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ASSOCIATED BINOMIAL INVERSION FOR UNIFIED
STIRLING NUMBERS AND COUNTING SUBSPACES
GENERATED BY SUBSETS OF A ROOT SYSTEM

By

Tomohiro KamivosHi, Makoto NAGURA and Shin-ichi OTANI

Abstract. We introduce an associated version of the binomial inver-
sion for unified Stirling numbers defined by Hsu and Shiue. This
naturally appears when we count the number of subspaces generated
by subsets of a root system. We count such subspaces of any dimen-
sion by using associated unified Stirling numbers, and then we will
also give a combinatorial interpretation of our inversion formula.
In particular, the well-known explicit formula for classical Stirling
numbers of the second kind can be understood as a special case of
our formula.

Introduction
For a sequence a = (agp,ai,...), we define a new sequence b = (b, by,...) by
d v (1 ~ . (n

We say that b is the binomial transform of a, and then we have a, = Y7 (}) - b;
for any n. This fact is well-known (see, for example, Riordan [7, page 43]), and
we call it the binomial inversion formula. In this paper, we will introduce an
associated version of binomial inversion, and explain some combinatorial inter-
pretation of it.

Let r be a fixed non-negative integer. For non-negative integers n and k with
n >rk, we define the integer C,(n,k) by
nl-()7F

Co(n k) = R

2010 Mathematics Subject Classification: Primary 11B73; Secondary 17B22, 05A15, 15A21.
Key words and phrases: associated binomial inversion, unified Stirling number, root system.
Received March 26, 2018.

Revised July 12, 2018.



98 Tomohiro KamrvosHr, Makoto NAGURA and Shin-ichi OTANI

This appears in various situation of combinatorics; for example, see Wall [8].
We call it the r-associated binomial coefficient C,(n,k). Indeed, this is a gen-
eralization of the ordinary binomial coefficient, since we have Ci(n,k) = (})
in the case of r=1, see Remark 1.5(4). Using this, for a sequence a =
(ap,ay,...), we define the r-associated binomial transform of degree & with residue
p (here J is a non-zero constant and p is a non-negative integer less than r)
by

(0.1) by=Y (=1)-67-C(rn+p,j)-anj.

j=0

In this paper, we will give an inversion formula (Theorem 1.14) for r-associated
unified Stirling numbers f,(n,k) = f.(n,k;o,f,y) which are also an associated
version of the unified Stirling numbers defined by Hsu and Shiue [4]. It follows
from our inversion formula that the (r -+ 1)-associated unified Stirling numbers
fr+1 can be obtained from f, by the r-associated binomial transformation. In
particular, the well-known explicit formula for classical Stirling numbers of
the second kind can be regarded as the binomial transform of the “0-associated”
fo-

On the other hand, a kind of 2-associated unified Stirling numbers nat-
urally appear in the context of counting the number of subspaces that are
generated by some roots in a root system; see Corollaries 3.6, 3.16 and 3.21.
Although such subspaces of co-dimension one have been counted in [5], a
combinatorial interpretation of our inversion formula concerns with the num-
ber of subspaces, not only of co-dimension one but also any co-dimension;
so, in this paper, we count such subspaces as distinct sets. To do this, we
gave a standard form of the matrix corresponding to such a subspace in the
case where the root system is classical type (that is, A,, B,, C, or D,-type),
see Theorems 3.7, 3.17 and 3.22. For exceptional type, we use the computer
as in [5].

The authors would like to dedicate this paper on the occasion of his
seventieth birthday to Professor Tatsuo KiMURA, who gave to the authors much
encouragement and valuable suggestions for their study, or life.

1. Associated Unified Stirling Numbers

1.1. Definition and Some Remarks. In this section we will introduce an
associated version of the unified Stirling numbers defined by Hsu and Shiue [4].
First we define it and give some remarks.
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DerINITION 1.1, For a positive integer n, we denote by (y|«), the falling
factorial which is defined by

(le), = vy —o)(y = 20) -+ (y — (n — Do)

and put (yla), =1 for any « and p if its subscript is equal to zero.

DerFmviTION 1.2, Let r be a fixed positive integer. For two real numbers o
and S, we define the constant J, = J,(o, ) by

1 if (f— .1 =0,
8 = S(t, ) = i (B = o),y
(f—alo),_; otherwise.

DrerFiniTION 1.3, Let r be a fixed positive integer, and we fix three real
parameters o, f and y. For positive integers n and k, we define the r-associated
unified Stirling number f,(n,k) = f.(n,k;o,f,y) by the following recurrence re-
lation:

n—1

frn k) ={—a(m—1)+pk+7y}- filn—1,k)+0,- <r— 1) frln—rk—1),
where we put f.(n,0) = (y|«), for n >0, and fi(n,k) =0 for n <O0.
Note that we have f.(n,k) =0 if n < rk.

DrFINITION 1.4, Let S,(n,k) be the r-associated Stirling number of the
second kind; that is, the number of partitions of the set N with #N = n, into
k blocks, all of cardinality grater than or equal to r (see Comtet [1, page 221]).

REmARK 1.5. Specializing parameters o,  and y, we have the following:

(1) In the case of r =1, we have J, =1 for any o« and B. Hence fi(n,k) is
nothing but the unified Stirling number defined by Hsu and Shiue [4]:
fi(n k2, B,7) = S(n, ks, B, 7).

(2) If (a,4,y) = (1,0,0), then it is the r-associated signed Stirling number of
the first kind: f.(n,k;1,0,0) = #,(n,k). On the other hand, in the case of
(o, B,y) = (—=1,0,0), it is the r-associated signless Stirling number of the
first kind f(n,k;—1,0,0) = T.(n,k) (see Comtet [1, page 256]); that is,
h(n k) = (=1)"% - Tu(n, k)

(3) If (o, B,7) = (0,1,0), then we have the r-associated Stirling number of the
second kind: fi(n,k;0,1,0) = S,(n, k).
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4) If (o, p,y) =(0,0,1), then we have J, = 1; so that it is a generalization
of the binomial coefficient (see Wall [8]):

n!- (r!)fk

fr(n,k;0,0,1) =

: Co(n, k).

We will call this the r-associated binomial coefficient. Indeed, C(n,k) =
(Z) for the case of r =1 is nothing but the ordinary binomial coefficient.

1.2. Exponential Generating Function. Now we define the exponential gen-
erating function (GF) of f.(n,k) = f,(n,k;a,p,7) by

n: n:

X fr(n, k = fr(n,k)
Fat) =310 = 5 PO
n=0 n=rk
Here we note that we are enough to take the sum from n = rk, since we have
fr(nk) =0 if n <rk.

