PISOT SUBSTITUTIONS AND THE HAUSDORFF DIMENSION OF BOUNDARIES OF ATOMIC SURFACES

By
De-Jun Feng, Maki Furukado, Shunji Ito, Jun Wu

Abstract

The atomic surface X_{σ} from an unimodular Pisot substitution σ usually has the fractal boundary and it generates a selfaffine tiling. In this paper, we study the boundary ∂X_{σ} as the graph directed self-affine fractal and estimate the Hausdorff dimension of the boundary.

0. Introduction

The several properties of self-affine tiles and their boundaries are studied for instance in the articles [26], [15], [3], [16], [9], [17], [18], [4], [27], [1], [24]. In this paper, we treat the sets which have the fractal boundary called atomic surfaces or self-affine tiles based on substitutions.

Let σ be a primitive unimodular Pisot substitution on the free monoid $A^{*}=\bigcup_{n=0}^{\infty}\{1,2, \ldots, d\}^{n}$, that is,
(1) there exists an n such that i occurs in $\sigma^{n}(j)$ for any pair of letters (i, j) (primitive);
(2) the characteristic polynomial of L_{σ} is irreducible over \boldsymbol{Q} and eigenvalues $\lambda_{i}, 1 \leq i \leq d$ of L_{σ} satisfy the followings:

$$
\lambda_{1}>1>\left|\lambda_{i}\right|, \quad i=2, \ldots, d \quad(\text { Pisot condition })
$$

(3) $\operatorname{det} L_{\sigma}= \pm 1$ (unimodular condition).

Let $\omega=\left(\omega_{1}, \omega_{2}, \ldots\right)$ be the fixed point of the substitution σ and $\pi: \boldsymbol{R}^{d} \rightarrow \mathscr{P}$ be the projection along the eigenvector with respect to the largest eigenvalue λ_{1} of L_{σ} to the contractive invariant plane \mathscr{P} of L_{σ}. Let us define the set X_{σ} by

[^0]$$
X_{\sigma}:=\text { the closure of }\left\{\pi \sum_{k=1}^{n} \boldsymbol{e}_{\omega_{k}} \mid n=1,2, \ldots\right\}
$$
where $\boldsymbol{e}_{i}, i=1,2, \ldots, d$ are the canonical basis of \boldsymbol{R}^{d}. The domain X_{σ} called the atomic surface usually has a fractal boundary. This domain and its boundary are not only interesting from the viewpoint of the fractal geometry, but also ergodic theory, number theory and quasi-crystal theory (see [22], [10], [11], [19], [23], [7]). In this paper, we mainly study the boundary ∂X_{σ} as the fractals which have graph self-affine in Theorem 2.6 (c.f. [5], [25]) and estimate the Hausdorff dimension of atomic surfaces as follows.

Theorem 1. Let σ be a primitive unimodular Pisot substitution with d letters and let X_{σ} be the atomic surface based on the substitution σ. Then the Hausdorff dimension of the boundary ∂X_{σ} is estimated by

$$
\operatorname{dim}_{H} \partial X_{\sigma} \leq \frac{\log \gamma_{1}-\log \lambda_{1}-(d-1) \log \left|\lambda_{d}\right|}{-\log \left|\lambda_{d}\right|}
$$

where γ_{1} is the largest eigenvalue of the graph matrix M_{σ}.

Moreover, if the linear map $\left.L_{\sigma}\right|_{\mathscr{P}}$ restricted to the contractive invariant plane \mathscr{P} is a similitude, then the Hausdorff dimension of ∂X_{σ} is given by

$$
\operatorname{dim}_{H} \partial X_{\sigma}=\frac{(d-1) \log \gamma_{1}}{\log \lambda_{1}}
$$

1. Atomic Surfaces and Their Basic Properties

In this section, we give a survey of the property of the atomic surface which is discussed in [6], [2], [12]. Let \mathscr{A} be an alphabet of d letters $\{1,2, \ldots, d\}$. We denote $\mathscr{A}^{*}=\bigcup_{n=0}^{\infty} \mathscr{A}^{n}$ the free monoid of \mathscr{A}. The substitution σ is a map from \mathscr{A} to \mathscr{A}^{*} such that $\sigma(i)$ is a non-empty word for any letter i. The substitution σ naturally extends to an endomorphism of the free monoid \mathscr{A}^{*} by the rule $\sigma(U V)=\sigma(U) \sigma(V)$. Denote $\sigma(i)=W^{(i)}$, where $W^{(i)}$ is a finite word of the length l_{i}, and we write $W^{(i)}=W_{1}^{(i)} \cdots W_{l_{i}}^{(i)}$. Denote by $P_{k}^{(i)}$ the prefix of the length $k-1$ of $W_{k}^{(i)}$ (for $k=1$, this is the empty word), and $S_{k}^{(i)}$ the suffix of the length $l_{i}-k$, so that $\sigma(i)=P_{k}^{(i)} W_{k}^{(i)} S_{k}^{(i)}$. For the simplicity, we assume that $W_{1}^{(1)}=1$. Under this assumption, the infinite sequence ω given by

$$
\omega=\lim _{n \rightarrow \infty} \sigma^{n}(1)
$$

is the fixed point of the substitution σ. There is a natural homomorphism $f: \mathscr{A}^{*} \rightarrow \boldsymbol{Z}^{d}$ obtained by the abeliarization of the free monoid \mathscr{A}^{*}, and we obtain a linear transformation L_{σ} satisfying the commutative diagram:

From now on, we assume that the substitution σ is primitive, that is, there exists an n such that i occurs in $\sigma^{n}(j)$ for any pair of letters (i, j). It is equivalent to say that the matrix L_{σ} of σ is primitive. By Perron-Frobenius theorem, L_{σ} has the largest eigenvalue λ_{1} that is positive, simple and strictly bigger in modulus than the other eigenvalues. We denote \boldsymbol{u}_{λ} and \boldsymbol{v}_{λ} positive eigenvectors associated with λ_{1} for L_{σ} and the transpose of L_{σ} respectively. Moreover, we assume that the substitution σ satisfies irreducible Pisot and unimodular condition, that is,
(1) the characteristic polynomial of L_{σ} is irreducible over \boldsymbol{Q} and eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$ of L_{σ} satisfy

$$
\lambda_{1}>1>\left|\lambda_{i}\right|, \quad i=2, \ldots, d \quad(\text { Pisot condition })
$$

(2) the determinant of L_{σ} is equal to ± 1 (unimodular condition).

Let \mathscr{P} be the plane orthogonal to \boldsymbol{v}_{λ}. It is clear that \mathscr{P} is invariant by the linear transformation L_{σ}. Moreover, the linear transformation L_{σ} is contractive on \mathscr{P}, that is, there exists a constant $0<\lambda_{0}<1$ such that

$$
d_{\mathscr{P}}\left(L_{\sigma} \boldsymbol{x}, L_{\sigma} \boldsymbol{y}\right) \leq \lambda_{0} d_{\mathscr{P}}(\boldsymbol{x}, \boldsymbol{y}) \quad \text { for } \boldsymbol{x}, \boldsymbol{y} \in \mathscr{P}
$$

where $d_{\mathscr{P}}(\cdot, \cdot)$ is the restricted Euclid distance on \mathscr{P}. Let $\pi: \boldsymbol{R}^{d} \rightarrow \mathscr{P}$ be the projection along the eigenvector \boldsymbol{u}_{λ}.

Definition 1.1. Let us denote the fixed point $\omega=\lim _{n \rightarrow \infty} \sigma^{n}(1)$ of σ by

$$
\omega=s_{1} s_{2} \cdots s_{n} \cdots,
$$

and let us define the set X and $X_{i}, i=1,2, \ldots, d$ by

$$
\begin{aligned}
& X:=\text { the closure of }\left\{\pi \sum_{j=1}^{k} \boldsymbol{e}_{s_{j}} \mid k=1,2, \ldots\right\} \\
& X_{i}:=\text { the closure of }\left\{\pi \sum_{j=1}^{k} \boldsymbol{e}_{s_{j}} \mid s_{k}=i \text { for some } k\right\} .
\end{aligned}
$$

The set X is called the atomic surface associated with the substitution σ.
With the notations above, we know the following theorem.

Theorem 1.2 ([2]). Let σ be a primitive unimodular Pisot substitution, and X and $X_{i}, i=1,2, \ldots d$ be the atomic surfaces of σ. Then X_{i} 's satisfy the following relations: for each $i=1, \ldots, d$,

$$
\left.X_{i}=\sum_{j=1}^{d} \sum_{\substack{S_{k}^{(j)}: \\ W_{k}^{(j)}=i, \sigma(j)=P_{k}^{(j)}}}\left(L_{k}^{(j)} S_{k}^{(j)}, \pi f\left(S_{k}^{(j)}\right)\right) \quad \text { (non-overlap) }\right)
$$

where $\sum_{j=1}^{l} A_{j}$ (non-overlap) means that the Lebesgue measure $\left|A_{j} \cap A_{k}\right|$ of $A_{j} \cap A_{k}$ is equal to zero for each $1 \leq j<k \leq l$.

In [2], we can see implicitly the set equation of $X_{i}, i=1,2, \ldots, d$ holds. However, we will give an explicit proof here. For this purpose, we prepare some lemmas and propositions.

