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ON FIRST ORDER LINEAR PDE SYSTEMS ALL OF

WHOSE SOLUTIONS ARE HARMONIC FUNCTIONS

Dedicated to the memory of Gianfranco Cimmino

By

Sorin Dragomir1 and Ermanno Lanconelli2

Abstract. We study the first order linear system uz þ vw ¼ 0,

uw � vz ¼ 0 in a domain WHC2 (first considered by G. Cimmino,

[3]). We prove a Morera type theorem, emphasizing the analogy

to the Cauchy-Riemann system, and a representation formula

yielding a result on removable singularities of solutions to (2).

We derive (by a Hilbert space technique outlined in [5]) com-

patibility relations among the free terms and boundary data in the

boundary value problem uz þ vw ¼ f , uw � vz ¼ g in W, and u ¼ j,

v ¼ c on qW. If F ¼ ðu; vÞ : W ! C2 is a solution to (2) such that

supe>0

Ð
qWe

jFðz;wÞjp dseðz;wÞ < y for some pb 2 then we show

that F admits nontangential limits at almost every ðz;oÞ A qW.

1. A Morera Type Theorem

The systems of first order linear partial di¤erential equations all of whose

solutions are harmonic functions bear, as demonstrated by G. Cimmino (cf. [3]),

many similarities to the ordinary Cauchy-Riemann system. Interesting examples

occur however only in higher dimensions [first order linear homogeneous systems

with two unknown functions in two real variables, possessing the required

property, are equivalent (up to a linear transformation of the dependent variables)

to the Cauchy-Riemann equations, while there are no such systems in dimension

three, [3], p. 91–94]. Let us consider (together with G. Cimmino, cf. op. cit.) the

following system of first order linear homogeneous equations
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Xx � Yy þ Zx � Th ¼ 0

Xy þ Yx � Zh � Tx ¼ 0

Xx � Yh � Zx þ Ty ¼ 0

Xh þ Yx þ Zy þ Tx ¼ 0;

8>>><
>>>:

ð1Þ

with the (real valued) unknown functions Xðx; y; x; hÞ, Y ðx; y; x; hÞ, Zðx; y; x; hÞ
and Tðx; y; x; hÞ. Each C 2 solution ðX ;Y ;Z;TÞ to (1) is harmonic. This is

most easily seen by setting z ¼ xþ iy, w ¼ xþ ih and f ¼ X þ iY , g ¼ Z þ iT

ði ¼
ffiffiffiffiffiffiffi
�1

p
Þ and rewriting (1) as

qf

qz
þ qg

qw
¼ 0;

qf

qw
� qg

qz
¼ 0:ð2Þ

Indeed, if WHC2 is an open set and f ; g A C 2ðWÞ satisfy (2) then (di¤erentiating

the first equation in (2) with respect to z, the second with respect to w, and

summing up the two resulting equations)

Df ¼ 2ð fzz þ fwwÞ ¼ 0

in W. Similarly Dg ¼ 0 in W. The di¤erential operator

Q ¼ q=qz q=qw

q=qw �q=qz

� �

is referred to as the Cimmino operator and QF ¼ 0 is the Cimmino system (where

F ¼ ð f ; gÞ). We may tentatively define weak solutions to the Cimmino system as

follows. Let WHC2 be a bounded domain. A pair of functions f ; g A L2ðWÞ is a

weak solution to (2) ifð
W

ð f jz þ gjwÞ dz5dz5dw5dw ¼ 0;ð3Þ

ð
W

ð f jw � gjzÞ dz5dz5dw5dw ¼ 0;ð4Þ

for any j A Cy
0 ðWÞ. Nevertheless, if c A Cy

0 ðWÞ and we set j ¼ cz in (3),

respectively j ¼ cw in (4), and add up the resulting equations we obtainÐ
W fDj ¼ 0, i.e. f is Cy (and similarly g A Cy). More generally, we have

Lemma 1. The Cimmino operator is hypoelliptic.

Proof. If f A L1
locðWÞ let Tf be the distribution associated to f . Given two

distributions u; v A Cy
0 ðWÞ0 such that uz þ vw ¼ Tf and uw � vz ¼ Tg, for some

f ; g A CyðWÞ, one has
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ðDuÞðjÞ ¼ 2ðuzz þ uwwÞðjÞ ¼ �2uzðjzÞ � 2uwðjwÞ

¼ 2ðvw � Tf ÞðjzÞ � 2ðvz þ TgÞðjwÞ

¼ �2

ð
W

ð f jz þ gjwÞ dV ¼ 2

ð
W

ð fz þ gwÞj dV

for any j A Cy
0 ðWÞ, that is Du ¼ 2Tfzþgw (in distribution sense) and fz þ gw A

CyðWÞ, hence u (and similarly v) is Cy. Q.e.d.

The following analog to the fundamental Cauchy theorem (cf. e.g. Theorem

1.5 in [8], p. 42) holds

Proposition 1. Let f ; g A C1ðWÞ be a solution to the Cimmino system. Thenð
qD

ð f dz5dw5dw� g dz5dz5dwÞ ¼ 0;ð5Þ

ð
qD

ð f dz5dz5dwþ g dz5dw5dwÞ ¼ 0;ð6Þ

for any domain DHC2 with DHW on which the Stokes theorem holds.

Compare to (9) in [3], p. 95. Indeed, let us consider the (complex valued)

di¤erential 1-form (of class C1)

o ¼ f dz5dw5dw� g dz5dz5dw:

Then o is closed

do ¼ df5dz5dw5dw� dg5dz5dz5dw

¼ �ð fz þ gwÞ dz5dz5dw5dw ¼ 0

(by the first equation of (2)) and one may apply the Stokes theoremÐ
qD

o ¼
Ð
D
do ¼ 0. Similarly f dz5dz5dwþ g dz5dw5dw is a closed 1-

form. Q.e.d.

