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CONTINUITY OF INTERPOLATIONS

By

Toshiji Terada

Abstract. An interpolation function for a set of finite input-output

data is a function which fits the data. Let us say that a topological

space X has a continuous interpolation if interpolation functions can

be selected continuously, more precisely, if there is a continuous map

from a certain subspace of the hyperspace F ðX � RÞ of finite subsets

of X � R to the Banach space CðXÞ of bounded real-valued continuous

functions on X . The concept of weakly continuous interpolation is

also introduced. The real line has a continuous interpolation. Every

metrizable space has a weakly continuous interpolation. On the other

hand, o1 and bo do not have weakly continuous interpolations.

1. Introduction

All topological spaces considered here are Tychono¤. Basic terminology is

found in [2], [4]. The space of real numbers is denoted by R. Let X be a

topological space. The space CðX Þ is the Banach space of all bounded real-

valued continuous functions, with the sup norm: k f ky ¼ supfj f ðxÞj : x A Xg for

f A CðX Þ. The space F ðX � RÞ is the hyperspace consisting of all finite subsets of

the product space X � R, with the Vietoris topology [5]. Hence basic neigh-

borhoods of fðx1; r1Þ; ðx2; r2Þ; . . . ; ðxn; rnÞg A FðX � RÞ are given by:

hU1 � V1;U2 � V2; . . . ;Un � Vni

¼ D A FðX � RÞ : DH 6
n

k¼1

Uk � Vk;DV ðUk � VkÞ0q ðk ¼ 1; 2; . . . ; nÞ
( )

;

where Uk is a neighborhood of xk in X and Vk is a neighborhood of rk in R for

k ¼ 1; 2; . . . ; n. Let SðXÞ be the subspace of FðX � RÞ defined by
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SðXÞ ¼ ffðx1; r1Þ; . . . ; ðxn; rnÞg : xi 0 xj for i0 jg:

For each n ¼ 1; 2; . . . , define FnðX � RÞ and SnðXÞ by:

FnðX � RÞ ¼ fD A F ðX � RÞ: D has at most n pointsg;

SnðXÞ ¼ SðXÞVFnðX � RÞ:

Notice that Sn�1ðXÞ is closed in SnðX Þ.
For a point D ¼ fðx1; r1Þ; ðx2; r2Þ; . . . ; ðxn; rnÞg A SðX Þ, a function fD in CðXÞ

is called an interpolation function for D if

fDðx1Þ ¼ r1; fDðx2Þ ¼ r2; . . . ; fDðxnÞ ¼ rn

are satisfied [1]. Suppose that X is the input space and R is the output space of

some system. Then the point D is considered as a set of finite input-output

data. The interpolation function fD is a function which fits the given data. It is

obvious that for every D A SðXÞ there is an interpolation function fD for D, since

X is Tychono¤. Hence we can consider the map Y : SðXÞ ! CðXÞ defined by

YðDÞ ¼ fD. Since similar maps under the statistical frameworks are called learning

algorithms in learning theory [6], this map Y might be called an interpolation

algorithm in a vague sense. Further we are interested in the case when this in-

terpolation algorithm has some kind of continuity or stability. Let us call the map

Y to be a continuous interpolation of X if Y is continuous as a map between the

topological spaces SðX Þ and CðXÞ. In case Y satisfies the weaker condition that

the restriction YjSnðX Þ�Sn�1ðX Þ is continuous for each n ¼ 1; 2; . . . , we call Y to be

a weakly continuous interpolation. That is, the interpolation Y is weakly con-

tinuous if for any D ¼ fðx1; r1Þ; . . . ; ðxn; rnÞg A SðXÞ and any e > 0, there is a

neighborhood W ¼ hU1 � V1; . . . ;Un � Vni of D such that k fD 0 � fDky < e for

any D 0 ¼ fðx 0
1; r

0
1Þ; . . . ; ðx 0

n; r
0
nÞg A W VSnðX Þ. Hence this weak continuity can be

called a topological stability of interpolation algorithms like the stabilities of

learning algorithms [6]. Our purpose of this paper is to discuss whether a given

topological space has a (weakly) continuous interpolation or not. The following

are obvious, but fundamental in our argument.