Lemma 1.3. The set X is bounded. More precisely, we can estimate

$$
\operatorname{diam} \cdot X \leq \frac{2}{1-\lambda_{0}} \cdot l \cdot m
$$

where $L_{\sigma}=\left(l_{i j}\right), l=\max _{1 \leq j \leq d} \sum_{i=1}^{d} l_{i j}$, and $m=\max _{1 \leq j \leq d} d_{\mathscr{P}}(\mathbf{0}, \pi(f(j)))$.
Proof. For any $k>0$ there exists n such that $l^{(n)} \leq k<l^{(n+1)}$, where $l^{(n)}=\left|\sigma^{n}(1)\right|$ is the length of the word $\sigma^{n}(1)$. Therefore, there exists j such that

$$
\left.\begin{array}{rl}
s_{1} \cdots s_{k}= & \sigma^{n}\left(W_{1}^{(1)}\right) \cdots \sigma^{n}\left(W_{j-1}^{(1)}\right) t_{1} \cdots t_{k^{\prime}} \\
& t_{1} \cdots t_{k^{\prime}}
\end{array}\right) \sigma^{n}\left(W_{j}^{(1)}\right), ~ \$
$$

where $u_{1} \cdots u_{k} \prec v_{1} \cdots v_{j}$ means

$$
v_{1} \cdots v_{j}=u_{1} \cdots u_{k} v_{k+1} \cdots v_{j}
$$

Therefore, we know

$$
f\left(s_{1} s_{2} \cdots s_{k}\right)=f\left(\sigma^{n}\left(W_{1}^{(1)}\right)\right)+\cdots+f\left(\sigma^{n}\left(W_{j-1}^{(1)}\right)\right)+f\left(t_{1} \cdots t_{k^{\prime}}\right)
$$

On the other hand, we know that

$$
d_{\mathscr{P}}\left(\mathbf{0}, \pi f\left(\sigma^{n}(j)\right)\right) \leq \lambda_{0}^{n} d_{\mathscr{P}}(\mathbf{0}, \pi f(j))
$$

where $\lambda_{0}=\max _{2 \leq i \leq d}\left(\left|\lambda_{i}\right|\right)$. Therefore, we have

$$
d_{\mathscr{P}}\left(\mathbf{0}, \pi f\left(s_{1} \cdots s_{k}\right)\right) \leq l \cdot \max _{1 \leq j \leq d} d_{\mathscr{P}}(\mathbf{0}, \pi f(j)) \lambda_{0}^{n}+d_{\mathscr{P}}\left(\mathbf{0}, \pi f\left(t_{1} \cdots t_{k^{\prime}}\right)\right)
$$

where $l=\max _{1 \leq j \leq d} \sum_{i=1}^{d} l_{i j}$ and $L_{\sigma}=\left(l_{i j}\right)_{1 \leq i, j \leq d}$. Continue the procedure, then we get

$$
\operatorname{diam} . X \leq \frac{2}{1-\lambda_{0}} \cdot l \cdot \max _{1 \leq j \leq d} d_{\mathscr{P}}(\mathbf{0}, \pi f(j))
$$

Lemma 1.4. The following set equation holds: for each $i \in\{1,2, \ldots, d\}$

$$
X_{i}=\bigcup_{j=1}^{d} \bigcup_{\substack{S_{k}^{(j)}: \\ W_{k}^{(j)}=i \\ \sigma(j)=P_{k}^{(j)} W_{k}^{(j)} S_{k}^{(j)}}}\left(L_{\sigma} X_{j}-\pi f\left(S_{k}^{(j)}\right)\right) .
$$

Proof. It is enough to show that

$$
L_{\sigma}^{-1} Y_{i}=\bigcup_{j=1}^{d} \bigcup_{\substack{S_{k}^{(j)}: \\ W_{k}^{(j)}=i, \sigma(j)=P_{k}^{(j)}}}\left(W_{k}^{(j)} S_{k}^{(j)}, L_{\sigma}^{-1}\left(\pi f\left(S_{k}^{(j)}\right)\right)\right)
$$

where $Y_{i}=\left\{\pi f\left(s_{1} \cdots s_{k}\right) \mid s_{k}=i\right.$ for some $\left.k\right\}$. For any k satisfying $s_{k}=i$, there exist m and t such that

$$
\begin{aligned}
s_{1} s_{2} \cdots s_{k} & =\sigma\left(s_{1} \cdots s_{m-1}\right) P_{t}^{\left(s_{m}\right)} W_{t}^{\left(s_{m}\right)} \\
W_{t}^{\left(s_{m}\right)} & =i
\end{aligned}
$$

Therefore, we have

$$
f\left(s_{1} s_{2} \cdots s_{k}\right)=f\left(\sigma\left(s_{1} s_{2} \cdots s_{m}\right)\right)-f\left(S_{t}^{\left(s_{m}\right)}\right)
$$

Thus, the set equation holds.

Lemma 1.5. Let A be a $d \times d$ integer matrix and assume that the characteristic polynomial of A is irreducible, then the eigenvector $\boldsymbol{u}={ }^{t}\left(1, u_{1}, \ldots, u_{d-1}\right)$ of the eigenvalue λ of A is \boldsymbol{Q}-basis of the field $\boldsymbol{Q}(\lambda)$, that is,
(1) $\boldsymbol{Q} \cdot 1+\boldsymbol{Q} \cdot u_{1}+\cdots+\boldsymbol{Q} \cdot u_{d-1}=\boldsymbol{Q}(\lambda)$;
(2) $\left\{1, u_{1}, \ldots, u_{d-1}\right\}$ is \boldsymbol{Q}-independent.

Proof. Let us denote the simple extension of \boldsymbol{Q} adjoining λ by $\boldsymbol{Q}(\lambda)$, then from the irreducibility of the characteristic polynomial of A, we see that $\{1, \lambda$, $\left.\lambda^{2}, \ldots, \lambda^{d-1}\right\}$ is the basis of $\boldsymbol{Q}(\lambda)$, that is,
(1) $\boldsymbol{Q}+\boldsymbol{Q} \lambda+\cdots+\boldsymbol{Q} \lambda^{d-1}=\boldsymbol{Q}(\lambda)$;
(2) $\left\{1, \lambda, \ldots, \lambda^{d-1}\right\}$ is Q-independent.

On the other hand, from the definition:

$$
A^{t}\left[1, u_{1}, \ldots, u_{d-1}\right]=\lambda^{t}\left[1, u_{1}, \ldots, u_{d-1}\right],
$$

we see

$$
\begin{equation*}
\lambda=a_{11}+a_{12} u_{1}+\cdots+a_{1 d} u_{d-1} \tag{1.1}
\end{equation*}
$$

and moreover from the fact that

$$
A^{k t}\left[1, u_{1}, \ldots, u_{d-1}\right]=\lambda^{k}\left[1, u_{1}, \ldots, u_{d-1}\right],
$$

we have

$$
\begin{equation*}
\lambda^{k}=a_{11}^{(k)}+a_{12}^{(k)} u_{1}+\cdots+a_{1 d}^{(k)} u_{d} \tag{1.2}
\end{equation*}
$$

and we see

$$
\lambda^{k} \in \boldsymbol{Q}+\boldsymbol{Q} u_{1}+\cdots+\boldsymbol{Q} u_{d-1} .
$$

Therefore, we know that

$$
(\boldsymbol{Q}(\lambda)=) \boldsymbol{Q}+\boldsymbol{Q} \lambda+\cdots+\boldsymbol{Q} \lambda^{d-1} \subset \boldsymbol{Q}+\boldsymbol{Q} u_{1}+\cdots+\boldsymbol{Q} u_{d-1} .
$$

Other direction

$$
\boldsymbol{Q}+\boldsymbol{Q} \lambda+\cdots+\boldsymbol{Q} \lambda^{d-1} \supset \boldsymbol{Q}+\boldsymbol{Q} u_{1}+\cdots+\boldsymbol{Q} u_{d-1}
$$

is easy from the fact that

$$
(A-\lambda E)^{t}\left[1, u_{1}, \ldots, u_{d-1}\right]=\mathbf{0} .
$$

In fact, $\left\{1, u_{1}, \ldots, u_{d-1}\right\}$ is the solution of the linear equation $(A-\lambda E)^{t}\left[x_{1}, \ldots, x_{d}\right]=\mathbf{0}$, which is the equation with $\boldsymbol{Q}(\lambda)$-coefficient, therefore, we see $u_{i} \in \boldsymbol{Q}(\lambda)$. And, we have

$$
\boldsymbol{Q}+\boldsymbol{Q} \lambda+\cdots+\boldsymbol{Q} \lambda^{d-1}=\boldsymbol{Q} \cdot 1+\boldsymbol{Q} \cdot u_{1}+\cdots+\boldsymbol{Q} \cdot u_{d-1},
$$

that is, $\left\{1, u_{1}, \ldots, u_{d-1}\right\}$ is the basis of $\boldsymbol{Q}(\lambda)$. And so, we see $\left\{1, u_{1}, \ldots, u_{d-1}\right\}$ is Q-linearly independent.

As the corollary of Lemma 1.5 , we have the following.
Corollary 1.6. The closure of $\pi \boldsymbol{Z}^{d}=\mathscr{P}$.

Proposition 1.7. For the atomic surface X associated with the substitution σ we know the following properties:
(1) $\bigcup_{z \in\left\{\sum_{i=2}^{d} n_{i} \pi\left(\boldsymbol{e}_{1}-\boldsymbol{e}_{i}\right) \mid n_{i} \in \boldsymbol{Z}\right\}}(X+\boldsymbol{z})=\mathscr{P}$;
(2) $\stackrel{\circ}{X} \neq \varnothing$.

Proof. For each n let us consider the set of points $\boldsymbol{l}_{n}=$ $\left\{\sum_{j=1}^{k} \boldsymbol{e}_{s_{j}} \mid 1 \leq k \leq l^{(n)}\right\}$. We define $Y_{n}=\pi \boldsymbol{l}_{n}$ and let us consider the lattice $\boldsymbol{L}_{0}:=$ $\left\{\sum_{i=2}^{d} n_{i}\left(\boldsymbol{e}_{1}-\boldsymbol{e}_{i}\right) \mid n_{i} \in \boldsymbol{Z}\right\}$ on $\mathscr{P}_{0}:=\{\boldsymbol{x} \in \boldsymbol{Z}^{d} \mid\langle\boldsymbol{x},{ }^{t}(\overbrace{1,1, \ldots, 1})\rangle=0\}$ where $\langle\boldsymbol{x}, \boldsymbol{y}\rangle$ is the inner product of vectors \boldsymbol{x} and \boldsymbol{y}.

