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ON THE MEAN, GAUSS, THE SECOND GAUSSIAN AND
THE SECOND MEAN CURVATURE OF THE
HELICOIDAL SURFACES WITH LIGHT-LIKE AXIS IN Rf

By

Erhan GULER and Aysel TURGUT VANLI

Abstract. In this paper, the second Gaussian and the second mean
curvature of the helicoidal surfaces with light-like axis of type IV* is
obtained in Minkowski 3-space. In addition, some relations between
the mean, Gauss, the second Gaussian and the second mean cur-
vature of the helicoidal surfaces with light-like axis of type IV* are
given in Minkowski 3-space.

Introduction

Helicoidal surfaces are naturel generalization of rotation surfaces, of which
many nice works have been done such as [1, 2, 3, 5, 7, 10, 11].

About helicoidal surfaces in Euclidean 3-space, M. P. do Carmo and M.
Dajczer [5] proved that, by using a result of E. Bour [4], there exists a two-
parameter family of helicoidal surfaces isometric to a given helicoidal surface. By
making use of this parametrization, they found a representation formula for
helicoidal surfaces with constant mean curvature.

In 2000, T. Ikawa [10] showed that a generalized helicoid and a rotation
surface have an isometric relation by Bour’s theorem in Euclidean 3-space. He
determined pairs of surfaces with the additional condition that they have the
same Gauss map using Bour’s theorem. Ikawa [11] classified the spacelike and
timelike surfaces as (axis, profile curve)-type in Minkowski 3-space in 2001. He
proved an isometric relation between a spacelike (timelike) generalized helicoid
and a spacelike (timelike) rotation surface with spacelike (timelike) axis by Bour’s
theorem. Beneki, Kaimakamis and Papantoniou [2] classified four kinds of
helicoidal surface with spacelike, timelike and lightlike axes in 2002. In 2004,
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Kim and Yoon [12] studied some properties about the second Gaussian curvature
of ruled surfaces in R;}. They classified ruled surfaces in R} in terms of the second
Gaussian curvature, the mean curvature and the Gaussian curvature.

In 2006, the present authors [7] showed that a generalized helicoid and a
rotation surface with light-like axis have an isometric relation by Bour’s theorem
in Minkowski 3-space. We determined pairs of surfaces with light-like axis with
an additional condition that they have the same Gauss map by Bour’s theorem.
A surface M in a Euclidean 3-space with positive Gaussian curvature K possesses
a positive definite second fundamental form II if appropriately orientated.
Therefore, the second fundamental form defines a new Riemannian metric on M.
In turn, we can consider the Gaussian curvature Kj; of the second fundamental
form which is regarded as a Riemannian metric. If a surface has non-zero
Gaussian curvature everywhere, K;; can be defined formally and it is the cur-
vature of the Riemannian or pseudo-Riemannian manifold (M, IT).

Since Brioschi’s formulas in Euclidean ([9], p. 504) and Minkowski 3-spaces
are the same, we are able to compute Kj;; of M by replacing the components of
the first fundamental form E, F, G by the components of the second fundamental
form L, M, N respectively in Brioschi’s formula. Consequently, the second
Gaussian curvature K; of M is given by

1
(1) anp det M,—1N, L M
IN, M N
0 1L, IN,
—det| iL, L M
IN, M N

where A = |det II]. It is well known that a minimal surface has vanishing second
Gaussian curvature but that a surface with vanishing second Gaussian curvature
need not be minimal [12].

For study of the second Gaussian curvature, Koutroufiotis [14] has shown
that a closed ovaloid is a sphere if K;; = cK for some constant c or if Ky = VK
in 1974. Koufogiorgos and Hasanis [13] proved that the sphere is the only closed
ovaloid satisfying K = H in 1977. Also Kiihnel [15] studied surfaces of rev-
olution satisfying K;; = H. Baikoussis and Koufogiorgos [1] proved that the
helicoidal surfaces satisfying K;; = H are locally characterized by the constancy



On the mean, Gauss, the second Gaussian and the second mean curvature 51

of the ratio of the principal curvatures. Blair and Koufogiorgos [3] investigated a
non-developable ruled surface in E* such that aKjy +bH, 2a+b#0, is a
constant along each ruling in 1992. Also, they proved that a ruled surface with
vanishing second Gaussian curvature is a helicoid.

