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Abstract. This paper provides a careful and accessible exposition
of an L? approach to boundary value problems of nonlinear
elastostatics in the case where solutions of the linearized problem
correspond faithfully to those of the nonlinear problem, that is, in
the case where there is no bifurcation. We prove that if the linearized
problem has unique solutions, then so does the nonlinear one,
nearby. This is done by using the linear L theory and the inverse
mapping theorem. The main theorem can be applied to the Saint
Venant—Kirchhoff elastic material and the Hencky—Nadai elasto-
plastic material in a wnified theory. The approach here is dis-
tinguished by the extensive use of the ideas and techniques
characteristic of the recent developments in the theory of partial
differential equations.
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1. Introduction and Main Results

This paper is devoted to an L? approach to boundary value problems of
nonlinear elastostatics in the case where solutions of the linearized problem
correspond faithfully to those of the nonlinear problem. We prove that if the
linearized problem has unique solutions, then so does the nonlinear one, nearby
(Main Theorem). This is done by using the L? theory of pseudo-differential
operators and the inverse mapping theorem. Our boundary condition is a
“regularization” of the genuine mixed displacement-traction boundary condition;
more precisely, it i a smooth linear combination of displacement and traction
boundary conditions, but is not equal to the pure traction boundary condition.
Moreover, it should be emphasized that our problem becomes a degenerate
elliptic boundary value problem from an analytical point of view. The crucial
point is how to find a function space associated with the degenerate boundary
condition in which the linearized problem has unique solutions. Main Theorem
can be applied to the Saint Venant—Kirchhoff elastic material and the Hencky—
Nadai elasto-plastic material in a wunified theory (Theorem 1.1 and Theorem 1.2).
The approach here is distinguished by the extensive use of the ideas and
techniques characteristic of the recent developments in the theory of partial
differential equations ([Ta4]). This expository paper is an expanded and revised
version of the previous paper [Ta3].
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1.1 Formulation of a Problem

We start with the basic equations for continuum mechanics, providing a
quick survey of a few standard topic in elasticity theory from a classical point
of view. The treatment is exclusively in Euclidean space R®, by using standard
Euclidean coordinates. For more thorough treatments of this subject, the reader
might be referred to Ciarlet [Ci] and Marsden—Hughes [MH].

Let Q be an open, connected subset of R® with piecewise smooth boundary
0Q. We think of its closure Q = QU dQ as representing the volume occupied by
an undeformed body; so the set # = Q is called the reference configuration. A
deformation of the reference configuration % is a vector field

h
b=\ |:2-R

s

which is a continuously differentiable, orientation-preserving and invertible map.
Given a reference configuration % and a deformation ¢ : Z# — R>, the set ¢(%)
is called the deformed configuration (see Figure 1.1). Points in # are denoted
by X = (X1, X2, X3) € # and are called material points, while points in R® are
denoted by x = (x1,x2,x3) € R’ and are called spatial points. We write as

Reference configuration Body

Figure 1.1

The 3 x 3 matrix of partial derivatives of ¢ is denoted by F(X) = V¢(X), and
is called the deformation gradient:
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Iy Fn F3i !

The deformation gradient is simply the matrix representing the Fréchet derivative
of the mapping ¢. We remark that det F > 0, since the mapping ¢ is orientation-

preserving.
It is often convenient to introduce the displacement u of %, which is a vector

field

Ui
u=\|u | : 4 — R37
u3
defined by the formula
u:=¢—id,

where id is the identity map of R® onto itself. Componentwise, the displacement u

of % can be written as follows:

ur (X) ¢ (X) — X
uX) =1 w(X) | = X)X
u3(X) $3(X) — X3

The 3 x 3 matrix of partial derivatives of u is denoted by Vu, and is called the
displacement gradient. We remark that

o dw o dw
X1 X2 0X3
V” — aug ("}uz 5u2

6X] aXz 6X3 ’
6X] aXz 6X3

so that
Vu=V¢—1,

where I = (J;) is the 3 x 3 unit matrix.
The symmetric two-tensor

3
C = tFF, C,/ ::ZFkiFk/7
k=1

is called the (right) Cauchy—Green strain tensor.
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Figure 1.2

A body ¢(%) is acted on by applied body forces b(x) in its interior and by
applied surface forces t(x) on a portion of the boundary. The pair (b,7) of forces
is called the load, and is given or prescribed in advance (see Figure 1.2). An
applied body force is called a dead load if its associated density per unit volume
in the reference configuration is independent of the particular deformation ¢
considered. This is the case of the gravity field. Similarly, an applied surface force
is called a dead load if its associated density per unit area in the reference
configuration is independent of the particular deformation ¢ considered. This is
the case where a portion of the boundary of the body is held fixed, while the
remaining portion is considered as free from all external actions (see Figure 1.3).

7N

SIS

Figure 1.3

In addition, the body generally experiences internal forces of stress across any
given surface. Let #(x,n) be the force at position x across an oriented surface
element with unit outward normal n (see Figure 1.2). We present the basic three
equations for continuum mechanics in nonlinear elastostatics.
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(1) First, the celebrated Cauchy theorem asserts (cf. [Ci, Chapter 2]; [MH,
Chapter 2]) that if the balance of momentum holds true, then the stress vector
t(x,n) = (t;(x,n)) depends linearly on n, that is, there exists a two-tensor a(x) =
(g4(x)) such that

3
t(x,n) =06(x) -n; ti(x,n)= Za[j(x)n/.
=

The vector #(x,n) is called the Cauchy stress vector and the tensor a(x) is called
the Cauchy stress tensor.

(2) Secondly, the balance of angular momentum leads to the symmetry of the
two-tensor &(x): o;(x) = gj(x).

(3) Thirdly, the balance of linear momentum leads to the nonlinear equa-
tions of elastostatics: div ¢ + p(x)b(x) = 0 where p(x) is the mass density in the
deformed configuration ¢(%).

The vector T(X,N), defined by the formula

T(X,N):=P(X)-N,
P(X) := det(V$(X))a(¢(X)) - ('Vé(X))™,

is called the first Piola—Kirchhoff stress vector, where N is the unit outward
normal at X. It should be emphasized that the vector T(X, V) is parallel to the
Cauchy stress vector #(x,n), but measures the force per unit undeformed area
with normal N (see Figure 1.4). The two-tensor P(X) = (P;(X)), which is the
Piola transform of the Cauchy stress tensor &(x), is called the first Piola—
Kirchhoff stress tensor.

T(X,N)=P(X)-N

t(x,n)

Figure 1.4
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The second Piola—Kirchhoff stress vector is obtained by transforming T =
P- N, which is a vector at x, to a vector based at X by setting T=F!.T.
Hence T=S5-N, where S=F'P. Componentwise, this can be written as
follows:

Z Oxk Pk/

The 3 x 3 matrix S(X) = (S;(X)) is called the second Piola—Kirchhoff stress
tensor.

The following three diagrams give a bird’s eye view of basic equations in
nonlinear elastostatics from a classical point of view:

Cauchy’s theorem | Balance of momentum

Eulerian form t(x,n) =6(x) n

Lagrangian form | T(X,N)=P(X)-N

Balance of angular momentum

Eulerian form 6(x) ="6(x)

Lagrangian form S(X)="'S(X)

Balance of linear momentum

Eulerian form dive + p(x)b(x) =0
Lagrangian form DIV P+ py(X)B(X)=0
po(X) = p(¢(X)) det(V4(X))

A material is said to be elastic if we can write the first Piola—Kirchhoff stress
tensor P(X) = (P;(X)) as a function P(X,F) = (P;j(X,F)) of points X € # and
3 x 3 matrices F with det F > 0 such that

P(X) = P(X,V$(X)).

Specification of a function P(X,F) for an elastic material is called a stress-strain
Jaw, and the function P(X,F) is called a constitutive function.

An elastic material is said to be hyperelastic if there exists a smooth function
W(X,F) of points X € # and 3 x 3 matrices F with det F > 0 such that
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P(X,F) = (X,F).

The function W(X,F) is called a stored energy function. The four-index tensor
A(X,F) = (0P/0F)(X,F) = (0*W 0F0F)(X,F), defined by the formula

oP; >*w

Aol 6B =g, 0 = arE,

(X, F),

is called the first elasticity tensor.

Some boundary conditions often encountered are the following:

(a) The boundary condition of place: ¢(X)=¢,(X) is described for
X edA.

(b) The boundary condition of traction: P(X,V$(X))-N(X)=1z(X)
is described for X € 0%, where N(X) is the unit outward normal to 0% at
X.

We make the following two assumptions (H.1) and (H.2) throughout the
paper:

(H.1) The reference configuration is a bounded region % =Q c R® with
smooth boundary 0Q.

(H.2) The material is hyperelastic.

We give two important examples of stored energy functions for hyperelastic
materials:

ExampLE 1.1 (The Hencky—Nadai elasto-plastic material). The stored energy
function W(X,F) has the form

WX, F 31 &) d F, 3
(X, F) = ZL ¢ + Z ek —
where g € C*([0,0),R), the constant K is the modulus of compression and

2
1 3
=3 Z( (Fyj + Fji) — 3 (; Fkkak>5[j> .

The first Piola—Kirchhoff stress tensor P(X) = (P;(X)) is given by the
formula
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ow
= a5, X F0)
) 3
_ <1< - 3g(r<F<X>>) (Z Fiae(X) = 3)5,7
k=1

+9(T(F) (X)) (Fy(X) + F(X) — 205),

where

F(X) = (Fy(X)) = (2;)

ExampLE 1.2 (The Saint Venant—Kirchhoff isotropic material). The stored
energy function W (X, F) has the form

3 2 3
W(X,F) = MTX) (Z Cu(F) — 3) + %X) S (Cy(F) -0y,
=1 Q=1

where A(X), u(X) are smooth Lamé functions and the two-tensor

3
Cy(F) = FuFy
k=1

is the (right) Cauchy—Green strain tensor.
The first Piola—Kirchhoff stress tensor P(X) = (P;(X)) is given by the
formula

P;(X) = Py(X,F(X))

_ow
=%F

3
s (Z CulF(X) - 3) — u(X)

(X, F(X))

where
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RemMARK 1.1. If we define the Green—Saint Venant strain tensor E = (Ej;) by
the formula

or componentwise,

1(ou Ou; 3 Ouy. Ouy,
Ej:=— ! J -
) (axj»+axi+k_laxi ox; )’

then it is easy to see that the stored energy function W (X, F) in Example 1.2 can
be written in the form (cf. [MH, Chapter 4, Proposition 3.12))

W(X,F) = @ (tr E)* 4 u(X) tr(E?).

It should be noticed that the first Piola—Kirchhoff stress tensors in Examples
1.1 and 1.2 are not linear functions of the deformation gradient F, which leads to
equations of nonlinear elastostatics.

Let B: Q — R® be the density of a given body force per unit volume in the
reference configuration and 7 : 0Q — R? the density of a given surface force per
unit area in the reference configuration (see Figure 1.5).

N(X)

> 7(X)

B(X)

Figure 1.5

We consider the following equilibrium equations for the unknown defor-
mation ¢:

in Q,

{DIV P(X,V4(X) (1.1)
—a(X))$(X) = 7(X) on Q.

_|_
=
>
I
o —)
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Here a(X) is a smooth function on dQ such that
0<a(X)<1 on 0Q.

We remark that our boundary condition is a ‘“regularization” of the genuine
mixed displacement-traction boundary condition; more precisely, it is a smooth
linear combination of displacement and traction boundary conditions, but is not
equal to the pure traction boundary condition (see Figure 1.6). Moreover, it
should be emphasized that our problem (1.1) becomes a degenerate elliptic
boundary value problem from an analytical point of view. This is due to the fact
that the so-called Shapiro—Lopatinskii complementary condition is violated at
the points X € 0Q where o(X) = 0. Marsden-Hughes [MH] studied the non-
degenerate case. More precisely, they assume that the boundary 0Q is the
disjoint union of the two closed subsets I'p = {X € 0Q : a(X) =0} and 0Q\I'y =
{X €edQ:a(X) > 0}.

fa=1}

N

Q

{a =0}

Vs

Figure 1.6

1.2 Statement of Main Results

We study the nonlinear problem (1.1) in the framework of Sobolev spaces of
L? type. The process of linearization provides a key link between the linear and
nonlinear theories of elasticity. The crucial point is how to find a function space
associated with the boundary condition (1.2) in which the linearized problem has
unique solutions (see [Ta2]).

If seR and 1 < p < oo, we define the Sobolev space (see Section 2.1)

H*?(Q) = the space of restrictions to Q of functions in H*”(R").
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The space H*?(Q) is a Banach space with the norm
lully,, = nf{[| U], : U e H*"(R"), Ulq = u},

where the infimum is taken over all functions U € H*?(R") which equal u in Q.
Furthermore, if s> 1/p, we define the boundary space

B*~1/PP(0Q) = the space of the boundary values of functions in H*?(Q).
In the space B*~'/7?(9Q), we introduce a norm

|(p|s—l/p,p = inf{Hu“s,p ‘ue H‘YIP(Q)a u|8Q = (p}a

where the infimum is taken over all functions u € H*?(Q) which equal ¢ on 0Q.
The space B*~!/77(0Q) is a Banach space with respect to this norm |- |
more precisely, it is a Besov space (cf. [AF], [BL], [Tr]).

Now we let

s=1/p.p

H*?(Q,R?) := the space of all H*” functions ¢:Q — R,
B*~UPr(0Q, R3) := the space of all B*~'/77 functions ¢ : 0Q — R>.