Now define the set of the lattice points by

$$
\boldsymbol{I}_{n}+\boldsymbol{L}_{0}=\bigcup_{\boldsymbol{z} \in \boldsymbol{L}_{0}}\left(\boldsymbol{l}_{n}+\boldsymbol{z}\right)
$$

The projection of $\boldsymbol{l}_{n}+\boldsymbol{L}_{0}$ by π is denoted by $\bigcup_{z \in \boldsymbol{L}_{0}}\left(Y_{n}+\pi \boldsymbol{z}\right)$. On the other hand, for any substitution we can see easily the following relation:

$$
\boldsymbol{l}_{n}+\boldsymbol{L}_{0}=\{\boldsymbol{x} \in \boldsymbol{Z}^{d} \mid\langle\boldsymbol{x},{ }^{t}(\overbrace{1,1, \ldots, 1}^{\# d})\rangle \geq 0\} .
$$

Using the fact that

$$
Y_{n} \subset Y_{n+1}
$$

the closure of $\bigcup Y_{n}=X$,
we know from the boundedness of X and Corollary 1.6,

$$
\begin{equation*}
\bigcup_{z \in \boldsymbol{L}_{0}}(X+\pi \boldsymbol{z})=\mathscr{P} . \tag{1.3}
\end{equation*}
$$

Using (1.3) and from Baire category theorem, we have $\stackrel{\circ}{X}=\stackrel{\circ}{\bar{Y}} \neq \varnothing$. From Theorem 1.2 and primitivity, we see that

$$
\stackrel{\circ}{X}_{i} \neq \varnothing \quad \text { for all } i \in\{1,2, \ldots, d\}
$$

In order to know that X_{i} are disjoint each other up to a set of measure 0 (about the sets of measure 0), we would prepare several lemmas. The next result can be found in [2], originally in [21].

Lemma 1.8. Let M be a primitive matrix with the largest eigenvalue λ. Suppose that \mathbf{v} is a positive vector such that $M \mathbf{v} \geq \lambda \mathbf{v}$. Then the inequality is an equality and \mathbf{v} is the eigenvector with respect to λ.

Hereafter, we will note $|K|$ the measure of the set K.

Lemma 1.9. The vector of volumes ${ }^{t}\left(\left|X_{i}\right|\right)_{1 \leq i \leq d}$ satisfies the following inequality:

$$
L_{\sigma}^{-1 t}\left(\left|X_{1}\right|, \ldots,\left|X_{d}\right|\right) \geq \lambda_{1}{ }^{t}\left(\left|X_{1}\right|, \ldots,\left|X_{d}\right|\right) .
$$

Proof. From the form of X_{i} in the equation of Lemma 1.4, we see

$$
\left|L_{\sigma}^{-1} X_{i}\right| \leq \sum_{j=1}^{d}\left(L_{\sigma}\right)_{i j}\left|X_{j}\right|
$$

Since the determinant of L_{σ}^{-1} restricted to \mathscr{P} is λ_{1}, we know that $\left|L_{\sigma}^{-1} X_{i}\right|=\lambda_{1}\left|X_{i}\right|$. Hence we arrive at the conclusion.

From the Lemma 1.8, Lemma 1.9 and the fact that $\left|X_{j}\right|>0$, we obtain the proof of Theorem 1.2.

Remark. We don't know whether

$$
\left.X=\sum_{j=1}^{d} X_{i} \quad \text { (non-overlap }\right)
$$

and we see in [2] that $X=\bigcup_{j=1}^{d} X_{j}$ is non-overlap if σ satisfies the coincidence condition.

Corollary 1.10. The relation that $X=$ the closure of $\stackrel{\circ}{X}$ holds.

Proof. Moreover by rewriting Theorem 1.2, for any $n>0$ we have

$$
X=\sum_{i=1}^{d} \sum_{j=1}^{d} \sum_{\substack{S_{n, k}^{(j)} \\
\begin{array}{c}
W_{n, k}^{(j)}=i, \sigma^{n}(j) \\
\sigma^{(j)}=P_{n, k}^{(j)} W_{n, k}^{(j)} S_{n, k}^{(j)}
\end{array}}}\left(L_{\sigma}^{n} X_{j}-\pi f\left(S_{n, k}^{(j)}\right)\right)
$$

For any $\boldsymbol{x} \in X$ and $\delta>0$, let $B_{x}(\delta)$ be the ball with the center \boldsymbol{x} and the radius δ on \mathscr{P}, then by the above rewritten formula, there exist n and $S_{n, k}^{(j)}$ such that

$$
B_{x}(\delta) \supset L_{\sigma}^{n} X_{j}-\pi f\left(S_{n, k}^{(j)}\right) \quad \text { and } \quad L_{\sigma}^{n} \stackrel{\circ}{X}_{j} \neq \varnothing
$$

This means that the relation that $X=$ the closure of X holds.

2. Structure of Boundary and Mauldin-Williams Graph

We say that the point $\left(\boldsymbol{x}, i^{*}\right) \in \boldsymbol{Z}^{d} \times\{1,2, \ldots, d\}$ is an element of the stepped surface \mathscr{P} if $\left\langle\boldsymbol{x}, \boldsymbol{v}_{\lambda}\right\rangle \geq 0$ and $\left\langle\boldsymbol{x}-\boldsymbol{e}_{i}, \boldsymbol{v}_{\lambda}\right\rangle<0$. Put all of the elements of the stepped surface \mathscr{P} by \boldsymbol{S}.

Lemma 2.1. If a pair $\left(\boldsymbol{x}, i^{*}\right) \neq\left(\boldsymbol{y}, j^{*}\right)$ are the elements of \boldsymbol{S}, then the element $\left(\boldsymbol{z}, k^{*}\right)$ given by

$$
\left(\boldsymbol{z}, k^{*}\right):= \begin{cases}\left(\boldsymbol{x}-\boldsymbol{y}, i^{*}\right) & \text { if }\left\langle\boldsymbol{x}-\boldsymbol{y}, \boldsymbol{v}_{\lambda}\right\rangle \geq 0 \\ \left(\boldsymbol{y}-\boldsymbol{x}, j^{*}\right) & \text { if }\left\langle\boldsymbol{y}-\boldsymbol{x}, \boldsymbol{v}_{\lambda}\right\rangle>0\end{cases}
$$

is also an element of \boldsymbol{S}.

The proof is easy.
Let us define the map $\varphi: \boldsymbol{S} \times \boldsymbol{S} \rightarrow \boldsymbol{S} \times \boldsymbol{S}$ as follows:

$$
\varphi\left(\left(\boldsymbol{x}, i^{*}\right),\left(\boldsymbol{y}, j^{*}\right)\right)=\left(\left(\mathbf{0}, l^{*}\right),\left(\boldsymbol{z}, k^{*}\right)\right)
$$

where $\left(\boldsymbol{z}, k^{*}\right)$ is given as Lemma 2.1 and l^{*} is given by

$$
\begin{gathered}
l^{*}= \begin{cases}j^{*} & \text { if }\left\langle\boldsymbol{x}-\boldsymbol{y}, \boldsymbol{v}_{\lambda}\right\rangle \geq 0 \\
i^{*} & \text { if }\left\langle\boldsymbol{y}-\boldsymbol{x}, \boldsymbol{v}_{\lambda}\right\rangle>0\end{cases} \\
\left(\boldsymbol{z}=\left\{\begin{array}{ll}
\boldsymbol{x}-\boldsymbol{y} & \text { if }\left\langle\boldsymbol{x}-\boldsymbol{y}, \boldsymbol{v}_{\lambda}\right\rangle \geq 0 \\
\boldsymbol{y}-\boldsymbol{x} & \text { if }\left\langle\boldsymbol{y}-\boldsymbol{x}, \boldsymbol{v}_{\lambda}\right\rangle>0
\end{array}\right) .\right.
\end{gathered}
$$

Lemma 2.2. Let us define the operator σ^{*} on \boldsymbol{S} by

$$
\sigma^{*}:\left(\boldsymbol{x}, i^{*}\right):=\sum_{j \in\{1, \ldots, d\}} \sum_{\substack{S_{k}^{(j)}: \\ W_{k}^{(j)}=i, \sigma(j)=P_{k}^{(j)} W_{k}^{(j)} S_{k}^{(j)}}}\left(L_{\sigma}^{-1} \boldsymbol{x}+L_{\sigma}^{-1} f\left(S_{k}^{(j)}\right), j^{*}\right) .
$$

Then all of the elements in $\sigma^{*}\left(\boldsymbol{x}, i^{*}\right)$ are also the elements of \boldsymbol{S}.

The proof can be found in [2].
Let us consider the set V_{0} of the pair of elements such that

$$
\boldsymbol{V}_{0}=\left\{\left(\left(\mathbf{0}, i^{*}\right),\left(\boldsymbol{x}, j^{*}\right)\right) \mid\left(\boldsymbol{x}, j^{*}\right) \in \boldsymbol{S},\|\pi \boldsymbol{x}\|<2 D\right\}
$$

where $\|\boldsymbol{x}\|$ be the length of the vector \boldsymbol{x} and D be the diameter of X estimated in Lemma 1.3. Then, we see that the cardinarity of \boldsymbol{V}_{0} is finite. Let us define the set of the pair $\boldsymbol{V}^{(i)}$ such that

$$
\boldsymbol{V}^{(i)}:=\left\{\varphi\left(\left(\boldsymbol{x}, j^{*}\right),\left(\boldsymbol{y}, k^{*}\right)\right) \mid\left(\boldsymbol{x}, j^{*}\right),\left(\boldsymbol{y}, k^{*}\right) \in \sigma^{*}\left(\mathbf{0}, i^{*}\right),\|\pi(\boldsymbol{x}-\boldsymbol{y})\|<2 D\right\}
$$

and $\boldsymbol{V}_{0}^{(0)}:=\bigcup_{i=1,2, \ldots, d} \boldsymbol{V}^{(i)}$, then $\boldsymbol{V}_{0}^{(0)} \subset \boldsymbol{V}_{0}$.
Let us define the arrow from the point $\left(\left(\mathbf{0}, i^{*}\right),\left(\boldsymbol{w}, j^{*}\right)\right) \in \boldsymbol{V}_{0}$ by the following manner: for each pair $\left(\left(\mathbf{0}, i^{*}\right),\left(\boldsymbol{w}, j^{*}\right)\right)$ let us pick up the pair such that $\left(\boldsymbol{x}, k^{*}\right) \in$
$\sigma^{*}\left(\mathbf{0}, i^{*}\right),\left(\boldsymbol{y}, l^{*}\right) \in \sigma^{*}\left(\boldsymbol{w}, j^{*}\right)$ and if $\|\pi(\boldsymbol{x}-\boldsymbol{y})\|<2 D$, we give the arrow from $\left(\left(\mathbf{0}, i^{*}\right),\left(\boldsymbol{w}, j^{*}\right)\right)$ to $\varphi\left(\left(\boldsymbol{x}, k^{*}\right),\left(\boldsymbol{y}, l^{*}\right)\right)$.