On the other hand, in 2005, Dillen and Sodsiri [6] studied ruled linear
Weingarten surfaces in Minkowski 3-space such that the linear combination
aKj; + bH + cHjy + dK is constant along each ruling for some constants «, b, ¢, d
with a®> + b?> 4+ ¢ # 0. They used the second mean curvature formula as follow

(MMMHWW%ﬂmvﬂm)

(2) Hyp =

mza

where 7, j € {1,2}, & are the coefficients of the second fundamental form I7, u!
and u? stand for u, v and H, K are the mean and Gauss curvatures respectively.
Observe that the formula of Hy; is similar to the one in Euclidean case, cf. [8] and
[16].

In the present paper, we classified for the helicoidal surfaces with light-like
axis of type IV ((L,S)-type in [7]) in Minkowski 3-space satisfying the general
conditions of curvatures in section 2 and we summarized as follow

Table 1. General relations between H, K, H; and Kj

relation function condition
H = du)K () = 0D @ # —2p"
sout D#0
Ky =Y(wH Y (1) = G a? # 2u'y!
a’ #2u’p' —ulp”
» D#0
Ky = Y(u)K wm:%%% a? # |2ubp"|
) D70
_ _ —2cu 3 n
Hy=Q@u)+H Qu) = PV c; ::(|)2u 0"
—2%¢(u) 2 3 n
Hy =Qu) + ©(u)K Qu) = FV Tt a* # |2u’ g |
(D1 " ‘2 zu 2(;1)‘1’7 D # 0
u- —ZU +a -~
Dlu) = L
—2%¢(u) 2 3.n
Hy =Qu) + A(w)Ky Qu) = ——F———, a® # |2u’ g |
’ ”‘721" ! 7“2 ‘ 30 D # 0
A(u):i(uw —2up'+a?) (2uPp" —a?)

23D12(2up"+a?)u(u)

where ¢ = ¢(u) is a function on the profile curve, D = 4(a*> — 4u’¢p’), a € R\{0}
which is the pitch of the helicoidal surface ot type IV,
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u(u) = {a®utp" " + 27 abup™ + (—2u® — 1)4a*1p'¢" " + (—2u> — 1)2a%¢ "
+ (W +2)2%a% 09" 0" + (U +2)2%a P9 " — 25379 9" "
— 25024 00" + (5 — 4)abud " 9" + a¥o" + 6a*ubp" "
—25%uBp" " + (=271 = 2a*u?)a*uPp 9" + (2 — u?)2%au" 9" 9" "
+ (54 2u*)23a*u e " + (=2 = 3a* + 2%a*u*)2%uP o' " ¢
—3.2%2u0 0" " 4+ 3. 25u'%0%p" 9" + (6a* + 3 — 23u*)2a’u’ ">
+ (2 =273u?)3a% 9" — 3- 2% 0" 4 (—6a*u’ — 3a* + 2°u°)2%¢'p"?
+ (=12 = 13- 27 %) a*ut e 9" + 12u89™ + (3 — 4u*)2a8ug’p"
+ (=3 + 22248 9" + (=3 + 4u2)2a U "
— 2548429 — datut’)

and

E(u) = {=2%u%'p" " + aPutp"p"" — VatuPp" " + a’utp"? — T-2%u’p"p"
—22ub9'p"? — (3-27a% + 5)2%u ¢ p" 9" — 23a*uPp’p" +3-2Bu" 99" "
+3-219%2u09" 0" + 3. 22u80 9" 0" — 11a*u?9"* — 33 - 22up’p"?
— 1922597 — 2%Pug'p" + 15 - 2 aPutp " + 9 - 23"
32140020 132125020 3. 27020 32104259
4921200/ 0" £ 3. 21470 — 3. 28 Y.

In section 3, we show some results of curvatures for the helicoidal surfaces
with light-like axis of zype IVt in Minkowski 3-space. In addition, we study
helicoidal surfaces with light-like axis of zype IV" in Minkowski 3-space such
that the linear combination pH + ¢K + rHjy + sKj; is constant along each ruling
for some non-zero constants p, g, r, s.

1 Preliminaries

Let R} be a 3-dimensional Minkowski space with natural Lorentzian
metric {,» =dx> +dy* —dz?>. A vector w in R; is called spacelike (resp.
timelike) if {(w,w) >0 or w=0 (resp. <w,wy<0). If wz#0 satisfies
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{w,wy =0, then w is called lightlike. A surface in Minkowski 3-space Rl3 is
called a spacelike (resp. timelike, degenerate (lightlike)) if the induced metric
on the surface is a positive definite Riemannian (resp. Lorentzian, degenerate)
metric.

