquely determined from L, up to numbering.

Proof. By appropriate permutation of rows, we may assume that the last

s rows of M are zeros. The matrix consisting of the remaining rows is sincere;

so that our assertion follows from Theorem 3.4. r

Corollary 3.8. The number aðn; kÞ of distinct k-dimensional subspaces

(which may not be sincere) generated by some roots in F � E ðnþ1Þ � Rnþ1 of type

An is given as follows:

aðn; kÞ ¼
Xn�k

s¼0

nþ 1

s

� �
� a0ðn� s; kÞð3:7Þ

¼ S1ðnþ 1; qþ sÞ ¼ S1ðnþ 1; nþ 1� kÞ:ð3:8Þ

Proof. The idea of the proof for the first identity is similar to that of

Theorem 3.7. The second can be proved by using a similar way to the proof of

Corollary 3.6. r
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Here we will put ~aaðn; kÞ ¼ aðn; n� kÞ and ~aa0ðn; kÞ ¼ a0ðn; n� kÞ, and rewrite

(3.8) and (3.6) respectively. Thus we have the following:

~aaðn; kÞ ¼ S1ðnþ 1; k þ 1Þ ¼ f1ðnþ 1; k þ 1; 0; 1; 0Þ;ð3:9Þ

~aa0ðn; kÞ ¼ S2ðnþ 1; k þ 1Þ ¼ f2ðnþ 1; k þ 1; 0; 1; 0Þ:ð3:10Þ

By using the explicit formula (1.15) for classical Stirling numbers of the second

kind, we can rewrite (3.9), (3.8) as follows; this is the explicit formula for the

number of subspaces of type An:

~aaðn; kÞ ¼ 1

ðk þ 1Þ! �
Xkþ1

l¼0

ð�1Þkþlþ1 � k þ 1

l

� �
� l nþ1;

aðn; kÞ ¼ 1

ðn� k þ 1Þ! �
Xn�kþ1

l¼0

ð�1Þn�kþlþ1 � n� k þ 1

l

� �
� l nþ1:

On the other hand, from (3.9), (3.10), we obtain the exponential GF

Xy
n¼0

~aaðn; kÞ
n!

xn ¼ d

dx
F1;kþ1ðxÞ ¼

1

k!
� ðex � 1Þk � ex;

Xy
n¼0

~aa0ðn; kÞ
n!

xn ¼ d

dx
F2;kþ1ðxÞ ¼

1

k!
� ðex � 1� xÞk � ðex � 1Þ;

respectively. In addition, from (3.7), we obtain the following formula

~aaðn; kÞ ¼
Xk
s¼0

nþ 1

s

� �
� ~aa0ðn� s; k � sÞ:ð3:11Þ

This is the formula for Stirling numbers of the second kind (see (4.5) of Howard

[3], or Riordan [6, p. 102]); that is obtained from our Theorem 1.14, specializ-

ing parameters r ¼ 1, a ¼ 0, b ¼ 1 and g ¼ 0 (hence d1 ¼ 1 and C1ðnþ 1; sÞ ¼
nþ1
s

� �
):

S1ðnþ 1; k þ 1Þ ¼
Xk
s¼0

ds1 � C1ðnþ 1; sÞ � S2ðnþ 1� s; k þ 1� sÞ:

3.2. Bn or Cn-type. In this subsection, we classify subspaces generated by

some roots of type Bn or Cn. Here we denote by F the root system either FðBnÞ
or FðCnÞ, which can be respectively regarded as a finite subset of Rn:
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FðBnÞ ¼ fGðeðnÞi G e
ðnÞ
j Þ; 1a i < ja ng [ fGe

ðnÞ
1 ;Ge

ðnÞ
2 ; . . . ;GeðnÞn g;

FðCnÞ ¼ fGðeðnÞi G e
ðnÞ
j Þ; 1a i < ja ng [ fG2e

ðnÞ
1 ;G2e

ðnÞ
2 ; . . . ;G2eðnÞn g:

So the classification for Cn-type is parallel to that of Bn-type.

Notation 3.9. We denote by ~RRðmÞ the set of ðmþ 1Þ �m matrices as

follows:

~RRðmÞ ¼ fMðv1; v2; . . . ; vmÞ; vi ¼ ei þ eiþ1 or ei � eiþ1 for i ¼ 1; 2; . . . ;mg:

We note that the cardinality of ~RRðmÞ is equal to 2m.