Let us define the graph $G_{0}=\left(\boldsymbol{V}_{1}, E, i, t\right)$ by the following manner:
1st step: let us consider the arrows starting from the vertex $u \in \boldsymbol{V}_{0}^{(0)}$. If we can not find the arrow from u, then the vertex u is cancelled; If we can find the arrow e from u to v we denote $i(e)=u, t(e)=v$ and if moreover the vertex is new, that is, $v \in \boldsymbol{V}_{0} \backslash \boldsymbol{V}_{0}^{(0)}$, then we call v the first generation of u. We denote the set of the first generation from $\boldsymbol{V}_{0}^{(0)}$ by $\boldsymbol{V}_{0}^{(1)}$.

2nd step: let us consider the arrow starting from the vertex of the first generation $v \in \boldsymbol{V}_{0}^{(1)}$. If we cannot find any arrows from v, then we cancell the vertex $v \in V_{0}^{(1)}$ and the arrow e such that $t(e)=v$; if we can find the arrow e^{\prime} from v to w and the terminal $t\left(e^{\prime}\right)$ is new, that is, $\omega=t\left(e^{\prime}\right) \in$ $\boldsymbol{V}_{0} \backslash\left(\boldsymbol{V}_{0}^{(0)} \cup \boldsymbol{V}_{0}^{(1)}\right)$, then we call the terminal ω the 2nd generator of u and denote $\boldsymbol{V}_{0}^{(2)}$.
kth step: if we can not find any arrows from the vertex v_{k}, we cancelled the vertex v_{k} and the arrow e such that $t(e)=v_{k}$. And by the cancellation of the arrow e if $v_{k-1}=i(e)$ has no arrow e^{\prime} such that $v_{k-1}=i\left(e^{\prime}\right)$ then the vertex v_{k-1} and the arrow $e^{\prime \prime}$ such that $t\left(e^{\prime \prime}\right)=v_{k-1}$ are also cancelled and so on. From the finiteness of the cardinarity of \boldsymbol{V}_{0}, we can stop this procedure. We denote the final step by q.

Now we get the graph with vertices $\boldsymbol{V}_{1}=\bigcup_{j=1}^{q} \boldsymbol{V}_{0}^{(j)}$ and each vertex u has the arrow e such that $u=i(e)$.

We denote the graph by $G_{B}=\left(\boldsymbol{V}_{1}, E, i, t\right)$ and call the graph of the boundary of the atomic surface. For the simplicity, we denote the vertex $\left(\left(\mathbf{0}, i^{*}\right),\left(\boldsymbol{x}, j^{*}\right)\right)$ by (i, j, \boldsymbol{x}).

The existence of the arrow from $\left(i, p, x_{0}\right)$ to $\left(j, q, \boldsymbol{x}_{1}\right)$ means that on the notation:

$$
\begin{align*}
\sigma^{*}\left(\mathbf{0}, i^{*}\right) & =\sum_{l \in\{1, \ldots, d\}} \sum_{\substack{S_{k}^{(l)}: \\
\sigma(l)=P_{k}^{(l)} \cdot i \cdot S_{k}^{(l)}}}\left(-L_{\sigma}^{-1}\left(f\left(S_{k}^{(l)}\right)\right), l^{*}\right) \tag{2.4}\\
\sigma^{*}\left(\boldsymbol{x}_{0}, p^{*}\right) & =\sum_{m \in\{1, \ldots, d\}} \sum_{\substack{S_{k^{\prime}}^{(m)}: \\
n^{(m)}}}\left(-L_{\sigma}^{-1}\left(f\left(S_{k^{\prime}}^{(m)}\right)\right), m^{*}\right)+L_{\sigma}^{-1}\left(\boldsymbol{x}_{0}\right), \tag{2.5}
\end{align*}
$$

there exist l, k, m and k^{\prime} such that $\left(j, q, x_{1}\right)$ is given explicitly by

$$
\begin{gather*}
\boldsymbol{x}_{1}=\left\{\begin{array}{c}
L_{\sigma}^{-1}\left(f\left(S_{k}^{(l)}\right)-f\left(S_{k^{\prime}}^{(m)}\right)+\boldsymbol{x}_{0}\right) \\
\text { if }\left\langle L_{\sigma}^{-1}\left(f\left(S_{k}^{(l)}\right)-f\left(S_{k^{\prime}}^{(m)}\right)+\boldsymbol{x}_{0}\right), \boldsymbol{v}_{\lambda}\right\rangle \geq 0 \\
-L_{\sigma}^{-1}\left(f\left(S_{k}^{l()}\right)-f\left(S_{k^{\prime}}^{(m)}\right)+\boldsymbol{x}_{0}\right) \\
\text { if }\left\langle L_{\sigma}^{-1}\left(f\left(S_{k}^{(l)}\right)-f\left(S_{k^{\prime}}^{(m)}\right)+\boldsymbol{x}_{0}\right), \boldsymbol{v}_{\lambda}\right\rangle<0
\end{array}\right. \tag{2.6}\\
(j, q)=\left\{\begin{array}{ll}
(l, m) & \text { if }\left\langle L_{\sigma}^{-1}\left(f\left(S_{k}^{(l)}\right)-f\left(S_{k^{\prime}}^{(m)}\right)+\boldsymbol{x}_{0}\right), \boldsymbol{v}_{\lambda}\right\rangle \geq 0 \\
(m, l) & \text { if }\left\langle L_{\sigma}^{-1}\left(f\left(S_{k}^{(l)}\right)-f\left(S_{k^{\prime}}^{(m)}\right)+\boldsymbol{x}_{0}\right), \boldsymbol{v}_{\lambda}\right\rangle<0
\end{array} .\right. \tag{2.7}
\end{gather*}
$$

Proposition 2.3. For each vertex $(i, j, \boldsymbol{x}) \in \boldsymbol{V}_{1}$ we know $X_{i} \cap\left(X_{j}+\pi \boldsymbol{x}\right) \neq \varnothing$ and $\left|X_{i} \cap\left(X_{j}+\pi \boldsymbol{x}\right)\right|=0$.

Proof. Suppose that $X_{i} \cap\left(X_{j}+\pi \boldsymbol{x}\right)=\varnothing$, then from the compactness of X_{i} and X_{j} we see

$$
d_{\mathscr{P}}\left(X_{i},\left(X_{j}+\pi \boldsymbol{x}\right)\right)>0,
$$

where $d_{\mathscr{P}}(A, B):=\inf \left\{d_{\mathscr{P}}(x, y) \mid x \in A, y \in B\right\}$, and so we have

$$
d_{\mathscr{P}}\left(L_{\sigma}^{-1} X_{i}, L_{\sigma}^{-1}\left(X_{j}+\pi \boldsymbol{x}\right)\right) \geq \lambda_{0}^{-1} d_{\mathscr{P}}\left(X_{i},\left(X_{j}+\pi \boldsymbol{x}\right)\right) .
$$

From the set equation given by Theorem 1.2 and the relation (2.4) and (2.5), we know that

$$
\begin{aligned}
L_{\sigma}^{-1} X_{i} & \supset X_{l}-L_{\sigma}^{-1} \pi f\left(S_{k}^{(l)}\right) \text { for }(l, k) \text { satisfying } W_{k}^{(l)}=i \\
L_{\sigma}^{-1}\left(X_{p}+x_{0}\right) & \supset X_{m}-L_{\sigma}^{-1} \pi f\left(S_{k^{\prime}}^{(m)}\right)+L_{\sigma}^{-1}\left(x_{0}\right) \text { for }\left(m, k^{\prime}\right) \text { satisfying } W_{k^{\prime}}^{(m)}=p
\end{aligned}
$$

Moreover, from the fact that the vertex $\left(i_{1}, j_{1}, \boldsymbol{x}_{1}\right)$ from $(i, j, \boldsymbol{x}) \in V_{1}$ is given by (2.6) and (2.7), in particular $\left(i_{1}, j_{1}\right)$ is chosen as (l, m) or (m, l) on the notation (2.4), (2.5). Therefore we see

$$
d_{\mathscr{P}}\left(X_{i_{1}}, X_{j_{1}}+\pi \boldsymbol{x}_{1}\right) \geq d_{\mathscr{P}}\left(L_{\sigma}^{-1} X_{i}, L_{\sigma}^{-1}\left(X_{j}+\pi \boldsymbol{x}\right)\right)
$$

that is,

$$
d_{\mathscr{P}}\left(X_{i_{1}}, X_{j_{1}}+\pi \boldsymbol{x}_{1}\right) \geq \lambda_{0}^{-1} d_{\mathscr{P}}\left(X_{i}, X_{j}+\pi \boldsymbol{x}\right)
$$

Continuing this procedure, we have

$$
d_{\mathscr{P}}\left(X_{i_{n}}, X_{j_{n}}+\pi \boldsymbol{x}_{n}\right) \geq \lambda_{0}^{-n} d_{\mathscr{P}}\left(X_{i}, X_{j}+\pi \boldsymbol{x}\right)
$$