PROPOSITION 1.6. The GF F, i (x) of the r-associated unified Stirling num-
bers f,(n, k), for fixed k, satisfies the following linear differential equation of rank
one:

D) (o)L F(0) = (B +9) Foalx) +

5’ r—1
e X - Fp p-1(x).

(r=1)
Moreover F, i(x) can be expressed as follows:

(1.2) Fop(x) = p(x) -3 ()",

where we put

IRV R (B — rola); rij
(1.3) p(X)_,z:(; il Xy qr(x)—;wx .

Proor. From the recurrence relation, we have
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= —ox - iF,k(x) + (Pk+y)- E'JC(X) +

e X1 - Fr e (x);

(r—1!

so that F, (x) satisfies the DE (1.1). The power series p(x), ¢g,(x) defined in (1.3)
satisfies

(1 4+20) - p(x) = 7 (),

d 1 r—1

(1+OCX)'E(],A(X) _ﬁ'ql‘(x)—"_(ri 1)'X )
respectively. Since J, is a constant, we see that the GF F, ;(x) defined in (1.2)
satisfies the DE (1.1). O

REemMARK 1.7. Although we give the GF of f,(n,k) as the product of power
serieses (1.3), we can rewrite them as follows: If « % 0, then we have p(x) =
(1+ox)”*. In addition, we see that the r-th derivative of ¢,(x) is the function
(1+ ocx)ﬁ / *" and that ¢,(x) can be expressed as the following hyper geometric
series:

x" S
q,,(x) W~2F1(1,&+1’,}’+ 1,ax>,

hence this is a polynomial in the case where —f/o+r is a negative integer.
On the other hand, if « =0, we have

x"
qr(x) = h 1Fi (L r+ 1; Bx).

Thus we see that ¢,(x)=x"/rl when «=0 and f=0. In the case of
(p—ala),_; #0, we see that J, - g,(x) can be expressed by the following power
series:

(1.4) Or - qr(x) = (B — afar),_y - gr(x) = Z(ﬁ_(]x.!'a)jlxj-

Note that d;-¢i(x) for r=1 is a primitive function of (14 ax)”*7" if
o # 0.
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REMARK 1.8. Specializing parameters «, f and y, we have the following:
(1) If of #0 and (f —ajo),_; # 0, then we have

r 1 k
(1.5)  Fx(x)= ; (1+ax)//7ﬁ1 ( +O€xﬂ/1 Zﬂ|o¢ )

J=0 J!

This is a generalization of [4, Theorem 2] which is given by Hsu and
Shiue.

(2) If =0 and B # 0, we have (f — «a),_; # 0; so that (f — «o); | = g
for each j > 1. Hence the GF can be expressed as

" k
(1.6) Fr i (x) :% erx . (lz%(ﬂxy>

This can be understood as the limit of (1.5) as o — 0.
(3) If «#0 and =0, we have (f—ofa),_, #0; so that (B —alo), | =
(1) (j=1)!-a/7! for each j > 1. It follows from (1.4) that

0 Jj—1 ) k
F, 1 (x) :%~ (1+ ax)?/* . <é . Z%(ux)’)

k
_1 1 po, 1 1 '71
_H.( + ax) v og(1l + ox) 2 .

This can be understood as the limit of (1.5) as f — 0.
(4) In the case of « =0 and f =0, we have 6, = 1. Then the GF is given by

[ k
Fr,k(x):H'e . ? .

Therefore, in this case, the r-associated unified Stirling numbers can be
explicitly given by the formula

—k
n!- (}"') n—rk

Sr(n, k) = m'?

In addition, when y =1, this is the r-associated binomial coefficient
C,(n,k) mentioned in Remark 1.5(4).
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In fact, if =0 or f =0, then f.(n,k) can be expressed by r-associated
Stirling numbers of the first or second kind, respectively.

PropoSITION 1.9. If a =0 and p #0, then f.(n,k)= fi(n,k;0,B,7) can be
expressed by r-associated Stirling numbers S.(n,k) of the second kind.

" (n ik o .

(17) ﬁ(nakvovﬁay)z:()ﬁj k'y J'SI‘(]ak)'

Jj=rk J

In addition, in the case of y =0, the terms of the right-hand side of (1.7) vanish
only except j=n, we have f;(n,k;0,8,0) = p"*.S,(n k). Here we should con-
sider 00 = 1.

Proor. If =0 and f # 0, then it follows from (1.6) that the exponential
GF F, x(x) of fi(n,k) = fi(n,k;o,f,7) can be expressed as follows:

(18) Fr,k(x) =e 'ﬁik ' Hr,k(ﬂx)a
where H, ;(x) is the GF of S,(n, k) = f,(n,k;0,1,0):

k
“So(mk) 1 [ &x
Hr‘.,k(x> = (I/l' )X = F (Z_) .

=/

Comparing coefficients of x” in (1.8), we have

frlm k) o <~ " Sdnk)
P ';(n—j)!' ;! B

thus we obtain our assertion. O
In the case of o # 0 and f =0, similarly we have the following:

ProposITION 1.10. If a #0 and =0, then f.(n k)= f.(n,k;0,0,7) can be
expressed by signless r-associated Stirling numbers T,(n,k) of the first kind:

ja :” n-—aj7k~ o), ;- i, k).
(1.9) filnk:,0.7) 2;(]) (~a) ™ (o~ T K)

In addition, in the case of y =0, the terms of the right-hand side of (1.9) vanish
only except j=n, we have f.(n,k;x,0,0) = (—a)" - T\(n, k).
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1.3. Binomial Inversion Formula. We will define the r-associated binomial
transformation, which is defined by using the r-associated binomial coefficient.

DermiTiON 1.11.  Let 6 be a non-zero constant and p a non-negative integer
less than r. For a sequence a = (ap,a;,...), we define a new sequence b =

(bo, b1, ...) by the equation (0.1). We call b the r-associated binomial transform of
degree 0 with residue p. Then we have the inverse

(1.10) an=> 0/ Cm+p,j)-ba.
j=0

That is to say, we have the following:

ProPOSITION 1.12.  For two sequences a = (ag, a,...) and b = (bo,by,...), the
equation (0.1) holds for any n if and only if we have (1.10) for any n.

Proor. We consider generating functions such as

A(x) _ Z an .xrn+p’ B(x) — Z n .xrner’

o n n—k |.
A(X):Z 0 (rn+p) bk rn+p

s i (rn + p)! . (r!)"_k (mn=k)!-(m+p—rn-— k))!x

- (rk + p)! r! (n—k)!