Theorem 1. Every discrete space has a (weakly) continuous interpolation.

Theorem 2. If X has a (weakly) continuous interpolation, then every subspace

of X has a (weakly) continuous interpolation.

Theorem 3. Let t1 and t2 be topologies on a set X. If t1 is weaker than
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t2 and ðX ; t1Þ has a (weakly) continuous interpolation, then ðX ; t2Þ has a (weakly)

continuous interpolation.

2. Metrizable Spaces and Continuous Interpolations

In our framework, the following simple fact is also fundamental.

Theorem 4. The real line R has a continuous interpolation.

Proof. Let

D ¼ fðx1; r1Þ; ðx2; r2Þ; . . . ; ðxn; rnÞg

be an arbitrary point in SðRÞ. We can assume that

x1 < x2 < � � � < xn:

Let us consider the function fD A CðRÞ defined by

fDðxÞ ¼
r1 for xa x1

ri�1 þ ðx� xi�1Þ ri�ri�1

xi�xi�1
for xi�1 < xa xi; i ¼ 2; . . . ; n

rn for xn < x:

8<
:

Obviously fD is an interpolation function for D. It must be checked that the map

Y : SðXÞ ! CðX Þ defined by YðDÞ ¼ fD is continuous.

For D ¼ fðx1; r1Þ; . . . ; ðxn; rnÞg A SðRÞ, let

m ¼ minfjx1 � x2j; . . . ; jxn�1 � xnjg; M ¼ maxfjr1j; . . . ; jrnjg:

In case n ¼ 1, let m be an arbitrary positive number. For any e such that

0 < eð< 1Þ let d ¼ 1
2 min m

3 ;
me

18ðMþ1Þ

n o
. Now, consider the following neighborhood

of D:

W ¼ hUdðx1Þ � Ve=3ðr1Þ; . . . ;UdðxnÞ � Ve=3ðrnÞi;

where UdðxiÞ is the d-neighborhood of xi and Ve=3ðriÞ is the e=3-neighborhood

of ri for i ¼ 1; . . . ; n. We will show that k fD � fD 0 ky < e for any D 0 A W . Let

D 0 ¼ fðx 0
1; r

0
1Þ; . . . ; ðx 0

m; r
0
mÞg, where x 0

1 < � � � < x 0
m is satisfied. Then there is the

increasing map s : f1; . . . ;mg ! f1; . . . ; ng which satisfies ðx 0
j ; r

0
j Þ A Udðxsð jÞÞ �

Ve=3ðrsð jÞÞ for any j ¼ 1; . . . ;m. Since it su‰ces to show that j fDðxÞ � fD 0 ðxÞj < e

for any x A R, let x be an arbitrary point in R. (1) First, assume that xa x1 � d.

Then fDðxÞ ¼ r1. Further it must be satisfied that x < x 0
1, and hence fD 0 ðxÞ ¼ r 01.

Since jr1 � r 01j < e=3, it is obvious that j fDðxÞ � fD 0 ðxÞj < e=3. In the case that

xb xn þ d, similar argument above implies that j fDðxÞ � fD 0 ðxÞj < e=3. (2) Next,
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we consider the case when there is some i such that jx� xij < d. Notice that for

each k ¼ 2; . . . ; n the absolute value of the slope rk�rk�1

xk�xk�1
of the line connecting

ðxk�1; rk�1Þ and ðxk; rkÞ is less than
2ðMþ1Þ

m
. Therefore if xk�1 a ya za xk and

jy� zj < d are satisfied, then we obtain that j fDðyÞ � fDðzÞj < me
18ðMþ1Þ

2ðMþ1Þ
m

¼
e=9. Hence in the present case j fDðxÞ � rij < e=9 is satisfied. On the other hand,

there is some j such that x 0
j a xa x 0

jþ1. If sð jÞ ¼ sð j þ 1Þ ¼ i, then jr 0j � rij;
jr 0jþ1 � rij < e=3. Since ri � e=3 < minfr 0j ; r 0jþ1ga fD 0 ðxÞamaxfr 0j ; r 0jþ1g < ri þ e=3,

the inequality j fD 0 ðxÞ � rij < e=3 is also satisfied. Hence j fDðxÞ � fD 0 ðxÞj < 2e=3.