The following converse to Proposition 1 (an analog to the classical Morera

theorem, cf. e.g. Theorem 1.10 in [8], p. 56) is claimed in [3]

Theorem 1. Let WHC2 be a domain and f ; g : W ! C two locally Hölder

continuous functions. Assume that for any x0 A W there is R > 0 such that

Bðx0;RÞHW and f , g satisfy (5)–(6) on any cube D with DHBðx0;RÞ. Then f , g

are harmonic in W and a solution to (2).
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The locally Hölder continuous assumption is employed to solve the Dirichlet

problem for the Poisson equation (cf. e.g. Theorem 4.3 in [6], p. 56). Then f , g

may be recast in terms of second order derivatives of the solution (similar to our

(7)–(8) below). Therefore, the di¤erential forms appearing in the integral identities

at hand (cf. (15) in [3], p. 97) are but C 0 and the Stokes theorem cannot be

applied. This di‰culty is circumnavigated by explicit integration on the boundary

of a cube (rather than passing to a volume integral, which is prevented by the

lack of di¤erentiability) and the use of a mean value theorem (to get har-

monicity). G. Cimmino’s ideas may be used to generalize Theorem 1 above, as

follows

Theorem 2. Let WHC2 be a domain and f ; g : W ! C continuous functions

satisfying (5)–(6) for any ball D ¼ Bðx0;RÞ such that DHW. Then f , g are

harmonic in W and a solution to (2).

The main ingredient is to use the mollifications of f and g (whose regularity

allows us to give an elegant proof based on the Stokes theorem).

Proof of Theorem 2. Let x0 ¼ ðz0;w0Þ A W and let us consider a ball

B ¼ Bðx0; 2RÞHW such that 0 < R < 1
6 distðx0; qWÞ. Also, let us set

~ff ðxÞ ¼ f ðxÞ; x A B;

0; x A C2nB:

�

Let fe ¼ Je � ~ff ðe > 0Þ be the mollification of ~ff . As ~ff A L1
locðBÞ it follows (cf.

e.g. Lemma 2.18 in [1], p. 29–30) that fe A CyðC2Þ and ~ff A C 0ðBÞ yields

lime!0þ feðxÞ ¼ f ðxÞ uniformly for x A A, for any AHHB. Let Fe;Ge A CyðBÞ
be solutions to the Poisson equations DF ¼ fe and DG ¼ ge. Moreover, let

je;ce A CyðBÞ be the functions given by

je ¼ 2
qFe

qz
þ qGe

qw

� �
; ce ¼ 2

qFe

qw
� qGe

qz

� �
:

Note that

qje
qz

þ qce

qw
¼ DFe ¼ feð7Þ

and, similarly

qje
qw

� qce

qz
¼ DGe ¼ geð8Þ

in B.
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Lemma 2. Let j;c A CyðBÞ such that f :¼ jz þ cw and g :¼ jw � cz satisfy

(5)–(6) for D ¼ Bðx0;RÞ. Then j and c are harmonic in D. Consequently, f and g

are harmonic in D and ð f ; gÞ is a solution to (2) in D.

Proof. The assumptions (5)–(6) may be writtenð
qD

fðjz þ cwÞ dz5dw5dw� ðjw � czÞ dz5dz5dwg ¼ 0;ð9Þ

ð
qD

fðjz þ cwÞ dz5dz5dwþ ðjw � czÞ dz5dw5dwg ¼ 0:ð10Þ

Yet (by the Stokes theorem)ð
qD

ðcw dz5dw5dwþ cz dz5dz5dwÞ

¼
ð
D

ðdcw5dz5dw5dwþ dcz5dz5dz5dwÞ

¼
ð
D

ð�cwz þ czwÞ dz5dz5dw5dw ¼ 0

hence (by (9))

0 ¼
ð
qD

ðjz dz5dw5dw� jw dz5dz5dwÞ

¼ �
ð
D

ðjzz þ jwwÞ dz5dz5dw5dw ¼ � 1

2

ð
D

ðDjÞ dz5dz5dw5dw

that is Dj ¼ 0 in D. Similarly (again by the Stokes theorem)ð
qD

ðjz dz5dz5dwþ jw dz5dw5dwÞ ¼ 0

and (10) yields Dc ¼ 0 in D. Then (by the very definition of f , g) Df ¼ 0 and

Dg ¼ 0 in D. Finally f , g satisfy (2). For instance

fz þ gw ¼ ðjz þ cwÞz þ ðjw � czÞw ¼ Dj ¼ 0:

Lemma 2 is proved. Next, we need

Lemma 3. The mollifications fe, ge satisfy (5)–(6) for D ¼ Bðx0;RÞ.

Let us end the proof of Theorem 2. By Lemma 3 the functions je and ce

satisfy the hypothesis of Lemma 2. Then Lemma 2 yields Dfe ¼ 0, Dge ¼ 0 in D
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and ð fe; geÞ is a solution to (2) in D. Thus f , g are harmonic in D and, as

uniform limits of sequences of harmonic functions on relatively compact sub-

domains of D, satisfy (2) in D, and therefore in W. Q.e.d.

It remains to prove Lemma 3. Let dm be the Lebesgue measure on R4. We

may conduct the following calculationð
qD

feðz;wÞ dz5dw5dw

¼
ð
qD

ð
R4

Jeðz� z;w� oÞ ~ff ðz;oÞ dmðz;oÞ
� �

dz5dw5dw

(by a change of variables and Fubini’s theorem)

¼
ð
R4

Jeðz;oÞ
ð
qD

f ðz� z;w� oÞ dz5dw5dw

� �
dmðz;oÞ

(as ~ff vanishes outside B we may assume w.l.o.g. that ðz;oÞ A B hence

qBððz0 � z;w0 � oÞ;RÞHW)

¼
ð
R4

Jeðz;oÞ
ð
qBððz0�z;w0�oÞ;RÞ

f ðz;wÞ dz5dw5dw

( )
dmðz;oÞ

(by (5) with D ¼ Bððz0 � z;w0 � oÞ;RÞ)

¼
ð
R4

Jeðz;oÞ
ð
qBððz0�z;w0�oÞ;RÞ

gðz;wÞ dz5dz5dw

( )
dmðz;oÞ

¼
ð
qD

geðz;wÞ dz5dz5dw:

Similarly, fe and ge satisfy (6). Lemma 3 is proved.