Remark 3.10. For two matrices X ;Y A ~RRðmÞ, we have X VY if X 0Y .

Indeed, X FY implies LðX Þ ¼ LðY Þ; and then LðX Þ? ¼ LðYÞ?. Here LðX Þ?

and LðYÞ? are one-dimensional, it follows from [5, Theorem 5.4(2)], that X ¼ Y .

Lemma 3.11. Let m ¼ ðm1; . . . ;mqÞ and m 0 ¼ ðm 0
1; . . . ;m

0
qÞ be partitions of a

positive integer k into q summands with the condition (3.1). For each i ¼ 1; . . . ; q,

we choose Xi A ~RRðmiÞ and X 0
i A ~RRðm 0

i Þ, and put M ¼ X1 l � � �lXq and M 0 ¼
X 0

1 l � � �lX 0
q. If M@M 0, then we have m ¼ m 0; in particular, Xi ¼ X 0

i for each

i ¼ 1; . . . ; q.

Proof. This can be proved by a similar way to the proof of Lemma 3.2.

r

Lemma 3.12. For k roots w1;w2; . . . ;wk A F ð2a ka nÞ, assume that M ¼
Mðw1;w2; . . . ;wkÞ is full-rank and sincere. If sðw1Þ ¼ sðw2Þ and eðw1Þ ¼ eðw2Þ, then
M is reducible.

Proof. If k ¼ n ¼ 2, then M is a square matrix of full-rank. Hence it can be

transformed to the identity matrix of degree two; that is to say, M is reducible.

Assume that 2a k < n. Then the condition sðw1Þ ¼ sðw2Þ and eðw1Þ ¼ eðw2Þ
implies that

M@
X Z

O Y

" #
;

where X is a square matrix of degree two. In addition, since X is of full-rank,

by appropriate right-elementary transformation, we can transform Z to a zero

matrix; hence M is reducible. r
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Proposition 3.13. Let L ¼ Lðw1;w2; . . . ;wnÞ be the subspace generated by n

roots w1;w2; . . . ;wn A F, and M ¼ Mðw1;w2; . . . ;wnÞ the corresponding matrix. If

M is full-rank, then we can take the standard basis e1; e2; . . . ; en of Rn as a basis

of L; in particular, we have MF In.

Proof. Since M is full-rank, it is a non-singular matrix of degree n. Hence,

multiplying M�1 from the right-hand side, we have our assertion. r

Proposition 3.14. Let L ¼ Lðw1;w2; . . . ;wkÞ be the subspace generated by

k ð< nÞ roots w1;w2; . . . ;wk A F, and M ¼ Mðw1;w2; . . . ;wkÞ the corresponding

matrix. If M is full-rank, sincere, and irreducible, then we can take positive roots

v1; v2; . . . ; vk as a basis of L, where each vi is of the form vi ¼ ei � eiþ1 or ei þ eiþ1.

That is to say, for such M, we can choose a unique X A ~RRðkÞ satisfying MFX.

In particular, we have k ¼ n� 1.

Proof. First we consider the case of k ¼ 1. Then M is not a square matrix

and we have w1 0Ge
ðnÞ
i , because k < n and M is sincere. Thus the assumption

that M is sincere implies that w1 ¼ e
ðnÞ
1 G e

ðnÞ
2 ; hence we have n ¼ 2. Next let k

be grater than 1. Since M is irreducible, by Remark 2.7(1), we may assume that

sðwiÞ0 eðwiÞ for each column wi of M; that is,

wi A fGðeðnÞi G e
ðnÞ
j Þ; 1a i < ja ng:

In addition, if there exists an index i such that sðwiÞ ¼ sðwiþ1Þ, then it follows

from Lemma 3.12 that eðwiÞ0 eðwiþ1Þ, since M is irreducible. Here, in addition,

we may assume that M satisfies the conditions (3.2), (3.3) and (3.4). Since M is

sincere, we have sðwiÞ ¼ i and eðwiÞ ¼ k þ 1 ð¼ nÞ for each i ¼ 1; 2; . . . ; k; that is,

sðwkÞ ¼ k < eðw1Þ ¼ eðw2Þ ¼ � � � ¼ eðwkÞ ¼ k þ 1 ð¼ nÞ:

Thus, M should be one-codimensional; so that our assertion follows from [5,

Proposition 5.2]. The uniqueness follows from Remark 3.10. r

Theorem 3.15. Let L ¼ Lðw1;w2; . . . ;wkÞ be the subspace generated by k

roots w1; . . . ;wk A F of type Bn or Cn ðnb 2Þ, and M ¼ Mðw1; . . . ;wkÞ the cor-

responding matrix. Assume that M is full-rank and sincere.

