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ON FIRST ORDER LINEAR PDE SYSTEMS ALL OF
WHOSE SOLUTIONS ARE HARMONIC FUNCTIONS

Dedicated to the memory of Gianfranco Cimmino

By

Sorin DrRAGOMIR! and Ermanno LANCONELLI?

Abstract. We study the first order linear system u:+ o, =0,
uz — 0. =0 in a domain Q < C? (first considered by G. Cimmino,
[3]). We prove a Morera type theorem, emphasizing the analogy
to the Cauchy-Riemann system, and a representation formula
yielding a result on removable singularities of solutions to (2).
We derive (by a Hilbert space technique outlined in [5]) com-
patibility relations among the free terms and boundary data in the
boundary value problem wu: + 7, = f, uy — 0, =¢ in Q, and u = ¢,
v=1 on 0Q. If F = (u,v):Q — C? is a solution to (2) such that
SUP,~0 [aq, [F(z,w)|” do.(z,w) < oo for some p>2 then we show
that F admits nontangential limits at almost every ({,w) e 0Q.

1. A Morera Type Theorem

The systems of first order linear partial differential equations all of whose
solutions are harmonic functions bear, as demonstrated by G. Cimmino (cf. [3]),
many similarities to the ordinary Cauchy-Riemann system. Interesting examples
occur however only in higher dimensions [first order linear homogeneous systems
with two unknown functions in two real variables, possessing the required
property, are equivalent (up to a linear transformation of the dependent variables)
to the Cauchy-Riemann equations, while there are no such systems in dimension
three, [3], p. 91-94]. Let us consider (together with G. Cimmino, cf. op. cit.) the
following system of first order linear homogeneous equations
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X,— Y, +Z: =T, =0
o X, + Y —Z,~T: =0
Xe— Y, —Ze+T, =0
X, + Y:+Z,+ T =0,

with the (real valued) unknown functions X (x, y,&, %), Y(x, y,¢,n), Z(x, y,&,n)
and T(x,y,&n). Each C? solution (X,Y,Z,T) to (1) is harmonic. This is
most easily seen by setting z=x+1iy, w=&E+inp and f =X +iY, g=Z+iT
(i=+/—1) and rewriting (1) as

o G _, o

0z ow ' ow oz

(2)

Indeed, if Q = C? is an open set and f,g € C*(Q) satisfy (2) then (differentiating
the first equation in (2) with respect to z, the second with respect to w, and
summing up the two resulting equations)

Af =2(fz+ fun) =0
in Q. Similarly Ag =0 in Q. The differential operator
0- 0/0z  0/ow
- \9/ow —d]oz

is referred to as the Cimmino operator and QF = 0 is the Cimmino system (where
F = (f,g)). We may tentatively define weak solutions to the Cimmino system as
follows. Let Q = C? be a bounded domain. A pair of functions f,g e L*(Q) is a
weak solution to (2) if

(3) J (fo:+ gp,,) dzndZAdwAdw =0,
Q

4) J (fos—gp.) dzndzandwandw =0,
Q

for any ¢e Ci°(Q). Nevertheless, if e C;°(Q) and we set ¢ =y. in (3),
respectively ¢ =, in (4), and add up the resulting equations we obtain
JofAp =0, ie. fis C* (and similarly g € C*). More generally, we have

Lemma 1. The Cimmino operator is hypoelliptic.

Proor. If f e L} (Q) let Ty be the distribution associated to f. Given two
distributions u,ve C(Q)" such that u: + v, = Ty and uy —v. = T,, for some
f,g€ C*(Q), one has
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(Au)(9) = 2(uzz + uni) (9) = —2u=(p:) — 2un(oyz)

= Z(Uw - Tf)((/)f) - 2(UZ + Tg)((pﬁ)

- —2j (5. + gpy) dV = 2[ (f +9.)5 dV
Q Q

for any ¢ e C°(Q), that is Au=2Ty, (in distribution sense) and f.+ g, €
C*(Q), hence u (and similarly v) is C*. Q.e.d.

The following analog to the fundamental Cauchy theorem (cf. e.g. Theorem
1.5 in [8], p. 42) holds

PrROPOSITION 1. Let f,ge C'(Q) be a solution to the Cimmino system. Then

(5) J (fdzndwadw—gdzandzandw) =0,
oD

(6) J (fdzndzndw+ Gdzadwadw) =0,
oD
for any domain D = C* with D < Q on which the Stokes theorem holds.
Compare to (9) in [3], p. 95. Indeed, let us consider the (complex valued)
differential 1-form (of class C')

w=fdzrndwadw—gGdzndzZndw.
Then o is closed

do=df ndzndwAdWw —dgndz ndz ndiw
=—(fr+gs)dzndzndwnandiw =0

(by the first equation of (2)) and one may apply the Stokes theorem
Jospw = Jpdw=0. Similarly fdzadzZAadw+gdzadwndw is a closed 1-
form. Q.e.d.