As well known, an application of Morera’s theorem is to establish the so

called (first) Weierstrass theorem (cf. e.g. Theorem 2.3 in [8], p. 63). The similar

application holds for solutions to (2) (though the regularity requirements and

proof are much simplified by the results in harmonic function theory)

Corollary 1. Let WHC2 be a domain and fn; gn : W ! C, nb 1, a se-

quence of solutions to (2). Assume that the series
Py

n¼1 fnðz;wÞ and
Py

n¼1 gnðz;wÞ
converge respectively to f ðz;wÞ and gðz;wÞ, uniformly in ðz;wÞ A D, for any domain

DHHW. Then i) f , g is a solution to (2), ii) for any multi-index a the seriesPy
n¼1 D

afnðz;wÞ and
Py

n¼1 D
agnðz;wÞ converge respectively to Daf ðz;wÞ and

Dagðz;wÞ, uniformly in ðz;wÞ A D, for any domain DHHW.
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Indeed, let us consider a domain DHHW. As f , g are continuous in W

we may consider the integral in the left hand member of (5), which may be

computed by termwise integration of the relevant series, hence (by Proposi-

tion 1) ð
qD

ð f dz5dw5dw� g dz5dz5dwÞ

¼
Xy
n¼1

ð
qD

ð fn dz5dw5dw� gn dz5dz5dwÞ ¼ 0;

that is (7) holds. Similarly, one may prove (8). Then (by Theorem 2) f , g is a

solution to (2). Of course, the following direct proof may be adopted, as well. All

solutions to (2) are harmonic and the limit of a uniformly convergent (on closed

subdomains DHW) sequence of harmonic functions is known to be harmonic

and moreover its derivative of any order is the uniform limit of the termwise

derivative of the given sequence. Hence fz þ gw ¼ 0 follows from
Py

n¼1ðqfn=qzþ
qgn=qwÞ ¼ 0.

2. Representation of Solutions

2.1. Representation by harmonic function techniques. Let WHC2 be a

domain and f ; g : W ! C a solution to (2). Let

Gðx� yÞ ¼ � 1

4p2
jx� yj�2

be the fundamental solution to the Laplace operator in R4 and DHC2 a

bounded domain such that DHW and the Green formula holds for D. As f is

harmonic in W

f ðyÞ ¼
ð
qD

f ðxÞ q

qn
Gðx� yÞ � Gðx� yÞ qf

qn
ðxÞ

� �
dsxð11Þ

for any y A D, where n is the unit outward normal to qD. As a consequence of

(11) (and the similar representation of g) we may establish the following rep-

resentation formulae for the solutions to (2)

Theorem 3. Suppose there is an open set U JC2 such that U V qD ¼
fðz; xþ ihÞ A C2 : ðz; xÞ A A; h ¼ ag, for some bounded domain AHR3 and some

a > 0, and moreover f ¼ 0 and g ¼ 0 in qDnU. Then
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f ðz;oÞ ¼ 1

2p2i

ð
A

fgðcðuÞÞðzðuÞ � zÞð12Þ

� f ðcðuÞÞðwðuÞ � oÞg du

jðzðuÞ � z;wðuÞ � oÞj4
;

gðz;oÞ ¼ � 1

2p2i

ð
A

f f ðcðuÞÞðzðuÞ � zÞð13Þ

þ gðcðuÞÞðwðuÞ � oÞg du

jðzðuÞ � z;wðuÞ � oÞj4
;

for any ðz;oÞ A D, where cðuÞ ¼ ðzðuÞ;wðuÞÞ ¼ ðu1 þ iu2; u3 þ iaÞ, u A A, is the

parametrization of U V qD.

Proof. Set x ¼ ðz;wÞ and y ¼ ðz;oÞ. By the last equation in (1)ð
qD

Gðx� yÞ qX
qn

ðxÞ dsx ¼
ð
UVqD

Gðx� yÞXx4ðxÞ dsx

¼ �
ð
UVqD

Gðx� yÞðYx3ðxÞ þ Zx2ðxÞ þ Tx1ðxÞÞ dsx

(the variables in R4 are relabeled x1 ¼ x, x2 ¼ y, x3 ¼ x and x4 ¼ h). Note that

q

qua
YðcðuÞÞ ¼ Yx aðcðuÞÞ; 1a aa 3:

As f ð�; aÞ ¼ 0 and gð�; aÞ ¼ 0 outside A, we may integrate by parts and use

DiGðx� yÞ ¼ 1

2p2
ðxi � yiÞjx� yj�4 1a ia 4;

so that to obtain (by (11))

XðyÞ ¼ 1

2p2

ð
A

jcðuÞ � yj�4fða� y4ÞX ðcðuÞÞð14Þ

� ðu3 � y3ÞYðcðuÞÞ � ðu2 � y2ÞZðcðuÞÞ � ðu1 � y1ÞTðcðuÞÞg du:

Similarly

YðyÞ ¼ 1

2p2

ð
A

jcðuÞ � yj�4fða� y4ÞY ðcðuÞÞð15Þ

þ ðu3 � y3ÞXðcðuÞÞ � ðu1 � y1ÞZðcðuÞÞ þ ðu2 � y2ÞTðcðuÞÞg du;
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ZðyÞ ¼ 1

2p2

ð
A

jcðuÞ � yj�4fða� y4ÞZðcðuÞÞð16Þ

þ ðu2 � y2ÞX ðcðuÞÞ þ ðu1 � y1ÞYðcðuÞÞ � ðu3 � y3ÞTðcðuÞÞg du;

TðyÞ ¼ 1

2p2

ð
A

jcðuÞ � yj�4fða� y4ÞTðcðuÞÞð17Þ

þ ðu1 � y1ÞX ðcðuÞÞ � ðu2 � y2ÞYðcðuÞÞ þ ðu3 � y3ÞZðcðuÞÞg du:

Now we may add (14) (respectively (16)) to (15) (respectively (17)) multiplied by i

so that to obtain (12)–(13). Q.e.d.