We introduce a subspace of the Besov space B*~'~!/77(3Q, R?) which is asso-
ciated with the boundary condition

{g(i()ﬁ(w) N+ (1—a(X))p=1 on iQ, (1.2)

a(X) <1 on 0Q

as follows: We let
BT (00 RY) = (g = a(X)y + (1 —a(X))ds : € BP0 (0. RY),
¢y € BUPP(0Q,RY)},
and define the norm

ls—1-1/p,p, = 0B [ 11, + 1B2lim1)pp 2 @ = (X)) + (1 — (X))}

Then it is easy to verify (see [Ta2]) that the space B(sg)lfl/ 7P(oQ,R%) is a Banach

space with the norm |- | It is worth while pointing out here that

ws—1=1/p,p*

s—1-1/p,p
Bw) iy (5Q, R3)

[ BTUPP(0Q, R if a(X) =0 on 0Q (the pure displacement case),
B 17/rr(0Q R if a(X) =1 on 0Q (the pure traction case).
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If s>3/p+1, we let
4 = the space H*?(Q,R?) of all H*? vector functions ¢,
and
% = the subspace of all configurations ¢ in Z.

It should be emphasized that the set 4 is open in the space Z. Indeed, this
follows from an application of the inverse mapping theorem, since the Sobolev
imbedding theorem asserts that the H*? topology is stronger than the C! to-
pology for s >3/p+1 (see [AF, Theorem 4.12]). We let

% = the space of all pairs (B,z) e H >7(Q,R?) x B(S;)l_l/p’p(ﬁﬂ, RY).
We associate with problem (1.1) a nonlinear mapping between Banach spaces
F.-2—-%
as follows:
F(¢) = (~DIV P(V$),2(X)P(V$) - N + (1 — 2(X))plog), $€G.

The assumption s > 3/p + 1 is crucial for F to be of class C'. Indeed, it follows
from an application of the w-lemma (cf. [MH, Chapter 3, Theorem 1.13]; [Va,
Chapter II, Section 4]) that the mappings

Hsfl,p(Q’RS % R3) N Hsfl,p(Q)
Vo — P;(Vg)

are of class C!' if s>2 and s> 3/p+1.

Now we can state our main existence and uniqueness theorem for problem
(1.1) of nonlinear elastostatics (cf. [MH, Chapter 6, Theorem 4.2]; [Va, Chapter
IV, Theorem 4.5]):

MAIN THEOREM. Let 1 < p < oo, s>3/p+ 1 and s > 2. We assume that the
following three conditions (P), (S) and (A) are satisfied:

P P(V(Z) =0 when ¢?:IQ (the identity map on Q).

(S) The elasticity tensor ;&(X) = (8*W oFOF)(X) evaluated at 5: I enjoys
the property of symmetry

Ajm(X) = Apyiy(X) = Ay (X), X € Q,

and is uniformly pointwise stable, that is, there is a constant n >0 such that
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Je-A) ezl xed

for all symmetric two tensors e.

(A) 0<a(X) <1 on 0Q, but a(X) £ 1 on 0Q.

Then there exist a neighborhood U of the configuration ¢? in H*?(Q,R*) and
a neighborhood v~ of the point

(=DIV P(V§), 2(X)P(V§) - N + (1 — 2(X))d )

in H>7(Q,R?) x B;‘;)l*l/"’p(&Q,R% such that the map F : U — V" is one-to-one
and onto.

Condition (P) implies that the undeformed state is stress free. We remark that
the first Piola—Kirchhoff stress tensors in Examples 1.1 and 1.2 satisfy condition
(P). Condition (A) implies that our boundary condition (1.2) is not equal to the
pure traction boundary condition. It should be noticed (cf. [MH, Chapter 7,
Section 7.3]) that the pure traction problem may have non-unique solutions even
for small loads and near a stress free state.

Rephrased, Main Theorem asserts that if the linearized problem is uniformly
pointwise stable, then, for slight perturbations of the load or boundary conditions
from their values at the undeformed state, the nonlinear problem (1.1) has a
unique solution ¢ near ¢?: Ig.

For the Hencky—Nadai elasto-plastic material, we have the following result
(cf. [Di, Théoréme 2)):

THEOREM 1.1. Let 1 < p< oo, s>3/p+1 and s >2. We assume that the
following two conditions (B) and (A) are satisfied:

(B) g(0) >0 and K > 0.

(A) 0<oa(X)<1 on 0Q, but a(X) £ 1 on 0Q.

Then condition (S) is satisfied and so Main Theorem applies.

For the Saint Venant—Kirchhoff isotropic material, we have the following
result (cf. [Ci, Theorem 6.7-1)):

THEOREM 1.2. Let 1 < p< oo, s>3/p+1 and s> 2. We assume that the
following two conditions (C) and (A) are satisfied:
(C) There exist constants c¢; >0 and ¢ > 0 such that
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wX) = on Q,

2 _
/I(X)Jrg,u(X) > on Q.

(A) 0<oa(X) <1 on 0Q, but o(X) £ 1 on 0Q.
Then condition (S) is satisfied and so Main Theorem applies.

REMARK 1.1. Theorem 1.2 contains [Ci, Theorem 6.4-1] as a special case if
we take s=2, p>3 and «(X) =0 on dQ (the pure displacement problem).

The rest of this paper is organized as follows.

In Chapter 2 we present a brief description of the basic concepts and results
of the L? theory of pseudo-differential operators which may be considered as a
generalization of the classical potential theory. This forms a functional analytic
background for the proof of Main Theorem.

In Chapter 3 we linearize problem (1.1) as follows:

DIV(A-VV) = —DIV P(F) — B in Q,
2(X)(A-VV-N) + (1 —a(X))V (1.3)
—7—a(X)P(F)-N — (1 — 2(X))$ on oQ,
where

o 5ﬁ o o [e]
A== (F), F:=V,

is the first elasticity tensor evaluated at the given configuration ¢.
Therefore, we are reduced to the study of a problem of linear elastostatics for
the unknown vector function v:

{Av =div(a(x) - Vo) = f in Q, (1.4)

B,v:=oa(x)(a(x)-Vo-n)+ (Il —a(x))v=¢ on dQ,

where a(x) is a smooth elasticity tensor and n is the unit outward normal to the
boundary 0Q.

In Chapters 4 through 7 we study the linearized problem (1.4) in the
framework of Sobolev spaces of L? type, by using the L? theory of pseudo-
differential operators. Our fundamental existence and uniqueness theorem for
problem (1.4) is stated as Theorem 3.1 in Chapter 3. This fundamental theorem
(Theorem 3.1) is an essential step in the proof of Main Theorem, and is proved in
a series of theorems (Theorems 5.1, 6.1 and 7.1).
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Step 1: In Chapter 4 we show that problem (1.4) can be reduced to the study
of a 3 x 3 matrix-valued, pseudo-differential operator on the boundary. We
explain more precisely the idea of our approach to problem (1.4).

Step 1-a: First, we consider the pure displacement problem (Dirichlet
problem)

{Av =div(a(x)- Vo) =f in Q, D)

V=29 on 0Q.

The existence and uniqueness theorem for problem (D) is well established in the
framework of Sobolev spaces of L? type (Theorem 4.1). Thus we can introduce
the Poisson operator

2 : B (0Q, R?) — HSP(Q,RY)

as follows: For any ¢ € B*~1/77(9Q, R?), the function 2 is the unique solution of
the pure displacement problem

Av=0 1in Q,
v=¢ on Q.

Step 1-b: Next, we consider the following non-degenerate mixed displacement-
traction problem:

{Av =div(a(x)- Vo) =f inQ, (M)

(a(x)-Vo-n)+v=¢  on Q.

The existence and uniqueness theorem for problem (M) is also well established in
the framework of Sobolev spaces of L? type (Theorem 4.2).

Step 1-c: Then, by using problems (D) and (M) we show that problem (1.4)

can be reduced to the study of a 3 x 3 matrix-valued, pseudo-differential operator

on the boundary, which is a generalization of the classical Fredholm integral

equation.
Indeed, if we let

T.p == B,(Z79),
then we have the formula
T, =a(x)II + (1 —a(x))I,
where

IIp = a(x) - V(Z9) - n|x.



Boundary value problems of nonlinear elastostatics 83

It is known that the operator I7 is a 3 x 3 matrix-valued, classical pseudo-
differential operator of first order on the boundary 0Q; hence the operator T, is a
3 x 3 matrix-valued, classical pseudo-differential operator of first order on the
boundary 0Q.

We can show that problem (1.4) can be reduced to the study of the system
T, of pseudo-differential operators on the boundary JQ (Theorems 4.4 and
4.5). However, it should be emphasized here that the operator T, = a(x)Il +
(1 —a(x))I is degenerate elliptic at the points x € 0Q where a(x) = 0.

Section 4.2 is devoted to the study of the pseudo-differential operator I (and
hence T,) in question. In particular, by using Green’s formula (Theorem 4.6) and
Korn’s inequality (Theorem 4.7) we show that the operator IT is strongly elliptic
on the boundary 0Q (Theorem 4.8).

Step 2: In Chapter 5 we prove a regularity theorem for problem (1.4). More
precisely, we can construct a parametrix S, for the operator T, in the Hérmander
class L} ,(0Q,R) (Lemma 5.2), and then apply a Besov-space boundedness
theorem (Theorem 2.11) to the parametrix S, to obtain the regularity theorem for
problem (1.4) (Theorem 5.1).

Step 3: Chapter 6 is devoted to a uniqueness theorem for problem (1.4)
(Theorem 6.1). By using the regularity theorem for problem (1.4) (Theorem 5.1),
we prove that the operator

Ay = (A, By) : HP(QR®) s H2P(Q,R%) x By, P7(60, RY)
is injective. In the proof we make good use of Korn’s inequality (Theorem 4.7) to
show an inequality of Garding type for problem (1.4).

Step 4: Chapter 7 is devoted to an existence theorem for problem (1.4)
(Theorem 7.1), which is an essential step in the proof of our fundamental theorem
(Theorem 3.1).

By the uniqueness theorem (Theorem 6.1), we know that the operator .7, is
injective, that is, dim N(.o,) = 0. Hence, in order to prove the surjectivity of .oZ,
(or equivalently codim R(.<Z,) = 0) it suffices to show that the index of the
operator .o, is equal to zero (Proposition 7.2), that is,

ind .7, := dim N(.Z,) — codim R(.,) = 0.
Step 4-a: To do this, we replace the operator A by the operator A — Al

with /4 > 0, and consider instead of problem (1.4) the following boundary value
problem:
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{(A — M)v=div(a(x)- Vo) — v =f in Q, (15)
B.,v=ua(x)(a(x) - Vv-n) + (1 —a(x))v=¢ on Q. A

It should be noticed that problem (1.5), coincides with problem (1.4) when A = 0.
Step 4-b: To study problem (1.5),, we shall make use of a method essentially
due to Agmon [Ag]. This is a technique of treating a spectral parameter Al as a

VR

second-order differential operator of an extra variable and relating the old
problem to a new one with the additional variable, which we will explain more
precisely.

We introduce an auxiliary variable y of the unit circle

S =R/27Z,
and replace the parameter —AI by the second-order differential operator

2
o,
0y?

Namely, we replace the operator 4 — AI by the operator

and consider instead of problem (1.5), the following boundary value problem:

2~
~f::div(a(x)'Vf2)+%:f nQ xS, (1.6)

B,o=a(x)(a(x) -Vo-n)+ (1 —a(x))o=¢ ondQxS.

Then the most fundamental relationship between problems (1.5), and problem
(1.6) is the following (Proposition 7.4):

If the index of problem (1.6) is finite, then there exists a finite subset K of Z
such that problem (1.5), is uniquely solvable for all ' = (* satisfying ¢ € Z\K.
The proof of this assertion is given in Section 7.2, due to its length.

Step 4-c: We show that there exists a parametrix S, for the operator T, in the
Hormander class L?’l 2 (0Q xS, R?) (Lemma 7.3). Therefore, by applying the
Besov-space boundedness theorem (Theorem 2.11) and Peetre’s lemma (Lemma
7.5) to our situation we obtain that the index of problem (1.6) is finite. By
Step 4-b, this proves that the index of .o7, is equal to zero.

Step 5: Chapter 8 is devoted to the proof of Main Theorem, Theorem 1.1
and Theorem 1.2. By the existence and uniqueness theorem for problem (1.4)
(Theorem 3.1), our Main Theorem follows from an application of the inverse
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mapping theorem (Theorem 8.1). In the proof of Theorems 1.1 and 1.2 we
calculate explicitly the first elasticity tensor f&, and verify that either condition (B)
or condition (C) implies condition (S).

In the final Chapter 9 we give two important open problems concerning the
boundary value problems of nonlinear elastostatics for future study.

2. Theory of Pseudo-Differential Operators

In this chapter we present a brief description of the basic concepts and results
of the L” theory of pseudo-differential operators which may be considered as a
generalization of the classical potential theory. This forms a functional analytic
background for the proof of Main Theorem. For detailed studies of pseudo-
differential operators, the reader is referred to Chazarain—Piriou [CP], Hérmander
[Ho3], Kumano-go [Ku] and Taylor [Ty].

2.1 Function Spaces

Let Q be a bounded domain of Euclidean space R" with smooth boundary
0Q. Its closure Q = QU 0Q is an n-dimensional, compact smooth manifold with
boundary. Without loss of generality, we may assume that the domain Q is a
relatively compact open subset of an n-dimensional, compact smooth manifold A
without boundary (see Figure 2.1). This manifold M is called the double of Q.

The function spaces we shall treat are the following (cf. [AF], [BL], [Fr],
[Tr):

(i) The generalized Sobolev spaces H*”(Q) and H*?(M), consisting of all
potentials of order s of L? functions. When s is integral, these spaces coincide
with the usual Sobolev spaces W*?(Q) and W*?(M), respectively.

(i) The Besov spaces B*?(0Q). These are functions spaces defined in terms of
the L? modulus of continuity, and enter naturally in connection with boundary
value problems.