If sð jÞ ¼ i and sð j þ 1Þ ¼ i þ 1, then jx 0
j � x 0

jþ1jbm� 2db 2m=3. Hence the

absolute value of the slope of the line connecting ðx 0
j ; r

0
j Þ and ðx 0

jþ1; r
0
jþ1Þ is less

than
3ðMþ1Þ

m
. It follows that j fD 0 ðxÞ � r 0j ja e=6. This implies that j fDðxÞ � fD 0 ðxÞj

a j fDðxÞ � rij þ jri � r 0j j þ jr 0j � fD 0 ðxÞj < e=9 þ e=3 þ e=6 < e. Similarly, if sð jÞ ¼
i � 1 and sð j þ 1Þ ¼ i, it is proved that j fDðxÞ � fD 0 ðxÞj < e. (3) Finally, assume

that xi þ da xa xiþ1 � d for some i ¼ 1; . . . ; n� 1. The number k ¼ max s�1ðiÞ
is settled and it must be satisfied that sðk þ 1Þ ¼ i þ 1. Since x 0

k < xi þ d and

xiþ1 � d < x 0
kþ1, it is satisfied that x 0

k < x < x 0
kþ1. Let xr

i ¼ maxfxi; x 0
kg, xl

iþ1 ¼
minfxiþ1; x

0
kþ1g. Since jxr

i � xij; jxl
iþ1 � xiþ1j < d, it follows that j fDðxr

i Þ � fD 0 ðxr
i Þj;

j fDðxl
iþ1Þ � fD 0 ðxl

iþ1Þj < e by using the result of the case (2). Since fD, fD 0 are

linear on the interval xr
i a xa xl

iþ1, it is obvious that j fDðxÞ � fD 0 ðxÞj < e for any

x such that xi þ da xa xiþ1 � d.

Corollary 1. The Sorgenfrey line and the Michael line have continuous

interpolations.

It seems di‰cult to extend the result of Theorem 4 to higher dimensional

Euclidean spaces Rn. However, we can show that Rn has a weakly continuous

interpolation. More generally the following is obtained.

Theorem 5. Every metrizable space has a weakly continuous interpolation.

Proof. Let ðX ; dÞ be a metric space. For any D ¼ fðx1; r1Þ; . . . ; ðxn; rnÞg A

SðXÞ, let

M ¼ maxfjr1j; . . . ; jrnjg; m ¼ minfdðxi; xjÞ : i0 jg:

Then the function fD A CðX Þ is defined by

fDðxÞ ¼
0 if dðx; xiÞbm=4 for each i ¼ 1; . . . ; n

ri � 4ri
m
dðx; xiÞ if dðx; xiÞ < m=4 for some i ¼ 1; . . . ; n:

�

228 Toshiji Terada



In case D ¼ fðx1; r1Þg A S1ðX Þ, let m ¼ y and hence fDðxÞ ¼ r1 for each x A X .

It is obvious that fD is an interpolation function for D. We will show that the

map Y : SðX Þ ! CðX Þ defined by YðDÞ ¼ fD is weakly continuous. Since the

continuity of YjS1ðX Þ is obvious, we can assume that n > 1. For the above D and

an arbitrary ð1 >Þe > 0, let d > 0 be a real number such that

d < min
m

8
;

me

32ðM þ 1Þ

� �
:

Since the absolute value 4ri
m

�� �� of the coe‰cient of dðx; xiÞ used in the definition of

fD is less than
4ðMþ1Þ

m
, the inequality

4ðMþ1Þ
m

2d < e=4 implies the following.

Claim. If x; y A X satisfy dðx; yÞ < 2d, then j fDðxÞ � fDðyÞj < e=4.