Therefore B(x) = A(x) -exp(—d - x"/r!) and we see that (1.10) holds for any n;
vice versa. O

Now we will explain the binomial inversion (Theorem 1.14) for r-associated
unified Stirling numbers. The structure of inversion formula is as follows:

PROPOSITION 1.13.  For each non-negative integer r, we let A,(x) be a function
in x depending only on r, and put G, ;(x) = By -Ar(x)k for a positive integer k,
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where By is a constant or function depending only on k. Let

=0

be the GF of a sequence g.(n,k). Suppose that, for A,+1(x) and A,(x), there exists
a constant a, satisfying the condition for difference

(1.11) Ap(X) = Apay (x) = X7,

Then we have the following identities:

Y - al . . .
(112) gr+1 n, k =kl Bkz—.ng_‘Cr(na])'gr(n*r]akfj)a
—J
(1.13) =k!- BkZW Ci(n, j) - gre1(n—rj bk — ),

where C.(n, j) is the r-associated binomial coefficient mentioned in Remark 1.5

4

Proor. From the condition A,(x) =a,-x"/r'+ A4,+1(x), we have

Grilx) = B i (k> ' (%X’)ki A ()’

i=0
ko k—i i
B K\ (a Uogrnn (D) ey
i=0 1=0 !
o k j i j
k a, J 1 n! g;~+1(”—”]>k—1) n
Bk;jg(;(k—j)'(”) By (n—m)! n! i

Here we note that

(klij>'(j;’>j’3k1/(n j!rj) (k k]') ék - GlnJ;

thus we obtain (1.13). Similarly we can prove (1.12). O

THEOREM 1.14. For r-associated unified Stirling numbers f.(n,k) = f.(n,k;
o, B,y), if (f—oala), #0, then we have the following:
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k
St k) =3 (-1 D) S —rjk = ),
j=0
k .
Silnk) =3 "6] - Con, j) - frir(n=rj ke = ).
Jj=0

Proor. The GF of f.(n,k) was given by Proposition 1.6. Here we let By =
p(x)/k! and A4,(x) =9, q,(x), where p(x) and g¢,(x) are the same as in (1.3).
Then A,(x) and A,.(x) satisfy the condition for difference with a, = J,. Thus
Proposition 1.13 implies our theorem. O

Our theorem is a generalization of the identities (4.5) and (4.6) in Howard
[3], or Riordan [6, page 102]. Here we will translate this fact to matrix language.
For a non-negative integer p, we define a lower-triangular matrix M, ,, M," " Crp
and C/, (of any size) as follows:

p= L= +pi—= )y Cl,=((=6,)"7 - Cr(i = 1) + p,i = )
M} = (frsa(ri =)+ pi— )y Crp= 617 Clr(i = 1) + p,i = j))y-

Then Theorem 1.14 implies the following:

COROLLARY 1.15.  We have M, ,=C,, - M+ and M* = C,f,p - M, ,. More-
over, the matrix C, , is invertible, and we have C 1 C'

Thus we see that (r + 1)-associated f.,i’s are obtained from r-associated f.’s
by the r-associated binomial transformation of degree J,. We will give a combi-
natorial interpretation of the above inversion formula in the next section; see
(3.11), (3.20) and (3.28).

1.4. An Interpretation in the Case of r = 0. Although we have let r be a
positive integer, here we will dare to consider the case of r = 0. Here we assume
that 8 is not equal to zero. Then, since the binomial coefficient ("~ 11) should be
zero for r =0, we will understand the recurrence relation for f.(n, k) as follows:

Jon, k) = {—a(n —1) + fk +y} - fo(n — 1, k).

Thus we have fy(n,k) = (pk +y|a),  fo(0,k), and we see that its initial value
should be taken as fy(0,k) = (¥ -k!)™! from the view point of the GF (1.6),
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because ¢o(x) in (1.3) can be considered to be the function f~'- (1 —I—ocx)ﬁ/“.
Therefore our 0-associated unified Stirling numbers are given explicitly:

k
fo(n,k):(ﬂﬁ:%.
Hence, putting By = (1 +ox)”/*/k! and A,(x) = ZJ (Blo); - x7/jt for

r=20,1, we see that Proposition 1.13 (also Theorem 1.14) is still valid for
Gy k(x) = By - A,(x)* with r=0,1. Therefore we have the inversion formula
between r =0 and r = 1.

k
(1.14) (n,k) :Z ~aj - Co(n, ) - foln k — j),
Jj=

where we note that the “0O-associated” binomial coefficient

o’ 1
D=

does depend only on j. Since we have ay = !, the inversion formula (1.14) can
be rewritten as follows:

1 (Blk =)+ 9,

o TR = )
k
Zﬁ'ZH)"-ﬁ (Blk = j) +7le),
k5
1 k o (k
wy S () e,

Thus we gain the explicit formula for 1-associated unified Stirling numbers with
B # 0. In particular, putting («,f,y) = (0,1,0), we conclude that our inversion
formula between f; and f; gives the famous formula for Stirling numbers of
the second kind. Note that the explicit formula (1.15) has been given by He
[2, Corollary 2.3].

2. Counting Subspaces Generated by Subsets of a Root System

2.1. Preliminaries for Counting Subspaces. In [5], we have counted the
number of subspaces, which are generated by subsets of a root system, of only
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co-dimension one. Here we will generalize the result. In this subsection, we give
preliminaries for counting such subspaces of any co-dimension.

NortatioN 2.1. For k column vectors wy,...,w; €R", we denote by
M(wy, ..., wy) the n X k matrix aligning them, and by L(wy,...,w) the subspace
of R" generated by them:

M(wi,...,wi) = [wrwal|--|wi], L(wi,...,wi) = wp,wa, .o, WioR.

On the other hand, we sometimes write by L(M) the subspace of R” generated by
the column vectors wy,...,w; of an n x k matrix M = M(wy,...,wg).

NotaTION 2.2.  We write A ~ B if a matrix B can be obtained from a matrix
A by right-elementary transformation (i.e., elementary transformation for col-
umns) and/or permutation of rows. On the other hand, we write 4 ~ B if B
can be obtained from A only by right-elementary transformation; thus we have
L(4) =L(B) if 4 ~ B.

NotaTioN 2.3. For a non-zero vector x = (x;)._; € R”, we put supp x =
{i; x; # 0}. Then we will call s(x) = min supp x the starting of x and e(x) =
max supp x its ending.