First, if 1 < p < o0, we let

L?(Q) = the space of (equivalence classes of) Lebesgue measurable
functions u(x) on Q such that |u(x)|” is integrable on Q.

The space L”(Q) is a Banach space with the norm

Jul, = (JQ u()l? dx)”".
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M

[}9)

Figure 2.1

For p = oo, we let

L~ (Q) = the spaceof (equivalence classes of) essentially bounded,
Lebesgue measurable functions u(x) on Q.

The space L*(Q) is a Banach space with the norm

[[ull ., = ess supcqlu(x)|-

We recall the basic definitions and facts about the Fourier transform. If
f(x) e L'(R"), we define its (direct) Fourier transform Zf(¢) by the formula

FO=| Wy &= (@b E)
where x-&=x& +x8 + -+ x,&,. We also denote Zf(&) by f(f)

Similarly, if g(¢) e L'(R"), we define its inverse Fourier transform % *g(x) by
the formula

Fg(x) = J (e de.

We introduce a subspace of L'(R") which is invariant under the Fourier
transform. We define the Schwartz space

F(R") = the space of smooth functions ¢(x) on R" such that we have,
for any non-negative integer j,
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pi(p) = sup {(1+[x*)"*|0%p(x)|} < o0.

xeR”

We equip the space #(R") with the topology defined by the countable family
{p;} of seminorms. The space .#(R") is a Fréchet space. The Fourier transforms
Z and Z* map Z(R") continuously into itself, and FF*=%"% =1 on
Z(R").

Since the injection of Cj°(R") into .#(R") is continuous, it follows that the
dual space &' (R") of &(R") consists of those distributions 7' e 2’(R") that have
continuous extensions to #(R"). The elements of .%'(R") are called tempered
distributions on R”. The direct and inverse Fourier transforms can be extended to
the space &'(R") by the following formulas:

{(Fu, ) =u, 7oy, peSR).
(Fu 0y =, 7 9y, peSR").
Once again, the Fourier transforms # and #* map ¢'(R") continuously into
itself, and #7* =77 =1 on &' (R").
If seR, we define a linear map
J 'R — S (R")
by the formula

Jou=F((1+ &P Fu), ues' (R").

This can be visualized as follows:

ue 'Ry — S'(R") > J'u

Fue S R ——— 'R > (14|’ Fu
(1™

Then it is easy to see that the map J* is an isomorphism of %’(R") onto itself
and that its inverse is the map J . The function J*u is called the Bessel potential
of order s of wu.

(I) Now, if seR and 1 < p < o0, we let
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H*?(R") = the image of L?(R") under the mapping J°.

We equip H*7(R") with the norm |[ull; , = ||/ ~*ul|, for ue H*?(R"). The space
H*P(R") is called the (generalized) Sobolev space of order s.

We list four basic topological properties of H*?(R"):

(1) The Schwartz space #(R") is dense in each H*?(R").

(2) The space H—*?'(R") is the dual space of H*?(R"), where p’' = p/(p — 1)
is the exponent conjugate to p.

(3) If s> ¢, then we have the inclusions

S (R") = H*?(R") = H"?(R") =« ¥'(R"),

with continuous injections.

(4) If s is a non-negative integer, then the space H*?(R") is isomorphic to
the usual Sobolev space W*?(R"), that is, the space H*?(R") coincides with the
space of functions u(x) € L?(R") such that D*u(x) e L?(R") for |o| < s, and the

norm | - ||, , is equivalent to the norm

P

1/p

}:LJNM@VW

o] <s
(II) Next, if 1 < p < o0, we let

BYP(R"1) = the space of (equivalence classes of) functions
p(x") e LP(R"™!) for which the integral

JJ lo(x" + »') = 20(x") + p(x" — y")|”
Rn—lXRn—l

I /!
|y/|(ﬂ*1)+17 dy'dx

is finite.

The space Blvl’(R”_l) is a Banach space with respect to the norm

— "N|P !
o= (] 6 s

1
N o' + ') = 200() + ol = N
R xR"! |y/|”*1+1’ yax ’

If p=o0, we let
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B (R"!) = the space of (equivalence classes of) functions
p(x') e L*(R"") for which the quantity
4 ) = 20(- —
sup 120+ = 200) + o( = ¥l

p is finite.
|»'|>0 |y |

The space B“‘(R”_l) is a Banach space with respect to the norm

lo(- +»") = 20() + o(- = V).,
2l1,0 = llollc + sup =
b 0 |y’]

If seRand 1 <p< oo, we let

B*P(R"') = the image of B"”(R""!) under the mapping J"!, where
J* ! is the Bessel potential of order s —1 on R"'.

We equip the space B*”(R""') with the norm lols , = |J’*”1gp|1,p for
g€ B*?(R"!). The space B*?(R""!) is called the Besov space of order s.

We list four basic topological properties of B*?(R"™!):

(1) The Schwartz space &(R"!) is dense in each B*?(R"!).

(2) The space B *?'(R"!) is the dual space of B%?(R""!), where p’'=
p/(p—1) is the exponent conjugate to p.

(3) If s> ¢, then we have the inclusions

{y(Rnfl) c BS,[)(Rnfl) c Bt,p(Rnfl) c ,V/(R’Fl),

with continuous injections.

4) If 1<p<oo and if s=m+ o with a non-negative integer m and
0 < o < 1, then the Besov space B*”(R"~!) coincides with the space of functions
p(x') € H™P(R"™) such that, for |x| =m, the integral (Slobodeckii seminorm)

JJ |D“§0(X/) - Da(ﬂ(y/”p dxldyl
R xR"! |x/ _ yl|”*1+1"7

is finite. Furthermore, the norm |gl , is equivalent to the norm

1/p

, , D%p(x") — D*p(y")|? ,
S J et ax e SS[[ L PEESREIE avay

I !
lo <m |o|=m X" = |

Now we define the generalized Sobolev spaces H*?(Q), H>’(M) and the
Besov spaces B*”(0Q) for arbitrary values of s.
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For each s e R, we define the Sobolev space
H*?(Q) = the space of restrictions to Q of functions in H*”(R").
We equip the space H*?(Q) with the norm
lulls , = inf{| U], : Ue H*"(R"), Ulq = u}.

The space H*P(Q) is a Banach space with respect to the norm |- ||, We
remark that

H0=”(Q) =L"Q); |- Ho,p = Hp'

The Sobolev spaces H*?(M) are defined to be locally the spaces H*”(R"),
upon using local coordinate systems flattening out M, together with a partition
of unity. The Besov spaces B*?(0Q) are defined similarly, with H*?(R") replaced
by B*?(R"™!). The norms of H*?(M) and B*?(6Q) will be denoted respectively
by II- I, and |-,

We state two important theorems that will be used in the study of boundary
value problems in the framework of Sobolev spaces of L? type (see [AF], [BL],
[St], [Tr]):

(I) (The trace theorem) Let 1 < p < oo. Then the trace map

p: HP(Q) — BS1/Pr(oQ)
U ulag

is continuous for all s > 1/p, and is surjective.
(II) (The Rellich—Kondrachov theorem) If s > ¢, then the injections

H"'(M) — H"" (M),
B*P(3Q) — B"7(0Q)

are both compact (or completely continuous).
Finally, we introduce a space of distributions on Q which behave locally just
like the distributions in H*?(R"):

H>P(Q) = the space of distributions u € 2'(Q) such that
pue H*?(R") for all e C"(Q).

We equip the localized Sobolev space H;)’(Q) with the topology defined by the
seminorms u — ||gul|; , as ¢ ranges over Ci°(Q). It is easy to verify that H,;[(Q)
is a Fréchet space. The localized Besov space B;”(0Q) is defined similarly, with

loc
H*?(R") replaced by B*?(R"™1).
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2.2 Pseudo-Differential Operators

This section is devoted to a brief description of the basic concepts and results
of the L? theory of pseudo-differential operators—a modern theory of classical
potentials.

2.2.1 Symbol Classes. Let Q be an open subset of R". If meR and
0<d<p<l, we let
s (Q % RY) = the set of all functions a(x,0) e C*(Q x R") with the
property that, for any compact K < Q and any multi-indices
o, B, there exists a constant Ck .z > 0 such that we have,
for all xe K and all 0 € R",

[050La(x, 0)] < i p(1 + o))" PP+,

The elements of S)5(Q x RY) are called symbols of order m. We drop the
Q x RY and use S)s when the context is clear.

ExampLes 2.1. (1) A polynomial p(x,&) =3, ., @x(x)¢” of order m with
coefficients in C*(Q) is in S7";(Q x R").
(2) If m e R, the function

QxR"3 (x,&) > (1+]¢)"?

is in ST, (Q x R").
(3) A function a(x,0) e C*(Q x (RM\{0}) is said to be positively homo-
geneous of degree m in 0 if it satisfies the condition

a(x,10) = t"a(x,0), t>0.

If a(x,6) is positively homogeneous of degree m in 6 and if ¢(f) is a smooth
function such that ¢(0) =0 for |0 <1/2 and ¢(0) =1 for |0] > 1, then the
function g(0)a(x,0) is in the class S7")(Q x RY).

If K is a compact subset of Q and j is a non-negative integer, we define a

seminorm pg ;. on S”;(Q x RY) by the formula

p,0

|050%a(x, 0)]
xek (14 |0f)" /1R
HeRV

o <j

/T(S(Q X RN) Sda— pK.,j,m(a) =
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We equip the space S/',”(;(Q x RY) with the topology defined by the family
{pk,jm} of seminorms where K ranges over all compact subsets of Q and
J=0,1,.... The space S)"5(Q x R") is a Fréchet space.
We set
ST (QxRY) = ) 875(Q x RY).
meR

The next theorem gives a meaning to a formal sum of symbols of decreasing
order:

THEOREM 2.1.  Let aj(x,0) € S;"g(Q x RY), mj | —co, j=0,1,.... Then there
exists a symbol a(x,0) € S"3(Q x RY), unique modulo S~ (Q x RY), such that we
have, for all k > 0,

a(x,0) — kia_,(x, 0) € S5 (Q x RY). (2.1)
j=0

If formula (2.1) holds true, we write

a(x,0) ~ i a;j(x, 0).

J=0

The formal sum > 7, a(x,0) is called an asymptotic expansion of a(x,0).

A symbol a(x, 0) € S, (Q x RY) is said to be classical if there exist smooth
functions a;(x, 0), positively homogeneous of degree m — j in 0 for |0| > 1, such
that, for all positive integers k,

k—1
a(x,0) = a;(x,0) € ST7*(Q x RY).
j=0

The homogeneous function ay(x,6) of degree m is called the principal part of
a(x,6).
We let

M(Q x RY) = the set of all classical symbols of order m.

For example, the symbols in Examples 2.1 are all classical.
A symbol a(x,0) in §)";(Q x RY) is said to be elliptic of order m if, for any
compact K < Q, there exists a constant Cx > 0 such that
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la(x,0)] = Cx(1 +10)", xeK, [0 = ——.
Ck

There is a simple criterion in the case of classical symbols.

THEOREM 2.2. Let a(x,0) be in S%(Q x RY) with principal part ao(x,0).
Then a(x,0) is elliptic if and only if we have the condition

ap(x,0) #0, xeQ, |0 =1.

2.2.2  Pseudo-Differential Operators. Let Q be an open subset of R". If
o(x,y,&) is a phase function on Q x Q x (R"\{0}) such that

€”(X,J’af): (x_y)'é;

we define a first-order differential operator

NI el GV & o VNN @ TSN o
L:= i 2+|x_y|2{2(x] yl)af/JrZ'é‘Z anJrZ |f|2 ayk}+p(é)v

=1 k=1 k=1

where i = v/ —1 and p(¢) is a function in C{°(R") such that p(&) =1 for |&] < 1.
Then it is easy to see that the operator L enjoys the property

L(e") =e".
We let
SH(Qx QxR") = ) §)5(QxQxR"),

meR

and we wish to give a meaning to the integral

) = [ e dan p ue ) dsdvde, we Cr@x Q). (22)

for each symbol a(x, y,&) € S75(€2 x Q x R"). If we replace e in formula (2.2)

by L(e), then a formal integration by parts gives us that

o) = [| eI el ) dedyde.

However, the transpose L’ of L maps Ss continuously into Spr}” for all r e R,
where # = min(p, 1 — ). Thus, continuing this process we can reduce the growth
of the integrand at infinity until it becomes integrable, and give a meaning to
the integral (2.2) for each symbol a(x, y, <) € S75(Q x Q x R”).
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More precisely, we have the following:

THEOREM 2.3. (i) The linear functional
STFQxQAxR")saw I,(aw) eC

extends uniquely to a linear functional £ on S)5(Q x Q x R") whose restriction
to each S;(QxQxR") is continuous. Furthermore, the restriction to
S)s(Qx Q x R") of / is expressed as the formula

tay=[| L) al, i, ) ddye,
QxQxRY
where k> (m+ N)/n and n = min(p, 1 —9).
(ii) For any fixed a(x, y,&) € S)"5(Q x Q x R"), the mapping
Cr(@QxQ)swr I(aw) =/(a)eC (2.3)

is a distribution of order <k for k> (m+ N)/n.

We call the linear functional / on S7; an oscillatory integral, but use the

standard notation as in formula (2.2). The distribution (2.3) is called the Fourier
integral distribution associated with the phase function ¢(x, y,¢) and the am-
plitude a(x, y,&), and is denoted as follows:

Kvo) = | e at 3, de.
The distribution k(x, y) defines a continuous linear operator
A4:C Q) — 2'(Q)
by the formula
{Au,vy =<k,o@uy, ue CP(Q), ve CyF(Q).