It su‰ces to show that k fD 0 � fDky < e for D 0 ¼ fðx 0
1; r

0
1Þ; . . . ; ðx 0

n; r
0
nÞg A SnðXÞ

which satisfies

dðx 0
i ; xiÞ < d; jr 0i � rij < e=4 for i ¼ 1; . . . ; n:

For this D 0, the numbers M 0 ¼ maxfjr 01j; . . . ; jr 0njg, m 0 ¼ minfdðx 0
i ; x

0
j Þ : i0 jg

are also defined. The inequalities M 0 < M þ 1, m� 2d < m 0 < mþ 2d are ob-

vious. Let x be an arbitrary point in X . Assume that dðx; xiÞbm=4 for

each i, then fDðxÞ ¼ 0. On the other hand, for this point x it is satisfied

that fD 0 ðxÞ ¼ 0 or 0 < j fD 0 ðxÞja r 0i �
4r 0i
m 0 dðx; x 0

i Þ
��� ��� for some i. Even in the

latter case, since m 0

4 > dðx; x 0
i Þb dðx; xiÞ � dðx 0

i ; xiÞ > m 0

4 � 3
2 d and hence j fD 0 ðxÞja

r 0i �
4r 0i
m 0

m 0

4 � 3
2 d

� ���� ���a 6r 0i
m 0 d
��� ��� < 6ðMþ1Þ

m�2d d < e=4, it follows that j fDðxÞ � fD 0 ðxÞj < e=4.

Next, assume that dðx; xiÞ < m=4 for some i. If jrija e=4, then j fDðxÞja e=4.

Further the inequlity jr 0i ja e=2 is satisfied. Then j fD 0 ðxÞja e=2, and hence

j fDðxÞ � fD 0 ðxÞja 3e=4. The remaining is the case jrij > e=4. Let

a ¼ ri �
4ri
m

dðx; xiÞ; b ¼ ri �
4ri
m

dðx; x 0
i Þ;

c ¼ ri �
4ri

m� 2d
dðx; x 0

i Þ; c 0 ¼ ri �
4ri

mþ 2d
dðx; x 0

i Þ;

d1 ¼ ri � e=4 � 4ðri þ e=4Þ
m� 2d

dðx; x 0
i Þ; d 0

1 ¼ ri þ e=4 � 4ðri � e=4Þ
mþ 2d

dðx; x 0
i Þ;

d2 ¼ ri � e=4 � 4ðri þ e=4Þ
mþ 2d

dðx; x 0
i Þ; d 0

2 ¼ ri þ e=4 � 4ðri � e=4Þ
m� 2d

dðx; x 0
i Þ:

Since fDðxÞ ¼ a and either d1 < fD 0 ðxÞ < d 0
1 or d2 < fD 0 ðxÞ < d 0

2 are satisfied

according to ri > e=4 or ri < �e=4, if it is proved that ja� d 0
1j; ja� d1j; ja� d2j;

ja� d 0
2j < e then we have j fDðxÞ � fD 0 ðxÞj < e.
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(1) ja� bj < e=8: In fact, ja� bj ¼ 4ri
m
ðdðx; xiÞ � dðx; x 0

i ÞÞ
�� ��a 4ðMþ1Þ

m
d < e=8.

(2) jb� cj < e=8: This follows from jb� cj ¼ jrijdðx; x 0
i Þ 4

m
� 4

m�2d

�� �� ¼
jrijdðx; x 0

i Þ 8d
mðm�2dÞ

��� ��� < ðM þ 1Þ 3m
8

8
m�m=4

me
32ðMþ1Þ ¼ e=8.

(3) jb� c 0j < e=8: jb� c 0j ¼ jrijdðx; x 0
i Þ 4

m
� 4

mþ2d

�� �� ¼ jrijdðx; x 0
i Þ 8d

mðmþ2dÞ <

ðM þ 1Þ 3m
8

8
mþm=4

me
32ðMþ1Þ < e=8.

(4) jc� d1j < 3
4 e: jc� d1j ¼ e=4 þ e

m�2d dðx; x 0
i Þ

�� ��a e=4 þ e
m�2d

�� ��dðx; x 0
i Þ <

e=4 þ 4e
3m

3m
8 ¼ e=4 þ e=2 ¼ 3e=4.

(5) jc 0 � d 0
1j < 3

4 e: jc 0 � d 0
1j ¼ �e=4 � e

mþ2d dðx; x 0
i Þ

�� ��a e=4 þ e
mþ2d dðx; x 0

i Þ <
e=4 þ 4e

5m
3m
8 < 3e=4.