In the rest of this paper we shall identify a vector (a,b,c) with its transpose
(a,b,c)’. Now we define a non degenerate rotation surface and generalized
helicoid in R;. For an open interval / = R, let y : I — TI be a curve in a plane I1
in R, and let / be a straight line in IT which does not intersect the curve
y = y(u). A rotation surface in R13 is defined as a non degenerate surface formed
by rotating a curve y around a line 7 (these are called the profile curve and the
axis, respectively). Suppose that when a profile curve y rotates around the axis 7,
it simultaneously displaces parallel to 7 so that the speed of displacement is
proportional to the speed of rotation. Then the resulting surface is called the
generalized helicoid with axis / and pitch a.

We say that a helicoidal surface in R; is of #ype IV* or IV~ if
the discriminant D = EG — F? of the first fundamental form is positive or
negative, where E, F, G are the coefficients of the line element of helicoidal
surface.

Since D = 16up’ — 4a®> #0, if ¢ > —< then H(u,v) is spacelike, if ¢ < —<
then H(u,v) is timelike.

In this work, we assume D > 0 and so helicoidal surfaces are spacelike of
type IV*. Suppose that the axis of rotation is a lightlike line, or equvalently the
line of the plane x,x3 spanned by the vector (0,1,1). Since the surface is non
degenerate, we may assume that the profile curve y lies in the x,x3-plane without
loss of generality and its parametrization is given by y(u) = (0, p(u) + u, p(u) — u),
where ¢(u) +u and ¢(u) —u are differentiable functions on I such that
o(u) +u # ¢(u) —u for all u e R\{0}.

If the axis / is lightlike in Minkowski 3-space R13, then we may suppose that /
is the line spanned by the vector (0,1,1). The semi-orthogonal matrix given as
follows is the subgroup of the Lorentzian group that fixes the above vector as

invariant
1 —v v
(3) Apy=[v 1-% %
v =% 1+5

where ¢ = diag(1,1,—1), A’¢A = ¢ and det 4 = +1 for v € R. A helicoidal surface
of type IV*' in Minkowski 3-space with the lightlike axis which is spanned by
(0,1,1), and which has pitch a € R\{0} is as follows
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I —v v 0 0 —2uv
,2 2
4 Huv)=|v l-% T p+tul|l+alo|=|o+tu—w?+av
v? v? _ 2
v =5 1+5 O —u v @ —u—uv-+av

H(u,v) reduces to a rotation surface when a = 0. Therefore, the rotation surface
can be parametrized as (in [7])

(5) R(u,v) = (—2uv, ¢ + u — uv*, ¢ — u — uv?).

In section 2, we give some relations between the H, K, K;; and Hy to the
helicoidal surfaces of type IV* and then in section 3 we obtain special conditions
and relations of these curvatures of the helicoidal surfaces of type IV’ for some
differentiable functions ¢ = ¢(u) on the profile curves in Minkowski 3-space.

2 General Cases of the H, K, H;; and K;; to the Helicoidal Surfaces of
Type IV

In this section, we give some theorems between the mean, Gauss, the second
mean and the second Gaussian curvature of the helicoidal surfaces with (0,1,1)
light-like axis of type IV in Minkowski 3-space. We classified these curvatures to
general cases. We have following theorems.

THEOREM 2.1. The mean curvature and the Gauss curvature of the helicoidal
surfaces of type IVt are related as follow equation

(6) H=®u)k

<u3¢//72u2¢/+a2)D1/2

pleTr and a®> # —2u’¢", a e R\{0},

in Minkowski 3-space, where ®(u) =
D = 4(a® — 4u*¢p’) #0.

Proor. Firstly we compute the Eq. (1) for helicoidal surfaces of zype IV".

We obtain the following equation

1 1 1
(7) Ky=—————|-LulN+ LuwM? +~L,N,N — NyJMM, + = L(N,)*|.
2(|LN| — M?) 2 2

Differentiating H, and H,,
Hu=(0,9"0"), Hy,=(-2,-2v,-2v), Hy, = (0,—2u,—2u).

The coefficients of the first and second fundamental forms of the generalized
helicoid of type IVt are given by
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E=4¢', F=2a, Gy=4a",
_ dug” —4a —8u?

L=3im M=5 N=7m

where D = 4(a®> — 4u’p’) # 0. Hence, the Gauss and the mean curvatures are
respectively

~ —16Q2u9" 4 a?)