The operator A4 is called a pseudo-differential operator, and is denoted as follows:

) = [| e Van u) dvde, wecp@. @4

For example, the distribution

1

k(x7 y) = (2n)n JR” ei<X7y)é

1
(1+1e)"

defines the Bessel potential J* = (I — A)f“'/ * for any s> 0.

dée 2'(R" x R")
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We summarize three basic properties of the operator A4:

(1) A pseudo-differential operator 4 maps C;°(2) continuously into C* (),
and extends to a continuous linear operator 4 : &'(Q) — 2'(Q).

(2) The distribution kernel k4(x,y) of a pseudo-differential operator A4
satisfies the condition

sing supp k4 = {(x,x) : x € Q},

that is, the kernel k4(x, y) is smooth off the diagonal {(x,x):xe Q} in Q x Q.
Here we recall that if u is a distribution on Q, the singular support of u is the
smallest closed subset of Q outside of which u is smooth; the singular support of
u is denoted by sing supp u.

(3) sing supp Au < sing supp u, u € &'(Q).
In other words, Au is smooth whenever u is. This property is referred to as the
pseudo-local property.

A pseudo-differential operator A4 is said to be of order m if it is an operator
of the form (2.4) with some a(x, y,&) € S)"5(Q x Q x R"). We let

L"5(Q) = the set of all pseudo-differential operators of order m on Q,

and

L@ = ) L)),

meR

The next theorem characterizes the class L~*(Q):

THEOREM 2.4. The following three conditions (i), (ii) and (iii) are equivalent:

(i) 4e L=*(Q).

(i) 4 is written in the form (2.4) with some a(x,y,£) e S (Q x Q x R").

(i) 4 is a regularizer, or equivalently, its distribution kernel k4(x,y) is a
smooth function on Q x Q.

A continuous linear operator A : C°(Q) — 2'(Q) is said to be properly
supported if the following two conditions (a) and (b) are satisfied:

(a) For any compact subset K of Q, there exists a compact subset K’ of Q
such that

supp v = K = supp Av < K'.

(b) For any compact subset K’ of Q, there exists a compact subset K > K’ of
Q such that
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supp vNK = & = supp AvNK' = .

If A is properly supported, then it maps C;°(Q) continuously into &'(Q), and
further it extends to a continuous linear operator on C*(Q) into Z'(Q).
The next theorem states that every pseudo-differential operator can be written
as the sum of a properly supported operator and a regularizer:
Tueorem 2.5. If A€ L)5(Q), then we have the formula
A=Ay + R,

where Ay eL,Ta(Q) is properly supported and R e L=%(Q).

If p(x,¢) € §)(Q x R"), then the operator p(x,D), defined by the formula
1 N o
P D) = o | b Oue) de wecp@). @)

is a pseudo-differential operator of order m on Q, that is, p(x,D)e L);(Q).
The next theorem asserts that every properly supported pseudo-differential
operator can be reduced to the form (2.5):

THEOREM 2.6. If A€ Lgf(s(Q) is properly supported, then we have the formula
p(x,&) = e A(e™) € §'5(Q x R”),

and
A = p(x, D).

Furthermore, if a(x,y,&) € S)'5(Q x Q x R") is an amplitude for A, we have the
following asymptotic expansion:

1 o o
p(xa é) ~ Zaafl)y (a(xv Y, é))|y:x'
a>0""
The function p(x,&) is called the complete symbol of A.
We extend the notion of a complete symbol to the whole space L)';(Q2). If

AeL)5(Q), we choose a properly supported operator Ao € L)';(€2) such that
A—Aye L~ (Q), and let

a(A) := the equivalence class of the complete symbol of A, in
S)s(Qx R") /S (Q x R").
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By virtue of Theorems 2.4 and 2.5, it follows that o(A) does not depend on
the operator Ay chosen. The equivalence class a(A4) is called the complete symbol
of A. Tt is easy to see that the mapping

L)'5(Q) 34 a(A4) € S)5(Q2x R")/S™(Q x R")
induces an isomorphism
LS5(Q)/L™7(Q) — S)'5(Q x R") /S~ (Q x R").

We shall often identify the complete symbol o(A) with a representative in the
class S)"5(Q x R") for notational convenience, and call any member of o(4) a
complete symbol of A.

A pseudo-differential operator A4 € L{"((Q) is said to be classical if its
complete symbol o(A4) has a representativé in the class S7J'(Q x R").

We let

L () = the set of all classical pseudo-differential operators of order m
on Q.

Then the mapping

Li(Q)2A4— a(A4)eSF(QxR")/ST(QxR")
induces an isomorphism

LY(Q)/L™7(Q) — SF(Q xR")/ST*(Q x R").
Also we have the formula

L@ = ) Lj(Q).

meR

If A e L(Q), then the principal part of o(4) has a canonical representative
o4(x,&) e C*(Q x (R"™\{0})) which is positively homogeneous of degree m in the
variable &. The function g4(x, ¢) is called the homogeneous principal symbol of A.

The next two theorems assert that the class of pseudo-differential operators
forms an algebra closed under the operations of composition of operators and
taking the transpose or adjoint of an operator:

THEOREM 2.7. If A eL;"(S(Q), then its transpose A’ and its adjoint A* are
both in L)';(Q), and the complete symbols 5(A") and o(A*) have respectively the
following asymptotic expansions:
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o(A")(x, &) ~ Z 1 0eD5(a(A)(x, =€),

x>0

Z 02D (a(A)(x, €)).

a(>0

THeOREM 2.8. If A€ L) 5(Q) andBeL"f, 5(Q) where 0 <0" < p" <1 and
if one of them is properly supported then the composition AB is in L”7 Q)
with p =min(p’, p") and é = max(6',6"), and we have the following asymplotic
expansion:

Z 7 0c ( ,€)) - Di(a(B)(x; <))

O(>0

A pseudo-differential operator 4 € L)"5(€) is said to be elliptic of order m if
its complete symbol a(A) is elliptic of order m. By virtue of Theorem 2.2, it
follows that a classical pseudo-differential operator 4 € L7/ (Q) is elliptic if and
only if its homogeneous principal symbol g,(x,&) does not vanish on the space
Q x (R"™\{0}).

The next theorem states that elliptic operators are the “invertible” elements in
the algebra of pseudo-differential operators:

THEOREM 2.9.  An operator A € L)5(Q) is elliptic if and only if there exists a
properly supported operator B e L,§(Q) such that

AB=1 mod L™ *(Q),
BA=1 mod L *(Q).

Such an operator B is called a parametrix for A. In other words, a para-
metrix for 4 is a two-sided inverse of 4 modulo L~ (Q). We observe that a
parametrix is unique modulo L~ *(Q).

The next theorem proves the invariance of pseudo-differential operators under
change of coordinates:

THEOREM 2.10. Let Q; and Q;, be two open subsets of R" and y : Q1 — Q, a
C* diffeomorphism. If A e L/')’f(;(Ql), where 1 —p <0 < p <1, then the mapping
A, : Cf () — C*(Q)

v A(voz) oy
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is in L/’f{s(Qz), and we have the asymptotic expansion

a(Ay)(y,n) ~ Z%(GE‘U(A))(%’%’(X) ) - D" (2:6)
>0 "
with
r(x,z,m) = y(z) = 2(x) = x'(x) - (z = x),m).

Here x = y~'(), x'(x) is the derivative of y at x and 'y'(x) its transpose.

The situation may be represented by the following diagram:

Cr () —— C7 ()

Ay

1

Here y*v = vo y is the pull-back of v by y and y,u = uo y~" is the push-forward

of u by y, respectively.

ReEMARK 2.1. Formula (2.6) shows that
o(A,) (31) = o(A)(x 7/ (x) ) mod S5,
Note that the mapping
Qo x R"3 (y,) = (%7 (x) - 1) € Q x R”

is just a transition map of the cotangent bundle 7*(R"). This implies that the
principal symbol g,,(4) of A€ L)s(R") can be invariantly defined on 7*(R")
when 1 —p<d<p<l

A differential operator of order m with smooth coefficients on Q is con-
tinuous on H,)”(Q) (resp. B).Y(Q)) into H;, """(Q) (resp. B, """ (Q)) for all s e R.

This result extends to pseudo-differential operators (cf. [Bo, Theorem 1]; [Ta4,
Theorem A.6]):

TueoreM 2.11. Every properly supported operator A e L{"s(Q), 0 <J <1,

extends to a continuous linear operator A : H;"? (Q) — H,, ""(Q) for all s € R and

all 1 < p < o0, and also it extends to a continuous linear operator A : B)Y(Q) —
B "P(Q) for all seR and all 1 < p < 0.

loc
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Now we can define the concept of a pseudo-differential operator on a
manifold, and transfer all the machinery of pseudo-differential operators to
manifolds. Let M be an n-dimensional, compact smooth manifold without
boundary. Theorem 2.10 leads us to the following:

DeriNiTION 2.1, Let 1 —p<d<p<1. A continuous linear operator
A:C*(M)— C*(M) is called a pseudo-differential operator of order m e R if
it satisfies the following two conditions (i) and (ii):

(i) The distribution kernel ky4(x,y) of A4 is smooth off the diagonal
{(x,x): xe M} in M x M.

(i) For any chart (U,y) on M, the mapping

Ay G (x(U) = € (x(V))
we A(woz)oy”
belongs to the class L)s(x(U)).
We let

L)’5(M) = the set of all pseudo-differential operators of order m on M,
and set

L (M) = () L5(M).

meR

Some results about pseudo-differential operators on R” stated above are also
true for pseudo-differential operators on M. In fact, pseudo-differential operators
on M are defined to be locally pseudo-differential operators on R”".

For example, we have the following five results (1) through (5):

(1) A pseudo-differential operator A extends to a continuous linear operator
A:9' (M) — 9'(M).

(

(3) A continuous linear operator 4 : C*(M) — '(M) is a regularizer if and
only if it is in the class L™ (M).

(4) The class L)'s(M) is stable under the operations of composition of

2) sing supp Au < sing supp u, u€ 9'(M).

operators and taking the transpose or adjoint of an operator.

(5) A pseudo-differential operator 4 € L{’s(M), 0 <J < 1, extends to a con-
tinuous linear operator A4: H*?(M) — H*™?(M) for all seR and all
1 < p < oo and also a continuous linear operator A : B¥?(M) — B*™?(M) for
all seR and all 1 < p < oo, respectively.
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A pseudo-differential operator 4 € L{'fo(M ) is said to be classical if, for any
chart (U, ) on M, the mapping 4, : C°(x(U)) — C*(x(U)) belongs to the class
LI((U)).

We let

L3 (M) = the set of all classical pseudo-differential operators of order
m on M.

We observe that

Lfm(M) — m m(M).

cl
meR

Let Ae L}(M). If (U,x) is a chart on M, there is associated a homogeneous
principal symbol a4, (x,&) € C*(x(U) x (R"\{0})). In view of Remark 2.1, by
smoothly patching together the functions g4, (x,&) we can obtain a smooth
function g4(x,&) on T*(M)\{0} = {(x,&) e T*(M) : £ # 0}, which is positively
homogeneous of degree m in the variable £. The function g4(x, &) is called the
homogeneous principal symbol of A.

A classical pseudo-differential operator A e L)J(M) is said to be elliptic of
order m if its homogeneous principal symbol ¢,4(x,¢) does not vanish on the
bundle 7*(M)\{0} of non-zero cotangent vectors.

Then we have the following result:

(6) An operator 4 € L}(M) is elliptic if and only if there exists a parametrix
Be L]"(M) for A:

AB=1 mod L~*(M),
BA=1 mod L *(M).

Let Q be an open subset of R”. A properly supported pseudo-differential
operator A on Q is said to be hypoelliptic if it satisfies the condition

sing supp u = sing supp Au, ue 2'(Q).

For example, Theorem 2.9 asserts that elliptic operators are hypoelliptic. It
should be emphasized that this notion may be transferred to manifolds.

The following criterion for hypoellipticity is due to Hoérmander (cf. [Ho2,
Theorem 4.2)):

THEOREM 2.12. Let A= p(x,D)e L™

" 5(Q) be properly supported. Assume

that, for any compact K < Q and any multi-indices o, [§, there exist constants
Ck,up >0, Ck >0 and peR such that we have, for all x e K and all |&| = Ck,
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IDEDE p(x, &) < Cruplp(x, E)|(1 + [&]) 7+ (2.7a)

Ip(x,&) 7" < C(1 + D™ (2.7b)

Then there exists a parametrix B € L/’;’ 5(Q) for A

REmMARK 2.2. It should be emphasized that Theorem 2.12 extends to the
class L)';(Q,R") of n x n matrix-valued, pseudo-differential operators on Q.

3. Linear Elastostatics

The process of linearization provides a key link between the linear and
nonlinear theories of elasticity. In this chapter we study a linearization of
problem (1.1) of nonlinear elastostatics, and state our fundamental existence
and uniqueness theorem (Theorem 3.1) for the linearized problem (1.4) in the
framework of Sobolev spaces of L7 type.

3.1 Linearization of Nonlinear Elastostatics

Let B: Q — R? be a given body force and 7 : 3Q — R® a given surface force.
In this section we study a linearization of problem (1.1) of nonlinear elastostatics
for the unknown configuration ¢:

{DIV P(X,V§(X)) +B(X)=0 in Q, (1.1)

a(X)P(X,VP(X)) - N(X) 4 (1 —a(X))p(X) =7(X) on 0Q.