The following converse to Proposition 1 (an analog to the classical Morera
theorem, cf. e.g. Theorem 1.10 in [8], p. 56) is claimed in [3]

THEOREM 1. Let Q = C? be a domain and f,g:Q — C two locally Holder
continuous functions. Assume that for any xy€Q there is R >0 such that
B(xo,R) = Q and f, g satisfy (5)—(6) on any cube D with D = B(xo, R). Then f, g
are harmonic in Q and a solution to (2).
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The locally Holder continuous assumption is employed to solve the Dirichlet
problem for the Poisson equation (cf. e.g. Theorem 4.3 in [6], p. 56). Then f, ¢
may be recast in terms of second order derivatives of the solution (similar to our
(7)—(8) below). Therefore, the differential forms appearing in the integral identities
at hand (cf. (15) in [3], p. 97) are but C° and the Stokes theorem cannot be
applied. This difficulty is circumnavigated by explicit integration on the boundary
of a cube (rather than passing to a volume integral, which is prevented by the
lack of differentiability) and the use of a mean value theorem (to get har-
monicity). G. Cimmino’s ideas may be used to generalize Theorem 1 above, as
follows

THEOREM 2. Let Q <= C? be a domain and f,g: Q — C continuous functions
satisfying (5)—(6) for any ball D = B(xq, R) such that D = Q. Then f, g are
harmonic in Q and a solution to (2).

The main ingredient is to use the mollifications of f and g (whose regularity
allows us to give an elegant proof based on the Stokes theorem).

PrROOF OF THEOREM 2. Let xyp = (zo,wp) €Q and let us consider a ball
B = B(x(,2R) = Q such that 0 < R <} dist(xo, 0Q). Also, let us set

~ f(x), xeB,
S0 = {O, xe C?\B.

Let f, =J. % f (¢>0) be the mollification of f. As fe L. (B) it follows (cf.
e.g. Lemma 2.18 in [1], p. 29-30) that f,e C*(C?) and fe C°B) yields
lim, o+ f:(x) = f(x) uniformly for x € 4, for any 4 cc B. Let F;, G, € C*(B)

be solutions to the Poisson equations AF = f, and AG =g,. Moreover, let

oF, 0G,
=2 - — - ).
Vi (6W @z)

@,, ¥, € C*(B) be the functions given by

_, 6F£+6@
Pe=\3z " ow )’

Note that
Op, W,
() E+5w = AR =/,
and, similarly
G, oy
£ f=A e — Ye
(8) ow 0z G =9

in B.
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LEMMA 2. Let ¢,y € C*(B) such that f := ¢. +,, and g := ¢,, — . satisfy
(5)—(6) for D = B(xy, R). Then ¢ and \ are harmonic in D. Consequently, [ and g
are harmonic in D and (f,g) is a solution to (2) in D.

ProOF. The assumptions (5)—(6) may be written

9) JTD{((PZ + ) dzndwAdw — (g5 —:) dzandzandw} =0,

(10) J {(p. + ) dzAndZAdw + (95 — Y:) dZAdw Aadiw} = 0.
D
Yet (by the Stokes theorem)

J (Y, dzndwAdW+ s dz AdZ AdW)
oD
= J (dyr, ndz ndwAdW+dy= ndz AdZ AdW)
D
= J (_lpwg + lpfm) dzAndzZAdwAadw =0
D
hence (by (9))

O:J (p. dzndwAndw — @y dz AdZAndw)
oD

1
= —J (0: +0,5) dzAdZAdw Adiw = _EJ (Ap) dz AdZ Adw Adw
D D
that is Ap =0 in D. Similarly (again by the Stokes theorem)
J (p. dzndZAndw + @z dzZAndwadw) =0
oD

and (10) yields Ay =0 in D. Then (by the very definition of f, g) Af =0 and
Ag =0 in D. Finally f, g satisty (2). For instance

ff + g_w = (¢z + lpw)f + ((0)72 - lpf)w = A(ﬂ =0.

Lemma 2 is proved. Next, we need
LemMmA 3. The mollifications f., g. satisfy (5)—(6) for D = B(xy, R).

Let us end the proof of Theorem 2. By Lemma 3 the functions ¢, and ),
satisfy the hypothesis of Lemma 2. Then Lemma 2 yields Af, =0, Ag. =0 in D
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and (f;,¢.) is a solution to (2) in D. Thus f, g are harmonic in D and, as
uniform limits of sequences of harmonic functions on relatively compact sub-
domains of D, satisfy (2) in D, and therefore in Q. Q.e.d.