(6) jc 0 � d2j ¼ jc� d1j < 3e=4.

(7) jc� d 0
2j ¼ jc 0 � d 0

1j < 3e=4.

Hence ja� d 0
1j; ja� d1j; ja� d2j; ja� d 0

2j < e=8 þ e=8 þ 3e=4 ¼ e.

Corollary 2. Let X be a space whose topology is stronger than a metrizable

topology. Then X has a weakly continuous interpolation.

3. Spaces without Continuous Interpolations

As we see in this section, it is delicate whether a given space has a (weakly)

continuous interpolation or not.

Theorem 6. The ordered space o1 of the first uncountable ordinal does not

have a weakly continuous interpolation.

Proof. Assume that there is a weakly continuous interpolation Y : Sðo1Þ !
Cðo1Þ. Let a0 ¼ 0 and W0 be the set of all limit ordinals in o1. For each l A W0,

let D0
l ¼ fða0; 0Þ; ðl; 1Þg A S2ðo1Þ. Then the function f 0

l ¼ YðD0
lÞ is obtained.

Since this function is continuous at l and f 0
l ðlÞ ¼ 1, there exists m0

l < l such that

j f 0
l ðxÞ � 1j < 1=4 for any x which satisfies m0

l < xa l. Using the pressing down

lemma [4] for the function l 7! m0
l , there exist an ordinal a1 and a stationary

subset W1 of W0 such that m0
l ¼ a1 for any l A W1. Repeat the similar procedures.

Then we obtain a sequence

a0 < a1 < � � �

of points in o1 and a sequence

W0 IW1 I � � �

of stationary sets in o1 such that for any i ¼ 1; 2; . . . and any l A Wi, the function

f i�1
l ¼ Yðfðai�1; 0Þ; ðl; 1ÞgÞ satisfies
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j f i�1
l ðxÞ � 1j < 1=4 ð*Þ

for any x such that ai < xa l. Now, let ~aa ¼ limn!y an. We can take another

sequence of ordinals ð~aa <Þb0 < b1 < � � � such that bi A Wi for each i. Let
~bb ¼ limn!y bn in o1. Then for ~DD ¼ fð~aa; 0Þ; ð ~bb; 1Þg A S2ðo1Þ there is the corre-

sponding function f ~DD ¼ Yð ~DDÞ. Since YjS2ðo1Þ�S1ðo1Þ is continuous at ~DD, there are

neighborhoods U~aa of ~aa and V~bb of ~bb which satisfy the following: For any a A U~aa

and b A V~bb, the function fab ¼ Yðfða; 0Þ; ðb; 1ÞgÞ satisfies k fab � f ~DDky < 1=4 and

hence j fabð~aaÞj < 1=4 and j fabð ~bbÞ � 1j < 1=4. Since an A U~aa and bn A V~bb for suf-

ficiently large n, it follows that j fan�1bnð~aaÞj < 1=4 for su‰ciently large n. But this is

a contradiction, since the above condition ð*Þ implies that j fan�1bnð~aaÞ � 1j < 1=4.

Corollary 3. Every topological space containing o1 does not have a weakly

continuous interpolation.

The space o1 is first-countable and countably compact. On the other hand,

every countably compact space which has a weakly continuous interpolation must

be nearly first-countable in the following sense.

Theorem 7. Let X be a countably compact space which has a weakly

continuous interpolation. Then the tightness tðXÞ of X is countable.

Proof. Assume that tðXÞ > o and that X has a weakly continuous in-

terpolation Y : D 7! fD. Then there are a subset A of X and a point p A clX A

such that p B clX B for any countable subset B of A. We can assume further that

clX BHA for any countable subset B of A.