) K =

8(—1/!3(0” + 2u2(p’ _ aZ)
D3/2

) H=

where a®> # 4u’¢’. Therefore the relation between H and K is

30" — 2ul0’ 2D1/2
(10) gt =2y a)DE O

2(2u3p” + a?)

Figure 3.-4. Helicoidal surfaces of type IV* (p(u) = u?> +u and ¢(u) = u?).
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ExaMPLE 2.2. Spacelike helicoidal surfaces of zype IV* with (0,1, 1) lightlike
axis in Minkowski 3-space are in Figures 1-7, where the functions ¢(u) = 3 ciu’,
0<i<4, ¢;eR" on profile curves y(u).

THEOREM 2.3. The second Gaussian curvature and the mean curvature of the
helicoidal surfaces of type IV™ are related by the following equation
(11) Ky =YuH
in Minkowski 3-space, where ¥ (u) = (2u3¢'/7a2)(‘¥7DLt/§$I/)'+2112¢'7a2) and a* # 2u*¢’ — ",
a’? #2u¢", D =4(a®> —4up') #0, u(u) is in Table 1, a e R\{0}.

Proor. We have the second Gaussian curvature as follow

32p(u)

12 Ky=— """
( ) g (2u3(p//_a2)D1/2

where D = 4(a® — 4u’¢’) and u(u) is in Table 1. Hence the relation between the
second Gaussian curvature and the mean curvature is

4Dp(u) o
2u3¢// _ az)(_u3¢// + 2u2(pl _ aZ)

(13) Kin =1

where 2up” # a®, udp” —2u*p' +a> #0, D #0, aeR\{0}. ]

Figure 5.-6. Helicoidal surfaces of type IV* (p(u) = u® +u? and ¢(u) = u* +u?).

THEOREM 2.4. The second Gaussian curvature and the Gauss curvature of the
helicoidal surfaces of type IV™ are related by the following equation

(14) K= Y(H)K
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in Minkowski 3-space, where Y (u) = 2D g g2 £ [2up”|, D = 4(a® — 4u*¢’)

- 4”6(ﬂ”2 )

#0, u(u) is in Table 1, a e R\{0}.

Figure 7.-8. Helicoidal surfaces of type IV* (p(u) = u* +u and ¢(u) = —1).

Proor. We can easily computate following equation

2D p(u)
(15) Kn:m ;
where a? # |2u’¢"|, a € R\{0}, u(u) is in Table 1 and D # 0. O

THEOREM 2.5. The second mean curvature and the mean curvature of the
helicoidal surfaces of type IV™ are related by the following equation

(16) H][ZQ(M)+H
. . e o —24¢(u) 2 3 0 _
in Minkowski 3-space, where Q(u) = PN e and a* # 2u”¢"|, D=

4(a® — ') #0, &(u) is in Table 1, a e R\{0}.

Figure 9.-10. Helicoidal surfaces of zype IV*
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ProOF. We can easily computate Hj; using (2) and have following equation

—2%4¢(u
(17) Hy = =) ;
D7/2 |72u3¢// _ a2|
where a? # |2u’¢"|, a e R\{0}, &(u) is in Table 1 and D # 0. m

THEOREM 2.6. The second mean curvature and Gauss curvature of the he-
licoidal surfaces of type IV*' are related by the following equation

. . . _04 3,0 2\ pl/2
in Minkowski 3-space, where Q(u) = W\/%, (u) = % and

a’ # |2u¢"|, D =4(a* —4up') #0, E(u) is in Table 1, a e R\{0}.

Proor. Using (2) then we have

_24 u 3 " 2l/l2 +a2 D1/2
(19) Hy = - u — ) ,
D12\ /[=2u3g" — a2 2(2up" + a?)
where a® # |2u¢"|, a e R\{0}, &(u) is in Table 1 and D # 0. ]

THEOREM 2.7. The second mean curvature and the second Gaussian curvature
of the helicoidal surfaces of type IV are related by the following equation

(20) Hy = Q(u) + A(u)Kn

. . S 0 _
l*n(u3¢”72]:21(51+120)n}52/;¢”7u ’ spawz’ W3here o D7/;\/|__Wa—2‘, . A(u)

Dy Fa i) ) and a® # 219" |, D = 4(a® — 4u’p’) # 0, E(u) is in Table
1, a e R\{0}

Proor. Using (1) and (2) then we have

_245(“) ( 3 " 2u (p/-l-a ) (2u3 //_aZ)
D12\/|—213¢" — a2 23D1/2(2u3¢” + a?)u(u)