It remains to prove Lemma 3. Let dm be the Lebesgue measure on R*. We
may conduct the following calculation

J fe(z,w) dz Adw A dw
)

_ LD{L4 Tz = w— ) F(C,0) dm(C, a))} dz A dw A di

(by a change of variables and Fubini’s theorem)

:J JS(C,a)){J f(z—C,w—a))dZ/\dW/\dW}dm(C,a))
R* oD

(as f vanishes outside B we may assume w.lo.g. that ({,w)e B hence
0B((zo — {,wp — w),R) = Q)

:J JB(C,w){J fz,w) dZ/\dW/\dW} dm({, w)
R* 0B((z0—C,wo—w), R)

(by (5) with D = B((zo — {,wo — ), R))
= J J{,(C,w){J g(z,w) dZ/\dZ/\dw} dm({, w)
R* 0B((z0—{,wo—w), R)

= J ge(z,w) dz AdZ AdW.
oD

Similarly, f; and g, satisfy (6). Lemma 3 is proved.

As well known, an application of Morera’s theorem is to establish the so
called (first) Weierstrass theorem (cf. e.g. Theorem 2.3 in [8], p. 63). The similar
application holds for solutions to (2) (though the regularity requirements and
proof are much simplified by the results in harmonic function theory)

COROLLARY 1. Let Q = C* be a domain and fy,g,:Q — C, n>1, a se-
quence of solutions to (2). Assume that the series > ", fu(z,w) and > " gu(z, W)
converge respectively to f(z,w) and g(z,w), uniformly in (z,w) € D, for any domain
D cc Q. Then i) f, g is a solution to (2), ii) for any multi-index o the series
S Du(z,w) and Y, D*g,(z,w) converge respectively to D*f(z,w) and
D*g(z,w), uniformly in (z,w) e D, for any domain D < Q.
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Indeed, let us consider a domain D == Q. As f, g are continuous in Q
we may consider the integral in the left hand member of (5), which may be
computed by termwise integration of the relevant series, hence (by Proposi-
tion 1)

J (fdzndwAadw—gdzndzadw)
oD

:ZJ (fu dz Adw A dW — Gy, dz AdZ Adiv) =0,
— Jap

that is (7) holds. Similarly, one may prove (8). Then (by Theorem 2) f, g is a
solution to (2). Of course, the following direct proof may be adopted, as well. All
solutions to (2) are harmonic and the limit of a uniformly convergent (on closed
subdomains D = Q) sequence of harmonic functions is known to be harmonic
and moreover its derivative of any order is the uniform limit of the termwise
derivative of the given sequence. Hence f: + g, = 0 follows from >~ (df,/0z +
0g,/ow) = 0.

2. Representation of Solutions

2.1. Representation by harmonic function techniques. Let Q — C> be a
domain and f,g:Q — C a solution to (2). Let

1
=) =—75l—>
be the fundamental solution to the Laplace operator in R* and D<= C? a
bounded domain such that D = Q and the Green formula holds for D. As f is
harmonic in Q

(1) 1= {rogre-n-re-nTm}a

for any y € D, where v is the unit outward normal to dD. As a consequence of
(11) (and the similar representation of g) we may establish the following rep-
resentation formulae for the solutions to (2)

THEOREM 3. Suppose there is an open set U = C* such that UNdD =
{(z,é+in) e C*: (2,E) € A,y = a}, for some bounded domain A = R and some
a >0, and moreover f =0 and g =0 in 0D\U. Then
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1) 10 =5 | G0@)Ew -0

(13) 060) = = 5 | (7)) -
du
G — Lol — )]

for any ({,w) e D, where y(u) = (z(u), w(u)) = (u' +iu*,u’ +ia), ue A, is the
parametrization of UNAdD.

+ 9 (w)(w(u) — @)}

ProOF. Set x = (z,w) and y = ({,w). By the last equation in (1)

| re-nSimd =] ree-pxew e,
oD unoD

=—j T(x = 7)Y () + Zya () + Tt (x)) ds,
UnéD

(the variables in R* are relabeled x! = x, x> = y, x> = & and x* = 5). Note that

Y(J() = Ye(y(w), 1<az<3.

ou®

As f(-,a) =0 and ¢(-,a) =0 outside A, we may integrate by parts and use

1 . .
- 1<i<4,

Dir(x_ y) = 2172

so that to obtain (by (11))
1
X0) = gz | W) = 51 {la =y X G0)

= = Y)Y () = @ = y)Z(h () — (u' = )T (Y ()} du.

Similarly

(15) Y(y) = —L () = yI™H{(a = yH Y (Y (w))
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(16) Z() =53 | W) =31 {(a= ) Zw(w)

W = )XW ) + @~ )Y W) ~ (0~ )T )} do
9 =30 | W) =51 (@ = T )
= X W)~ (W~ )Y ) + W ) Zb(a)} d

Now we may add (14) (respectively (16)) to (15) (respectively (17)) multiplied by i
so that to obtain (12)—(13). Q.e.d.