Componentwise, our problem (1.1) can be written as follows:

d
3
217y,

w(X) 31, Py(X, VH(XO))N;(X) + (1 — a(X))¢,(X) = w(X) on 0,

(Py(X,V$(X))) + Bi(X) =0 in Q,

where 1 <i < 3. Indeed, it suffices to recall that if 7 is a tensor field

Ty Ty Tis
T=|Tn Tn Tx|,
T3, T T3

then the divergence DIV T is defined by the formula

6T|] 6T12 O'T]B
X, + X, + 0X3

| T Ty | T

DIV T := | oy Oy O
0Ty | 0Tz | 0T33

.6 + X, + 0X3
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It should be noticed that a simple application of Green’s formula implies the
divergence theorem for tensor fields

J DIVde:J T-N da,
Q oQ

where da is the area element on the boundary 0Q.
First, we linearize the nonlinear equations of elastostatics

DIV P(V¢) + B=0 in Q.

The corresponding equations linearized at a configuration q; are the following
(cf. [MH, Chapter 4, Section 4.2|):

DIV(P(F) +A-VV)+B=0 in Q,

where

o OP o o o
A= L (F), F=vy,

is the first elasticity tensor evaluated at .
Similarly, the linearization of the boundary condition

{ a(X)P(Vg) - N+ (1 —a(X))p=1 on 0Q,
<oa(X

¢$)-N
)<1 on 0Q
about a configuration ¢ is the following:
2(X)(P(F) +A-VV) N+ (1 —a(X))(¢+V)=1 on Q.
Summing up, we obtain the following linearization of problem (1.1) for the
unknown vector function V:
DIV(A-VV) = —DIV P(F) — B in Q,
2(X)(A-VV-N) + (1 — a(X))V (1.3)
=7~ a(X)P(F)-N — (1 — (X)) on Q.

3.2 Existence and Uniqueness Theorem for Problem (1.4)

In this section we consider problem (1.3) of linear elastostatics in the fol-
lowing form:

{div(a(x) v)=f in Q, (1.4)

a(x)(a(x)-Vo-n)+ (1 —a(x))v=¢ on 0Q,
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where a(x) is a smooth elasticity tensor and n is the unit outward normal to the
boundary 0Q. Componentwise, these equations can be written as follows:

21'3:1 aL;CJ (Z;,mla!ﬂm (X) %) = ﬁ(x) in Q’
() 5 (23.,,,_1 () 57) () + (1 — a()(x) = pi(x) on 2

where 1 <i<3.

We study problem (1.4) in the framework of Sobolev spaces of L’ type, by
using the L? theory of pseudo-differential operators.

If seRand 1 < p < oo, we let

H*"(Q,R?) = the Banach space of all H*? vector functions u,
B*?(0Q,R?) = the Banach space of all B’ vector functions ¢.

We introduce a subspace of B*?(0Q,R?) which is associated with the
boundary condition

a(x)(a(x)-Vo-n)+ (1 —a(x))v=¢ on Q.
If seRand 1< p< o0, we let

B(0Q,R?) = {$ = a(x)p; + (1 — a(x))gy : ¢y € BV (0Q,RY),

¢, € BT (0Q,R)},

and define the norm

18],.sp = E{11]5 ) + |0alsy1, 2 0 = 2(X) By + (1 — a(x)) 42}

Then it is easy to verify (see [Ta2, Lemma 4.7]) that the space B/ (0Q,RY) is

a Banach space with the norm |- | Furthermore, we remark that

%8, p"

BT (0Q,RY) if a(x) = 0 on 0Q (the pure displacement case),

B eaR) - { x) .
B*?(0Q,R’)  if a(x) =1 on JdQ (the pure traction case),

(@)
and we have, for general o(x), the continuous injections
B (0Q,R?) < BJ(9Q,R’) = B*7(0Q, R).
Now we let
Av := div(a(x) - Vo),

B.v :=a(x)(a(x) - Vo - n) + (1 — a(x))];0,
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and associate with problem (1.4) a linear operator
(4,B,) : H*?(QR®)  H27(Q,R%) x B, P7(00, RY).

Then it is easy to verify that the operator (4, B,) is continuous, for s > 1+ 1/p.
Our fundamental result is the following existence and uniqueness theorem for
problem (1.4) (cf. [Itl, Theorem IJ):

THEOREM 3.1. Let 1 < p < o0 and s> 1/p+ 1. We assume that the following
two conditions (T) and (A) are satisfied:
(T) The elasticity tensor a(x) enjoys the property of symmetry
Ajj/m (X) = a/mij(x) = aji/m(x)v X € Qv

and is uniformly pointwise stable, that is, there is a constant n >0 such that

1 _
ze-alx)-e= nlell?, xeQ,

for all symmetric two tensors e.
(A) 0<a(x) <1 on 0Q, but a(x) £ 1 on 0Q.
Then the operator

(4,B,) : H*?(Q,R*) s H27(Q,R%) x B,/ (00, RY)
is an algebraic and topological isomorphism.

It should be noticed that condition (T) is nothing but condition (S) in Main
Theorem if we take a(x) := A(X).

We give a typical example of a homogencous, isotropic, elastic material
whose reference configuration is a natural state (cf. [MH, Chapter 4, Proposition
3.13)):

ExampLE 3.1. We let

Ajjrm = )V(S[/'(sim + ,u(ai/(sjm + 6[}71(5_/'/)7

where 1 and x4 are Lamé moduli, and assume that the following two conditions
(L) and (A) are satisfied:

2
(L) #>0 and /1+§,u>0.

(A) 0<a(x) <1 on 0Q, but a(x) #1 on Q.
Then the mixed displacement-traction problem
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{div(/l tr(e(u))l +2ue(u)) = f in Q,
o(x)(z(u) -n) + (1 —a(x))u=¢ on Q

has a unique solution e H*’(Q,R?) for any fe H*>?(Q,R?) and any g€
B VPP (60, R?). Here e(u) = (ejj(u)) is the linearized strain tensor defined by

(o)
1 (ou;  ou
(k) =3 (ax,- +a>

the formula
and 7(u) = (t;(u)) is the linearized stress tensor defined by the formula

3
Tj(u) =4 (Z ekk(u)>(5,-j + 2pe(u).
k=1

It should be noticed that condition (L) is nothing but condition (C) in Theorem
1.2.

In order to prove Theorem 3.1, it suffices to show that the operator (4, B,) is
bijective. Indeed, the continuity of the inverse of (4, B,) follows immediately from
an application of Banach’s open mapping theorem, since (4, B,) is a continuous
operator.

Theorem 3.1 will be proved in a series of theorems (Theorems 5.1, 6.1 and
7.1) in the subsequent chapters.

4. Reduction to the Boundary

In Chapters 4 through 7 we study the linearized problem (1.4) in the
framework of Sobolev spaces of L” type, by using the L? theory of pseudo-
differential operators. In this chapter we show that problem (1.4) can be reduced
to the study of a 3 x3 matrix-valued, pseudo-differential operator on the
boundary.

4.1 Operator T,

First, we consider the pure displacement problem (Dirichlet problem)

{div(a(x) Vo) =f inQ,
V=29 on 0Q.

We let
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Av = div(a(x) - Vo),
0 =050,
and associate with problem (D) a linear operator
(A4,7) : H*?(Q,R®) — H*727(Q,R3) x B~/ (5Q, R?).

Then we have the following existence and uniqueness theorem for problem
(D) (cf. [MH, Chapter 6, Theorem 1.11]; [Itl, Lemma 1.3]):

THEOREM 4.1. Let 1 < p < oo. If condition (T) is satisfied, then the operator
(A4,y) : H*?(Q,R?) — H*27(Q,R?) x B~ /17 (0Q, R?)

is an algebraic and topological isomorphism, for all s > 1/p.

By Theorem 4.1, we can introduce a linear operator
2 : B (0Q, R?) — HSP(Q,RY)

as follows: For any ¢ € B*~ /77 (0Q,RY), the function Py is the unique solution of
the pure displacement problem

Av=0 1in Q,
v=¢ on 0Q.

The operator 2 is called the Poisson operator for problem (D).
It should be noticed that the spaces

N(A,s,p) ={we H’(QR?): Aw =0 in Q}
and
B (0Q,RY)
are isomorphic in such a way that
N(4,s,p) > B~ /rr (50, RY).

N(4,s5.p) BUrr(6Q, RY).

Secondly, we consider the following non-degenerate mixed displacement-
traction problem:
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div(a(x) - Vo) = f in Q,
(a(x)-Vo-n)+v=¢ on Q.
We let
Av = div(a(x) - Vo),
Bo = (a(x) - Vo - n)|5,
and associate with problem (M) a linear operator
(A,B+7y): H*?(Q,R?) — H 727 (Q,R) x B 171/Pr(5Q, RY).
Then we have the following existence and uniqueness theorem for problem
(M) (cf. [MH, Chapter 6, Theorem 1.11]; [Itl, Lemma 1.3]):
THEOREM 4.2. Let 1 < p < oo. If condition (T) is satisfied, then the operator
(A,B+7y): H?(Q,RY) — H"2P(Q,R?) x BS71/r7(5Q, RY)
is an algebraic and topological isomorphism, for all s > 1/p + 1.
Now, by making use of problems (D) and (M) we show that problem (1.4)
can be reduced to the study of a 3 x 3 matrix-valued, pseudo-differential operator
on the boundary.

Let f be an arbitrary element of H* *7(Q,R?), and ¢ an arbitrary element
of B(S;)l_l/””’(aQ,R3) such that

9 = a(x)p; + (1 — a(x))p,
with
p e B GQRY), gy e BYUPP(0Q,RY).

We assume that u € H*?(Q,R?) is a solution of the mixed displacement-traction

problem
Au=f in Q, (14)
B,u = a(x)Bu+ (1 —a(x))yu =9 on 0Q. '
By Theorem 4.2, we can find an element v € H*”(Q,R?) such that
Av=f in Q,
o (M)
Bv+yv=¢, —p, on 0Q.

We let
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w=u-—m>.

Then it is easy to see that we H®’(Q,R®) is a solution of the mixed
displacement-traction problem

{Aw:O in Q

B,w = ¢, + (2a(x) — 1)yv on 0Q. (41)

However, the Poisson operator # is an isomorphism of B*~!/77(0Q, R?) onto the
null space N(4,s, p). Therefore, we find that we H*”(Q,R%) is a solution of
problem (4.1) if and only if y e B*"/7?(0Q,R%) is a solution of the equation

B,(Py) = ¢, + (20(x) — 1)yv on 0Q. (4.2)

Here w = yw, or equivalently, w = Zw. This is a generalization of the classical
Fredholm integral equation.
Summing up, we have proved the following:

PrOPOSITION 4.3. Let 1 < p< oo and s> 1/p+ 1. Then problem (1.4) has

a solution we H*"(Q,R®) for fe H *"(Q,R?) and gaeB‘(vo?)l*l/P’p((’)Q,Rﬂ if
and only if equation (4.2) has a solution y € B*~1/P?(0Q, R?).

Now we let
T,: C*(0Q,R}) — C*(0Q,RY)
9 — B,(Z79).
Then we have the formula
T, =o(x)II+ (1 —a(x))],
where
Ilp = B(79) = a(x) - V(Zp) - |z

It is known (cf. [Hol], [Se]) that the operator IT is a 3 x 3 matrix-valued, classical
pseudo-differential operator of first order on the boundary 0Q; hence the operator
T, is a 3 x 3 matrix-valued, classical pseudo-differential operator of first order on
the boundary 0Q.

Consequently, Proposition 4.3 asserts that problem (1.4) can be reduced to
the study of the system 7, of pseudo-differential operators on the boundary 0Q.
We shall formulate this fact more precisely in terms of functional analysis.

We associate with problem (1.4) a continuous linear operator
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Ay = (A, B,) - HP(Q,R) — H2/(QR®) x B}, (60, RY).

Similarly, we associate with equation (4.2) a linear operator
T, BSVPP(0Q,R) — BTUPr(0Q, R?)

as follows.
(a) The domain D(7,) of 7, is the space

D(7,) = {pe B V/rP(0Q,R) : T,pe B~ V/r?(6Q,RY)}.

(b) Zup = T.p, p € D(T,).
It should be noticed that the operator 7, is a densely defined, closed linear
operator, since the operator T, : B*V/P7(3Q R — B*~1-1/7r(6Q R?) is con-
tinuous and since the domain D(7,) contains the space C*(0Q,R?).

Then Proposition 4.3 can be reformulated in the following form (cf. [Tal,
Section 8.3]):

THEOREM 4.4. (i) The null space N(<t,) of <, has finite dimension if and
only if the null space N(7,) of T, has finite dimension, and we have the formula

dim N(ez,) = dim N(7).

(i) The range R(<t,) of of, is closed if and only if the range R(T,) of T, is
closed; and R(.<Z,) has finite codimension if and only if R(7,) has finite codi-
mension, and we have the formula

codim R(.Z,) = codim R(7,).

(i) The operator <f, is a Fredholm operator if and only if the operator T, is
a Fredholm operator, and we have the formula

ind o7, = ind 7.

Here we recall that a densely defined, closed linear operator T from a Banach
space X into a Banach space Y is called a Fredholm operator if it satisfies the
following three conditions (a), (b) and (c):

(a) The null space N(T)={xe D(T): Tx =0} of T has finite dimension;
dim N(T) < 0.

(b) The range R(T)={Tx:xe D(T)} of T is closed in Y.

(c) The range R(T) has finite codimension in Y; codim R(7T)=
dim Y/R(T) < o0.
In this case, the index of T is defined by the formula
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ind 7 := dim N(T) — codim R(T).
Furthermore, the next theorem states that the operator .o/, has regularity
property if and only if the operator .7, has.
THEOREM 4.5. Let 1 < p< oo and s> 1/p+ 1. Then the following two
conditions (i) and (ii) are equivalent:
ueL?(Q,R?), Auec H*’(Q,R?), (i)
Bue B, "7 (0Q,RY) = ue H(Q,R).
peBTVPP(0Q RY), T,peBVPP(0Q,R?) = e BVPP(0QRY). (i)

Proor. (i) = (ii): First, just as in [Tal, Proposition 8.3.2] we can prove that
the boundary condition B,u is defined as an function in B~'"V/77(0Q,R?) if
ueL”(QR?) and Aue H*>7(Q,R?). Furthermore, we remark that the Poisson
operator 2 is an isomorphism of B'~/77(3Q, R?) onto the null space N(4,1, p) =
{(we H"”(Q,R*) : Aw =0 in Q} for all teR.