As an application of the representation formulae (12)–(13) we obtain the

following results (‘‘removing the singularities’’ of solutions to (2))

Theorem 4. Let AHR3 be a bounded domain and f , g two continuous

functions in fðz; xþ ihÞ A C2 : ðz; xÞ A A; h ¼ ag. Then the functions fa, ga given

by

faðz;oÞ ¼
1

2p2i

ð
A

fgðcaðuÞÞðzaðuÞ � zÞð18Þ

� f ðcaðuÞÞðwaðuÞ � oÞg du

jcaðuÞ � ðz;oÞj4
;

gaðz;oÞ ¼ � 1

2p2i

ð
A

f f ðcaðuÞÞðzaðuÞ � zÞð19Þ

þ gðcaðuÞÞðwaðuÞ � oÞg du

jcaðuÞ � ðz;oÞj4
;

for any y ¼ ðz;oÞ A Ha ¼ fðz; xþ ihÞ A C2 : ðz; xÞ A A; h > ag, are a solution

ð fa; gaÞ to (2) in Ha. Here caðuÞ ¼ ðzaðuÞ;waðuÞÞ ¼ ðu1 þ iu2; u3 þ iaÞ, u A A.

Proof. The function F : A�Ha ! C given by

Fðu; z;oÞ ¼ gðcðuÞÞðzðuÞ � zÞ � f ðcðuÞÞðwðuÞ � oÞ
jcðuÞ � ðz;oÞj4

(where c ¼ ca) is continuous on A and di¤erentiable in Ha. As A is compact

we may di¤erentiate under the integral sign in
Ð
A
Fðu; z;oÞ du so that to

obtain
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qfa

qz
¼ � 1

2p2i

ð
A

�
gðcðuÞÞ

jcðuÞ � ðz;oÞj4

� 2½gðcðuÞÞjzðuÞ � zj2 � f ðcðuÞÞðzðuÞ � zÞðwðuÞ � oÞ�
jcðuÞ � ðz;oÞj6

�
du

and (with similar arguments)

qga
qo

¼ � 1

2p2i

ð
A

�
gðcðuÞÞ

jcðuÞ � ðz;oÞj4

� 2½ f ðcðuÞÞðwðuÞ � oÞðzðuÞ � zÞ þ gðcðuÞÞjwðuÞ � oj2�
jcðuÞ � ðz;oÞj6

�
du

hence qfa=qzþ qga=qo ¼ 0 in ðz;oÞ A Ha. The proof of qfa=qo� qg=qz ¼ 0 is

similar to the above. Q.e.d.

Combining Theorems 3 and 4 we obtain

Corollary 2. Let DHC2 be a bounded domain such that the Green lemma

holds on D. Assume there is an open set U HC2 such that U V qD ¼ fðz; xþ ihÞ A
C2 : ðz; xÞ A A; h ¼ ag and DVHa 0q, for some bounded domain AHR3 and

some a > 0. Let SHDVHa be a closed subset. Let WJC2 be a neighborhood of

D and f ; g : WnS ! C a solution to (2) in WnS such that f ¼ 0 and g ¼ 0 on

qDnU. Then ð f ; gÞ extends to a solution to (2) in W.

Historical remark. G. Cimmino realized (cf. [3], p. 97–99) the impor-

tance of (11) and attempted to derive a representation formula for a solution

ðX ;Y ;Z;TÞ to (1) in a domain WHR4. There (cf. op. cit.) it is claimed that,

given a bounded domain DHHW such that qD is smooth and a point ðz;oÞ A D,

one has

X0 ¼
ð
A

GxX þ GyY � GxZ þ GhT xu1 xu2 xu3

GyX � GxY þ GhZ þ GxT yu1 yu2 yu3

GxX þ GhY þ GxZ � GyT xu1 xu2 xu3

GhX � GxY � GyZ � GxT hu1 hu2 hu3

���������

���������
du1du2du3ð20Þ

(together with similar formulae for Y0, Z0, T0) where X0 ¼ X ðz;oÞ and G is short

for Gðz� z;w� oÞ. Also

cðuÞ ¼ ðxðuÞ; yðuÞ; xðuÞ; hðuÞÞ; u A AHR3;
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is a parametrization of qD. No proof is given. Clearly, for (20) to follow from

(11) one needs either qD to be covered by a single chart, or that fX jg ¼
fX ;Y ;Z;Tg vanish on qD outside the given coordinate patch. To integrate by

parts in ð
A

GðzðuÞ � z;wðuÞ � oÞ qX
qn

ðcðuÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½gabðuÞ�

q
du

(as in the proof of Theorem 3) where gab ¼
P4

j¼1 c
j
uac

j

u b one must compute

(assuming for instance that det½ca
u b �0 0 in the neighborhood of a point) X j

h ,

1a ja 4, from

q

qua
ðX j � cÞðuÞ ¼ X

j

xiðcðuÞÞ
qc i

qua

and the four equations (1), which seems of little hope. Of course, as qD is a real

hypersurface in R4 there are local coordinates ðuaÞ on qD and local coordinates

ðxiÞ on R4 at a point p A qD such that qD is given, in a neighborhood of p, by

the equations xa ¼ ua, x4 ¼ 0. However the choice of ðxiÞ involves a transfor-

mation of local coordinates on the ambient space and the system (1) is not

invariant.