As an application of the representation formulae (12)-(13) we obtain the
following results (“removing the singularities” of solutions to (2))

THEOREM 4. Let A = R® be a bounded domain and f, g two continuous
functions in {(z,é+in) e C*: (z,E) € A, n = a}. Then the functions f,, g, given
by

(18) 1llo0) = 5z | {0000 a1~ O
_ du
S (Falt) =)}
(19) 060) = =5 | (O ) =D
du

+ g (W, (1)) (Wa (1) — @)}m,

for any y=((,w)eH,={(z,é+in)eC?: (z,&)e A,y >a}, are a solution
(furga) to (2) in H, Here y,(u) = (z,(u), w,(u)) = (u' + iu*,u’ +ia), ue A

Proor. The function F: A x H, — C given by

g () (2() = ) — f ((w) (W () — @)
() = (¢ o)
(where ¥ =1,) is continuous on A and differentiable in H,. As A is compact

we may differentiate under the integral sign in [, F(u,{,®) du so that to
obtain

Fu,{,w) =
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U IJ{ o)
A

& 27 )a () - (o)
_2WMWDAW—CV—fWW)@@—IXWW—@H}W
() — (& w)[°

and (with similar arguments)

g@J_J{ gy (u))
do 2%, | Y(u) - (¢ o)*
_?UW@XWW—@@W%IH@WWMMW—Mﬁ}W
W(u) — (& o)|°

hence df, /0 + 0g,/0w =0 in ({,w) € H,. The proof of df,/dd — 0g/d, =0 is
similar to the above. Q.e.d.

Combining Theorems 3 and 4 we obtain

COROLLARY 2. Let D = C* be a bounded domain such that the Green lemma
holds on D. Assume there is an open set U = C? such that UNOD = {(z,& + in) €
C’:(z,&)ed,n=a} and DONH, # &, for some bounded domain A = R> and
some a > 0. Let S € DN H, be a closed subset. Let Q = C? be a neighborhood of
D and f,g:Q\S — C a solution to (2) in Q\S such that f =0 and g =0 on
OD\U. Then (f,g) extends to a solution to (2) in Q.

HistoriCAL REMARK. G. Cimmino realized (cf. [3], p. 97-99) the impor-
tance of (11) and attempted to derive a representation formula for a solution
(X,Y,Z,T) to (1) in a domain Q = R*. There (cf. op. cit.) it is claimed that,
given a bounded domain D cc Q such that ¢D is smooth and a point ({,w) € D,

one has
FXX+FyY7 F¢Z+F,,T Xyl X2 X3
LX-T1.Y+1L,Z+T:T 3
(20) Xo :J y I+ 12+ 1 Yur  YVuz V3 dulduzdu3
A F5X+F,7Y+FXZ—FyT En Cp &

LX-T.Y-T0Z-TT 7, e 7w

(together with similar formulae for Yy, Z,, Ty) where Xo = X ({,w) and T is short
for I'(z—{,w— w). Also

Y(u) = (x(u), y(u), &), (), ued <R,



On first order linear PDE systems 159

is a parametrization of dD. No proof is given. Clearly, for (20) to follow from
(11) one needs either dD to be covered by a single chart, or that {X/} =
{X,Y,Z,T} vanish on dD outside the given coordinate patch. To integrate by
parts in

|| 10— vt = ) 5wl detlga]

(as in the proof of Theorem 3) where g.,5 = Zﬁ:l lpl-,’;prf,; one must compute
(assuming for instance that det[y, ;] # 0 in the neighborhood of a point) X,{,
1 <j<4, from

o'

ou®

O (X7 o)) = X/, (4(w))

ou”

and the four equations (1), which seems of little hope. Of course, as dD is a real
hypersurface in R* there are local coordinates (#*) on dD and local coordinates
(x') on R* at a point p € 0D such that D is given, in a neighborhood of p, by
the equations x* = u* x*=0. However the choice of (x') involves a transfor-
mation of local coordinates on the ambient space and the system (1) is not
invariant.

2.2. Cauchy-Pompeiu type integral formulae. Let Q = C? be a domain and
f,9eCH(Q). Let aeQ and let D;=C, i=1,2, be two simply connected
domains such that D; is compact, dD; is piecewise smooth, D; x D, = Q, and
a;je D;, i=1,2. By the classical Cauchy-Pompeiu formula

S(zw)dz v J fi(z,w) dz ndz
— 7 — bV ,  z—-C
for any { € D = Dy and w e C such that (z,w) € Q for any z € D. As well known,
the principal value is
p-V.J fi(z,w) dz ndz — lim J fi(z,w) dzndz
D z—¢ e=0" Jp\B( ) z—¢

and the convergence is uniform in w e D, as shown by the following elementary

(1) 2mif (C.w) = |

oo z—C

LemMmA 4. Let F:Q — C be a continuos function and set

F(z,w)dzndzZ
D\B(,¢) z—=¢ '

o = |

Then the limit lir(I)l+ @.(w) exists and is uniform in w € D.
&



160 Sorin DrRAGOMIR and Ermanno LANCONELLI

Proor. For any y >0

F(z,w)dzndzZ

J <2nCy
e<|z—(|<e+y z—¢

|¢z}+7(w) - gﬂz:(w)| =

where  C=2sup_ .5 .5IF(zw), ie ¢/(w) is uniformly Cauchy as
e— 0t. Q.ed.