Now we assume that

pe B V/PP(0Q,R?) and T,pe BV/PP(0Q,R?).
Then, by letting u = Z¢ we obtain that
ueL”(Q R, Au=0 and B.u=T,pec B 'P’(Q R?).
Hence it follows from condition (i) that
ue H*?(Q, R3),
so that, by Theorem 4.1,
Q=yuc Bs_l/”””(aQ, R3).
(ii) = (i): Conversely, we assume that

uel’(QR%), AucH*>’(QR?) and BueB, ' '"7(0Q,R?),

(@)
where

Bu = a(x)p; + (1 — a(x))p,,
with

p e BPP(0QRY), g, e BT (0Q,RY).
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Then the function # can be decomposed as follows:
U=v+w,
where ve H*?(Q,R?) is a unique solution of the non-degenerate mixed

displacement-traction problem

Av = Au in Q,
(M)

Bv+yv=¢, —¢p, in 0Q,
and so
w=u—veN(A4,0,p).
Theorem 4.1 asserts that the function w can be written as follows:
w=2Pp, ¢=yweB /PPOQR).
Hence we have the formula
T,p = B,w = B,u— B,v = ¢, + (20(x) — 1)yv € B~ 1/PP(3Q, R%).
Thus it follows from condition (ii) that
pe B PP (0Q,R?),
so that, again by Theorem 4.1,
w=Ppe H"(QR?).
This proves that
u=v+weH""(QR?).

The proof of Theorem 4.5 is complete. O

4.2 Operator I1
We recall that the operator T,, defined by the formula
T,: C*(0Q,R%) — C*(0Q,R%)
9 — B,(279),
can be written as follows:
T, =o(x)I+ (1 —a(x))],

where
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Ilp = B(Z9) = a(x) - V(Zp) - n| .

In this section we prove some properties of the operator I7 as a 3 x 3 matrix-
valued, pseudo-differential operator. To do this, we need the following Green’s
formula and Korn’s inequalities:

THEOREM 4.6 (Green’s formula). We have, for all u,v e C*(Q,R?),

JQ u - div(a(x) - Vo) dx = J

ula(x) - Vo-n| da — J Vu-a(x)-Vodx. (4.3)
o0

o
Here da is the area element on the boundary 0.
By the symmetry of the tensor a(x), Green’s formula (4.3) follows from an

application of the divergence theorem.
We recall that the linearized strain tensor e(u) = (e;(u)) is defined by the

formula
1 6u,- 5uj
ei(t) =3 (5*5)

The next inequalities are special cases of Garding’s inequality for the elliptic
operator u — e(u) (cf. [DL, Chapitre 3, Théoremes 3.1 et 3.3]):

THEOREM 4.7 (Korn’s inequalities). (i) For every non-empty open subset
y < 0Q, there exists a constant c(y) > 0 such that

[, et v et (| ax+ | jvul® ) (4.4)

for all ue H"?(Q,R®) satisfying the condition u=0 on y.
(i) There exists a constant ¢ > 0 such that

J le(u)|” dx+J u]|* dx > c(J ]| dx+J | Val|? dx> (4.5)
Q Q Q Q
for all we H"(Q,R%).

Now we can prove the following (cf. [Itl, Proposition 1.4]):

THEOREM 4.8. (i) The operator II is formally self-adjoint: IT* = II.
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(i) The operator II is strongly elliptic, that is, there exist constants ¢; > 0 and
¢ >0 such that we have, for all g e C*(0Q,C?),

LQ Iy -pda>c |(0|%/2,2 - 02|¢|31/2,2- (4.6)
Here @ denotes the complex conjugate of .
(iii) The principal symbol p,(x',E") of I satisfies the condition
p(xED) = o[ on T*(0Q), (4.7)

with a constant ¢y > 0. Here T*(0Q) is the cotangent bundle of 0Q and |&'| is the
length of &' with respect to the Riemannian metric of 0Q induced by the natural
metric of R>.

ProOF. (i) If ¢ and w are functions in C*(0Q,C?), then, by applying
Green’s formula (4.3) with u:= Z¢ and v:= Py we obtain that

0= J ¢ [a(x) - V(Py) - n| da — J V(2¢) - a(x) - V(Py) dx
o0 Q

—| o Ty da | Vip)-at) - V) v
0 Q
or equivalently,
J Hy-yda= J V(2y) - a(x) - V(Pg) dx. (4.8)
o0 Q

Therefore, by the symmetry of the tensor a(x) it follows that

J My -yda= | V(Py)- a(x) V(Pp) dx
0Q Q

= 5 V(2¢) - a(x) - V(Py) dx

= oIy da.
Joa
This proves the formal self-adjointness of the operator IT.

(ii) Since the tensor a(x) is uniformly pointwise stable, it follows from
an application of the second Korn inequality (4.5) that we have, for all
ue H?(Q,CY),
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JQ Vu-a(x)-Vudx = JQ e(u) - a(x) - e(u) dx

> 2 j le(u)||? dx
Q

2 2
> 2ncllully 5 — 2nljullp -

In particular, by taking u = 2¢ we have, with C; :=2xnc and C, :=2p,
|, v0)- a0 - 579 ax = 120l - G20l
Hence, by combining this inequality and equality (4.8) with ¢ := y we obtain that
| 105z izl .~ a2 (49)

However, we recall that the Poisson operator Z is an isomorphism of the space
BS—1/2.2(6Q7R3)
onto the null space
N(A,5,2)={we H*>(QR* : Aw =0 in Q}

for all seR.

Therefore, the desired inequality (4.6) follows from inequality (4.9).

(iii) It is known (cf. [Ho3], [Ku], [Ty]) that inequality (4.6) implies the strong
ellipticity (4.7) of the operator I1.

The proof of Theorem 4.8 is complete. |

5. Regularity Theorem for Problem (1.4)
In this chapter we prove the following regularity theorem for problem (1.4):
THEOREM 5.1. Let 1 < p < co. If condition (T) is satisfied, then we have,
Sfor any s> 1/p+1,
ueL’(QR?), Auec H>7(Q,R%),

Bue B, "7 (0Q,RY) = ue H'(Q,R).

Proor. By Theorem 4.5, we are reduced to the study of a 3 x 3 matrix-
valued, pseudo-differential operator
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T, =a(x)IT + (1 —a(x))I

on the boundary 0Q. Therefore, it suffices to prove the following:

Lemma 5.2.  If condition (T) is satisfied, then we have, for all seR,
pe2'(0Q,RY), T,peB*"(0Q,R?) = ¢gec B (0Q,RY). (5.1)
Furthermore, for any t <s, there exists a constant Cs; > 0 such that

0lsp < Co.il| Tupls , + 0, p)- (5:2)

PrOOF. We prove that there exists a parametrix S, for the operator T, in
the Hormander class L?,l /2(89,R3) of 3 x 3 matrix-valued, pseudo-differential
operators on the boundary 0Q. The proof of Lemma 5.2 is divided into three
steps.

Step 1: The essential step in the proof is to verify the following matrix
version of conditions (2.7a) and (2.7b) with x:=0, p:=1 and J0:=1/2 (cf.
Remark 2.2):

LemMa 5.3.  Assume that condition (T) is satisfied. Then, for each point x' of
0Q, we can find a neighborhood U(x'") of x' such that:

For any compact K = U(x') and any multi-indices o, 5, there exist constants
Ck.ap>0 and Cx >0 such that we have, for all x' € K and all |&'| > Ck,

1D DL e, &) 7 < Croap(1 4[N (5.30)
le(x', &) < Ck. (5.3b)
Here || - || denotes a norm in the space of 3 x 3 matrices with complex entries.

Granting Lemma 5.3 for the moment, we shall prove Lemma 5.2.

Step 2: First, we cover the boundary 0Q by a finite number of local charts
{(Uj,x)}/2 in each of which inequalities (5.3a) and (5.3b) hold true. Since the
operator T, satisfies conditions (2.7a) and (2.7b) of a matrix-valued version of
Theorem 2.12 with x:=0, p:=1 and 6 :=1/2, it follows from an application
of the same theorem that there exists a parametrix S, in the Hormander class
L?71 /2((/j,R3) for the operator T,. Let {¢j}j'il be a partition of unity subordinate
to the covering {U;};";, and choose a function ; € Cg°(U;) such that ¥, = 1 on

supp ¢;, so that ¢y, = ¢,.
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Now we may assume that ¢ € B*”(0Q,R?) for some ¢ < s and that T,pe
B*?(0Q,R*). We remark that the operator T, can be written in the following
form:

m m

T, = Zqﬁjwj + Zqﬁ,n(l — ).
J= J=

However, the second terms ¢; T, (1 — ;) are in L™*(0Q, R?), since ¢;(1—y;) =0.
Hence we are reduced to the study of the first terms ¢, T,3;. This implies that we
have only to prove the following local version of assertions (5.1) and (5.2):

Ve B(U,R), T,(Yp) e B (U,R’) = y,pe B (U, R).  (5.1")
Wl , < Co.(|T a(tﬁjzo)lip + Itﬁjfﬂlf,,)) (5.2')

However, by applying Theorem 2.11 to our situation we obtain that the para-

metrix S, maps B.”(U;,R*) continuously into itself for all & € R. This proves the

desired assertions (5.1") and (5.2'), since we have the formula
Vip =S, T,(,p) mod C*(U;,R).

Lemma 5.2 (and hence Theorem 5.1) is proved, apart from the proof of
Lemma 5.3.

Step 3: Proof of Lemma 5.3

By Theorem 4.8, we find that the symbol of IT has the following asymptotic
expansion:

(X" E) + po(x', &) + terms of order < —1,

where (cf. inequality (4.5))

p(x"E) = ¢o|E'|[T on T*(0Q). (5.5)
Thus it follows that the symbol #(x’,&’) of the operator

Ty =o(x)I + (1 —a(x))I
has the following asymptotic expansion:
t(x', &) = a(x)p (¥, &) + [(1 — o) + a(x") po (7, €))]
+ terms of order < —1. (5.6)

Step 3-a: First, we verify condition (5.3b):
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By assertions (5.6) and (5.5), we can find a constant 0 < ¢; < 1/2 such that
we have, for |¢'| sufficiently large,

1
v ;g (COa(x’)If’l +—>1 if 0 <a(x') <eci,
Re #(x', &) == t(x,é)zt(x,é) > 4

1 .
(%a(x’)|f/| +§>I if o) <a(x’) < 1.
Hence there exists a constant C; > 0 such that we have, for |&’| sufficiently large,
Re t(x', &) > Cy(a(x)|E| + DI (5.7)
Inequality (5.7) implies condition (5.3b):

HM%TWﬁé- (5.5)

Indeed, it suffices to note the following:
Cillul® < Re(e(x', &) < [le(x', & Ya - [l we C,
so that
Cillull < lt(x',&ull, ueC’.

Step 3-b: Secondly, we verify condition (5.3a) for || =1 and |f] = 0.
Since there exists a constant C; > 0 such that we have, for |¢| sufficiently
large,

IDZ#(x", &)l < Co(a(x) + 171,
it follows from inequality (5.7) that
IDZ#(x', &) < 2Co(1+ &) 7 (ax)[E") + 1)

2C 1\ — / /
< (T G &)
1

This inequality proves condition (5.3a) for |«| =1 and |f] =0.
Step 3-c: We verify condition (5.3a) for || =1 and |¢| =0. To do this, we
need the following elementary lemma on non-negative functions:

LeMMA 5.4. Let f(x) be a non-negative, C* function on R such that, for some
constant y > 0,

sup /" (x)] < 7.
xeR
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Then we have the inequality
() < V29V/f(x) on R.

Since there exists a constant C3 > 0 such that we have, for |¢'| sufficiently
large,

IDE (x| < Cy(IDLa(x")] - €] + a(x") €] + 1),

it follows from an application of Lemma 5.4 and inequalities (5.7) and (5.8) that,
for some constant C4 > 0,

IDLt(x" &) < Ca{ (Valx)[E] + 1) + (a(x")|E'| + 1)}

< C{IE P (@(xET+ 1)+ (a(x)|E] + 1)}

C ! ! li ! —
< g‘l‘utocxi WAE T Clle(x', D72+ 1)

I+ (DY

< —||t
<=

This inequality proves condition (5.3a) for || =1 and |«| = 0.

Step 3-d: Similarly, we can verify condition (5.3a) for the general case:
|| +|B] =k, keN.

The proof of Lemma 5.3 is complete. O

Now the proof of Lemma 5.2 and hence that of Theorem 5.1 is com-
plete. O

6. Uniqueness Theorem for Problem (1.4)
We associate with problem (1.4) a linear operator

Ay =(4,B,) : H'P(QR) — H2(QRY) x B 777 (00, RY).

Then the next uniqueness theorem for problem (1.4) asserts that the operator .7,

is injective, that is, we have the assertion

dim N(o7,) = 0.

THEOREM 6.1. Let 1 < p < oo and s> 1/p+ 1. Assume that conditions (T)
and (A) are satisfied. If a function ve H*P(Q,R%) is a solution of the mixed
displacement-traction problem
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div(a(x) - Vo) =0 in Q,
a(x)(a(x)-Vo-n)+ (1 —a(x))p=0 on 0Q,

then it follows that v =10 in Q.