2.2. Cauchy-Pompeiu type integral formulae. Let WHC2 be a domain and

f ; g A C1ðWÞ. Let a A W and let Di HC, i ¼ 1; 2, be two simply connected

domains such that Di is compact, qDi is piecewise smooth, D1 �D2 HW, and

ai A Di, i ¼ 1; 2. By the classical Cauchy-Pompeiu formula

2pif ðz;wÞ ¼
ð
qD

f ðz;wÞ dz
z� z

� p:v:

ð
D

fzðz;wÞ dz5dz

z� z
;ð21Þ

for any z A D ¼ D1 and w A C such that ðz;wÞ A W for any z A D. As well known,

the principal value is

p:v:

ð
D

fzðz;wÞ dz5dz

z� z
¼ lim

e!0þ

ð
DnBðz; eÞ

fzðz;wÞ dz5dz

z� z

and the convergence is uniform in w A D, as shown by the following elementary

Lemma 4. Let F : W ! C be a continuos function and set

jeðwÞ ¼
ð
DnBðz; eÞ

Fðz;wÞ dz5dz

z� z
:

Then the limit lim
e!0þ

jeðwÞ exists and is uniform in w A D.
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Proof. For any g > 0

jjeþgðwÞ � jeðwÞj ¼
ð
eajz�zj<eþg

Fðz;wÞ dz5dz

z� z

�����
�����a 2pCg

where C ¼ 2 supðz;wÞ AD1�D2
jFðz;wÞj, i.e. jeðwÞ is uniformly Cauchy as

e ! 0þ. Q.e.d.

Given o A D2 let us divide (21) by w� o and integrate over D2nBðo; dÞ, for

su‰ciently small d > 0. By Lemma 4

ð
D2nBðo; dÞ

2pif ðz;wÞ �
ð
qD

f ðz;wÞ dz
z� z

� �
dw5dw

w� o
ð22Þ

¼ � lim
e!0þ

ð
D2nBðo; dÞ

ð
DnBðz; eÞ

fzðz;wÞ dz5dz

z� z

" #
dw5dw

w� o
:

The limit in the right hand side of (22) is uniform in db d0 (where

d0 ¼ 1
2 distðo; qD2Þ). Indeed, let us set

FdðzÞ ¼
ð
D2nBðo; dÞ

fzðz;wÞ dw5dw

w� o
:

By Fubini’s theorem the integral in the right hand side of (22) is

heðdÞ ¼
ð
DnBðz; eÞ

FdðzÞ dz5dz

z� z

hence for any g > 0

jheþgðdÞ � heðdÞj ¼
ð
eajz�zj<eþg

FdðzÞ dz5dz

z� z

�����
�����

a 2pCg

ð
D2nBðo; dÞ

dx5dh

jxþ ih� oj

where C ¼ 2 supðz;wÞ AD1�D2
j fzðz;wÞj. As xþ ih A D2nBðo; dÞ one has 1=jxþ ih� oj

a 1=d hence the last integral is a ðjD2j � pd2Þ=d which is strictly decreasing. Here

jAj is the Lebesgue measure of A. We may conclude that jheþgðdÞ � heðdÞja
2pCgðjD2j � d2

0Þ=d0, i.e. heðdÞ is uniformly Cauchy as e ! 0þ. By Lemma 4 the

limit limd!0þ FdðzÞ exists. Let us take d ! 0þ in (22) and use uniformity to

interchange limits. We obtain
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ð
D2

2pif ðz;wÞ �
ð
qD

f ðz;wÞ dz
z� z

� �
dw5dw

w� o
ð23Þ

¼ �
ð
D

ð
D2

fzðz;wÞ dw5dw

w� o

� �
dz5dz

z� z

where all double integrals are meant in the sense of principal value. Similarly we

obtain ð
D

2pigðz;oÞ þ
ð
qD2

gðz;wÞ dw
w� o

� �
dz5dz

z� z

¼ �
ð
D

ð
D2

gwðz;wÞ dw5dw

w� o

� �
dz5dz

z� z
:

Summing up the last two identities we obtain (24) in

Theorem 5. Let WHC2 be a domain and f ; g A C1ðWÞ. Let ðz;oÞ A W

and let Di HC ði ¼ 1; 2Þ be two simply connected domains such that Di

is compact, qDi is piecewise smooth, z A D1, o A D2, and D1 �D2 HW.

Then ð
D2

2pif ðz;wÞ �
ð
qD1

f ðz;wÞ dz
z� z

� �
dw5dw

w� o
ð24Þ

þ
ð
D1

2pigðz;oÞ þ
ð
qD2

gðz;wÞ dw
w� o

� �
dz5dz

z� z

¼ �
ð
D1

ð
D2

ð fz þ gwÞ dw5dw

w� o

� �
dz5dz

z� z
;

ð
D1

2pif ðz;oÞ �
ð
qD2

f ðz;wÞ dw
w� o

� �
dz5dz

z� z
ð25Þ

�
ð
D2

2pigðz;wÞ þ
ð
qD1

gðz;wÞ dz
z� z

� �
dw5dw

w� o

¼ �
ð
D1

ð
D2

ð fw � gzÞ dw5dw

w� o

� �
dz5dz

z� z
:

The proof of (25) is similar. If f , g is a solution to (2) then (by (24)–(25)) we

obtain the following identities (similar to the Cauchy integral formula for a

holomorphic function)
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ð
D2

f ðz;wÞ � 1

2pi

ð
qD1

f ðz;wÞ dz
z� z

� �
dw5dw

w� o
ð26Þ

þ
ð
D1

gðz;oÞ þ 1

2pi

ð
qD2

gðz;wÞ dw
w� o

� �
dz5dz

z� z
¼ 0;

ð
D1

f ðz;oÞ � 1

2pi

ð
qD2

f ðz;wÞ dw
w� o

� �
dz5dz

z� z
ð27Þ

�
ð
D2

gðz;wÞ þ 1

2pi

ð
qD1

gðz;wÞ dz
z� z

� �
dw5dw

w� o
¼ 0:

No applications of (26)–(27) are known as yet.