On the other hand, from the definition of \boldsymbol{V}_{0} and Lemma 1.3, we know

$$
d_{\mathscr{P}}\left(X_{p}, X_{q}+\pi \boldsymbol{x}\right)<3 D \quad \text { for all }(p, q, \boldsymbol{x}) \in \boldsymbol{V}_{0} .
$$

Therefore, we see that

$$
d_{\mathscr{P}}\left(X_{i}, X_{j}+\pi \boldsymbol{x}\right)=0 .
$$

This contradicts to $d_{\mathscr{P}}\left(X_{i}, X_{j}+\pi \boldsymbol{x}\right)>0$. From the definition of $(i, j, \boldsymbol{x}) \in \boldsymbol{V}_{1}$, there exist $k, n,\left(\boldsymbol{y}, l^{*}\right)$ and $\left(\boldsymbol{w}, m^{*}\right) \in{ }^{*} \sigma^{n}\left(\mathbf{0}, k^{*}\right)$ such that

$$
(i, j, \boldsymbol{x})=\varphi\left(\left(\boldsymbol{y}, l^{*}\right),\left(\boldsymbol{w}, m^{*}\right)\right)
$$

where we denote ${ }^{*} \sigma^{n}$ instead of $\left(\sigma^{*}\right)^{n}$. Therefore, from the non-overlapping property in Theorem 1.2, we have

$$
\left|X_{i} \cap\left(X_{j}+\pi \boldsymbol{x}\right)\right|=0 .
$$

Proposition 2.4. For each vertices $(i, j, \boldsymbol{x}) \in \boldsymbol{V}_{1}$, we see

$$
\partial X_{i} \supset X_{i} \cap\left(X_{j}+\pi \boldsymbol{x}\right)
$$

Proof. Assume that

$$
\partial X_{i} \ngtr X_{i} \cap\left(X_{j}+\pi \boldsymbol{x}\right)
$$

Then, we see that

$$
\left(X_{j}+\pi \boldsymbol{x}\right) \cap \stackrel{\circ}{X}_{i} \neq \varnothing
$$

Therefore, there exist $a \in \stackrel{\circ}{X}_{i}$ and an open ball $B_{\delta}(a)$ with the center a and the radius δ such that

$$
a \in X_{j}+\pi x \quad \text { and } \quad B_{\delta}(a) \subset \stackrel{\circ}{X}_{i}
$$

Since the closure of $\stackrel{\circ}{X}_{j}$ is equal to X_{j}, we know $B_{\delta}(a) \cap\left(\stackrel{\circ}{X}_{j}+\pi \boldsymbol{x}\right) \neq \varnothing$, and thus there exists $B_{\delta^{\prime}}(b)$ such that

$$
B_{\delta^{\prime}}(b) \subset B_{\delta}(a) \cap\left(\stackrel{\circ}{X}_{j}+\pi \boldsymbol{x}\right)
$$

Therefore,

$$
\left|B_{\delta}(a) \cap\left(\stackrel{\circ}{X}_{j}+\pi \boldsymbol{x}\right)\right|>0 .
$$

From Proposition 2.3 this contradicts to

$$
\left|X_{i} \cap\left(X_{j}+\pi \boldsymbol{x}\right)\right|=0
$$

Proposition 2.5. For each $j \in\{1, \ldots, d\}$, there exist n and W_{0} such that $\sigma^{n}(j)=Y \cdot 1 \cdot W_{0}$ and satisfying the following form:

$$
\begin{align*}
& \partial\left(X_{j}-\pi L_{\sigma}^{-n}\left(f\left(W_{0}\right)\right)\right) \\
& =\sum_{\substack{k, W: \\
\sigma^{n}(k)=Y^{\prime} \cdot 1 \cdot W \\
\text { of } f \neq j \\
\sigma^{n}(k)=Y^{\prime \prime} \cdot 1 \cdot W \text { and } \\
W \neq W_{0} \text { if } k=j}}\left(\left(X_{j}-\pi L_{\sigma}^{-n} f\left(W_{0}\right)\right) \cap\left(X_{k}-\pi L_{\sigma}^{-n}(f(W))\right)\right) \tag{2.8}
\end{align*}
$$

and

$$
\varphi\left(\left(j, f\left(W_{0}\right)\right),(k, f(W))\right) \in V_{1} \quad \text { if }\left(X_{j}-\pi L_{\sigma}^{-n} f\left(W_{0}\right)\right) \cap\left(X_{k}-\pi L_{\sigma}^{-n}(f(W))\right) \neq \varnothing
$$

In particular, we have

$$
\partial X_{j}=\sum_{\substack{\sigma^{\prime}, W: \tag{2.9}\\
\text { or } \sigma^{n}(k)=Y^{\prime \prime} \cdot 1 \cdot Y^{\prime} \cdot \boldsymbol{W} \text { and } \text { if } \begin{array}{c}
W \neq W_{0} \\
k \neq W_{0} \\
\text { if } \\
k=j
\end{array}}}\left(X_{j} \cap\left(X_{k}-\pi\left(L_{\sigma}^{-n}\left(f(W)-f\left(W_{0}\right)\right)\right)\right)\right) .
$$

Proof. From Theorem 1.2, we know

$$
L_{\sigma}^{-n} X_{1}=\sum_{j=1}^{d} \sum_{\substack{W \cdot \\ \sigma^{n}(j)=\dot{Y} \cdot 1 \cdot W}}\left(-\pi L_{\sigma}^{-n}(f(W))+X_{j}\right)
$$

For the fixed j and the sufficient large n, we can find a ball V contained $L_{\sigma}^{-n} X_{1}$ and W_{0} such that the ball V contains $X_{j}-\pi L_{\sigma}^{-n} f\left(W_{0}\right)$ and W_{0} satisfies $\sigma^{n}(j)=$ $Y \cdot 1 \cdot W_{0}$. Therefore, we see that

$$
\begin{align*}
& \partial\left(X_{j}-\pi L_{\sigma}^{-n}\left(f\left(W_{0}\right)\right)\right) \\
& =\sum_{\substack{k, W: \\
\sigma^{n}(k)=Y^{\prime} \cdot 1 \cdot W \text { if } k \neq j \\
\text { or } \sigma^{n}(k)=Y^{\prime \prime} \cdot 1 \cdot W \text { and } W \neq W_{0} \text { if } k=j}}\left(X_{j}-\pi L_{\sigma}^{-n} f\left(W_{0}\right)\right) \cap\left(X_{k}-\pi L_{\sigma}^{-n}(f(W))\right) . \tag{2.10}
\end{align*}
$$

In the formula (2.8), if $\left(X_{j}-\pi L_{\sigma}^{-n} f\left(W_{0}\right)\right) \cap\left(X_{k}-\pi L_{\sigma}^{-n}(f(W))\right) \neq \varnothing$, then

$$
\varphi\left(\left(j, L_{\sigma}^{-n} f\left(W_{0}\right)\right),\left(k, L_{\sigma}^{-n} f(W)\right)\right) \in \boldsymbol{V}_{1} .
$$

For each arrow $e_{u, v} \in E$ let us define the transformation $T_{u, v}: \mathscr{P} \rightarrow \mathscr{P}$ by

$$
\begin{equation*}
T_{u, v} \boldsymbol{x}=L_{\sigma} \boldsymbol{x}+\pi \boldsymbol{f}_{u, v} \tag{2.11}
\end{equation*}
$$

where $u=\left(i, p, \boldsymbol{x}_{0}\right)$ and $v=\left(j, q, \boldsymbol{x}_{1}\right)$ given by (2.6) and (2.7), and $\pi \boldsymbol{f}_{u, v}$ is given by

$$
\pi f_{u, v}=\left\{\begin{array}{l}
-\pi f\left(S_{k^{\prime}}^{(m)}\right)+\boldsymbol{x}_{0} \\
\text { if }\left\langle L_{\sigma}^{-1}\left(f\left(S_{k}^{(l)}\right)-f\left(S_{k^{\prime}}^{(m)}\right)+\boldsymbol{x}_{0}\right), \boldsymbol{v}_{\lambda}\right\rangle \geq 0 \\
\pi f\left(S_{k}^{(l)}\right) \\
\text { if }\left\langle L_{\sigma}^{-1}\left(f\left(S_{k}^{(l)}\right)-f\left(S_{k^{\prime}}^{(m)}\right)+\boldsymbol{x}_{0}\right), \boldsymbol{v}_{\lambda}\right\rangle<0
\end{array}\right.
$$

Then the transformation $T_{u, v}$ on \mathscr{P} is a contractive map. Therefore, we have the list of compact sets $\left(\mathscr{K}_{u}\right)_{u \in V_{1}}$ uniquely satisfying $\mathscr{K}_{u}=\bigcup T_{u, v}\left(K_{v}\right)$ (see [20]). On the other hand, for each vertex (i,p, x_{0}) from Proposition 2.3, we know $X_{i} \cap\left(X_{p}+\pi \boldsymbol{x}_{0}\right) \neq \varnothing$ and each X_{i} and $X_{p}+\boldsymbol{x}_{0}$ are decomposed by Theorem 1.2,

$$
\begin{gathered}
X_{i}=\sum_{l=1}^{d} \sum_{\substack{\left.S_{k}^{(l)}: \\
W_{k}^{(l)} \\
(l) \\
\sigma(l)=P_{k}^{(l)}\right)}}\left(L_{\sigma}^{(l)} S_{k}^{(l)}-\pi f\left(S_{k}^{(l)}\right)\right), \\
X_{p}+\pi \boldsymbol{x}_{0}=\sum_{m=1}^{d} \sum_{\substack { S_{k^{\prime}}^{(m)}: \\
\begin{subarray}{c}{W_{k}^{(n)} \\
(m) \\
\sigma(m)=P_{k}^{(m)} \\
k^{\prime}{ S _ { k ^ { \prime } } ^ { (m) } : \\
\begin{subarray} { c } { W _ { k } ^ { (n) } \\
(m) \\
\sigma (m) = P _ { k } ^ { (m) } \\
k ^ { \prime } } }\end{subarray}}\left(L_{\sigma} X_{k^{\prime}}^{(m)} S_{k^{\prime}}^{(m)}-\pi\left(f\left(S_{k^{\prime}}^{(m)}\right)-\boldsymbol{x}_{0}\right)\right) .
\end{gathered}
$$