Given w € D, let us divide (21) by w — @ and integrate over D,\B(w,J), for
sufficiently small 6 > 0. By Lemma 4

. [ fEw) dz} dw A dw
(22) JDZ\B((U,(;) [2mf(57 v) LD z—¢

— lim J J fi(z,w) dzndz| dw Andw
e=0" ) p,\B(w,8) | JD\B(Z,¢) z—=( w—a

The limit in the right hand side of (22) is uniform in J>Jy (where
8 = 4 dist(w, 0D>)). Indeed, let us set

w—ao

p@fj [z, w) dw ndw
T D2\B(,0) w—@ '

By Fubini’s theorem the integral in the right hand side of (22) is

ha(6) = J Fs(z2) c_z’Z/\dZ
DBy Z—¢C

hence for any y > 0

Fs(z) dzndz

hery (0) — he(0)] =
| +y( ) ( )| LS|ZC<£+7 Z_C

<h@] _dendy
B Do\B(w,o) [€ + i — @]

where C =2 sup(z,w)eblxﬁz‘fl;(z’ w)|. As & + in € D\ B(w, ) one has 1/|& + in — o|
< 1/9 hence the last integral is < (|D1| — 76?)/d which is strictly decreasing. Here
|A] is the Lebesgue measure of 4. We may conclude that |/, (0) — h:(0)] <
21Cy(|Da| = 02)/do, i.e. hy(d) is uniformly Cauchy as ¢ — 0*. By Lemma 4 the
limit lims o+ Fs(z) exists. Let us take 0 — 0" in (22) and use uniformity to
interchange limits. We obtain
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. f(z,w) dz| dw Andw

(23) JDZ [27rlf((:,w)—LD P ] —
_ Sfi(z,w) dwAdW] dz Adz

__JDUD2 w— } z—¢

where all double integrals are meant in the sense of principal value. Similarly we
obtain

J{hm;@+J ﬂzwdﬂﬁAﬁ
D oD, W— W z—(

_ _J U G,,(z,w) dW/\dW:| dz ndZ
plJp,

w—a z—(

Summing up the last two identities we obtain (24) in

THEOREM 5. Let Q = C? be a domain and f,ge C'(Q). Let ({,w)eQ
and let D; = C (i=1,2) be two simply connected domains such that D;
is compact, 0D; is piecewise smooth, (e Dy, weD, and Dix D, c Q.
Then

(24) |, [zm-f(g W) - J /W) dz} dv ndw

z—C( w— @

27ug 2, 0) g(z,w) dw} dz AdZ

z—(

Dz Ww— @

U f+gM dW/\dw} dz ndz

D> Z*C’

f(z,w) dw] dz ndZ
z—¢

(25) JDI [Znif(z, ) — LDZ ek
g(z,w) df} dw A dw

- JDZ [Znig(é, W)+ L’Dl z—¢
:_J U (f# —3d-) dW/\dW] dz A dz
b, LUp,

w—m -0

w—w

The proof of (25) is similar. If f, g is a solution to (2) then (by (24)—(25)) we
obtain the following identities (similar to the Cauchy integral formula for a
holomorphic function)



162 Sorin DrRAGOMIR and Ermanno LANCONELLI

. 1 f(z,w) dz] dw ndw
26) JDZ["(C’W)_%LDI E } T

+J [g_(Z,w)-i-L.J g(_,w)fl'W]dZ/\dZ:O,
D, 2ni Jop, W—@ z—¢

1 f(z,w) dw] dzndz
@7) Jm [f(z, @)= %JBDZ w—o } z-¢
_ 1 glz,w) dz] dwndw
_JDzlig(C,W)+%JBD1 2_4—, :| W— = 0.

No applications of (26)—(27) are known as yet.

3. Inhomogeneous Systems

Systems similar to (1) (all of whose solutions are harmonic functions) appear
as (subspaces of) perps of ranges of certain linear operators of Hilbert spaces
associated to a boundary value problem for a given PDE system. The phe-
nomenon has been discovered by G. Cimmino (cf. [2] and [5]) in an attempt to
formulate compatibility conditions for the boundary data (and free terms), in a
given boundary value problem. Given a linear operator L : Z — % of Hilbert
spaces, the basic idea is that whenever a solution ue (L) to the equation
Lu = f exists, f must satisfy compatibility conditions of the form {f,g>, =0,
for any g € %, where % < HZ?(L)L is some subspace which may be described’
explicitly. Of course, when (L) is closed in % and Z is dense in Z(L)" the
compatibility relations are also sufficient for solving Lu = f. G. Cimmino uses
(cf. [5]) this tautology to write compatibility conditions for the problem