DerFmNITION 2.4, If an n x kK matrix M can be, by right-elementary trans-
formation and/or permutation of rows, expressed as

X| O

2.1 M~
(2.1) ol v

)

we call it to be reducible. Here X is an / x m matrix and Y is (n — /) x (k — m)
(1<l<n—1,1<m<k—1). Then we say that M is the direct sum of X and
Y, and denote it by X @ Y. We will similarly define the direct sum of some
(more than two) matrices. If M is not reducible, we call it to be irreducible.

DErINITION 2.5. We say that a matrix M = M(xy, X2, ...,Xx) is sincere if M
does not have a row consisting of zeros; that is, for any number i (1 <i < n),
there exists j (1 < j<k) such that i e supp x;. A subspace L =L(M) is also
called sincere if the corresponding matrix M is sincere.

DEeFmNITION 2.6. An n x k matrix M is called to be full-rank if we have
rank M = min{n, k}.
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REMARK 2.7. For the terminology defined in the above, the following facts

are fundamental:

(1) For an n x k matrix M with n > 2 and k > 2, if there exists a column u
of M satisfying s(u) =e(u), then M is reducible. In particular, each
identity matrix of degree more than one is reducible.

(2) If M ~ M’ and M is irreducible (resp. sincere, full-rank), then M’ is also
irreducible (resp. sincere, full-rank); these properties are kept under any
permutation of rows and/or right-elementary transformation.

LemMA 2.8. For a matrix M of size nxk with k>2, we let M ~
M @®---® M, be a direct sum of irreducible matrices, and put

(22) PMQZM](-BMzc-B-“(-BMq and [(PM)Z[[YN[Y2|~--|[Y,]L

where each M;, Y; is of size n; X m;, n; X k, respectively. Then each Y; is irre-
ducible. Moreover, if n; > 2, then the ending of each column of Y; is different from
its starting unless it is the zero vector.

PrROOF. We make an n; x k matrix M; = [O| M;| O] by adding some zero
vectors to M;. Then M; is irreducible. Thus so is Y;, because we have Y; ~ M;
by the assumption. Since n; > 2, our assertion follows from Remark 2.7(1)

immediately. |
NOTATION 2.9. We denote the standard basis of R” by ef">7 eé"), el We
will sometimes omit the superscripts (write as e, e, ..., e, for simply) if they are

clearly in R”.

DErFINITION 2.10.  Let k be a positive integer, and k = my +--- +m, a rep-
resentation as a sum of ¢ positive integers. Then we call (my,...,m,) a partition
of k into ¢ summands.

3. Standard Form Attached to Subspaces

3.1. A,-type. In this subsection, we denote by ® = ®(A,) the root system
of type A,, which can be regarded as a finite subset of E(+1:

D = D(A,) = {i(ei(nJrl) _ej(nJrl)) EE(I’H-I); l<i<j<n+1},

where E+1) is the hyperplane of vectors orthogonal to ‘(1,1,...,1) € R""!; that
is, Emth) = {x= (x,-)fjll eR™ . x4+ x4+ xp01 = 0}.
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NotaTioN 3.1. We denote by R(m) the (m+ 1) x m matrix such that

R(m) = M(vy,va,...,0,) with v; = ei(W’H) — efffl) eR™! fori=1,2,...,m.

For such a matrix R(m), the following fact is fundamental:

LemmA 3.2, Let m= (my,...,my) and m' = (mj,...,my) be partitions of a
positive integer k into q summands with the condition

3.1 m<---<m, and m <---<m.
q 1 q

Put M = R(m) ® - @ R(my) and M" = R(m) @ --- @ R(m,). If M ~ M', then
we have m =m'.

Proor. For a positive integer m, we note that the reduced row echelon form
(rref) of 'R(m) is given by [I,, | n(m)] with the vector n(m) = ’(—1,...,—1) e R",
where I,, denotes the identity matrix of degree m. Hence we have

M ~ [l | n(m)) @ --- @ n(my)] and M’ ~ '[I; |n(m}) ® --- ® n(m,)].

Suppose that m # m’. Since, for each matrix, its rref is uniquely determined
by the theory of Linear Algebra, we see that ‘(n(m;) @ --- @ n(my,)) + '(n(my)
®~~-®n(m;)); thus we obtain M + M’. O

ProposITION 3.3. Let L =L(wi,wa,...,wy) be the subspace generated by k
roots wi,wa, ... ,wi € ®, and M = M(wy,wy,...,wi) the corresponding matrix. If
M is full-rank, sincere, and irreducible, then we can take positive roots vy, vy, ..., Uk
as a basis of L, where each v; is of the form v; = ei("H) — efff]) e R, That is to
say, for such M, we have k =n, and M ~ R(n).

Proor. Since our assertion for k=1 is trivial, we consider the case of
k > 2. By appropriate right-elementary transformation, we may assume that 1 =
s(wy) <s(wy) < --- <s(wg). Here, if s(w;) =s(w;), replacing the (i+ 1)-th
column of M by w/ ;| = w1 +w; or wiyp —w;, we have s(w;) <s(w/,;). Thus
we may assume that

(3.2) 1 =s(w) <s(wy) <--- < s(wg).
Moreover, we may assume that M satisfies the following condition:

(3.3) e(w;) #s(w;) for arbitrary indices i and ;.
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Indeed, if there exist indices / and j satisfying e(w;) =s(w;), then we have
1 <i< j<k by the condition (3.2), and we can change w; for w] = w; 4+ w; or
w; — w; if necessary, so that e(w/) > s(w;). Now, we again let M; = M(wi,wa, ...,
wy) be the matrix satisfying conditions (3.2) and (3.3), which is obtained from M
by appropriate right-elementary transformation. Then, since M is irreducible, we
see that M satisfies, in addition, the following condition

(3.4) s(wi) < e(wy) =e(wy) =+ =e(wg).

Since M, is also sincere, we have s(w;) =i and e(w;) =k +1 for each i=
1,2,...,k; that is,

s(wp) =k <e(w)) =e(wp) =---=e(w)=k+1 (=n+1).

Thus we conclude that k = n; so that, applying [5, Lemma 3.1], we obtain our
assertion. 0

THEOREM 3.4. Let L =L(wy,wy,...,wi) be the subspace generated by k
roots wi,wy,...,wr € ® of type A, (n>1), and M = M(wy,wy,...,wi) the cor-
responding matrix. Assume that M is full-rank and sincere, then there exists
a partition (my,...,my) of k into q (=n+1—k) summands satisfying M ~
R(m) @ --- @ R(my). These R(my),...,R(my) are uniquely determined from L,
up to numbering.