(21) Hp= K,

where a? # |2u¢"|, ae R\{0}, D #0, &(u) and u(u) #0 are in Table 1. []

THEOREM 2.8. Let H(u,v) be the helicoidal surfaces of type IV, and let p, q,
r, s be constants with
D D3/?
W3’ 2utg — a2 T 222ubg" + a?)’

p:
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D3 2u3(p// _ az
"TD g g —a?) 2% Ew) T duw)
Then
(22) pH + qK + rHy + sKy = 2°D71/?

where —up" +2u*p' # a*, —2up" # a*, p(u) #0 and E(u) #0 in Table 1,
D = 4(a*> — 4uPy’) # 0.

Proor. Using (8), (9), (12) and (17) we obtain that pH + ¢K + rHy + sKj;
is non-zero constant along each ruling. O

THEOREM 2.9. Let H(u,v) be the helicoidal surfaces of type IV™", and let p, q,
r, s be constants and if u(u) =0 in previous Theorem, then

(23) Ky=0

where g(u) = c € R, E(u) #0 in Table 1, D =4a> # 0 and a e R\{0}.
Proor. Using (8), (9), (12) and (17) we have

Dyu(u) o (D) )
_u3¢// + 2u2(0/ _ az _2(2u3¢// + az)

D3/1(u) 2u3¢// _ a2
H — K
* (Dz(—u3¢”+2u2¢/—a2) —%é(u)) ”+< Z 1

= 25u(u)D™V2.

If p(u) =c; eR, then pu(u) =0 and s# 0. Hence the relation K; =0 holds.
O

3 Some Results of the H, K, H;; and K;; to the Helicoidal Surfaces of
Type IV*

In this section, we obtain some results between the mean, Gauss, the second
mean and the second Gaussian curvature of the helicoidal surfaces with (0,1,1)
light-like axis of zype IV* in Minkowski 3-space. Special conditions of curvatures
as follow
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Table 2. Special relations between H, K, Hj and Kj

case function on profile curve relation condition
1 o(u) = ci, H=Hy Dy #0
ci €R H*+K=0 a#0
K;=0
2 o(u) = ciu+ ca, H=Hp Dy #0
cl = 17 ) = 0 H— (2113—2¢:1132)D|/2 K= 0, a # 0
K = 0
3 o(u) = cu® + cou+ c3, H = ¢u)K Dy #0
(31:(32:1, 6320 K][:l//(u)H a#0
Ky =n(u)K a? # —4u?
Hy=0u)+H a® # 2’ + 2u?
Hir = 0(u) + p(u)K
Hy = ()(u) + p(u)K”

2 3 2 2_,2 DI/Z Pl
where ¢(u) = Ma W(u) = 2“(4u3+az)(§z)3+2u27u2)D’ n(u) = 204wt 1a?)’ D1

2(4ud+a?)

o(u)

0(u) 2w () = 2@V W0 @)y 42Dy 4 — i),

= o P
D3 = 4(—8u® — 4u? + a?),

O(u) = {—6u" +9u" +(3-2°45)27%u’ + (3-2° - 65)27%" +

23(4u3+a?)o(u)D'/?

(12 = 194%)27 "’

+ (=7a* =32 270 + 273 + (28 - 3.2° - 1)27%]3a%w’ — 2a*u’

+(7-2°43a%)27%° + 13- 27%a%* + 3 - 2 a*u}
and
C(u) = {9- 21010 4332152 + 29218 1-9. 2177 1 3.216,5
+ (=13 4+3%-20a)270 + (=11 + 21 - 2°a%)3 - 2%u* + 3 2P0’
+ (=3a> +22)9 2% + (—a® +3%-2"%)2%u+ 9 -2}

in case 3. We classified these curvatures for the special functions ¢ = ¢(u) on
profile curves as following corollaries.

COROLLARY 3.1. The mean, the second mean, Gauss and the second
Gaussian curvatures of the helicoidal surfaces of type IVt are related as follow
equations

(24) H=H;, H>+K=0, K;y=0

in Minkowski 3-space, where ¢(u) = c1, ¢ € R, a e R\{0}.
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Figure 11.-12. Helicoidal surfaces of type IV* (p(u) = —u? and ¢(u) = —u?).