Therefore, we have

$$
X_{i} \cap\left(X_{p}+\pi \boldsymbol{x}_{0}\right)=\sum_{\substack{S_{k}^{(l)}, S_{k}^{(m)}: \\\left(W_{k}^{(l)}, W_{k^{\prime}}^{(m)}\right)=(i, p)}}\left(L_{\sigma}\left(X_{l}\right)-\pi f\left(S_{k}^{(l)}\right)\right) \cap\left(L_{\sigma}\left(X_{m}\right)-\pi\left(f\left(S_{k^{\prime}}^{(m)}\right)\right)+\boldsymbol{x}_{0}\right) .
$$

Using (2.6), (2.7) and $\pi f_{u, v}$ we have

$$
\begin{aligned}
X_{i} \cap\left(X_{p}+\pi \boldsymbol{x}_{0}\right) & =\bigcup_{\substack{v: v=\left(j, q, \boldsymbol{x}_{1}\right) \in \boldsymbol{V}_{1}, e \in E_{u, v}}} L_{\sigma}\left(X_{j} \cap\left(X_{q}+\pi L\left(\boldsymbol{x}_{1}\right)\right)\right)+\pi \boldsymbol{f}_{u, v} \\
& =\bigcup_{\substack{v: v=\left(j, q, \boldsymbol{x}_{1}\right) \in \boldsymbol{V}_{1}, e \in E_{u, v}}} T_{u, v}\left(X_{j} \cap\left(X_{q}+\pi \boldsymbol{x}_{1}\right)\right) .
\end{aligned}
$$

Therefore, we have the following theorem.

Theorem 2.6. Let $G_{B}=\left(\boldsymbol{V}_{1}, E, i, t\right)$ be the graph from the substitution σ and let $T_{u, v}: \mathscr{P} \rightarrow \mathscr{P}$ be the transformation given by (2.11). Then, the list of compact sets $\left(\mathscr{K}_{u}\right)_{u \in V_{1}}$ satisfying

$$
\mathscr{K}_{u}=\bigcup_{\substack{v \in V_{1}, e \in E_{u, v}}} T_{u, v}\left(\mathscr{K}_{v}\right)
$$

is given by

$$
\mathscr{K}_{u}=X_{i} \cap\left(X_{j}+\pi \boldsymbol{x}\right)
$$

where $u=(i, j, \boldsymbol{x}) \in \boldsymbol{V}_{1}$.

3. Hausdorff Dimension of Boundaries

In this section, we discuss the Hausdorff dimension of the boundary of atomic surfaces.

Theorem 3.1. Let σ be a primitive unimodular Pisot substitution with d letters. Let X be the atomic surface with respect to σ. Then the Hausdorff dimension of ∂X is estimated by

$$
\operatorname{dim}_{H} \partial X \leq \operatorname{dim}_{B} \partial X \leq \frac{\log \gamma_{1}-\log \lambda_{1}-(d-1) \log \left|\lambda_{d}\right|}{-\log \left|\lambda_{d}\right|}
$$

where $\operatorname{dim}_{B} \partial X$ is the Box dimension of ∂X and γ_{1} is the largest eigenvalue of the matrix of the graph G_{B}.

Proof. By Proposition 2.5, the boundary ∂X is constructed by the sets $\left(X_{i} \cap\left(X_{j}+\pi \boldsymbol{x}\right)\right),(i, j, \boldsymbol{x}) \in \boldsymbol{V}_{1}$. For any $\varepsilon>0$, each set $X_{i} \cap\left(X_{j}+\pi \boldsymbol{x}\right)$ can be covered by $c\left(\gamma_{1}+\varepsilon\right)^{n}$ pieces parallelograms $L_{\sigma}^{n}(\pi \mathscr{U})$ from the unit square \mathscr{U} and the parallelogram $L_{\sigma}^{n}(\pi \mathscr{U})$ is covered at most $c^{\prime}\left(\frac{\left|\lambda_{2}\right|}{\left|\lambda_{d}\right|} \cdot \frac{\left|\lambda_{3}\right|}{\left|\lambda_{d}\right|} \cdot \ldots \cdot \frac{\left|\lambda_{d}\right|}{\left|\lambda_{d}\right|}\right)^{n}$ pieces of the cube whose length of the edge is $\left|\lambda_{d}\right|^{n}$. Therefore, the Box dimension of $X_{i} \cap$ $\left(X_{j}+\pi \boldsymbol{x}\right)$ can be estimated by

$$
\begin{aligned}
\operatorname{dim}_{B}\left(X_{i} \cap\left(X_{j}+\pi \boldsymbol{x}\right)\right) & \leq \lim _{n \rightarrow \infty} \frac{\log c\left(\gamma_{1}+\varepsilon\right)^{n}+\log c^{\prime}\left(\lambda_{1}\left|\lambda_{d}\right|^{d-1}\right)^{-n}}{-\log \left|\lambda_{d}^{n}\right|} \\
& =\frac{\log \left(\gamma_{1}+\varepsilon\right)-\log \lambda_{1}-(d-1) \log \left|\lambda_{d}\right|}{-\log \left|\lambda_{d}\right|}
\end{aligned}
$$

for any $\varepsilon>0$. Therefore, by Proposition 2.5 , we see

$$
\operatorname{dim}_{H} \partial X \leq \operatorname{dim}_{B} \partial X \leq \frac{\log \gamma_{1}-\log \lambda_{1}-(d-1) \log \left|\lambda_{d}\right|}{-\log \left|\lambda_{d}\right|}
$$

If we know the explicit values γ_{1}, λ_{1} and λ_{d}, we see probably that $\operatorname{dim}_{H} \partial X<d-1$. But we have no idea to say

$$
\frac{\log \gamma_{1}-\log \lambda_{1}-(d-1) \log \left|\lambda_{d}\right|}{-\log \left|\lambda_{d}\right|}<d-1
$$

Therefore, we give the next theorem (c.f. [14]).
Theorem 3.2. Under the same assumption for σ as in Theorem 3.1, we have $\operatorname{dim}_{H} \partial X<d-1$.

Proof. From the set equations in Theorem 1.2 of $\left\{X_{i}\right\}_{i=1,2, \ldots, d}$ and $\stackrel{\circ}{X}_{1} \neq \varnothing$, for the sufficient large n_{0} there exist $j_{0} \in\{1, \ldots, d\}$ and k_{0} such that

$$
\begin{aligned}
& \sigma^{n_{0}}\left(j_{0}\right)=P_{n_{0}, k_{0}}^{\left(j_{0}\right)} \cdot 1 \cdot S_{n_{0}, k_{0}}^{\left(j_{0}\right)}, \\
& L_{\sigma}^{\left(n_{0}\right)} X_{j_{0}}-\pi f\left(S_{n_{0}, k_{0}}^{\left(j_{0}\right)}\right) \subset \dot{X}_{1} .
\end{aligned}
$$

This means

$$
\left\{\begin{array}{l}
\partial X_{1} \subset \sum_{j=1}^{d} \sum_{\substack{\left(j, S_{n, k}^{(j)} \neq\left(j_{0}, S_{n_{0}}^{\left(j_{0}\right)}, k_{k}\right), \sigma^{n_{0}(j)=P_{n_{0}, k}^{(j)} \cdot k^{1} \cdot S_{n_{0}, k}^{(j)}}\right.}}\left(L_{\sigma}^{n_{0}}\left(\partial X_{j}\right)-\pi f\left(S_{n_{0}, k}^{(j)}\right)\right) \tag{3.12}\\
\partial X_{i} \subset \sum_{j=1}^{d} \sum_{\substack{S_{n, k}^{(j)}, \sigma^{n_{0}}(j)=P_{n, k}^{(j)} \cdot i \cdot S_{n, k}^{(j)}}}\left(L_{\sigma}^{n_{0}}\left(\partial X_{j}\right)-\pi f\left(S_{n, k}^{(j)}\right)\right)
\end{array} .\right.
$$

From the above properties, we say that we can cover ∂X_{1} by at most $L_{\sigma}^{n_{0}}(1,1)$ pieces of $L_{\sigma}^{n_{0}}\left(\partial X_{1}\right)$ at most $L_{\sigma}^{n_{0}}\left(j_{0}, 1\right)-1$ pieces of $L_{\sigma}^{n_{0}}\left(\partial X_{j_{0}}\right)$ at most $L_{\sigma}^{n_{0}}(d, 1)$ pieces of $L_{\sigma}^{n_{0}}\left(\partial X_{d}\right)$
and on the definition of the matrix

$$
D=\left[\begin{array}{ccc}
L_{\sigma}^{n_{0}}(1,1) & \cdots & L_{\sigma}^{n_{0}}(1, d) \\
\cdots & \cdots & \cdots \\
L_{\sigma}^{n_{0}}\left(j_{0}, 1\right)-1 & \cdots & L_{\sigma}^{n_{0}}\left(j_{0}, d\right) \\
\cdots & \cdots & \cdots \\
L_{\sigma}^{n_{0}}(d, 1) & \cdots & L_{\sigma}^{n_{0}}(d, d)
\end{array}\right],
$$

we see that $D<L_{\sigma}^{n_{0}}$ and D is primitive for sufficient large n_{0}. Therefore, we know that the largest eigenvalue μ of D is strictly smaller than $\lambda_{1}^{n_{0}}$. The boundary ∂X_{1} can be covered by at most $c^{\prime p}$-pieces of paralleologram $\pi L_{\sigma}^{p n_{0}}(\mathscr{U})$ for any $\mu<$ $v<\lambda_{1}^{n_{0}}$. By analogous discussion in Theorem 3.1, we see that the boundary ∂X_{1} is covered by at most $c^{\prime p}\left(\lambda_{1}\left|\lambda_{d}\right|^{d-1}\right)^{-p n_{0}}$ pieces of cubes with the length $\left|\lambda_{d}\right|^{p n_{0}}$. Therefore, the α-dimensional Hausdorff measure $\mathscr{H}^{\alpha}\left(\partial X_{1}\right)$ can be estimated by

$$
\mathscr{H}^{\alpha}\left(\partial X_{1}\right) \leq \lim _{p \rightarrow \infty} v^{p} \frac{1}{\left(\lambda_{1}\left|\lambda_{d}\right|^{d-1}\right)^{p n_{0}}}\left(\left|\lambda_{d}\right|^{p n_{0}}\right)^{\alpha} .
$$