3. Inhomogeneous Systems

Systems similar to (1) (all of whose solutions are harmonic functions) appear

as (subspaces of ) perps of ranges of certain linear operators of Hilbert spaces

associated to a boundary value problem for a given PDE system. The phe-

nomenon has been discovered by G. Cimmino (cf. [2] and [5]) in an attempt to

formulate compatibility conditions for the boundary data (and free terms), in a

given boundary value problem. Given a linear operator L : X ! Y of Hilbert

spaces, the basic idea is that whenever a solution u A DðLÞ to the equation

Lu ¼ f exists, f must satisfy compatibility conditions of the form h f ; giY ¼ 0,

for any g A Z, where ZJRðLÞ? is some subspace which may be described1

explicitly. Of course, when RðLÞ is closed in Y and Z is dense in RðLÞ? the

compatibility relations are also su‰cient for solving Lu ¼ f . G. Cimmino uses

(cf. [5]) this tautology to write compatibility conditions for the problem

Xx � Yy þ Zx � Th ¼ a

Xy þ Yx � Zh � Tx ¼ b

Xx � Yh � Zx þ Ty ¼ c

Xh þ Yx þ Zy þ Tx ¼ d

8>>><
>>>:

in W;ð28Þ

X ¼ a; Y ¼ b; Z ¼ g; T ¼ d on qW;ð29Þ

where WHR4 is a domain. There (cf. op. cit.) it is suggested that the com-

patibility conditions may be obtained when either strong or weak solutions to

(28)–(29) are assumed to exist. However, neither the required regularity con-

1A heuristic description (for linear operators of finite dimensional spaces) of the general method of

identifying subspaces ZJRðLÞ? (spaces of solutions to a homogeneous system associated with the

given system) is given in [4].
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ditions are specified, nor proofs are given. We solve the problem (along the

guidelines traced by G. Cimmino, cf. op. cit.) when (28)–(29) admits suitable

strong solutions and obtain

Theorem 6. Let WHC2 be a bounded domain on which Green’s formula

holds and f ; g A L2ðWÞ, j;c A L2ðqWÞ. If there is a solution u; v A C1ðWÞVC 0ðWÞ
to the boundary value problem

uz þ vw ¼ f ; uw � vz ¼ g in W;

u ¼ j; v ¼ c on qW;

then ð f ; g; j;cÞ satisfies the compatibility relations

Re

�
2

ð
W

ð f hþ gkÞ dV �
ð
qW

fj½ðn1 þ in2Þhþ ðn3 þ in4Þk�ð30Þ

þ c½ðn3 þ in4Þh� ðn1 þ in2Þk�g ds

�
¼ 0;

for any solution h; k A C1ðWÞVC 0ðWÞ to

hz þ kw ¼ 0; hw � kz ¼ 0 in W;

where ðn1; n2; n3; n4Þ is the outward unit normal on qW.

A similar result may be obtained for the boundary value problem for the

inhomogeneous Cauchy-Riemann system (cf. [5], p. 62–63, and our Theorem 7).

It is an open problem whether the compatibility relations (30) are su‰cient for

solving the boundary value problem with the data ð f ; g; j;cÞ.

Proof of Theorem 6. On Y ¼ L2ðWÞ2 � L2ðqWÞ2 we consider the scalar

product

ð f ; g; j;cÞ � ðh; k; l; mÞ ¼ Re

ð
W

ð f hþ gkÞ dV þ Re

ð
qW

ðjlþ cmÞ ds

(making Y into a Hilbert space). Let X ¼ L2ðWÞ2 and L : X ! Y be the operator

given by

Lðu; vÞ ¼ ðuz þ vw; uw � vz; ujqW; vjqWÞ;

with the domain DðLÞ ¼ ½C1ðWÞVC 0ðWÞ�2 (clearly C 0ðWÞHL2ðWÞ as W is

bounded, and then DðLÞ is dense in X). If a solution ðu; vÞ A DðLÞ to Lðu; vÞ ¼

163On first order linear PDE systems



ð f ; g; j;cÞ exists then one may produce a subspace ZHRðLÞ? such that the

orthogonality condition ð f ; g; j;cÞ � ðh; k; l; mÞ ¼ 0, for any ðh; k; l; mÞ A Z, implies

(30). Indeed, we may set Z ¼ RðLÞ? V f½C1ðWÞVC 0ðWÞ�2 � L2ðqWÞ2g and then

ðh; k; l; mÞ A Z if

Re

ð
W

½ðuz þ vwÞhþ ðuw � vzÞk � dV þ
ð
qW

ðulþ vmÞ ds
� �

¼ 0;ð31Þ

for any ðu; vÞ A DðLÞ. The first integral in (31) may be calculated asð
W

½ðuz þ vwÞhþ ðuw � vzÞk � dV

¼
ð
W

½ðuhÞz � uhz þ ðv; hÞw � vhw þ ðukÞw � ukw � ðvkÞz þ vkz� dV

¼
ð
W

�
div uh

q

qz

� �
� uhz þ div vh

q

qw

� �
� vhw

þ div uk
q

qw

� �
� ukw � div vk

q

qz

� �
þ vkz

�
dV

¼ 1

2

ð
qW

½uhðn1 þ in2Þ þ vhðn3 � in4Þ þ ukðn3 þ in4Þ � vkðn1 � in2Þ� ds

�
ð
W

½uðhz þ kwÞ þ vðhw � kzÞ� dV

(by Green’s formula). Therefore (31) may be written

Re

ð
W

fuðhz þ kwÞ þ vðhw � kzÞg dVð32Þ

� Re

ð
qW

�
u lþ 1

2
ðn1 þ in2Þhþ

1

2
ðn3 þ in4Þk

� �

þ v mþ 1

2
ðn3 þ in4Þh�

1

2
ðn1 þ in2Þk

� ��
ds ¼ 0:

In particular (32) holds for any u; v A Cy
0 ðWÞ

Re

ð
W

fuðhz þ kwÞ þ vðhw � kzÞg dV ¼ 0;ð33Þ

which implies that hz þ kw ¼ 0, hw � kz ¼ 0 in W, by an elementary argument.