Proor. First, by Theorem 5.1 we may assume that
ve C*(QRY).
Moreover, it should be noticed that the homogeneous boundary condition
a(x)(a(x) - Vo-n)+ (1 —a(x))v=0 on Q
includes the condition
v=0 on the set Ij:={xedQ: a(x)=0}.

Hence it follows from an application of Green’s formula (4.3) that

0= Vv-a(x)-Vvdx—J v[a(x) - Vv - n] da
Jo o0

e(v)-a(x) - e(v) dx — J vja(x) - Vv-n| da

Q 4O\T,

Q o(x)

= | e(v)-a(x)-e(v) dx + Lg\r (1 — OC(X)) [o]|* da

> | e(v)-a(x)-e(v) dx,

where e(v) = (e;(v)) is the linearized strain tensor associated with the function v.
However, since the elasticity tensor a(x) is uniformly pointwise stable, it follows
that

1 _
7e(v) -a(x) - e(v) = nle@)®, xeQ.
Hence we have the inequality
0> 24 le()||* dx, xeQ,
Q

and so

e(v) =0 in Q. (6.1
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This implies that
0 = o(x)(a(x) - Vo - n) + (1 — a(x))p
= a(x)(a(x) - e(v) - n) + (1 — o(x))v
= (1—a(x))v on Q.
Thus, if we let
p={xedQ:alx) <1},
we find that
p=0 on 7.

Furthermore, condition (A) implies that the open set y is non-empty.
Therefore, we can make use of the first Korn inequality (4.4) to obtain that

p=0 in Q. (6.2)

Indeed, we have, by assertion (6.1) and inequality (4.4) with u := v,

0= ||e<v>|2dx22nc<y>(J ol s+ | ||Vv||2dx>,
Q Q Q

which proves the desired assertion (6.2).
The proof of Theorem 6.1 is complete. O

7. Existence Theorem for Problem (1.4)

The next existence theorem for problem (1.4) asserts that the operator .o, is
surjective, that is, we have the assertion

codim R(«/,) = 0.

THEOREM 7.1. Let 1 < p< oo and s> 1/p+ 1. If conditions (T) and (A)
are satisfied, then, for any f e H* *P(Q,R®) and any (peBE';)Fl/p’p(@Q,R%, the
mixed displacement-traction problem

{div(a(x) Vo) =f in Q,

a(x)(a(x)-Vo-n)+ (1 —a(x))v=9 on IQ (14)

has a solution ve H*?(Q,R?).
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7.1 Proof of Theorem 7.1
By Theorem 4.4, we know that
ind o7, = ind 7,
where the operator
7, BV (0Q,R?) — B/P (00, R?)

is defined as follows:
(a) The domain D(7,) of 7, is the space
D(T,) = {pe BVPP(0Q R : T,pe BSV/P7(0Q, R}
(b) Zup = Tup, p € D(7).
However, Theorem 6.1 asserts that the operator .oZ, is injective. By using
again Theorem 4.4, we obtain that

dim N(<Z,) =dim N(7,) =0.
Hence, in order to prove the surjectivity of .oZ,, or equivalently,
codim R(.,) = codim R(7,) =0,

it suffices to show the following:

PrOPOSITION 7.2.  The index of the operator 7, is equal to zero, that is,

ind 7, = dim N(7,) — codim R(7,) = 0.

ProOOF. The proof of Proposition 7.2 is divided into three steps.
Step 1: First, we replace the operator A by the operator 4 — AI with 1 > 0,
and consider instead of problem (1.4) the following boundary value problem:

{(A —iDu=f in Q,

B,u = o(x)Bu + (1 — a(x))u=¢ on oQ. (1.5);

We associate with problem (1.5), a linear operator

Ay(3) = (A =1, B,) : HP(Q,R®) — H 2/ (QRY) x B}, (60, RY),
It should be noticed that the operator .o/ (4) coincides with the operator .o,
when A =0, that is, <7,(0) = .o,

We reduce the study of problem (1.5), to that of a 3 x 3 matrix-valued,
pseudo-differential operator on the boundary, just as in the proof of Theorem 5.1.



Boundary value problems of nonlinear elastostatics 123

We can prove that Theorem 4.1 remains valid for the operator A — AI. More
precisely, we have the following two assertions (a) and (b):
(a) The pure displacement problem (Dirichlet problem)

(A—Aw=0 1in Q,
w=g on 0Q

has a unique solution w in H"”(Q,R?) for any ¢ e B'/77(0Q,R?) (teR).
(b) The Poisson operator

2(2) : B7VPP(6Q,R?) — H"(Q,R?),
defined by the formula w = 2(1)g, is an isomorphism of B'~!/7?(0Q, R?) onto the
null space N(4 — AL, t,p) = {ue H""(Q R : (4 — Au=0 in Q} for all 7eR;
and its inverse is the trace operator on 0Q.

Let T,(4) be a 3 x 3 matrix-valued, classical pseudo-differential operator of
first order on the boundary 0Q defined as follows:

Ty(2) := B,2(A) = a(x)IT (A1) + (1 —a(x))I, A1=>0,
where
() : C*(0Q,R?) — C*(0Q,R?)
9 — B,(Z(4)p)
Since the operator T,(1): C*(0Q,R*) — C*(0Q,R?) extends to a continuous

linear operator T,(A): B*”(0Q,R?) — B""7(0Q,R?) for all reR, we can in-
troduce a densely defined, closed linear operator

T,(2) : BS1Pr(0Q, R®) — B~VrP (90, R?)

as follows.
(o) The domain D(7,(1)) of 7,(A) is the space

D(7,(2)) ={pe B 'PP(0Q,R’) : T,(A)p e B* /77 (0Q,R*)}.

(B) Zu(A)p = To(A)p, ¢ € D(T4(2)).
It should be noticed that the operator 7,(A) coincides with the operator .7, when
A =0, that is, 7,(0) = 7,.

Then we can obtain the following three assertions (I), (II) and (III),
analogous to Theorem 4.4:

(I) The null space N (.o, (1)) of <Z,(A) has finite dimension if and only if the
null space N(7,(1)) of 7,(2) has finite dimension, and we have the formula
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dim N(4,(2)) = dim N(7,(2)).

(II) The range R(.oZ,(1)) of .o,(X) is closed if and only if the range R(7,(4))
of 7,(2) is closed; and R(.2Z,(4)) has finite codimension if and only if R(Z7,(1))
has finite codimension, and we have the formula

codim R(.#,(1)) = codim R(Z;(2)).

(III) The operator .Z,(A) is a Fredholm operator if and only if the operator
74(4) is a Fredholm operator, and we have the formula

ind .+7,(1) = ind 7,(1).

Step 2: To study problem (1.5),, we shall make use of a method essentially
due to Agmon (cf. [Ag], [LM] and also [Tal, Section 8.4]). This is a technique of
treating a spectral parameter Al as a second-order differential operator of an
extra variable and relating the old problem to a new one with the additional
variable.

We introduce an auxiliary variable y of the unit circle

S =R/2nZ,
and replace the parameter —AI by the second-order differential operator

62

ﬁl.

Namely, we replace the operator 4 — AI by the operator

(')\2

A:A—’—W

I,

and consider instead of problem (1.5), the following boundary value problem:
- 02 -
oy (1.6)
B,ii=o(x)Biu+ (1 —a(x))i=¢ on 0Q x S.

We can prove that Theorem 4.1 remains valid for the operator A =
A + */0y*I. More precisely, we have the following two assertions () and (b):
(@) The pure displacement problem (Dirichlet problem)

{~ﬁ’:0 in Q xS,
7

W= on 0Q x S



Boundary value problems of nonlinear elastostatics 125

has a unique solution w in H“’(Q x S,R?) for any ¢e B'~'/P7(0Q x S,R?)
(teR).

(b) The Poisson operator
2 B7UrP(3Q x S,R?) — H"P(Q x S,R%),

defined by the formula w := 2§, is an isomorphism of B/~ !/?-» (0Q x S,R?) onto
the null space N(A,1,p) = {iec H"*(Qx S,R*) : At =0 in Q x S} for all reR;
and its inverse is the trace operator on 0Q x S.

We let

T,: C*(0Q x S,R*) — C*(0Q x S, R?)
o By(j(b)

Then the operator T, can be decomposed as follows:

T, = a(x)I + (1 — a(x))I,
where
ﬁ@ = 3(97@ =a(x)- V(@‘ﬁ) 10,5

The operator IT is a 3 x 3 matrix-valued, classical pseudo-differential operator of
first order on the boundary 0Q x S, and its symbol is given by the following
formula:

t(xlvé/7 Vs 77) = O!(X/)ﬁl (xl7£/7 Y 77) + [(1 - O((x/))l + ot(x’)i)o(x',f/7 y7’7)]

+ terms of order < —1,

where (cf. inequality (5.5))

Pi(x" & yon) = e/ |+ 2l on T*HoQ x S). (7.1)

Thus we find that the operator

T, = a(x")IT + (1 — a(x")I

is a 3 x 3 matrix-valued, classical pseudo-differential operator of first order on the
boundary 0Q x S and its symbol is given by the following formula:

t(x', &) = alx")py (X, &) + [(1 = a(xDI + a(x) py(x', )]

+ terms of order < —1. (7.2)
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Then, by virtue of assertions (7.2) and (7.1) it is easy to verify that the operator
T, satisfies conditions (2.7a) and (2.7b) of a matrix-valued version of Theorem
2.12 with u:=0, p:=1 and ¢ := 1/2, just as in the proof of Lemma 5.3. Hence
there exists a parametrix S, in the Hormander class L?’l 2(0Q xS, R?) for the
operator T%.

Therefore, we obtain the following result, analogous to Lemma 5.2:

LemMa 7.3.  If condition (T) is satisfied, then we have, for all seR,

9e2'(0QxS), T,peB"(0QxS,R)=peB"0QxS,R?).

Furthermore, for any t <s, there exists a constant Cs, > 0 such that

9l,, < Co. (| T, + 101, ,)- (7.3)

We introduce a densely defined, closed linear operator

T, BUPP(0Q x SR — B/PP(0Q x S,R?)

as follows.
(&) The domain D(Z,) of 7, is the space

D(7,) ={pe B '"7(0Q x S,R%) : T,¢p e B~'/P7(0Q x S,R¥)}.

B) 7.0 = T.9, 9 D(7). ~
Then the most fundamental relationship between the operators 7, and 7,(4)
(A=0) is the following:

PROPOSITION 7.4. If ind F,, is finite, then there exists a finite subset K of Z.
such that the operator T,()) is bijective for all )| = ¢* satisfying /€ Z\K.

Granting Proposition 7.4 for the moment, we shall prove Proposition 7.2
(and hence Theorem 7.1).

Step 3: End of Proof of Proposition 7.2

Step 3-a: We show that if condition (T) is satisfied, then we have the as-
sertion

ind 7, = dim N(7,) — codim R(7;) < 0. (7.4)

To this end, we need a useful criterion for Fredholm operators (cf. [Tal,
Theorem 3.7.6)):
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LemmA 7.5 (Peetre). Let X, Y, Z be Banach spaces such that X < Z is a
compact injection, and let T be a closed linear operator from X into Y with
domain D(T). Then the following two conditions (i) and (ii) are equivalent:

(1) The null space N(T) of T has finite dimension and the range R(T) of T is
closed in Y.

(i) There is a constant C > 0 such that

Ixllxy < CUITx[ly +[Ixll2),  x e D(T).

Now, estimate (7.3) gives that we have, for t <s—1/p,

|¢|.y—l/p,p = CNvl(|]~‘¢|s—l/p,p + ‘@'t,p)ﬂ ¢ € D('gla) (75)

However, it follows from an application of the Rellich—Kondrachov theorem that
the injection B*"'/77(9Q x S,R?) — B"?(0Q x S,R?) is compact (or completely
continuous) for ¢ < s— 1/p. Thus, by applying Lemma 7.5 with

X =Y :=B7PQ x S,R),

Z = B""(0Q x S,R%),

NI

T:=7,,
we obtain that the range R(Z,) is closed in B*~'/77(3Q x S,R?) and that
dim N(7,) < . (7.6)

On the other hand, by formula (7.2) we find that the symbol of the adjoint
T* is given by the following formula (cf. Theorem 2.7):

oa(x) (P (X, & o) — V=14, (x", &, y, 1))
il

2
~VAI la(x'm(xx oy + 3 0y (l) - 0y by (¥ €y, fm] )
j=1

1= a(x) + alx") po(x', & yom) = o (a(x) - 05y (x', &' yn))]

J=1

+ terms of order < —1.
However, by virtue of Lemma 5.4 it follows that

Oyu(x') =0 on M= {x"edQ:a(x) =0}
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Thus we can easily verify that the pseudo-differential operator T* satisfies con-
ditions (2.7a) and (2.7b) of a matrix-valued version of Theorem 2.12 with u := 0,
p:=1and 0 := 1/2. This implies that estimate (7.5) remains valid for the adjoint

operator I, of J,:

|'/~I|7s+1/p7p’ = CT(|T;'I~,|73+1/[),]J/ + "illr,p’)7 WGD(%*%

where 1 < —s+1/p and p’ = p/(p — 1) is the exponent conjugate to p. Hence
we have, by the closed range theorem (cf. [Yo, Chapter VII, Section 5]) and
Lemma 7.5,

codim R(7,) = dim N(7,") < oo, (7.7)

since the injection B~T1/7P'(0Q x S,R}) — B™?' (3Q x S,R?) is compact for
< —s+1/p.
Therefore, the desired assertion (7.4) follows from assertions (7.6) and (7.7).
Step 3-b: By assertion (7.4), we can apply Proposition 7.4 to obtain that
the operator 7,(/%) : B*~1/P7(0Q, R?) — B*~1/PP(0Q, R?) is bijective if / € Z\K
for some finite subset K of Z. In particular, we have the formula

ind 7,(4) =0 if Jg=/¢% ¢eZ\K. (7.8)
However, it is easy to see that the symbol #(x’,&’;4) of the operator
T,(2) = a(x"VII(Z) + (1 —oa(x")I, A>0,
has the following asymptotic expansion:
1(x',¢"52) = a(x)[py (¥, &) + V= 1gy (', )]
+ (1= a(x) + a(x)po(x', €)) + V=Ta(x") g (x', "))
+ terms of order < —1 depending on 4. (7.9)

Thus, by taking A:=0 and A:= 4y in formula (7.9) we can find a 3 x 3 matrix-
valued, classical pseudo-differential operator K(0,4p) of order —1 on the
boundary 0Q such that

T, = TO((XO) + K(Oa AO)
Furthermore, the Rellich-Kondrachov theorem asserts that the operator
K(0,70) : B'/7P(0Q,R*) — B '/7P(0Q, RY)

is compact. Hence we have the formula
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ind 7, = ind 7,(A). (7.10)
Therefore, Proposition 7.2 follows by combining formulas (7.10) and (7.8).
Now the proof of Proposition 7.2 is complete. OJ

Theorem 7.1 is proved, apart from the proof of Proposition 7.4. The proof of
Proposition 7.4 is given in the next Section 7.2, due to its length.
7.2 Proof of Proposition 7.4

The proof of Proposition 7.4 is divided into three steps.
Step 1: First, we study the null spaces N(7,) and N(7,(1)) when 1/ = /?
with 7/ € Z:

N(Z,) = {9 e B'r7(Q x S,R?) : T, = 0},
N(T,(X) = {pe B*'PP(0Q,R%) : T, (X )p = 0}.