X,- Y, +Z:~T,=a
X,+ Y, —Z,—T:=b

(28) hoxT o in Q,
Xe— Y, —Z+T,=c

X+ Y+ Z,+ T =d
(29) X=a Y=, Z=y, T=06 on 0Q,

where Q < R* is a domain. There (cf. op. cit.) it is suggested that the com-
patibility conditions may be obtained when either strong or weak solutions to
(28)—(29) are assumed to exist. However, neither the required regularity con-

' A heuristic description (for linear operators of finite dimensional spaces) of the general method of
identifying subspaces 2 < 2(L)" (spaces of solutions to a homogeneous system associated with the
given system) is given in [4].



On first order linear PDE systems 163

ditions are specified, nor proofs are given. We solve the problem (along the
guidelines traced by G. Cimmino, cf. op. cit.) when (28)—(29) admits suitable
strong solutions and obtain

THEOREM 6. Let Q = C* be a bounded domain on which Green’s formula
holds and f,g e L*(Q), ¢,y € L>(0Q). If there is a solution u,ve C'(Q)N C*(Q)
to the boundary value problem

u5+l_7w:f7 Uy —0:=¢g il’lQ,
u=¢, v=yY on 0Q,

then (f,g,0,V) satisfies the compatibility relations

(30) Re{2 JQ( Fh+ gy dv — LQ{(o[(m +im)i+ (3 + ina)R]

+ Y[(ns + ina)h — (1 + inp)k]} da} =0,

for any solution h,k e C'(Q)NC%Q) to
hz+kw:0, hg;*kﬂ;:O in Q,

where (ny,ny,n3,ng) is the outward unit normal on 0Q.

A similar result may be obtained for the boundary value problem for the
inhomogeneous Cauchy-Riemann system (cf. [5], p. 62-63, and our Theorem 7).
It is an open problem whether the compatibility relations (30) are sufficient for
solving the boundary value problem with the data (f,g,¢,¥).

PROOF OF THEOREM 6. On % = L*(Q)* x L?(3Q)* we consider the scalar
product

(f0.0.0) - (e, o t) = Re ngz 1 gk) dV + Re ng T+ yR) do

(making % into a Hilbert space). Let Z = L2(Q)? and L :  — % be the operator
given by

L(u,v) = (uz + 0y, i — 52,u|8§27 vlaq);

with the domain Z(L) = [C'(Q)NCO(Q)]* (clearly C°(Q) = LX(Q) as Q is
bounded, and then Z(L) is dense in ). If a solution (u,v) € (L) to L(u,v) =
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(f,g,0,¥) exists then one may produce a subspace Z c (@(L)L such that the
orthogonality condition (f,g,@,¥) - (h,k, A, u) =0, for any (h,k, A, 1) € Z, implies
(30). Indeed, we may set 2 = Z(L)" N{[C1(Q) N C*(Q)]* x L2(dQ)*} and then
(hyk, A p) e Z if

(31) Re{L[(uZ + 0y)h + (up — B.)k] dV + J (ud + vid) da} =0,

0Q

for any (u,v) € Z(L). The first integral in (31) may be calculated as

J [(uf + ﬁw)h_ + (uw — 13;)];] dv
Q

= J [(uh): — uhz + (8, h),, — Ohy, + (uk); — uky — (0k). + vk.] dV
Q

- J [div <uh 3) — uh: + div (rm i) — oh,
Q 0z ow
) — 0 — . [(_-0 -
+div| uk— ) —ukyz — div| 0k=— | + 0k.| dV
ow 0z

_ %J [wh(ny ~+ in2) + h(ns — ing) + uk(ns + ing) — 5k(m, — in2))] do
0Q

(by Green’s formula). Therefore (31) may be written

(32) Re L{u(ﬁg +Ea) + 80k — R} AV
—Re LQ {u [Z - % (ny + iny)h + % (n3 + im;)k}

+ v[ﬂ -‘r%(lﬁ + ing)h —%(nl + inz)k} } do =0.
In particular (32) holds for any u,ve Ci°(Q)
(33) Re Jg{u(ﬁ_; +Ro) + 0y — F)} dV =0,
which implies that /. +k, =0, hy —k: =0 in Q, by an elementary argument.

Indeed, let u,,v, € C;°(Q) such that u, — h. +k,, and v, — hy — k= in L*(Q) as
v — 0. Then
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J MV(E_; + lgg) dVv = J (uv — h: — lﬂﬂ(hi; + Igg) dv + th + ka27
Q Q

< luy = hz = k|| || + k|| — 0,

J (g — e — k) (s + ) dV
Q
for v — oo, hence (by (33)) || + ku||> + [|hs — k=|* =0.  Q.e.d.