Indeed, let un; vn A Cy
0 ðWÞ such that un ! hz þ kw and vn ! hw � kz in L2ðWÞ as

n ! y. Then
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ð
W

unðhz þ kwÞ dV ¼
ð
W

ðun � hz � kwÞðhz þ kwÞ dV þ khz þ kwk2;

ð
W

ðun � hz � kwÞðhz þ kwÞ dV
����

����a kun � hz � kwk khz þ kwk ! 0;

for n ! y, hence (by (33)) khz þ kwk2 þ khw � kzk2 ¼ 0. Q.e.d.

Then (32) yields

lþ 1

2
ðn1 � in2Þhþ

1

2
ðn3 � in4Þk ¼ 0;ð34Þ

mþ 1

2
ðn3 � in4Þh�

1

2
ðn1 � in2Þk ¼ 0ð35Þ

on qW. Let u; v A C 1ðWÞVC 0ðWÞ be a solution to Lðu; vÞ ¼ ð f ; g; j;cÞ. We may

substitute from (34)–(35) into

Re

ð
W

ð f hþ gkÞ dV þ Re

ð
qW

ðjlþ cmÞ ds ¼ 0

so that to obtain (30). Q.e.d.

The di¤erential operator

Q� ¼ q=qz q=qw

q=qw �q=qz

� �

is referred to as the adjoint Cimmino operator. We shall need

Lemma 5. The solutions to Q�F ¼ 0 are harmonic functions. More generally,

the adjoint Cimmino operator is hypoelliptic.

The proof is similar to that of Lemma 1. It is tempting to look for a char-

acterization of the full RðLÞ? (similar to that of Z). The proof of Theorem 6

requires that given ðh; k; l; mÞ A RðLÞ? the functions h, k be smooth. This is

indeed so as a consequence of Lemma 5. Precisely, we have

Proposition 2. Let P : Y ! L2ðWÞ2
be the natural projection. Then

PRðLÞ? JH2ðWÞ2, where H2ðWÞ is the Bergman space of all harmonic L2

functions on W.
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Proof. We set h f ; gi ¼
Ð
W f g dV . Then RðLÞ? consists of all ðh; k; l; mÞ in

Y0 such that

Re huz þ vw; hiþ huw � vz; kiþ
ð
qW

ðulþ vmÞ ds
� �

¼ 0;

for any u; v A C 1ðWÞVC 0ðWÞ. In particular for u ¼ j and v ¼ c, j;c A Cy
0 ðWÞ

0 ¼ RefThðjz þ cwÞ þ Tkðjw � czÞg

¼ �RefðqTh=qzþ qTk=qwÞðjÞ þ ðqTh=qw� qTk=qzÞðcÞg

hence (for c ¼ 0) qTh=qzþ qTk=qw ¼ 0 (in distribution sense) and similarly

qTh=qw� qTk=qz ¼ 0. Then (by Lemma 5) h; k A H2ðWÞ. Q.e.d.

However, the proof of Theorem 6 also requires continuity of h, k up to

the boundary (so that one may apply Green’s formula). One may restrict the

domain of L to be DðLÞ ¼ C1ðWÞ so that RðLÞJC 0ðWÞ2 � C 0ðqWÞ2 ¼: Y0

(a pre-Hilbert subspace of Y). Let RðLÞ? ¼ fy A Y0 : LðxÞ � y ¼ 0, for any

x A DðLÞg. Then (by Green’s formula)

Proposition 3. For any ðh; k; l; mÞ A RðLÞ? one has h; k A H2ðWÞVC 0ðWÞ
and Q�ðh; kÞ t ¼ 0 and l, m are given by (34)–(35). In particular, if ð f ; g; j;cÞ A Y0

satisfies the compatibility condition (30) then ð f ; g; j;cÞ A ½RðLÞ?�?.

Proposition 3 is of limited use as Y0 is not complete (and RðLÞ? may fail to

be closed). We end this section by proving a result similar to that in Theorem 6

for the inhomogeneous Cauchy-Riemann system.

Theorem 7. Let WHC be a bounded domain such that Green’s formula holds

on W, and f A L2ðWÞ, j A L2ðqWÞ. If the Dirichlet problem

uz ¼ f in W; u ¼ j on qW;

admits a solution u A C1ðWÞVC 0ðWÞ then ð f ; jÞ satisfies the compatibility re-

lation

2 Re

ð
W

f g dV � Re

ð
qW

jðn1 þ in2Þg ds ¼ 0

for any antiholomorphic function g : W ! C which is continuous up to the

boundary, where ðn1; n2Þ is the outward unit normal on qW.

166 Sorin Dragomir and Ermanno Lanconelli



Proof. Let Y ¼ L2ðWÞ � L2ðqWÞ with the scalar product

ð f ; jÞ � ðg;cÞ ¼ Re

ð
W

f g dV þ Re

ð
qW

jc ds:

Clearly Y is complete. Let L : L2ðWÞ ! Y be the operator given by

Lu ¼ ðuz; ujqWÞ

with the domain DðLÞ ¼ C1ðWÞVC 0ðWÞ. Moreover, we set Z ¼ RðLÞ? V

f½C1ðWÞVC 0ðWÞ� � L2ðqWÞg so that ðg;cÞ A Z if

Re

ð
W

uzg dV þ Re

ð
qW

uc ds ¼ 0;

for any u A DðLÞ. By Green’s formulað
W

uzg dV ¼
ð
W

fðugÞz � ugzg dV

¼
ð
W

div ug
q

qz

� �
� ugz

� �
dV ¼ 1

2

ð
qW

ugðn1 þ in2Þ ds�
ð
W

ugz dV

hence

Re

ð
W

ugz dV � Re

ð
qW

u cþ 1

2
ðn1 þ in2Þg

� �
ds ¼ 0;ð36Þ

which is easily seen to yield gz ¼ 0 in W and cþ 1
2 ðn1 � in2Þg ¼ 0 on qW. Indeed,

let un A Cy
0 ðWÞ such that un ! gz in L2ðWÞ, as n ! y. Thenð

W

ungz dV ¼
ð
W

ðun � gzÞgz dV þ kgzk2;

ð
W

ðun � gzÞgz dV
����

����a kun � gzk kgzk ! 0; n ! y;

hence kgzk2 ¼ 0. Q.e.d.