Let x0 be an arbitrary point in A and let D0 ¼ fðx0; 1Þ; ðp; 0Þg A S2ðXÞ. Then

there is a point x1 A f �1
D0

ð0ÞVA, since X is countably compact and has the

property futher assumed above. Next, let D1 ¼ fðx1; 1Þ; ðp; 0Þg. Then there is a

point x2 A f �1
D0

ð0ÞV f �1
D1

ð0ÞVA. Continuing this procedure, we obtain a sequence

fxi : i A og of points in A such that for any n A o

xn B xnþ1 A f �1
D0

ð0ÞV � � �V f �1
Dn

ð0Þ;

where Di ¼ fðxi; 1Þ; ðp; 0Þg for each i A o. Since X is countably compact, there

is an accumuration point xy of fxi : i A og. The procedure of constracting

fxi : i A og implies that xy 0 p and xy A 7f f �1
Di

ð0Þ : i A og. Consider the

point Dy ¼ fðxy; 1Þ; ðp; 0Þg A S2ðXÞ. Then there exists a neighborhood W ¼
hUy � V1;Up � V0i of Dy such that k fD 0 � fDyky < 1=2 and hence especially

j fD 0 ðxyÞ � 1j < 1=2 for any D 0 A W V ðS2ðX Þ � S1ðXÞÞ. But this is a contra-

231Continuity of interpolations



diction, since there exists n such that Dn A W V ðS2ðX Þ � S1ðX ÞÞ. In fact, for this

Dn it must be satisfied that fDn
ðxyÞ ¼ 0.

Corollary 4. The ordered space o1 þ 1 does not have a weakly continuous

interpolation.

For the discrete space Dðo1Þ of cardinality o1, let Dðo1ÞU fyAg be the one-

point compactification of Dðo1Þ, i.e. the complement of every neighborhood of

yA is a finite subset of Dðo1Þ. The one-point Lindelöfication Dðo1ÞU fyLg of

Dðo1Þ is the space obtained by adding a point yL with the neighborhood base

consisting of co-countable sets.

Theorem 8. The one-point Lindelöfication Dðo1ÞU fyLg has a continuous

interpolation.

Proof. We can assume that the underlying set of Dðo1ÞU fyLg is o1 þ 1 as

yL ¼ o1. For D ¼ fða1; r1Þ; . . . ; ðan; rnÞg A SðDðo1ÞU fyLgÞ, where a1 < � � � < an,

let fD A CðDðo1ÞU fyLgÞ be the function defined by

fDðaÞ ¼
r1 for aa a1

ri for ai�1 < aa ai; i ¼ 2; . . . ; n� 1

rn for an�1 < a:

8<
:

It is easy to see that the map Y defined by YðDÞ ¼ fD is a continuous inter-

polation of Dðo1ÞU fyLg.

Theorem 9. The one-point compactification Dðo1ÞU fyAg does not have a

weakly continuous interpolation.

Proof. The underlying set of the space X ¼ Dðo1ÞU fyAg is also the well-

ordered set o1 þ 1 as above. Assume that Dðo1ÞU fyAg has a weakly con-

tinuous interpolation Y : D 7! fD. Since any real-valued continuous function on

Dðo1ÞU fyAg is constant on a co-countable set and Y is continuous on

S2ðX Þ � S1ðXÞ, there exists g0 < o1 such that

fDab
ðyAÞ ¼ 0

for any Dab ¼ fða; 1Þ; ðb; 0Þg such that a < o and b > g0.

Let b0 A Dðo1Þ be a point larger than g0. Consider D0 ¼ fðb0; 0Þ; ðyA; 1Þg in

S2ðX Þ. Then fD0
ðyAÞ ¼ 1. Since the restriction YjS2ðX Þ�S1ðXÞ is continuous, there

is a neighborhood W of D0 in S2ðX Þ such that
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k fD 0 � fD0
ky < 1=2

and hence j fD 0 ðyAÞ � 1j < 1=2 for any D 0 A W . Since the complement of any

neighborhood of yA in Dðo1ÞU fyAg is finite, there exists a0 < o such that

Da0b0
¼ fðb0; 0Þ; ða0; 1Þg A W . Then fDa0b0

ðyAÞ > 1=2. However, since a0 < o and

g0 < b0, the above condition of g0 implies that fDa0b0
ðyAÞ ¼ 0. This is a con-

tradiction.

For a point p in a space X , cðp;X Þ is the pseudo-character of X at p. A

similar argument to the proof above show the following.