Proor. If M is irreducible, our theorem follows from Proposition 3.3.
Suppose that M is reducible; then we have an irreducible decomposition as in
(2.2) with a permutation P and an invertible Q. In (2.2), each M;, Y; is an
n; X m;, n; X k matrix, respectively, and they are full-rank, sincere, and irre-
ducible. Then, by Lemma 2.8 each column of Y; is either the zero vector or a
root of type A,,_1. Thus, applying Proposition 3.3 to each M;, we see that

(3.5) M~M @ @M, ~Rm)® - ® R(m,).

Since each R(m;) has n; = m; + 1 rows, the number of rows of the right-hand side
of (3.5) is equal to n+1=m;+---+my+q. Thus we have ¢g=n+1—k,
because M has k =mj +---+m, columns. The uniqueness of decomposition
in the right-hand side of (3.5) follows from Lemma 3.2. Thus we obtain our
theorem. |

REMARK 3.5. We call the right-hand side of (3.5) a standard form of L. For
each subspace generated by some roots of type A,, its standard form is uniquely
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determined under the condition m; < --- < my; so that, to classify such subspaces,
we are enough to discriminate the standard forms.

COROLLARY 3.6. The number a’(n,k) of distinct sincere k-dimensional sub-
spaces generated by some roots in ® C E") c R"™™ of type A, is given as
follows:

(3.6) A(n k) =S:(n+1,q) = Sy(n+ 1,n+1—k).

Proor. We consider the decomposition as in the right-hand side of (3.5).
From n + 1 rows, we select some rows to place ¢ blocks R(m), R(m2), ..., R(my).
Since each block has more than one rows, the number of such ways are presented
by using the 2-associated Stirling number S»(n+ 1,¢q). O

THEOREM 3.7. Let L =L(wi,wa,...,wx) be the subspace generated by k
roots wi,wa, ..., wi € ® of type A, (n>1), and M =M(wy,wa,...,wg) the cor-
responding matrix. Assume that M is full-rank and has s zero rows. Then there
exists a partition (my,...,my) of k into q (=n+1—k —s) summands satisfying

R(m) @ --- @ R(my)
o

M~

)

where O denotes the zero matrix of size s x k. These R(my),...,R(my) are
uniquely determined from L, up to numbering.

Proor. By appropriate permutation of rows, we may assume that the last
s rows of M are zeros. The matrix consisting of the remaining rows is sincere;
so that our assertion follows from Theorem 3.4. O

CoROLLARY 3.8. The number a(n,k) of distinct k-dimensional subspaces
(which may not be sincere) generated by some roots in ® C ED) c R™! of type
A, is given as follows:

n—k
(3.7) a(n, k) = Z (’HS— 1) -a®(n— s,k)
5s=0
(3.8) =Sin+1l,g+s)=S(n+1L,n+1-k).

Proor. The idea of the proof for the first identity is similar to that of
Theorem 3.7. The second can be proved by using a similar way to the proof of
Corollary 3.6. O
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Here we will put a@(n, k) = a(n,n — k) and a°(n, k) = a®(n,n — k), and rewrite
(3.8) and (3.6) respectively. Thus we have the following:

(3.9) alnk)=Si(n+ Lk+1)= filn+1,k+1;0,1,0),
(3.10) k) =S(n+1,k+1)= fo(n+1,k+1;0,1,0).

By using the explicit formula (1.15) for classical Stirling numbers of the second
kind, we can rewrite (3.9), (3.8) as follows; this is the explicit formula for the
number of subspaces of type A,:

i} 1 - kil (K1Y 0
a(”,k)*m';(—l) ( / )'1 :

1 & nkitsl (n—k+1 n+1
k) =G 2 Y ( 1 )'1-

On the other hand, from (3.9), (3.10), we obtain the exponential GF

% [Z(n,k) n__ d N 1 X k X
; py X —EFL/C“()C)—H-(e - 1" -e”,

& &O(n,k) n d 1 X k X
; i X :EFMH(X):E-@ —1=x)"(e"=1),

respectively. In addition, from (3.7), we obtain the following formula

(3.11) Zz(n,k)zzk:(n+l)~&0(n—s,k—s).

s=0 S

This is the formula for Stirling numbers of the second kind (see (4.5) of Howard
[3], or Riordan [6, p. 102]); that is obtained from our Theorem 1.14, specializ-
ing parameters r=1, =0, f=1 and y=0 (hence 6; =1 and Ci(n+1,s) =

("))

k
Sin+1Lk+1)=> "6 Ci(n+1,5)- San+1—s5k+1-2s).
s=0

3.2. B, or C,-type. In this subsection, we classify subspaces generated by
some roots of type B, or C,. Here we denote by @ the root system either ®(B,)
or ®(C,), which can be respectively regarded as a finite subset of R":
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®(B,) = {+(e/” +e"); 1 <i<j<n}uU{te” +ei,... +el"},
D(C,) = {*(e () ) 1<l<]<n}U{+2e1 ,+2e§"),...,12e(”>}.

So the classification for C,-type is parallel to that of B,-type.

NoTATION 3.9. We denote by R(m) the set of (m+ 1) x m matrices as
follows:

R(m) = {M(vy,0,...,0,); Ui =e; + ey or e;—e;yy for i=1,2,... ,m}.

We note that the cardinality of R(m) is equal to 2.

REMARK 3.10. For two matrices X, Y € R(m), we have X # Y if X # Y.
Indeed, X ~ Y implies L(X) = L(Y); and then L(X)" = L(Y)". Here L(X)"
and L(Y)" are one-dimensional, it follows from [5, Theorem 5.4(2)], that X = Y.

Lemma 3.11. Let m = (my,...,my) and m' = (mj,...,m,) be partitions of a
positive integer k into q summands with the condition (3.1). For each i=1,...,q,
we choose X;e R(m;) and X! e R(m!), and put M =X, ®---® X, and M' =
X/ @ - @X, If M ~M', then we have m = m'; in particular, X; = X/ for each
i=1,...,¢q

Proor. This can be proved by a similar way to the proof of Lemma 3.2.
[

Lemma 3.12. For k roots wi,wy,... . wye® (2 <
M(wi,wa, ..., wk) is full-rank and sincere. Ifs(wl) = s(wy) and e(w;) = e(w), then
M is reduczble.

k <n), assume that M =

Proor. If k =n =2, then M is a square matrix of full-rank. Hence it can be
transformed to the identity matrix of degree two; that is to say, M is reducible.
Assume that 2 <k <n. Then the condition s(w;) =s(w;) and e(w;) = e(wy)
implies that

X | Z
olY

M ~

)

where X is a square matrix of degree two. In addition, since X is of full-rank,
by appropriate right-elementary transformation, we can transform Z to a zero
matrix; hence M is reducible. O



Associated Stirling numbers and counting subspaces 115

ProposITION 3.13.  Let L = L(wy,wa,...,wy,) be the subspace generated by n
roots wi,wa, ... ,w, € ®, and M = M(wy,wy,...,w,) the corresponding matrix. If
M is full-rank, then we can take the standard basis ey, e, ... e, of R" as a basis

of L; in particular, we have M ~ I,.