Since the pseudo-differential operators T, and T,(1') are both hypoelliptic, it
follows that

N(7,) = {pe C*(0Q x S,R*) : T, = 0},
N(Z4(2) = {p e C*(0Q,RY) : T,(2)p = 0}.

Therefore, we can apply [Tal, Proposition 8.4.6] to obtain the following most
important relationship between the null spaces N(Z,) and N(7,(1')) when
A =% with /e Z:

LemMMA 7.6. The following two conditions (1) and (2) are equivalent:
(1) dim N(7,) < .
(2) There exists a finite subset I of Z such that

{dim N(T,((P)) <o if Lel,
dim N(Z,(/*) =0 if /¢1.

Moreover, in this case we have the formulas

N(7,) =@ N(T,({*) @7,
el

dim N(7,) = _ dim N(Z,(¢?)).
lel
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Step 2: Secondly, we study the ranges R(Z) and R(7,()')) when A’ = /?
with / € Z. To do this, we consider the adjoint operators 7, and 7,(1)* of 7,
and 7,(A"), respectively.

The next lemma allows us to give a characterization of the adjoint operators
g and 7,(2))" in terms of pseudo-differential operators (cf. [Tal, Lemma

8.4.8]):

LemMmA 7.7. Let M be an n-dimensional, compact smooth manifold without
boundary. If T is a classical pseudo-differential operator of order m on M, we
define a densely defined, closed linear operator

T : B (M) — B P (M) (seR)
as follows.
(@) The domain D(T) of T is the space
D(T)={pe H"(M): Tpe H* "P(M)}.
(b) T9=Tp, peD(T).

Then the adjoint operator T * of T is characterized as follows:
(c) The domain D(T ") of T * is contained in the space

{y e B 1P (M) - T* e B (M)},

where p' = p/(p—1) and T* € LJ}(M) is the adjoint of T.
(d) Ty =T*y, yeD(T).

It should be noticed that the pseudo-differential operators T(1)* and T* also
satisfy conditions (2.7a) and (2.7b) of a matrix-valued version of Theorem 2.12
with ©:=0, p:=1 and J := 1/2; hence they are hypoelliptic.

Therefore, by applying Lemma 7.7 to the operators T and T(2') we obtain
the following:

LeMMA 7.8, The null spaces N(F,) and N(T,(1))*) are characterized re-
spectively as follows:
N(7))={peC”(0Qx S,R?): T;y = 0}.
N(T,(A)) = {we C*(0QR?) : T,()) y=0}.

By Lemma 7.8, we find that Lemma 7.6 remains valid for the adjoint
operators 7, and 7,()))* (cf. [Tal, Lemma 8.4.10]):

o
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LemMA 7.9. The following two conditions (1) and (2) are equivalent:
(1) dim N(7,) < .
(2) There exists a finite subset J of Z such that

{dim N(T,((H) <o if Leld,
dim N(7,(/H)*) =0 if £ ¢J.

Moreover, in this case we have the formula

dim N (7, ZdlmN ().
rel

Hence, by combining Lemma 7.9 and the closed range theorem we obtain the
most important relationship between codim R(Z,) and codim R(7,(1’)) when
=% (el (cf. [Tal, Proposition 8.4.11]):

LemMA 7.10. The following two conditions (1) and (2) are equivalent:
(1) codim R(T) < oo.
(2) There exists a finite subset J of Z such that

{codimR(%(/ ) <oo if Leld,
codim N(7,(/*) =0 if £ ¢J.

Moreover, in this case we have the formula

codim R(J,) = Zcod1mR (7).
=

Step 3: Proposition 7.4 is an immediate consequence of Lemmas 7.6 and
7.10, with K :=TUJ.

Now the proof of Proposition 7.4 and hence that of Theorem 7.1 is
complete. O

8. Proof of Theorems

This chapter is devoted to the proof of Main Theorem, Theorem 1.1 and
Theorem 1.2. After reviewing some differential calculus in Banach spaces in
Subsection 8.1.1, we prove Main Theorem in Section 8.1. A basic result that
relates linearized and nonlinear theories is the inverse mapping theorem (Theorem
8.1). In the proof of Theorems 1.1 and 1.2, we calculate explicitly the first
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elasticity tensor 1&, and verify that either condition (B) or condition (C) implies
condition (S) in Sections 8.2 and 8.3.

8.1 Proof of Main Theorem

By the existence and uniqueness theorem for problem (1.4) (Theorem 3.1),
our Main Theorem follows from an application of the inverse mapping theorem
(Theorem 8.1).

8.1.1 The Inverse Mapping Theorem. Let Z and % be Banach spaces, %
an open set in Z and f : % — % a map. We say that the map f is differentiable
at a point x of % if there exist a continuous linear operator 4 : Z — % and a
map Y defined for all sufficiently small /# in %, with values in %, such that

{f(X+h) = S (%) + Ah + |2l (h),
limhﬂo lﬁ(h) =0.

It should be emphasized that the continuous linear operator A4 is uniquely
determined by f and x. The operator A4 is called the Fréchet derivative of f at x,
and is denoted by f’(x) or Df(x). A map f is said to be differentiable on % if it
is differentiable at every point of %. In this case, the derivative f’ is a map of %
into the Banach space #(4,%) of continuous linear operators:

Df =f":uU— BX,Y)

x— f(x).
If f/ is continuous from % into %(Z',%), we say that f is of class C'.

We can define inductively the derivatives D*f for general k >2. A map f
is said to be of class C" (r > 2) if all derivatives D¥f exist and are continuous
for 1 <k<r.

The next inverse mapping theorem provides a criterion for a map to be a local
C’-diffeomorphism in terms of its derivative (cf. [MH, Chapter 4, Theorem 1.2]):

THEOREM 8.1 (The inverse mapping theorem). Let % and % be Banach
spaces, and let f be a C"-map (r > 1) of an open subset U of X into ¥. Assume
that the Fréchet derivative f'(xo): % — % is an algebraic and topological iso-
morphism at a point xo of U. Then the map f is a C'-diffeomorphism of some
neighborhood of xo onto some neighborhood of f(x).

8.1.2  Proof of Main Theorem. We recall that the linearization of problem
(1.1) is nothing but problem (1.3) or problem (1.4) with a(x) := A(X). However,
Theorem 3.1 asserts that:
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The Fréchet derivative F’((Z) of the map F at ¢?: Io is an algebraic and
topological isomorphism of H*?(Q,R?) onto H* >"(Q,R?) x B@“””%"(@Q,R%.

Therefore, Main Theorem follows immediately from an application of the
inverse mapping theorem (Theorem 8.1). ]

8.2 Proof of Theorem 1.1

The stored energy function W(X,F) for the Hencky—Nadai elasto-plastic
material has the form

3 (T(F)
W(X,F):ZJO d&j+ ZFkk—3

where g € C*([0,0),R), the constant K is the modulus of compression and

3 2
= g Z < (Fyj + Fyi) — (Z Fkkak> 1]) .

We have only to verify condition (S). First, it follows (cf. [MH, Chapter 3,
Proposition 4.4]) that the first Piola—Kirchhoff stress tensor P(X) = (P;(X)) is
given by the formula

Pyj(X) = Py(X,F(X))

ow
~ 0F

3
= (K - §g<r<F<X>>>) (Z Fu(X) - 3)%
k=1

+9g(D(F (X)) (Fy(X) + Fu(X) = 26),

(X, F(X))

and that the first elasticity tensor A(X) = (Ay/m(X)) is given by the formula

0P,
OFm,

Aij/m(X) = (X>F(X))

= (T FOO)) 600 + i) + (K = 30T (F ) oy

+ 39" (D(F (X)) (F(X)zrm(F(X)),

where
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Eij(F(X)):%(sz(X)JrFﬂ (ZFkk ) Frac (X )5;77

F(X) = (F;(X)) = <§?€)

o

Thus we find that the elasticity tensor K(X ) = (Ajsm(X)) evaluated at qZ: Ig is
equal to the following:

o

2
Ayn(0) = 000Gt + 00 + (K =300 0100

However, it is easy to see (cf. [MH, Chapter 4, Proposition 3.13]) that the
elasticity tensor K(X ) is uniformly pointwise stable if and only if g(0) > 0 and
K >0.

Therefore, we have proved that condition (B) implies condition (S).

The proof of Theorem 1.1 is complete. O

8.3 Proof of Theorem 1.2

The stored energy function W (X, F) for the Saint Venant—Kirchhoff isotropic
material has the form

3 2 3
W(X,F)= X) (chk(F)—?)) TXZ
k=1 Jj=1

where A(X), u(X) are smooth Lamé functions, and the two-tensor

3
C = (Gy(F)) = (Z Fk,-Fk_,>
k=1

is the (right) Cauchy—Green strain tensor.
We have only to verify condition (S). First, it follows (cf. [MH, Chapter
3, Proposition 4.4]) that the second Piola—Kirchhoff stress tensor S(X) =
(S;(X,C(X))) is given by the formula
ow

$y(X, C(X)) = 277 (X, F(X))

- [”f) (i Cua(X) - 3) —u(x)
k=1

0 + pu(X) Cy(X),
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and that the second elasticity tensor C(X) = (Cjism(X)) is given by the formula

aS;
0 C{ m

MX) . X
Com(X) = 22 (x,€(x)) = o0 + %) (303 + ).
Then we find (cf. [MH, Chapter 3, Proposition 4.5]) that the first elasticity
tensor A(X) = (Aj/m(X)) is given by the following formula:

zj/m =2 Z Ca]bm )F/b(X) + Sjm(Xa C(X))éz/
a,b=1

3
Z 5a]517m + ,u( )(6ab5jm + 5a1115hj))Eu<X)F/b (X)
a,b=1

(e o

o

Thus it follows that the elasticity tensor 10&()( )= (A
equal to the following:

Ojm + ﬂ(X)ij(F(X))>5i/-

jiem(X)) evaluated at (/;: Igis

Ay (X) = (X )(0irGjm + Simbje ) + A(X) 0 sm.
However, it is easy to see (cf. [MH, Chapter 4, Proposition 3.13]) that if con-
dition (C) is satisfied, then the elasticity tensor A(X) is uniformly pointwise
stable. This proves that condition (C) implies condition (S).
The proof of Theorem 1.2 is complete. O

9. Summary and Discussion

We have studied boundary value problems of nonlinear elastostatics in the
case where solutions of the linearized problem correspond faithfully to those of
the nonlinear problem, that is, in the case where there is no bifurcation. We have
proved that if the linearized problem has unique solutions, then so does the
nonlinear one, nearby (Main Theorem). This is done by using the L? theory of
pseudo-differential operators and the inverse mapping theorem. Our boundary
condition is a ‘regularization” of the genuine mixed displacement-traction
boundary condition; more precisely, it is a smooth linear combination of dis-
placement and traction boundary conditions, but is not equal to the pure traction
boundary condition. Moreover, it should be emphasized that our problem
becomes a degenerate elliptic boundary value problem from an analytical point of
view. The crucial point is how to find a function space associated with the
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degenerate boundary condition in which the linearized problem has unique
solutions. Main Theorem could be applied to the Saint Venant—Kirchhoff elastic
material and the Hencky-Nadai elasto-plastic material (Theorem 1.1 and
Theorem 1.2). Some previous results with pure displacement boundary condition
are due to Ciarlet [Ci], Dinca [Di], Marsden—-Hughes [MH] and Valent [Va].
The results here have extended and improved substantially those results in a
unified theory. Our approach is distinguished by the extensive use of the ideas and
techniques characteristic of the recent developments in the theory of partial
differential equations ([Ta4]).

Finally, we give two important open problems concerning the boundary
value problems of nonlinear elastostatics (see Figure 9.1):

(1) The first problem is to generalize main results to the case where the
domain Q has corner singularities.

(2) The second problem is to study the case where the function o(x) is the
characteristic function of a subset of the boundary 0Q.

{a =1}

Q

{a =0}

SIS

Figure 9.1

It should be emphasized that Ito [It2] obtained some important results in the
framework of Sobolev spaces of L? type, by using Melin’s inequality [Me].
We leave these open problems for future study.
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