Let us assume that $v=\lambda_{1}^{n_{0}-x}$ for some $0<x<1$. Then the Hausdorff measure is estimated by

$$
\mathscr{H}^{\alpha}\left(\partial X_{1}\right) \leq \lim _{p \rightarrow \infty}\left(\lambda_{1}^{(x-1)}\left|\lambda_{d}^{\alpha-(d-1)}\right|\right)^{p n_{0}}
$$

we can choose $\alpha_{0}>0$ such that

$$
\alpha_{0}<d-1 \quad \text { and } \quad \lambda_{1}^{(x-1)} \lambda_{d}^{\alpha_{0}-(d-1)}<1
$$

and so we know that $\mathscr{H}^{\alpha_{0}}\left(\partial X_{1}\right)=0$. Therefore we have

$$
\operatorname{dim}_{H}\left(\partial X_{1}\right) \leq \alpha_{0}<d-1
$$

By analogous discussion, we see

$$
\operatorname{dim}_{H}\left(\partial X_{i}\right)<d-1
$$

and so we get

$$
\operatorname{dim}_{H}(\partial X)<d-1
$$

From now on, we will assume that the linear transformation L_{σ} on \mathscr{P} is a similitude. In two cases (i) $d=2$ (ii) $d=3$ and L_{σ} is the complex Pisot matrix, we know that the linear transformation is the similitude on \mathscr{P}.

Let the list $\left\{X_{1} \ldots, X_{d}\right\}$ of compact sets be the atomic surfaces, then we had known the sets satisfy the equation in Theorem 1.2. Therefore, we can get the graph $G_{\sigma}=\{\boldsymbol{V}, E, i, t\}$ which is constructed by $\boldsymbol{V}=\{1, \ldots, d\}, e_{i j} \in E$ if there exists $j \in\{1, \ldots, d\}$ such that $\sigma(i)=P_{k}^{(j)} \cdot i \cdot S_{k}^{(j)}$. And for each $e_{i j} \in E$ let us define the contracting transformation $T_{i j}: \mathscr{P} \rightarrow \mathscr{P}$ by

$$
T_{i j}(\boldsymbol{x})=L_{\sigma} \boldsymbol{x}-\pi f\left(S_{k}^{(j)}\right)
$$

which is the similitude with some contractive constant $0<s<1$. Then we see that $\left\{\boldsymbol{V}, E, i, t,\left\{T_{i j}\right\}\right\}$ is a Mauldin-Williams graph and that $\left\{X_{i} \mid i=1,2, \ldots d\right\}$ is
the graph construction set. Moreover, the graph satisfies the locally finite condition, that is, there exists a constant $H>0$ such that for any $1>r>0$ and any $\boldsymbol{x} \in \mathscr{P}$

$$
\#\left\{\begin{array}{l|l}
\left(i_{1} i_{2} \cdots i_{l}\right) & \begin{array}{l}
e_{i_{j}, i_{j+1} \in E, \quad 1 \leq j \leq l-1} \\
t r \leq t^{l} \leq r, \\
T_{i_{1} i_{2}} \circ T_{i_{2} i_{3}} \circ \cdots T_{i_{l-1} i_{l}}\left(X_{i_{l}}\right) \cap B_{x}(r) \neq \varnothing
\end{array} \tag{*}
\end{array}\right\}<H
$$

since the sets $\stackrel{\circ}{X}_{j}, j=1,2, \ldots, d$ satisfy the open set condition.
Therefore, we have the following lemma.
Lemma 3.3. Let $G_{B}=\left(\boldsymbol{V}_{1}, E, i, t,\left\{T_{u, v}\right\}\right)$ be a Mauldin-William graph in Theorem 2.6. Then the graph satisfies the locally finite condition.

Proof. From the locally finite condition of $G_{B}=\left\{\boldsymbol{V}, E, i, t,\left\{T_{i j}\right\}\right\}$, we see that

$$
\begin{aligned}
& \#\left\{\left(u_{1}, u_{2}, \ldots, u_{n}\right) \left\lvert\, \begin{array}{l}
e_{u_{i}, u_{i+1}} \in E, \text { tr }<t^{n}<r, \\
T_{u_{1} u_{2}} T_{u_{2} u_{3}} \cdots T_{u_{n-1} u_{n}}\left(X_{p} \cap\left(X_{q}+\pi y\right)\right) \cap B_{x}(r) \neq \varnothing
\end{array}\right.\right\} \\
& <C_{H}^{2}=\frac{H(H-1)}{2} .
\end{aligned}
$$

Using Lemma 3.3 and Theorem 1 in [20], we have the following theorem.
Theorem 3.4. Let σ be the primitive unimodular Pisot substitution. Let us assume that the linear trasnformation L_{σ} on the invariant surface \mathscr{P} is a similitude. Then the Hausdorff dimension of ∂X is given by

$$
\operatorname{dim}_{H} \partial X=\frac{(d-1) \log \gamma_{1}}{\log \lambda_{1}}
$$

where γ_{1} is the largest eigenvalue of the matrix of the graph G_{B}.

4. Examples

In this section, we propose some examples of atomic surfaces.

Example 4.1. Let σ be the following substitution:

$$
\sigma: \begin{aligned}
& 1 \rightarrow 112 \\
& 2 \rightarrow 21
\end{aligned}
$$

Figure 1: the atomic surface $X=\bigcup_{i=1,2} X_{i}$ in Example 4.1.

This substitution is a simple example which is not invertible. Therefore, the atomic surface is not an interval (see [6]). In this example, the graph G_{B} of the boundary of the atomic surface is given by the following form (see Figure 2): The matrix M_{σ} of the graph G_{B} is given by

$$
M_{\sigma}=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and the characteristic polynomial of M_{σ} is given by

$$
x^{2}\left(x^{2}-2 x-1\right)(x-1)^{2}
$$

Figure 2: the graph G_{B} from the substitution: $1 \mapsto 112,2 \mapsto 21$.
where the largest eigenvalue of M_{σ} comes from $x^{2}-2 x-1$. And so by using Theorem 3.4, the Hausdorff dimension of the boundary of the atomic surface is given by

$$
\operatorname{dim}_{H} \partial X=\frac{\log \gamma_{1}}{\log \lambda_{1}}=\frac{\log 2.41421}{\log 2.61803}=0.915785 \ldots
$$

where γ_{1} and λ_{1} are the largest eigenvalues of the graph matrix M_{σ} and L_{σ} respectively.

Example 4.2. Let us consider the substitution called Rauzy substitution [22]:

$$
\begin{aligned}
1 & \rightarrow 12 \\
\sigma: 2 & \rightarrow 13 \\
3 & \rightarrow 1 .
\end{aligned}
$$

Figure 3: the atomic surface $X=\bigcup_{i=1,2,3} X_{i}$ in Example 4.2.

The Hausdorff dimension had been calculated in [10]. In our method, the graph G_{B} of the boundary of the atomic surface is given by the following form (see Figure 4):

Figure 4: the graph G_{B} from Rauzy substitution: $1 \mapsto 12,2 \mapsto 13$, $\mapsto 1$.

The matrix M_{σ} of the graph G_{B} is given by

$$
M_{\sigma}=\left[\begin{array}{lllllll}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and the characteristic polynomial of M_{σ} is given by

$$
x^{3}\left(x^{4}-2 x-1\right)
$$

Therefore, the Hausdorff dimension of ∂X_{σ} is caluculated by

$$
\operatorname{dim}_{H} \partial X=\frac{2 \log \gamma_{1}}{\log \lambda_{1}}=\frac{2 \log 1.39534}{\log 1.83929}=1.09337 \ldots
$$

where γ_{1} and λ_{1} are the largest eigenvalues of the graph matrix M_{σ} and L_{σ} respectively.

Example 4.3. Let us consider the following substitution:

$$
\begin{aligned}
1 & \rightarrow 12 \\
\sigma: & 2 \rightarrow 31 \\
& 3 \rightarrow 1
\end{aligned}
$$

Figure 5: the atomic surface $X=\bigcup_{i=1,2,3} X_{i}$ in Example 4.3.

The matrix L_{σ} of the substitution is same as one of Rauzy substitution. But the shape of the atomic surface is perfectly different. The graph G_{B} of the boundary of the atomic surface is given by the following form (see Figure 6): The characteristic polynomial of M_{σ} is given by

$$
\left(x^{6}-x^{5}-x^{4}-x^{2}+x-1\right)\left(x^{2}+x+1\right)^{2} x^{15}(x-1)^{2} .
$$

Therefore, the Hausdorff dimension of ∂X_{σ} is caluculated by

$$
\operatorname{dim}_{H} \partial X=\frac{2 \log \gamma_{1}}{\log \lambda_{1}}=\frac{2 \log 1.72629}{\log 1.83929}=1.7919 \ldots
$$

where γ_{1} and λ_{1} are the largest eigenvalues of the graph matrix M_{σ} and L_{σ} respectively.

Example 4.4. Let us consider the substitution:

$$
\begin{aligned}
1 & \rightarrow 112 \\
\sigma: & 2 \rightarrow 13 \\
& 3 \rightarrow 1 .
\end{aligned}
$$

This substitution is an example of a class of Pisot substitutions:

$$
\begin{aligned}
1 & \rightarrow \overbrace{11 \cdots 12}^{\# k_{1}} 2 \\
\sigma_{k_{1}, k_{2}}: & \rightarrow \overbrace{11 \cdots 13}^{\# k_{2}} 3 \\
3 & \rightarrow 1
\end{aligned}
$$

Figure 6: the graph G_{B} from the substitution: $1 \mapsto 12,1 \mapsto 31,1 \mapsto 1$.