(1) If k ¼ n, then we have MF In; that is, we can choose the standard basis

e1; e2; . . . ; en of Rn as a basis of L.

(2) If k < n, then there exist a non-negative integer t and a partition ðm1; . . . ;

mqÞ of k into q ð¼ n� kÞ summands such that we have M@ It l
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X1 l � � �lXq with Xi A ~RRðmiÞ for each i ¼ 1; . . . ; q. These X1; . . . ;Xq are

uniquely determined from L, up to numbering.

Proof. Here we let F ¼ FðBnÞ; the case of Cn-type can be proved similarly.

If k ¼ n, or if k < n and M is irreducible, then our assertion follows from

Proposition 3.13, or 3.14, respectively. Suppose that M is reducible; then de-

compose M into a direct sum of irreducible matrices by appropriate right-

elementary transformation and replacing rows. Then, if there exist some square

blocks, we gather ones as the first block. Thus we have M@ It lM1 l � � �lMq,

where each Mi is of size ni �mi ð1ami < niÞ, full-rank, sincere, and irreducible.

Here we rewrite it as

PMQ ¼ It lM1 l � � �lMq with permutation P and invertible Q; and

tðPMÞ ¼ ½ tY0 j tY1 j � � � j tYq� where each Yi is of size ni � k and n0 ¼ t:
ð3:12Þ

Then each column of PM is a root of type Bn, and each Yi is irreducible by

Lemma 2.8. Moreover, each column of Yi satisfies the condition that it is either

the zero vector or a root of type Bni . Therefore, applying Proposition 3.14 to each

Mi, we can choose Xi A ~RRðmiÞ ði ¼ 1; . . . ; qÞ such that

M@ It lM1 l � � �lMq F It lX1 l � � �lXq:ð3:13Þ

Since each Xi A ~RRðmiÞ has ni ¼ mi þ 1 rows, the number of the right-hand side of

(3.13) is equal to n ¼ tþm1 þ � � � þmq þ q; so that we have q ¼ n� k, because

M has k ¼ tþm1 þ � � � þmq columns. The uniqueness of the decomposition

follows from Lemma 3.11. Thus we obtain our theorem. r

Corollary 3.16. The number b0ðn; kÞ of distinct k-dimensional sincere sub-

spaces generated by some roots in F � Rn of type Bn is given by

b0ðn; kÞ ¼
Xk
t¼0

n

t

� �
� 2k�t � S2ðn� t; n� kÞ:ð3:14Þ

Proof. We count the number of decompositions as the right-hand side of

(3.13). First we choose and fix t rows where the identity matrix of degree t is

placed. Next we put q blocks X1; . . . ;Xq, each of which has at least two rows.

Since aRðmiÞ ¼ 2mi , the number of such candidates is given by

n

t

� �
� 2m1þ���þmq � S2ðn� t; qÞ:
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Here we note that m1 þ � � � þmq ¼ k � t and q ¼ n� k. Since the size t of square

matrix runs from zero to k, we obtain our assertion. r

Theorem 3.17. Let L ¼ Lðw1;w2; . . . ;wkÞ be the subspace generated by k

roots w1;w2; . . . ;wk A F of type Bn ðnb 2Þ, and M ¼ Mðw1;w2; . . . ;wkÞ the cor-

responding matrix. Assume that M is full-rank and has s zero rows. Then there

exist a non-negative integer t and a partition ðm1; . . . ;mqÞ of k into q ð¼ n� k � sÞ
summands such that we have

M@
It lX1 lX2 l � � �lXq

O

" #
ð3:15Þ

with Xi A ~RRðmiÞ for each i ¼ 1; . . . ; q. These X1; . . . ;Xq are uniquely determined

from L, up to numbering. Here, if t ¼ 0 or q ¼ 0, then we should consider the

corresponding things to be trivial.