Theorem 10. Let X be a space with a point p such that cðp;XÞ > o. Let

X4po ðoþ 1Þ be the quotient space of the topological sum X l ðoþ 1Þ, obtained

by the identification of p with o. Then X4po ðoþ 1Þ does not have a weakly

continuous interpolation.

Proof. In X4po ðoþ 1Þ, let po be the point corresponding to the set fp;og
collapsed. Assume that X4po ðoþ 1Þ has a weakly continuous interpolation

Y : D 7! fD. Since any Gd-set of X containing p has an infinite number of points,

the weak continuity of Y at Dipo ¼ fði; 1Þ; ðpo; 0Þg for each i A o implies that

there exists an infinite Gd-set B of X containing p with the following property:

If x A B� fpg and i A o, then

fDix
ðpoÞ ¼ 0

where Dix ¼ fði; 1Þ; ðx; 0Þg. Let q A B be a point which is distinct from p.

Consider the point Doq ¼ fðq; 0Þ; ðpo; 1Þg. Then fDoq
ðpoÞ ¼ 1. On the other hand,

any neighborhood W of Doq in S2ðX4po ðoþ 1ÞÞ � S1ðX4po ðoþ 1ÞÞ contains

Diq ¼ fði; 1Þ; ðq; 0Þg for some i A o. Since fDiq
ðpoÞ ¼ 0 for such Diq, this con-

tradicts the weak continuity of Y.

Corollary 5. Let X be a space such that X � ðoþ 1Þ has a weakly

continuous interpolation. Then the pseudo-character cðXÞ is countable.

Proof. Suppose that cðp;XÞ > o for a point p in X . The space

X4po ðoþ 1Þ having no weakly continuous interpolation is embedded in

X � ðoþ 1Þ as X � fogU fpg � ðoþ 1Þ.

Let X be the one-point Lindelöfication Dðo1ÞU fyLg and Y ¼ oþ 1. Then

we obtain the following.
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Theorem 11. There are spaces X , Y having continuous interpolations such

that X � Y does not have a weakly continuous interpolation.

A subset FHCðX Þ is called a separating family of X if for any distinct

points p, q in X there exists f A F such that f ðpÞ0 f ðqÞ.

Theorem 12. If an infinite space X has a weakly continuous interpolation,

then the density dðX Þ of X is larger than or equal to the minimum cardinality of

separating families of X.

Proof. There is a weakly continuous interpolation Y : D 7! fD of X . Assume

that jFj > dðXÞ for every separating family F of X . Let B be a dense subset of

X such that jBj ¼ dðXÞ. Consider the subfamily

S 0ðX Þ ¼ fD A SðXÞ: if ðx; rÞ A D; then x A B; r A Qg;

where Q is the set of all rational numbers. Let FB ¼ f fD : D A S 0ðXÞg. Since

jFBja jS 0ðXÞj ¼ dðX Þ;

FB is not a separating family of X . Hence there are distinct points p, q in X such

that f ðpÞ ¼ f ðqÞ for any f A FB. Take D0 ¼ fðp; 0Þ; ðq; 1Þg A S2ðX Þ. From the

weak continuity of Y, it follows that there is a neighborhood W of D0 in

S2ðX Þ � S1ðXÞ such that YðWÞ is included in the 1=2-ball B1=2ð fD0
Þ of fD0

in

CðXÞ. Since B�Q is dense in X � R, there is D1 ¼ fðp 0; rÞ; ðq 0; sÞg A W VS 0ðX Þ.
For this D1,

k fD1
� fD0

ky < 1=2

must be satisfied. But this is a contradiction, since

fD1
ðpÞ ¼ fD1

ðqÞ; fD0
ðpÞ ¼ 0; fD0

ðqÞ ¼ 1:

Corollary 6. The uncountable product space f0; 1go1 does not have a weakly

continuous interpolation. Hence every space containing f0; 1go1 does not have a

weakly continuous interpolation.

Since Dðo1ÞU fyAg can be embedded in f0; 1go1 , this corollary is considered

also as a corollary of Theorem 9.

Corollary 7. The Stone-Čech compactification bo of the countably infinite

discrete space o does not have a continuous interpolation.
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Since the tightness of bo is uncountable, this corollary is also a corollary of

Theorem 7. There are more examples which show the delicacy of having weakly

continuous inerpolations. A family A of infinite subsets of o is called an almost

disjoint family if the intersection of any two distinct element of A is finite [3, 4].