Proor. If ¢(u) = ci, ¢; € R, (see Fig. 1.) then the mean, the second mean,
Gauss and the second Gaussian curvatures of the helicoidal surfaces of rype IV

arc

Figure 13.-14. Helicoidal surfaces of type IV* (p(u) = —u* —u and g(u) = —u* —1).

where a € R\{0}, ¢; € R. Therefore we have the following equation

H=H;, H>+K=0, K;=0. O

COROLLARY 3.2. The mean, the second mean, Gauss and the second Gaussian
curvatures of the helicoidal surfaces of type IV™' are related as follow equations

2 2 2D1/2
(25) H = Hy, H—%K:O, Kp=0
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in Minkowski 3-space, where ¢(u) =ciu+c,, ¢c;=1, ¢2=0 and aeR\{0},
a* # 4.

Proor. If ¢(u) = ciu+ ¢z, 1 =1, ¢; =0, (see Fig. 2.) then the curvatures of
the helicoidal surfaces of type IV" as follow
16u? — 842 1643

H:HH:T’ K:F’ K;y=0

where D = 4(a®> — 4u?) # 0 and a € R\{0}. Hence

1/2

(2u? — a*)D

H=H H—
g 2612

K=0, Ky=0
where p(u) =ciu+c, c; =1, ¢ =0. [

COROLLARY 3.3.  The mean, the second mean, Gauss and the second Gaussian
curvatures of the helicoidal surfaces of type IVt are related as follow equations

(26) H = ¢(M)K, KH = lﬁ(u)H, K[[ = ﬂ(u)K,
and
(27) Hy=0u)+H, Hyp=0u)+¢uwkK, Hy=0u)+puKy

in  Minkowski 3-space, where ¢(u)= caul+coutce, co=c=1, ¢;=0,
_ (ui+2u*—a*)D'? _ J(u) o J(u) o

P(u) = T 2[@ui+a?) Y(u) = 211(4u3jaz>(2us+2uz,uz)l)a n(u) = 22 (@ ta?) DI O(u) =
240 (u — (=213 =2u?+a?)* (4u*—a? .

S pl) = SRS o) and L) are in Table 2

aeR\{0}, a® # 4, a® # 2u® + 2%, a* # 8u® + 4.

PrROOF. If p(u) = ciu®> + cou+c3, ¢y =c; =1, ¢3 =0 (see Fig. 3.) then we
compute the mean, the second mean, Gauss and second Gaussian curvature

respectively

(28) g 8@ z 3722 — &) |
) PG
(30) Ky — S(u)

25(4u + a2) D32
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and

8(2u® + 2u® — a?) B 24 (u)
D3/2 D72\ /|—4u® = &2

where D = 4(—8u® — 4u? + a?) #0, a*> # —4u’, a e R\{0}, d(u) and {(u) are in
Table 2. Therefore the relations of these curvatures as follows

(31) Hy =

(2u® 4 2u® — a*)D'/?

H = K
2005 1 a) :
o(u)
K= H
m 211 (43 + a?)(2u3 + 2u? —a®)D ™
o(u
PO N
212443 + a?)’ D12
24 (u
Hy =— (W) ,
D72\ /|-4u’ — a?|
24¢(u) (2u® 4 2u® — a*)D'?
Hy=- + >
D72\/|—4u? — a?| 2(4u’ + a?)
and
24 (=243 — 22 2243_2
Hy— {(u) n (—2u u®+a) (4u a)KH
D72\/|—4u® — a?| 23(4u? + a?)6(u)D1/?
where p(u) = ciu> + cou+c3, ey =c2 =1, ¢ =0. n

ExamPLE 3.4. Spacelike helicoidal surfaces of zype IV' with (0,1,1)
lightlike axis in Minkowski 3-space are in Figures 8—14, where the functions
p(u) ==Y cu', 0<i<4, c;eR" on profile curves y(u).

CorOLLARY 3.5. If H(u,v) the helicoidal surfaces of type IV such that

_ 2 3 2 4 - 2 2 . . .
H =K, where ¢(u) = F—L *4”24;4”*“ FOut6a” ¢ function on the profile

curve y(u), ce R, ueR\{0}.

Proor. Using (8) and (9) we have (see Fig. 15.-16.) as follow equation
2(a® — 4P ) (—uPp" + 2uPp' — a*) + 29" +a®) = 0.

Then, it reduces to
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Figure 15.-16. Helicoidal surfaces of type IV (p(u) = 7’V“Z+4”J’4V“224““’4%"2*6“2).
2(a* — D)ulp” + 8u’p'o" + 2u*p” + 12a*u*¢’ + a*(1 — 24*) = 0.
Therefore, p(u) can be seen easily from the solution of this equation. O
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