Proor. Since M is full-rank, it is a non-singular matrix of degree n. Hence,

multiplying M ~! from the right-hand side, we have our assertion. O
PrROPOSITION 3.14. Let L =L(wy,wa,...,wi) be the subspace generated by
k (< n) roots wi,wa, ... ,wp € ®, and M = M(wi,wa,...,w) the corresponding

matrix. If M is full-rank, sincere, and irreducible, then we can take positive roots
U1, U2, ...,V as a basis of L, where each v; is of the form v; = e; — e; 1 or e; + e;,].
That is to say, for such M, we can choose a unique X € R(k) satisfying M ~ X.
In particular, we have k =n — 1.

Proor. First we consider the case of k = 1. Then M is not a square matrix
and we have w; # iel@, because k < n and M is sincere. Thus the assumption
that M is sincere implies that w; = e{") + eé"); hence we have n = 2. Next let k
be grater than 1. Since M is irreducible, by Remark 2.7(1), we may assume that

s(w;) # e(w;) for each column w; of M; that is,
w; € {i(ef") + ej(")); 1 <i<j<n}

In addition, if there exists an index i such that s(w;) = s(w;;;), then it follows
from Lemma 3.12 that e(w;) # e(w;y1), since M is irreducible. Here, in addition,
we may assume that M satisfies the conditions (3.2), (3.3) and (3.4). Since M is
sincere, we have s(w;) =i and e(w;) =k +1 (=n) foreach i =1,2,...,k; that is,

s(we) =k <e(w)) =e(wr) =---=e(w) =k+1 (=n).

Thus, M should be one-codimensional; so that our assertion follows from (5,
Proposition 5.2]. The uniqueness follows from Remark 3.10. O

THEOREM 3.15. Let L =L(wi,wa,...,wx) be the subspace generated by k
roots wi,...,wi € ® of type B, or C, (n>2), and M =M(wy,...,wi) the cor-
responding matrix. Assume that M is full-rank and sincere.

(1) If k = n, then we have M ~ I,; that is, we can choose the standard basis

e, e, ....e, of R" as a basis of L.
(2) If k < n, then there exist a non-negative integer t and a partition (my, ...,

my) of k into q (=n—k) summands such that we have M ~1I, ®
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X1 @--- @ X, with X; eR(m,—) for eachi=1,...,q. These X1,...,X, are
uniquely determined from L, up to numbering.

Proor. Here we let ® = ®(B,); the case of C,-type can be proved similarly.
If k=n, or if k<n and M is irreducible, then our assertion follows from
Proposition 3.13, or 3.14, respectively. Suppose that M is reducible; then de-
compose M into a direct sum of irreducible matrices by appropriate right-
elementary transformation and replacing rows. Then, if there exist some square
blocks, we gather ones as the first block. Thus we have M ~ I, ®@ M, ®--- ® M,
where each M; is of size n; x m; (1 < m; < n;), full-rank, sincere, and irreducible.
Here we rewrite it as

PMQO=1,®M; @ -® M, with permutation P and invertible Q, and
(3.12)
"(PM)=1["Yy|"Yi|---]"Y,] where each Y; is of size n; x k and ny = 1.

Then each column of PM is a root of type B,, and each Y; is irreducible by
Lemma 2.8. Moreover, each column of Y; satisfies the condition that it is either
the zero vector or a root of type B,,. Therefore, applying Proposition 3.14 to each
M;, we can choose X; e R(m;) (i=1,...,¢) such that

(3.13) M~LOM® - OM,~L®X, @ DX,

Since each X; € f?(m,») has n; = m; + 1 rows, the number of the right-hand side of
(3.13) is equal to n=t+m; +---+my+q; so that we have ¢ = n — k, because
M has k=t+m;+---+m, columns. The uniqueness of the decomposition
follows from Lemma 3.11. Thus we obtain our theorem. O

COROLLARY 3.16.  The number b°(n,k) of distinct k-dimensional sincere sub-
spaces generated by some roots in ® C R" of type B, is given by

k

(3.14) b (n, k) :Z (’:) 25 S (n—t,n— k).

=0

PrOOF. We count the number of decompositions as the right-hand side of
(3.13). First we choose and fix ¢ rows where the identity matrix of degree ¢ is
placed. Next we put g blocks Xi,...,X,, each of which has at least two rows.
Since #R(m;) = 2", the number of such candidates is given by

<n) _2m1+-~~+m,, . Sz(l’l — q)

t
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Here we note that m; +---4+m,; =k — t and g = n — k. Since the size ¢ of square
matrix runs from zero to k, we obtain our assertion. |

THEOREM 3.17. Let L =L(wi,wa,...,wx) be the subspace generated by k
roots wi,wy,...,wi € ® of type B, (n>2), and M = M(wy,wa,...,wi) the cor-
responding matrix. Assume that M is full-rank and has s zero rows. Then there
exist a non-negative integer t and a partition (my,...,my) of k into q (=n—k —)
summands such that we have

M~ LoXI X, @ @ X,
0

(3.15)

with X; € R(m;) for each i=1,... q. These Xi,... , X, are uniquely determined
from L, up to numbering. Here, if t =0 or q =0, then we should consider the
corresponding things to be trivial.