Then (32) yields

(34) A+ % (m —im)h + % (n3 — ina)k = 0,
1 o1 Lo
(35) u +§(l/l3 — ing)h — z(nl —im)k =0

on Q. Let u,ve C'(Q)NC%Q) be a solution to L(u,v) = (f,g,p,¥). We may
substitute from (34)—(35) into

ReJ (fh+ gk) dV—i—ReJ (92 + i) do =0
Q o0

so that to obtain (30). Q.ed.

The differential operator

0 - 0/0z 0/ow
-\ d/ow —0d/oz
is referred to as the adjoint Cimmino operator. We shall need

LemMmA 5. The solutions to Q*F = 0 are harmonic functions. More generally,
the adjoint Cimmino operator is hypoelliptic.

The proof is similar to that of Lemma 1. It is tempting to look for a char-
acterization of the full Z(L)" (similar to that of Z). The proof of Theorem 6
requires that given (h, k. u) e Z(L)" the functions h, k be smooth. This is
indeed so as a consequence of Lemma 5. Precisely, we have

PROPOSITION 2. Let P:% — L*(Q)* be the natural projection. Then
PR(L)* < #2(Q)%, where #*(Q) is the Bergman space of all harmonic L*

Sfunctions on Q.
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Proor. We set {f,g> = [, g dV. Then ,%(L)L consists of all (h,k,A,u) in
%, such that

Re{(u; + Oy, by + uy — 0.,k + J (ud + vQd) da} =0,

oQ

for any u,ve C'(Q)NC(Q). In particular for u=¢ and v =1y, ¢,y € CF(Q)

0= Re{Th((pE + lpw) + Tk((pﬁ - l/72)}
= —Re{(0T)/0z + 0Ty /ow)(p) + (0Ty/0Ww — 0Ty /0Z)(¥)}

hence (for y =0) 07)/0z+ 0Ty/dw =0 (in distribution sense) and similarly
0T}, /0w — 0T, /0z = 0. Then (by Lemma 5) h ke #*(Q). Q.e.d.

However, the proof of Theorem 6 also requires continuity of 4, k up to
the boundary (so that one may apply Green’s formula). One may restrict the
domain of L to be Z(L)=CY(Q) so that (L) = C°(Q)* x C°(6Q)* =: %,
(a pre-Hilbert subspace of #). Let Z(L)" ={ye®,:L(x)-y=0, for any
x e 2(L)}. Then (by Green’s formula)

PROPOSITION 3. For any (h,k, 2, 1) € R(L)" one has h,k e #*(Q)NC*(Q)
and Q*(h,k)' =0 and A, u are given by (34)—(35). In particular, if (f,g,0,V) € %
satisfies the compatibility condition (30) then (f,g,p,%) € [#(L)"]".

Proposition 3 is of limited use as %, is not complete (and Z2(L)" may fail to
be closed). We end this section by proving a result similar to that in Theorem 6
for the inhomogeneous Cauchy-Riemann system.

THEOREM 7. Let Q < C be a bounded domain such that Green’s formula holds
on Q, and f e L*(Q), pe L*(0Q). If the Dirichlet problem
u:=f in Q wu=¢ on 0Q,
admits a solution ue C'(Q)NCQ) then (f,p) satisfies the compatibility re-

lation

ZReJ fng—ReJ p(n +iny)gdo =0
Q 0

for any antiholomorphic function g:Q — C which is continuous up to the
boundary, where (ny,n2) is the outward unit normal on 0SQ.
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PrROOF. Let % = L?*(Q) x L*(0Q) with the scalar product

(fr0) - (g 9) = Rej

fngnLReJ oy do.
Q

Flo)
Clearly % is complete. Let L: L*(Q) — % be the operator given by
Lu = (uz,ulyq)

with the domain Z(L) = C'(Q)NC°Q). Moreover, we set Z = (L)" N
{[CM(Q)NCY(Q)] x L*(0Q)} so that (g,¥) e Z if

ReJ u;ng+ReJ wy do =0,
o 0

for any ue 2(L). By Green’s formula

JQ uzg dvV = JQ{(ug)f —ug:} dvV

:J {div(ugg)ug_;} dV:lJ ug(ny + iny) deJ ugs dV
Q 0z 2 )aa Q

hence

(36) ReJ ugs dV—ReJ u{lﬁ—i—l(m +in2)g} do =0,
Q o0 2

which is easily seen to yield g. = 0 in Q and ¥ + % (n; — iny)g = 0 on 9Q. Indeed,
let u, € C(Q) such that u, — g. in L*(Q), as v — 0. Then

j u,gs dV = j 0y — g:2)g= AV + gz
Q Q

J (uv - g:)gf dV‘ < |
Q

uy = g:| llg:l = 0, v — oo,

hence ||g.||> = 0. Q.e.d.