Proof. By appropriate permutation of rows, we may assume that the last

s rows of M are zeros. The matrix consisting of the remaining rows is sincere;

so that our assertion follows from Theorem 3.15. r

Corollary 3.18. The number bðn; kÞ of distinct k-dimensional subspaces

generated by some roots in F � Rn of type Bn is given by

bðn; kÞ ¼
Xn�k

s¼0

n

s

� �
� b0ðn� s; kÞð3:16Þ

¼
Xk
t¼0

n

t

� �
� 2k�t � S1ðn� t; n� kÞ:ð3:17Þ

Proof. The idea of the proof for the first identity is similar to that of

Theorem 3.17. The second can be proved by using a similar way to the proof

of Corollary 3.16. r

Remark 3.19. Let c0ðn; kÞ (resp. cðn; kÞ) be the number of distinct

k-dimensional subspaces, which is sincere (resp. may not be sincere), gener-

ated by some roots in F � Rn of type Cn. Then we have cðn; sÞ ¼ bðn; sÞ and

c0ðn; sÞ ¼ b0ðn; sÞ, since the standard forms of Cn-type are identical with that of

Bn-type.
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Here we will put ~bbðn; kÞ ¼ bðn; n� kÞ and ~bb0ðn; kÞ ¼ b0ðn; n� kÞ, and rewrite

(3.17) and (3.14), respectively. Thus we have the following:

~bbðn; kÞ ¼
Xn
j¼k

n

j

� �
� 2 j�k � S1ð j; kÞ ¼ f1ðn; k; 0; 2; 1Þ;ð3:18Þ

~bb0ðn; kÞ ¼
Xn
j¼2k

n

j

� �
� 2 j�k � S2ð j; kÞ ¼ f2ðn; k; 0; 2; 1Þ:ð3:19Þ

By using the explicit formula (1.15) for unified Stirling numbers, we can rewrite

(3.18), (3.17) as follows; this is the explicit formula for the number of subspaces

of type Bn:

~bbðn; kÞ ¼ 1

2k � k! �
Xk
l¼0

ð�1Þkþl � k

l

� �
� ð2l þ 1Þn;

bðn; kÞ ¼ 1

2n�k � ðn� kÞ! �
Xn�k

l¼0

ð�1Þn�kþl � n� k

l

� �
� ð2l þ 1Þn:

On the other hand, from (3.18), (3.19) we obtain the exponential GF

Xy
n¼0

~bbðn; kÞ
n!

xn ¼ 1

k!
� ex � 1

2k
� ðe2x � 1Þk;

Xy
n¼0

~bb0ðn; kÞ
n!

xn ¼ 1

k!
� ex � 1

2k
� ðe2x � 1� 2xÞk;

respectively. In addition, from (3.16), we obtain the following formula

~bbðn; kÞ ¼
Xk
s¼0

n

s

� �
� ~bb0ðn� s; k � sÞ:ð3:20Þ

We can obtain from Theorem 1.14, specializing parameters r ¼ 1, a ¼ 0, b ¼ 2

and g ¼ 1 (hence d1 ¼ 1 and C1ðn; sÞ ¼ n
s

� �
):

f1ðn; k; 0; 2; 1Þ ¼
Xk
s¼0

ds1 � C1ðn; sÞ � f2ðn� s; k � s; 0; 2; 1Þ:

3.3. Dn-type. In this subsection, we denote by F ¼ FðDnÞ the root system

of type Dn, which can be regarded as a finite subset of Rn:

F ¼ FðDnÞ ¼ fGðeðnÞi G e
ðnÞ
j Þ; 1a i < ja ng:
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Therefore we can consider the root system FðDnÞ to be a subset of FðBnÞ.
We note that Lemma 3.12 and Propositions 3.13, 3.14 are still valid for Dn-type.

Hence the standard forms of Dn-type are almost the same as those of Bn-type:

Theorem 3.20. Let L ¼ Lðw1;w2; . . . ;wkÞ be the subspace generated by k

roots w1;w2; . . . ;wk A F of type Dn ðnb 4Þ, and M ¼ Mðw1;w2; . . . ;wkÞ the cor-

responding matrix. Assume that M is full-rank and sincere.

(1) If k ¼ n, then we have MF In; that is, we can choose the standard basis

e1; e2; . . . ; en of Rn as a basis of L.