PrOOF. By appropriate permutation of rows, we may assume that the last
s rows of M are zeros. The matrix consisting of the remaining rows is sincere;
so that our assertion follows from Theorem 3.15. |

CoRrROLLARY 3.18. The number b(n,k) of distinct k-dimensional subspaces
generated by some roots in ® C R" of type B, is given by

n—k
(3.16) b(nk) =Y @ B0(n — s, k)

5s=0
k n

(3.17) :Z<t)-2k’-51(n—t,n—k).
=0

ProOOF. The idea of the proof for the first identity is similar to that of
Theorem 3.17. The second can be proved by using a similar way to the proof
of Corollary 3.16. |

ReMARK 3.19. Let c°(n,k) (resp. c¢(n,k)) be the number of distinct
k-dimensional subspaces, which is sincere (resp. may not be sincere), gener-
ated by some roots in ® C R” of type C,. Then we have c(n,s) = b(n,s) and
®(n,s) = b%(n,s), since the standard forms of C,-type are identical with that of
B, -type.
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Here we will put b(n, k) = b(n,n — k) and b°(n, k) = b°(n,n — k), and rewrite
(3.17) and (3.14), respectively. Thus we have the following:

n

(3.18) b(n,k) = Z (n) 2R S (k) = fi(n, k0,2, 1),
7 \J

J=

n

(3.19) B (n, k) = , <’;> 277K Sy (j k) = fa(n,K;0,2,1).

J=2

By using the explicit formula (1.15) for unified Stirling numbers, we can rewrite
(3.18), (3.17) as follows; this is the explicit formula for the number of subspaces
of type B,:

b(n,k) = zk o Z )< ()-(2z+1)”,

n— k

—k

b(l’l k) Qn— k l " k+l. (n / >(2]+1)ﬂ
/=

On the other hand, from (3.18), (3.19) we obtain the exponential GF

S
I Mé%
[}
S
=
)
>
SN—
=
S
I
|b—‘
[N
=
|_.
—
(4N}
3]
=
|
—
N~—
=

© 70
Zb (n7k)xn:l_ex_i.(€2x_ 1 —ZX)k,
respectively. In addition, from (3.16), we obtain the following formula
B k n -
3.20 b(n,k) = b (n— s,k —s).
(3.20 k=3 (1) B sk

We can obtain from Theorem 1.14, specializing parameters r=1, a =0, f =2
and y =1 (hence 6; =1 and Ci(n,s) = (")):

S

k
fi(n,k;0,2,1) =Y 87 - Ci(n,s) - fo(n— 5,k — ,0,2,1).
5s=0

3.3. D,-type. In this subsection, we denote by ® = ®(D,,) the root system
of type D,, which can be regarded as a finite subset of R":

d):(D(Dn):{i(el(" +e ) l<i<j<n}
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Therefore we can consider the root system ®(D,) to be a subset of ®(B,).
We note that Lemma 3.12 and Propositions 3.13, 3.14 are still valid for D,-type.
Hence the standard forms of D,-type are almost the same as those of B,-type:

THEOREM 3.20. Let L =L(wi,wa,...,wx) be the subspace generated by k
roots wi,wa,...,wi € ® of type D, (n>4), and M = M(wy,wa,...,wy) the cor-
responding matrix. Assume that M is full-rank and sincere.
(1) If k =n, then we have M ~ I,; that is, we can choose the standard basis
e, e, ....e, of R" as a basis of L.

(2) If k < n, then there exist a non-negative integer t (# 1) and a partition
(my,...,my) of k into q (=n— k) summands such that we have M ~ I; ®
X1 @--- @ X, with X; ef{(m,-) for each i=1,...,q. These X1,...,X, are
uniquely determined from L, up to numbering.

ProOF. If k =n, or if k < n and M is irreducible, then our assertion follows
from Proposition 3.13, or 3.14, respectively. Suppose that M is reducible; then, as
in the proof of Theorem 3.15, we have an irreducible decomposition M ~ I, ®
M ® - ®M,, where each M; is of size n; x m; (1 < m; < n;), full-rank, sincere,
and irreducible. Here we rewrite it as (3.12). Then each column of PM is a root
of type D, and each Y; is irreducible by Lemma 2.8. Moreover, each column
of Y; satisfies the condition that it is either the zero vector or a root of type
D,,. Therefore, applying Proposition 3.14 to each M;, we can choose X; € R(m;)
(i=1,...,q) satisfying (3.13). Thus we have ¢=n—k as in the proof of
Theorem 3.15. The uniqueness of the decomposition can be proved by using
Lemma 3.11.

Suppose that =1 in (3.13). Then the ending of the first column of PM in
(3.12) is grater than 1. In addition, the first column of a unique one of Yy,...,Y,
is not zero, and its starting is identical with its ending. This contradicts to the
condition that Y; is irreducible, because of n; > 2 (see Remark 2.7). Thus we
conclude that ¢ # 1 and we obtain our theorem. O

COROLLARY 3.21. The number d°(n,k) of distinct sincere k-dimensional
subspaces generated by some roots in ® C R" of type D, is given as follows:
(3.21) d°(n,k) = b°(n, k) —n - 25"V So(n— 1,n — k).

Proor. The standard forms of D,-type are almost the same as those of B,-

type, except for the square matrix of size ¢ = 1; thus (3.21) follows immediately
from (3.14). O
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THEOREM 3.22. Let L =L(wi,wa,...,wi) be the subspace generated by k
roots wi,wa,...,wix € ® of type D, (n>4), and M = M(wy,wa,...,wy) the cor-
responding matrix. Assume that M is full-rank and has s zero rows. Then there

exist a non-negative integer t (# 1) and a partition (my,...,my) of k into q (=n—
k —s) summands such that we have (3.15) with X; € R(m;) for each i=1,...,q.
These Xi,...,X, are uniquely determined from L, up to numbering. Here, if t =0

or q =0, then we should consider the corresponding things to be trivial

PrROOF. By appropriate permutation of rows, we may assume that the last
s rows of M are zeros. The matrix consisting of the remaining rows is sincere;
so that our assertion follows from Theorem 3.20. O

COROLLARY 3.23. The number d(n,k) of distinct k-dimensional subspaces
generated by some roots in ® C R" of type D, is given as follows:

n—k
(3.22) ( ) d’(n — s,k)
s=0
(3.23) =b(nk)—n- 2K Si(n—1,n—k).
Proor. The idea of the proof is similar to that of B,-type. O

Here, putting d(n,k) = d(n,n—k) and d°(n,k) = d°(n,n—k), as in B, or
A,-type, we rewrite (3.23) and (3.21) as follows:

(3.24) d(n,k) =b(n,k) —n-2"*1.8(n—1,k),
(3.25) d°(n, k) = b (n, k) —n - 2"% 1 S (n — 1,k).