4. Nontangential Limits for Solutions to the Cimmino System

Let WHC2 be a bounded domain with smooth (C 2) boundary. For every

0 < p < y let SpðWÞ be the class of solutions ð f ; gÞ : W ! C2 to the system (2)

such that

sup
e>0

ð
qWe

ðj f ðz;wÞj2 þ jgðz;wÞj2Þp=2
dseðz;wÞ < y
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for any fixed family of approximating domains We, i.e. if j is a C 2 defining

function for W ðW ¼ fj < 0gÞ then

We ¼ fðz;wÞ A W : jðz;wÞ < �eg ðe > 0Þ:

By analogy with the boundary behavior of holomorphic functions it is a natural

problem whether nontangential limits

lim
Aaðz;oÞ C ðz;wÞ!ðz;oÞ

F ðz;wÞ

exist. Here the approach region is

Aaðz;oÞ ¼ fðz;wÞ A W : jðz� z;w� oÞ � nðz;oÞj < ð1 þ aÞdðz;oÞðz;wÞ;

jz� zj2 < adðz;oÞðz;wÞg ða > 0; ðz;oÞ A qWÞ

and dðz;oÞðz;wÞ is the minimum among dðz;wÞ ¼ distððz;wÞ; qWÞ and distððz;wÞ;
Tðz;oÞðqWÞÞ. Also nðz;oÞ A C2 is the complex unit normal at ðz;oÞ (pointing

outward W). While we leave this problem open we rely once again on the theory

of harmonic functions to derive the (more modest) Theorem 8 below. Let Gaðz;oÞ
be the cone of aperture a and vertex ðz;oÞ i.e.

Gaðz;oÞ ¼ fðz;wÞ A W : jðz� z;w� oÞj < ð1 þ aÞdðz;wÞg:

We may state

Theorem 8. Assume that F ¼ ð f ; gÞ : W ! C2 belongs to SpðWÞ for some

pb 1. Then the function jF jp is subharmonic on W and is harmonic if and only if F

is a constant map. In particular, if pb 2 then F admits nontangential limits

lim
Gaðz;oÞ C ðz;wÞ!ðz;oÞ

F ðz;wÞð37Þ

at almost every boundary point ðz;oÞ A qW.

Proof. Let F ¼ ð f ; gÞ A SpðWÞ. As both f , g are harmonic in W

DjF jp ¼ 2fðjF jpÞzz þ ðjF jpÞwwg

¼ pjF jp�2fjqf j2 þ jqf j2 þ jqgj2 þ jqgj2g

þ pðp� 2Þ
2

jF jp�4fj fz f þ f fz þ gzgþ ggzj
2

þ j fw f þ f fw þ gwgþ ggwj2g;
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where

jqf j2 ¼ j fzj2 þ j fwj2; jqf j2 ¼ j fzj2 þ j fwj2:

Therefore, to conclude that DjF jp b 0 in W based on the above calculation one

should assume that pb 4. However, the following elementary result circumvents

this di‰culty.

Lemma 6. Let G : Rn ! R be a continuous convex function. Let WJRm be a

domain and let uj : W ! R, 1a ja n, be harmonic functions. Then Gðu1; . . . ; unÞ is
subharmonic in W. If additionally i) G is of class C 2 and strictly convex in Rnnf0g,

ii) GðxÞb 0, for any x A Rn, and Gð0Þ ¼ 0, and iii) Gðu1; . . . ; unÞ is harmonic in W,

then each uj is constant.

Indeed the first statement in Theorem 8 follows from Lemma 6 for

GðxÞ ¼ jxjp, x A R4 ðpb 1Þ. The remaining part of the proof is standard. Indeed,

if additionally pb 2 then uðz;wÞ ¼ jFðz;wÞjp=2 is subharmonic in W and

sup
e>0

ð
qWe

uðz;wÞ2
dseðz;wÞ < y;

hence (cf. e.g. [7], p. 8–9) there is a harmonic function h which is the Poisson

integral of a function f A L2ðqWÞ such that uðz;wÞa hðz;wÞ. Then we may apply

Theorem 3 in [7], p. 11, to the function h hence there is Ca > 0 such that for any

ðz;oÞ A qW

uðz;wÞaCa

Xy
k¼1

Ð
Bððz;oÞ;2khÞ j f ðxÞj dsðxÞ

2kjBððz;oÞ; 2khÞj

for any ðz;wÞ A fGaðz;oÞ : jðz� z;w� oÞj ¼ hg. Here Bððz;oÞ; rÞ ¼ fðz;wÞ A qW :

jðz� z;w� oÞj < rg. Consequently, one may argue as in the proof of Theorem 4

in [7], p. 12, to conclude that the nontangential limit (37) exists. Q.e.d.

Proof of Lemma 6. Let u ¼ ðu1; . . . ; unÞ and v ¼ G � u. Also, let x A W and

r > 0 such that Bðx; rÞHW and let us set

MrðuÞðxÞ ¼
1

jqDðx; rÞj

ð
qDðx; rÞ

uðxÞ dsðxÞ:

As each uj is harmonic, uðxÞ ¼ MrðuÞðxÞ hence (by the Jensen inequality)

vðxÞ ¼ GðMrðuÞðxÞÞaMrðvÞðxÞ
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hence (as v is continuous) v is subharmonic in W. Let W0 ¼ fx A W : uðxÞ0 0g.

Then

Dv ¼
Xn

j¼1

qG

qxj
ðuÞDuj þ

Xn

a¼1

hðD2GÞðuÞqau; qaui

where D2G is the Hessian of G and qau ¼ qu=qxa. As ðD2GÞðuðxÞÞ is positive

definite for any x A W0, Du ¼ 0 and Dv ¼ 0 yield qau ¼ 0 in W0. Let Wj ¼
fx A W : ujðxÞ0 0g. Then (as Wj JW0) qau

2
j ¼ 2ujqauj ¼ 0 in W. Q.e.d.
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