(2) If k < n, then there exist a non-negative integer t ð0 1Þ and a partition

ðm1; . . . ;mqÞ of k into q ð¼ n� kÞ summands such that we have M@ It l

X1 l � � �lXq with Xi A ~RRðmiÞ for each i ¼ 1; . . . ; q. These X1; . . . ;Xq are

uniquely determined from L, up to numbering.

Proof. If k ¼ n, or if k < n and M is irreducible, then our assertion follows

from Proposition 3.13, or 3.14, respectively. Suppose that M is reducible; then, as

in the proof of Theorem 3.15, we have an irreducible decomposition M@ It l

M1 l � � �lMq, where each Mi is of size ni �mi ð1ami < niÞ, full-rank, sincere,
and irreducible. Here we rewrite it as (3.12). Then each column of PM is a root

of type Dn, and each Yi is irreducible by Lemma 2.8. Moreover, each column

of Yi satisfies the condition that it is either the zero vector or a root of type

Dni . Therefore, applying Proposition 3.14 to each Mi, we can choose Xi A ~RRðmiÞ
ði ¼ 1; . . . ; qÞ satisfying (3.13). Thus we have q ¼ n� k as in the proof of

Theorem 3.15. The uniqueness of the decomposition can be proved by using

Lemma 3.11.

Suppose that t ¼ 1 in (3.13). Then the ending of the first column of PM in

(3.12) is grater than 1. In addition, the first column of a unique one of Y1; . . . ;Yq

is not zero, and its starting is identical with its ending. This contradicts to the

condition that Yi is irreducible, because of ni b 2 (see Remark 2.7). Thus we

conclude that t0 1 and we obtain our theorem. r

Corollary 3.21. The number d 0ðn; kÞ of distinct sincere k-dimensional

subspaces generated by some roots in F � Rn of type Dn is given as follows:

d 0ðn; kÞ ¼ b0ðn; kÞ � n � 2k�1 � S2ðn� 1; n� kÞ:ð3:21Þ

Proof. The standard forms of Dn-type are almost the same as those of Bn-

type, except for the square matrix of size t ¼ 1; thus (3.21) follows immediately

from (3.14). r
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Theorem 3.22. Let L ¼ Lðw1;w2; . . . ;wkÞ be the subspace generated by k

roots w1;w2; . . . ;wk A F of type Dn ðnb 4Þ, and M ¼ Mðw1;w2; . . . ;wkÞ the cor-

responding matrix. Assume that M is full-rank and has s zero rows. Then there

exist a non-negative integer t ð0 1Þ and a partition ðm1; . . . ;mqÞ of k into q ð¼ n�
k � sÞ summands such that we have (3.15) with Xi A ~RRðmiÞ for each i ¼ 1; . . . ; q.

These X1; . . . ;Xq are uniquely determined from L, up to numbering. Here, if t ¼ 0

or q ¼ 0, then we should consider the corresponding things to be trivial.

Proof. By appropriate permutation of rows, we may assume that the last

s rows of M are zeros. The matrix consisting of the remaining rows is sincere;

so that our assertion follows from Theorem 3.20. r

Corollary 3.23. The number dðn; kÞ of distinct k-dimensional subspaces

generated by some roots in F � Rn of type Dn is given as follows:

dðn; kÞ ¼
Xn�k

s¼0

n

s

� �
� d 0ðn� s; kÞð3:22Þ

¼ bðn; kÞ � n � 2k�1 � S1ðn� 1; n� kÞ:ð3:23Þ

Proof. The idea of the proof is similar to that of Bn-type. r

Here, putting ~ddðn; kÞ ¼ dðn; n� kÞ and ~dd 0ðn; kÞ ¼ d 0ðn; n� kÞ, as in Bn or

An-type, we rewrite (3.23) and (3.21) as follows:

~ddðn; kÞ ¼ ~bbðn; kÞ � n � 2n�k�1 � S1ðn� 1; kÞ;ð3:24Þ

~dd 0ðn; kÞ ¼ ~bb0ðn; kÞ � n � 2n�k�1 � S2ðn� 1; kÞ:ð3:25Þ

By using the explicit formula for An and Bn-type, we will rewrite (3.24), (3.23),

respectively; thus we obtain the explicit formulas for Dn-type:

~ddðn; kÞ ¼ 1

2k � k! �
Xk
l¼0

ð�1Þkþl � k

l

� �
� fð2l þ 1Þn � n � ð2lÞn�1g;

dðn; kÞ ¼ 1

2n�k � ðn� kÞ! �
Xn�k

l¼0

ð�1Þn�kþl � n� k

l

� �
� fð2l þ 1Þn � n � ð2lÞn�1g:

On the other hand, from (3.24), (3.25), we obtain the exponential GF
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Xy
n¼0

~ddðn; kÞ
n!

xn ¼ 1

2k � k! � ðe
x � xÞ � ðe2x � 1Þk;ð3:26Þ

Xy
n¼0

~dd 0ðn; kÞ
n!

xn ¼ 1

2k � k! � ðe
x � xÞ � ðe2x � 1� 2xÞk;ð3:27Þ

respectively. In addition, from (3.22), we obtain the following formula

~ddðn; kÞ ¼
Xk
s¼0

n

s

� �
� ~dd 0ðn� s; k � sÞ:ð3:28Þ

Thus we can enumerate the number of distinct subspaces for Dn-type, by using

that of distinct sincere subspaces, as in (3.11) or (3.20). In fact, this can be

considered to be an inversion formula in the following way. So, putting pðxÞ ¼
ex � x and

qrðxÞ ¼
1

2
e2x �

Xr�1

j¼0

1

j!
ð2xÞ j

 !
¼
Xy
j¼r

2 j�1

j!
x j;

we define the function

Gr;kðxÞ ¼
1

k!
� pðxÞ � qrðxÞk ¼

Xy
n¼0

grðn; kÞ
n!

xn

for r ¼ 1; 2. Then it follows from (3.26) and (3.27) that ~ddðn; kÞ ¼ g1ðn; kÞ and
~dd 0ðn; kÞ ¼ g2ðn; kÞ. For the functions q1ðxÞ and q2ðxÞ, we note that the condition

for di¤erence (1.11) is satisfied; so we conclude that (3.28) is an inversion formula

for g1ðn; kÞ and g2ðn; kÞ.

4. Counting Subspaces for Exceptional Type

4.1. A Strategy for Enumerating the Numbers for Exceptional Type. Let F

be a root system of an arbitrary exceptional-type (except for G2-type) and Fþ the

subset consisting of all positive roots with respect to a fixed lexicographical order.

Our strategy for enumerating subspaces for exceptional-type is similar as in the

case of co-dimension one; here we recall it from [5].

Let L be a subspace generated by some roots in F, and k its dimension, and

put Cþ ¼ L \Fþ. We will choose k positive roots a1; a2; . . . ; ak as follows:

a1 ¼ min Cþ; and ap ¼ minðCþnha1; . . . ; ap�1iRÞ for p ¼ 2; 3; . . . ; k:
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We call a1; a2; . . . ; ak the refined basis of L, which is nothing but the simple roots

of the subsystem C ¼ L \F with respect to the lexicographical order.

We number the positive roots as Fþ ¼ fa1; a2; . . . ; alg with a1 < a2 < � � � <
al , where l denotes the number of positive roots of F. For p ¼ 1; 2; . . . ; l � 1, we

put BðpÞ ¼ f j; aj � ap B Fþ and p < ja lg. If k roots ai1 ; ai2 ; . . . ; aik consist with

a refined basis, then we must necessarily have

ip A Bði1Þ \ � � � \ Bðip�1Þ for p ¼ 2; 3; . . . ; k:ð4:1Þ

Since each subspace has a unique refined basis, to classify subspaces generated by

some roots in F, it is su‰cient to classify the refined bases.

To do this, first we find out all k-tuples I ¼ ði1; i2; . . . ; ikÞ with i1 < i2 < � � � <
ik satisfying the condition (4.1). The number of such k-tuples is not so large as

compared with the binomial coe‰cient l
k

� �
. Next we want to check whether the

corresponding roots ai1 ; ai2 ; . . . ; aik consist with the refined basis of Lðai1 ; ai2 ; . . . ;
aik Þ, or not. In fact, putting RðI ; pÞ ¼ fa A L \Fþ; a < aipg for p ¼ 2; 3; . . . ; k,

we have an easy criterion: For a k-tuple I ¼ ði1; i2; . . . ; ikÞ, the corresponding

roots ai1 ; ai2 ; . . . ; aik consist with a refined basis if and only if

dimhRðI ; pÞiR ¼ p� 1 for p ¼ 2; 3; . . . ; k:ð4:2Þ

We can easily check the conditions (4.1) and (4.2) by using computer. Thus

we obtain the numbers for exceptional-type that are presented in Theorems 4.1

and 4.2. Note that our assertion for G2-type is trivial.