By using the explicit formula for A, and B,-type, we will rewrite (3.24), (3.23),
respectively; thus we obtain the explicit formulas for D,-type:

d(n, k) = 2k o Z )t <>~{(2l+1)"—n~(21)"1},

n—k _
108 =y 20 (1) ey ey

I=

On the other hand, from (3.24), (3.25), we obtain the exponential GF
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L d(n,k) 1 . .
(3.26) 0 (n' ) =5 (e x) - (e =1k,
. d(n, k), 1 N .
(3.27) Z (n' )x :2k.k'-(e“ —x)- (¥ —1-2x)",
g ! !

respectively. In addition, from (3.22), we obtain the following formula

k
(3.28) dnk) =Y (’;) d%n— s,k —s).

s=0

Thus we can enumerate the number of distinct subspaces for D,-type, by using
that of distinct sincere subspaces, as in (3.11) or (3.20). In fact, this can be
considered to be an inversion formula in the following way. So, putting p(x) =
e —x and

we define the function

Grk(x) = 7 P(3) - ()" =

for r=1,2. Then it follows from (3.26) and (3.27) that d(n,k) = g;(n,k) and
d°(n, k) = g2(n,k). For the functions ¢;(x) and ¢»(x), we note that the condition
for difference (1.11) is satisfied; so we conclude that (3.28) is an inversion formula
for g (n, k) and g>(n, k).

4. Counting Subspaces for Exceptional Type

4.1. A Strategy for Enumerating the Numbers for Exceptional Type. Let @
be a root system of an arbitrary exceptional-type (except for G,-type) and @ the
subset consisting of all positive roots with respect to a fixed lexicographical order.
Our strategy for enumerating subspaces for exceptional-type is similar as in the
case of co-dimension one; here we recall it from [5].

Let L be a subspace generated by some roots in ®@, and k its dimension, and
put YT =LN®". We will choose k positive roots oy, s, ..., as follows:

vy =min¥", and o, =min(¥\{u,...,0,1)g) for p=2,3,..., k.
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We call oy, a,,...,0 the refined basis of L, which is nothing but the simple roots
of the subsystem ¥ = L N® with respect to the lexicographical order.
We number the positive roots as @ = {aj,ap,...,q} with a; <ay <--- <

a;, where [ denotes the number of positive roots of ®. For p=1,2,..../ — 1, we

3

put B(p) ={j; a; —a, ¢ ®* and p < j <I}. If k roots a;,,a;,, ..., a; consist with
a refined basis, then we must necessarily have

(4.1) ipeB(i1)N---NB(i,-1) for p=23,... k.

Since each subspace has a unique refined basis, to classify subspaces generated by
some roots in @, it is sufficient to classify the refined bases.

To do this, first we find out all k-tuples I = (i1, ip,...,i) with i} < i <--- <
ir satisfying the condition (4.1). The number of such k-tuples is not so large as
compared with the binomial coefficient (,1{) Next we want to check whether the

corresponding roots a;,, a;,,. . .,a; consist with the refined basis of L(a;,a,,. ..,
a;,), or not. In fact, putting R(I;p) ={ac LN®" ;a<a;} for p=2,3,...k,
we have an easy criterion: For a k-tuple I = (i1,i,...,i), the corresponding
roots a;,,a,,...,a; consist with a refined basis if and only if

(4.2) dim{R(I; p)y)p=p—1 for p=2,3,... k.

We can easily check the conditions (4.1) and (4.2) by using computer. Thus
we obtain the numbers for exceptional-type that are presented in Theorems 4.1
and 4.2. Note that our assertion for G,-type is trivial.

4.2. E,-type. The root system ®(Es) of type E¢ can be regarded as a finite
subset of V(9):

D(Eg) = {+e; + e VO 1 <i< j<5}

1 2 ' 2,
U{i§<e8—e7—e6+ E (—1)"e,~> e 1, E v; 18 even},
=1 =1

where V() is the ortho-complement of the subspace spanned by ‘(0,...,0,1,0,1)
and (0,...,0,0,1,1) e R®; that is, V(© = {x = (x,‘)f:1 eR®; x6 = x7 = —x3}.
The root system ®(E;) of type E; can be regarded as a finite subset of V'(7):

DE;) ={+e;+e eV 1<i<j<6}U{+(e; —es)}

6 6
U {i; <e7 —eg+ Z(—l)viez) eV ZVi is Odd}a
i=1 i=1
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e(n, k) n==06 n="71 n=3_8
k=1 36 63 120
2 390 1281 4900
3 1530 10395 85680
4 2001 33411 661542
5 639 36435 2091600
6 1 8821 2221780
7 1 440880
8 1
Table 4.1. The values of e(n, k)
e (n, k) n==6 n="7 n=3_§
k=1 16 32 64
2 280 976 3808
3 1340 9200 76384
4 1920 31560 627536
5 638 35696 2053072
6 1 8814 2214856
7 1 440872
8 1

Table 4.2. The values of °(n, k)

where (7) is the hyperplane of vectors orthogonal to /(0,...,0,1,1) € R®; that is,

The root system ®(Eg) of type Eg can be regarded as a finite subset of
RS:

D(Eg) = {+e; + ¢ eR% 1 <i< j<8}

1< ., 5.
U{i;(_l) ie; e R: Zvi is even}.

i=1

THEOREM 4.1. We have Table 4.1 for the number e(n,k) of distinct
k-dimensional subspaces generated by some roots in ®(E,) (n=16,7,8), and also
we have Table 4.2 for the number e°(n,k) of distinct k-dimensional sincere
subspaces.

4.3. F4 or Gy-type. The root system ®(F,) of type F4 can be regarded as a
finite subset of R*:
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S (k) g(k)
k=1 24 k=1 6
2 122 2 1
3 120
4 1

Table 4.3. The values of f(k) and g(k)

1O (k) 9°(k)
k=1 8 k=1 3
2 76 2 1
3 116
4 1

Table 4.4. The values of f°(k) and ¢°(k)
O(F;) = {+te;eRY 1 <i<4jU{te +teeRY; 1 <i< j<4}

1
U{E(i’el terte;t e4)}~

The root system ®(G;) of type G, can be regarded as a finite subset of V'(3):
D(Gy) = {+(e;—e) e VI 1 <i< j<3}
U{+(2e; —es—e3),+(2es—e; —e3), = (2e3 — e —e2) }.

where V') is the hyperplane of vectors orthogonal to ‘(1,1,1) e R3; that is,
Ve ={x= (xi);’:1 eR3; x| +x+x3 =0}

THEOREM 4.2.  We have Table 4.3 for the number f (k) (resp. g(k)) of distinct
k-dimensional subspaces generated by some roots in ®(F4) (resp. ®(Gy)). We also
have Table 4.4 for the number f°(k) and g°(k) of distinct k-dimensional sincere
subspaces.
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