4. Nontangential Limits for Solutions to the Cimmino System

Let Q c C? be a bounded domain with smooth (C?) boundary. For every
0< p< oo let S7(Q) be the class of solutions (f,g) : Q — C? to the system (2)
such that

e>0

Sup LQ (L£ W) + |g(z, w)|2)?? day(z, w) < oo
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for any fixed family of approximating domains Q,, i.e. if ¢ is a C? defining
function for Q (Q = {p < 0}) then

Q. ={(z,w) eQ:p(z,w) < —&} (¢>0).

By analogy with the boundary behavior of holomorphic functions it is a natural
problem whether nontangential limits

lim F(z,w)
Ay (L, )3 (z,w)—({, o)

exist. Here the approach region is
JZ{(X(C? w) = {(Zv W) eQ: ‘(Z - C, w— w) ' v((,w)| < (1 + O‘)é(é,w)(zv W)v
2= < adwmy(zw)} (2> 0, (L, ) € 0Q)

and J, ) (z,w) is the minimum among J(z,w) = dist((z,w),0Q) and dist((z,w),
T((,)(0Q)). Also v o) € C? is the complex unit normal at ({,w) (pointing
outward Q). While we leave this problem open we rely once again on the theory
of harmonic functions to derive the (more modest) Theorem 8 below. Let T, ({, )
be the cone of aperture o and vertex ({,w) i.e.

L w) ={(z,w) eQ:|(z—={,w—o)| < (1 +a)d(z,w)}.
We may state
THEOREM 8. Assume that F = (f,g): Q — C* belongs to SP(Q) for some

p = 1. Then the function |F|” is subharmonic on Q and is harmonic if and only if F
is a constant map. In particular, if p > 2 then F admits nontangential limits

37 lim F(z,w
( ) L w)a(z,w)—((,w) ( )

at almost every boundary point ({,w) € 0Q.

PrOOF. Let F = (f,g) e SP(Q). As both f, g are harmonic in Q

AIF|” = 20(IF ")z + (IF ")}

= p|F|"*{|of|> + 13f1* + |0g]* + 09|}

p(p—2)

+ =PI, + S+ 20 + 95

= ra — - 12
+ | faf + ffs + 959 + 99517}
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where
Of 12 = L2+ 1615 10 = 1A+ 1Sl

Therefore, to conclude that A|F|” > 0 in Q based on the above calculation one
should assume that p > 4. However, the following elementary result circumvents
this difficulty.

LeMMA 6. Let G : R" — R be a continuous convex function. Let Q = R™ be a
domain and let u; : Q@ — R, 1 < j < n, be harmonic functions. Then G(uy,...,u,) is
subharmonic in Q. If additionally i) G is of class C* and strictly convex in R"\{0},
i) G(&) =0, for any £ e R", and G(0) =0, and iii) G(uy,...,u,) is harmonic in Q,
then each u; is constant.

Indeed the first statement in Theorem 8 follows from Lemma 6 for
G(x) = |x|”, xe R* (p > 1). The remaining part of the proof is standard. Indeed,
if additionally p > 2 then u(z,w) = |F(z,w)|”’* is subharmonic in Q and

supJ u(z,w)? doy(z,w) < o0,
>0 Jog

hence (cf. e.g. [7], p. 8-9) there is a harmonic function 4 which is the Poisson
integral of a function f e L*(6Q) such that u(z,w) < i(z,w). Then we may apply
Theorem 3 in [7], p. 11, to the function / hence there is C, > 0 such that for any
({,w) € 0Q

- (¢, ), 2kn) ( )|d‘7( X)
u(z, w) Z 2F[B(( cw 26)|

k=

for any (z,w) e {I,({,w) : |(z—{,w — w)| =n}. Here B(({,w),p) = {(z,w) € 0Q:
|(z—={,w—w)| < p}. Consequently, one may argue as in the proof of Theorem 4
in [7], p. 12, to conclude that the nontangential limit (37) exists. Q.ed.

ProOOF OF LEMMA 6. Let u = (uy,...,u,) and v = Gou. Also, let x € Q and
r > 0 such that B(x,r) = Q and let us set

1
B |6D(x, 7)| JOD(X. r) u(X) dG(X).

As each u; is harmonic, u(x) = M,(u)(x) hence (by the Jensen inequality)

v(x) = G(M;(u)(x)) < M,(v)(x)

M, (u)(x)
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hence (as v is continuous) v is subharmonic in Q. Let Q¢ = {x € Q: u(x) # 0}.
Then

Av—zaél Auj+Z<D2 ()01, Dyt

where DG is the Hessian of G and 0,u = ou/dx,. As (D*G)(u(x)) is positive
definite for any xe o, Au=0 and Av =0 yield d,u=0 in Qp. Let Q; =
{xeQ:u(x) #0}. Then (as Q; = Qo) d,u =2u;0u; =0 in Q. Qeed.

[3]
[4]
[5]
[6]
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[8]
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