4.2. En-type. The root system FðE6Þ of type E6 can be regarded as a finite

subset of V ð6Þ:

FðE6Þ ¼ fGei G ej A V ð6Þ; 1a i < ja 5g

[ G
1

2
e8 � e7 � e6 þ

X5
i¼1

ð�1Þniei

 !
A V ð6Þ;

X5
i¼1

ni is even

( )
;

where V ð6Þ is the ortho-complement of the subspace spanned by tð0; . . . ; 0; 1; 0; 1Þ
and tð0; . . . ; 0; 0; 1; 1Þ A R8; that is, V ð6Þ ¼ fx ¼ ðxiÞ8i¼1 A R8; x6 ¼ x7 ¼ �x8g.

The root system FðE7Þ of type E7 can be regarded as a finite subset of V ð7Þ:

FðE7Þ ¼ fGei G ej A V ð7Þ; 1a i < ja 6g [ fGðe7 � e8Þg

[ G
1

2
e7 � e8 þ

X6
i¼1

ð�1Þniei

 !
A V ð7Þ;

X6
i¼1

ni is odd

( )
;
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where V ð7Þ is the hyperplane of vectors orthogonal to tð0; . . . ; 0; 1; 1Þ A R8; that is,

V ð7Þ ¼ fx ¼ ðxiÞ8i¼1 A R8; x7 ¼ �x8g.
The root system FðE8Þ of type E8 can be regarded as a finite subset of

R8:

FðE8Þ ¼ fGei G ej A R8; 1a i < ja 8g

[ 1

2

X8
i¼1

ð�1Þniei A R8;
X8
i¼1

ni is even

( )
:

Theorem 4.1. We have Table 4.1 for the number eðn; kÞ of distinct

k-dimensional subspaces generated by some roots in FðEnÞ ðn ¼ 6; 7; 8Þ, and also

we have Table 4.2 for the number e0ðn; kÞ of distinct k-dimensional sincere

subspaces.

4.3. F4 or G2-type. The root system FðF4Þ of type F4 can be regarded as a

finite subset of R4:

eðn; kÞ n ¼ 6 n ¼ 7 n ¼ 8

k ¼ 1 36 63 120

2 390 1281 4900

3 1530 10395 85680

4 2001 33411 661542

5 639 36435 2091600

6 1 8821 2221780

7 1 440880

8 1

Table 4.1. The values of eðn; kÞ

e0ðn; kÞ n ¼ 6 n ¼ 7 n ¼ 8

k ¼ 1 16 32 64

2 280 976 3808

3 1340 9200 76384

4 1920 31560 627536

5 638 35696 2053072

6 1 8814 2214856

7 1 440872

8 1

Table 4.2. The values of e0ðn; kÞ
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FðF4Þ ¼ fGei A R4; 1a ia 4g [ fGei G ej A R4; 1a i < ja 4g

[ 1

2
ðGe1 G e2 G e3 G e4Þ

� �
:

The root system FðG2Þ of type G2 can be regarded as a finite subset of V ð3Þ:

FðG2Þ ¼ fGðei � ejÞ A V ð3Þ; 1a i < ja 3g

[ fGð2e1 � e2 � e3Þ;Gð2e2 � e1 � e3Þ;Gð2e3 � e1 � e2Þg:

where V ð3Þ is the hyperplane of vectors orthogonal to tð1; 1; 1Þ A R3; that is,

V ð3Þ ¼ fx ¼ ðxiÞ3i¼1 A R3; x1 þ x2 þ x3 ¼ 0g.

Theorem 4.2. We have Table 4.3 for the number f ðkÞ (resp. gðkÞ) of distinct
k-dimensional subspaces generated by some roots in FðF4Þ (resp. FðG2Þ). We also

have Table 4.4 for the number f 0ðkÞ and g0ðkÞ of distinct k-dimensional sincere

subspaces.
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