Figure 7: the atomic surface $X=\bigcup_{i=1,2,3} X_{i}$ in Example 4.4.
which is related to Pisot β-expansions (see [13]). The graph G_{B} of the boundary of the atomic surface is given by the following form (see Figure 8):

The matrix M_{σ} of the graph G_{B} is given by

$$
M_{\sigma}=\left[\begin{array}{lllllllll}
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and the characteristic polynomial of M_{σ} is given by

$$
x^{5}\left(x^{4}-x^{2}-3 x-1\right)
$$

Figure 8: the graph G_{B} from the β-substitution: $1 \mapsto 112,2 \mapsto 13,3 \mapsto 1$.

Therefore, the Hausdorff dimension of ∂X_{σ} is caluculated by

$$
\operatorname{dim}_{H} \partial X=\frac{2 \log \gamma_{1}}{\log \lambda_{1}}=\frac{2 \log 1.74553}{\log 2.54682}=1.19177 \ldots
$$

where γ_{1} and λ_{1} are the largest eigenvalues of the graph matrix M_{σ} and L_{σ} respectively.

Example 4.5. Let us consider the substitution:

$$
\begin{aligned}
1 & \rightarrow 13 \\
\sigma: & \rightarrow 1 \\
3 & \rightarrow 32
\end{aligned}
$$

This substitution is coming from Example 4 in [8] $\left(L_{\sigma}=M^{2}\right)$.

Figure 9: the atomic surface $X=\bigcup_{i=1,2,3} X_{i}$ in Example 4.5.
This example is that the atomic surface is not simply connected. The characteristic polynomial of M_{σ} is given by

$$
\begin{aligned}
& x^{32}\left(x^{13}-x^{12}-x^{10}+x^{9}-2 x^{8}-4 x^{7}-2 x^{5}-4 x^{4}+x^{3}-4 x^{2}-1\right) \\
& \quad \times\left(x^{5}-2 x^{3}+x-1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)(x-1)
\end{aligned}
$$

and the largest eigenvalue of M_{σ} is coming from the polynomial $\left(x^{13}-x^{12}-\right.$ $\left.x^{10}+x^{9}-2 x^{8}-4 x^{7}-2 x^{5}-4 x^{4}+x^{3}-4 x^{2}-1\right)$. Therefore, the Hausdorff dimension of ∂X_{σ} is caluculated by

$$
\operatorname{dim}_{H} \partial X=\frac{2 \log \gamma_{1}}{\log \lambda_{1}}=\frac{2 \log 1.72864}{\log 1.75478}=1.94643 \ldots
$$

where γ_{1} and λ_{1} are the largest eigenvalues of the graph matrix M_{σ} and L_{σ} respectively.

Example 4.6. Let us consider the substitution:

$$
\begin{aligned}
1 & \rightarrow 12123 \\
\sigma: & 2 \rightarrow 1 \\
& 3 \rightarrow 12 .
\end{aligned}
$$

Figure 10: the atomic surface $X=\bigcup_{i=1,2,3} X_{i}$ in Example 4.6.

This substitution is coming from $\sigma_{1} \circ \sigma_{2}$ for σ_{m} Example 1 in [10].
This is an example such that the boundary of the atomic surface is not double point free. The graph G_{B} of the boundary of the atomic surface is given the following form (see Figure 11);

The matrix M_{σ} of the graph G_{B} is given by

$$
M_{\sigma}=\left[\begin{array}{lllllllllllllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1
\end{array}\right] .
$$

The characteristic polynomial of M_{σ} is given by

$$
x^{13}\left(x^{3}-3 x^{2}+2 x-1\right)(x-1)
$$

Figure 11: the graph G_{B} from the substitution: $1 \mapsto 12123,2 \mapsto 1,3 \mapsto 12$.

Therefore, the Hausdorff dimension of ∂X_{σ} is caluculated by

$$
\operatorname{dim}_{H} \partial X=\frac{2 \log \gamma_{1}}{\log \lambda_{1}}=\frac{2 \log 2.32472}{\log 3.0796}=1.5
$$

where γ_{1} and λ_{1} are the largest eigenvalues of the graph matrix M_{σ} and L_{σ} respectively.

References

[1] Akiyama, S., On the boundary of self affine tilings generated by Pisot numbers, J. Math. Soc. Japan, (2) 54 (2002), 283-308.
[2] Arnoux, P. and Ito, S., Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc., 8 (2001), no. 2, 181-207.
[3] Bandt, C., Self-similar sets 5. Integer matrices and fractal tilings of \boldsymbol{R}^{n}, Proc. Amer. Math. Soc., 112 (1991), 549-562.
[4] Duvall, P., Keesling, J. and Vince, A., The Hausdorff dimension of the boundary of a selfsimilar tile, J. London Math. Soc., (2) 61 (2000), 748-760.
[5] Edgar, Gerald A., Measure, Topology, and Fractal Geometry, Springer-Verlag.
[6] Ei, H. and Ito, S., Decomposition theorem on invertible substitutions, Osaka J. Math., 35 (1998), 821-834.
[7] Ito, S., Fujii, J., Higashino, H. and Yasutomi, S., On simultaneous approximation to (α, α^{2}) with $\alpha^{3}+k \alpha-1=0$ Journal of Number Theory 99 (2003), no. 2, 255-283.
[8] Furukado, M. and Ito, S., The quasi-periodic tiling of the plane and Markov subshifts, Japanese J. Math., Vol. 24, No. 1, (1998), 1-42.
[9] Gröchenig, K. and Haas, A., Self-similar lattice tilings, J. Fourier Anal. Appl., 1 (1994), 131-170.
[10] Ito, S. and Kimura, M., On Rauzy fractal, Japan J. Indust. Appl. Math., 8 (1991), 461-486.
[11] Ito, S. and Ohtsuki, M., Modified Jacobi-Perron Algorithm and Generating Markov Partitions for Special Hyperbolic Toral Automorphisms, Tokyo J. Math., 16 (1993), 441-472.
[12] Ito, S. and Rao, H., Atomic surfaces and self-similar tiling I: Irrecucible case, Israel J. (to appear).
[13] Ito, S. and Sano, Y., On periodic β-expansions of Pisot Number and Rauzy fractals, Osaka J. Math., 38 (2001), no. 2, 349-368.
[14] Keesling, J., The boundaries of self-similar tiles in \boldsymbol{R}^{n}, Top. Appl., 94 (1999), 195-205.
[15] Kenyon, R., Self-Similar Tilings, Ph.D. Thesis, Princeton Univ. (1990).
[16] Kenyon, R., Self-replicating tilings, in Symbolic Dynamics and Its Applications (P. Walters, ed.), Contemporary Mathematics, Vol. 135, Birkhäuser, Boston, 1992, pp. 239-264.
[17] Lagarias, J. and Wang, Y., Self-affine tiles in \boldsymbol{R}^{n}, Adv. in Math., 121 (1996), 21-49.
[18] Lagarias, J. and Wang, Y., Integral self-affine tiles in \boldsymbol{R}^{n}. I. Standard and nonstandard digit sets., J. London Math. Soc., 54 (1996), 161-179.
[19] Luck, J. M., Godreche, C., Janner, A., and Janssen, T., The nature of the atomic surfaces of quasiperiodic self-similar structures, J. Phys. A: Math. Gen., 26 (1993), 1951-1999.
[20] Mauldin, R. D. and Williams, S. C., Hausdorff dimension in graph directed constructions, American Math. Soc. vol. 309, No. 2 (1988), 811-829.
[21] Queffélec, M., Substitution Dynamical Systems-Spectral Analysis, Springer-Verlag Lecture Notes in Math. 1294, New York, 1987.
[22] Rauzy, G., Nombres Algébriques et Substitutions, Bull. Soc. Math. France, 110 (1982), 147-178.
[23] Solomyak, B., Dynamics of self-similar tilings, Ergod. Th. \& Dynam. Sys., 17 (1997), 1-44.
[24] Scheicher, K. and Thuswaldner, J. M., Canonical number systems, counting automata and fractals, Math. Proc. Cambridge Philos. Soc., 133 (1) (2002), 163-182.
[25] Scheicher, K. and Thuswaldner, J. M., Neighbours of self-affine tiles in lattice tilings, in Proceedings of the Conference "Fractals in Graz" (P. Grabner and W. Woess, ed.), 2002, pp. 241-262.
[26] Thurston, W. P., Groups, tilings, and finite state automata, AMS Colloquium Lectures, Boulder, CO (1989).
[27] Vince, A., Digit tiling of Euclidean space, In Directions in Mathematical Quasicrystals, pages 329-370, Providence, RI, 2000. Amer. Math. Soc.

De-Jun Feng
Department of Mathematical Science
Tsinghua University
Beijing, 100084, People's Republic of China
E-mail: dfeng@math.tsinghua.edu.cn
Maki Furukado
Facalty of Business Administration
Yokohama National University
Tokiwadai, Hodogaya-ku Yokohama, 240-8501, Japan
E-mail: furukado@ynu.ac.jp
Shunji Ito
Graduate School of Natural Science and Technology Kanazawa Universtiy, Kakuma-machi, Kanazawa
Ishikawa, 920-1192, Japan
E-mail: ito@t.kanazawa-u.ac.jp
Jun Wu
Department of Mathematics
Huazhong University of Science and Technology, Wuhan, Hubei, 430074, People's Republic of China
E-mail: wujunyu@public.wh.hb.cn

[^0]: 2000 Mathematics Subject Classification. 52C23 (37A99, 37B50, 11K55).
 Keywords and phraces. atomic surface, unimodular Pisot substitution, self-affine tiling, Hausdorff dimension of the boundary.
 Received November 26, 2004.
 Revised November 8, 2005.