A maximal almost disjoint family is an almost disjoint family A with no almost

disjoint family B properly containing A. For each almost disjoint family A we

can define the topological space CðAÞ ¼ oUA, with the following topology:

The points of o are isolated, while a neighborhood of a point A A A is any set

containing A and all but a finite number of points of AðHoÞ [3].

Theorem 13. (1) There exists an almost disjoint family A of cardinality 2o

such that CðAÞ has a weakly continuous interpolation.

(2) There exists an almost disjoint family M of cardinality 2o such that CðMÞ
does not have a weakly continuous interpolation.

Proof. (1) Let us consider the following topology t on the upper half-

plane R� ½0;yÞ, which is similar to the Niemytzki tangent disc topology:

Neighborhoods of all points ðx; yÞ with y0 0 are unchanged from those of

the Euclidean topology and taking as a base at each point ðr; 0Þ the family

ffðr; 0ÞgUUnðrÞ : n ¼ 1; 2; . . .g, where

UnðrÞ ¼ fðx; yÞ A R� ð0;yÞ : jx� rj < y < 1=ng:

Since t is stronger than the Euclidean topology, every subspace of this upper half-

plane with the topology t has a weakly continuous interpolation. Let fqn : n A og
be an enumeration of all rational numbers, and let f : o� Z ! R� ð0;yÞ be the

one-to-one map defined by fðn;mÞ ¼ ðqn þm=ðnþ 1Þ; 1=ðnþ 1ÞÞ, where Z is the

set of all integers. Then the subspace

X ¼ ffðn;mÞ : ðn;mÞ A o� ZgUR� f0g

of ðR� ½0;yÞ; tÞ has a weakly continuous interpolation. Let c : o ! o� Z be

a bijection. For each r A R, let Ar ¼ fn A o : f � cðnÞ A U1ðrÞg. Then the family

A ¼ fAr : r A Rg is an almost disjoint family. It is easy to see that CðAÞ is

homeomorphic to X .

(2) It is well known that there exists a maximal almost disjoint family M of

cardinality 2o. Since the density of CðMÞ is countable, it su‰ces to show that

the cardinality of every separating family of CðMÞ is greater than o. Assume

that there is a countable separating family F of CðMÞ. Then the product map

pF : CðMÞ ! RF defined by pFðxÞ ¼ ð f ðxÞÞf AF is one-to-one and continuous.
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Since CðMÞ is pseudocompact and RF is metrizable, the image pFðCðMÞÞ of

this continuous map must be compact. For any x A CðMÞ and any neighborhood

U of x in CðMÞ, there is a real-valued continuous function fx;U : CðMÞ ! ½0; 1�
such that fx;UðxÞ ¼ 0, fx;U jCðMÞ�U ¼ 1. Now, consider the family F 0 ¼ FU f fx;Ug
obtained by adding one more function fx;U to F. Then there exists also the map

pF 0 : CðMÞ ! RF 0
and its compact image pF 0ðCðMÞÞ, in which pF 0ðUÞ is

a neighborhood of pF 0ðxÞ. Since the natural projection P : RF 0 ! RF is con-

tinuous, the restriction PjpF 0 ðCðMÞÞ : pF 0ðCðMÞÞ ! pFðCðMÞÞ is a one-to-one

continuous map between compact spaces and hence a homeomorphism. This

means that pFðUÞ is a neighborhood of pFðxÞ for any x A CðMÞ and any

neighborhood U of x. It follows that CðMÞ is homeomorphic to pFðCðMÞÞ, but

this is a contradiction since CðMÞ is neither compact nor metrizable.

The following problems seem to be interesting.

Problem 1. Does every separable metrizable space have a continuous in-

terpolation?

This is equivalent to the problem: Does the Hilbert cube I o or the countable

product Ro have a continuous interpolation?

Problem 2. Does every space contain a dense subspace which has a (weakly)

continuous interpolation?

Addendum. The author was recently pointed out by K. Sakai that the

answer of Problem 1 is positive.
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