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HOCHSCHILD COHOMOLOGY OF ALGEBRAS

WITH HOMOLOGICAL IDEALS

By

José A. de la Peña and Changchang Xi

Abstract. Let j : A! B be a homological epimorphism of k-

algebras. We investigate the relationship of the Hochschild co-

homologies HiðAÞ and HiðBÞ of A and B; and show that they can be

connected by a long exact sequence. In particular, if A is a quasi-

hereditary algebra and B is the quotient of A by a minimal heredity

ideal, then the long exact sequence provides information on HiðAÞ,
HiðBÞ and the extension groups between costandard modules and

standard modules, thus one can actually compute HiðAÞ inductively.

As a consequence, we obtain the Hochschild cohomology of all non-

semisimple Temperley-Lieb algebras and representation-finite Schur

algebras.

1. Introduction

Let A be a finite dimensional k-algebra over a field k. We consider the

enveloping algebra Ae of A which is, by definition, the tensor product Ank A
op

of algebras A and Aop. Note that the category of left Ae-modules is the same as

the category of A-A bimodules. Hence in the sequel we shall not distinguish the

left Ae-modules from the A-A-bimodules. Recall that if X is an A-A-bimodule,

then we have the following well-known formula for the Hochschhild cohomology

of A with coe‰cients in X :

HnðA;X Þ ¼ ExtnAeðA;XÞ:

If X ¼ A we obtain the n-th Hochschild cohomology of A:

HnðAÞ ¼ ExtnAeðA;AÞ:

2000 Mathematics Subject Classification: 16E40, 18G15, 16E30; 81R05, 20C30.

Key words: Hochschild cohomology, homological ideal, quasi-hereditary algebra, Temperley-Lieb

algebra, Schur algebra, homological epimorphism.

Received September 14, 2004.

Revised May 10, 2005.



The aim of this work is to present some results that may be useful for the

computation of the Hochschild cohomologies of an algebra. For this purpose,

we consider a k-algebra homomorphism j : A! B and the induced embedding

functor j� : mod B! mod A, where mod A stands for the category of all fi-

nitely generated left A-modules. The ring morphism je : Ae ! Be induces maps

je
n : H

nðBÞ ! ExtnAeðB;BÞ. Recall that j is an epimorphism of algebras if j� is a

full embedding and, following [9], j is a homological epimorphism if the induced

functor of derived categories

Dbðj�Þ : Dbðmod BÞ ! Dbðmod AÞ

is a full embedding. We shall show that for a homological epimorphism

j : A! B the induced maps je
n : H

nðBÞ ! ExtnAeðB;BÞ are isomorphisms.

The main example of the above situation arises when J is an idempotent

ideal of A which is projective as left A-module. In this case, the quotient

A! B :¼ A=J is a homological epimorphism. Furthermore, if J is a heredity

ideal of A, that is, J is generated by an idempotent element f in A, and

projective as a left A-module with fAf F k, then we get a long exact sequence

0! ZðAÞV J ! H 0ðAÞ ! H 0ðBÞ ! Ext1
AðDð fAÞ;Af Þ ! H 1ðAÞ ! H 1ðBÞ

! � � � ! ExtnAðDð fAÞ;Af Þ ! HnðAÞ ! HnðBÞ ! � � �

which is helpful in the calculation of the groups HnðAÞ. In particular, the

existence of this sequence generalizes previous results in [10, 14]. Moreover, our

results can be applied to get the Hochschild cohomology of certain quasi-

hereditary algebras. In particular, we determine the Hochschild cohomology of

Temperley-Lieb algebras and representation-finite q-Schur algebras.

2. Homological Epimorphisms

In this section we recall definitions and elementary results on homological

epimorphisms and deduce also basic facts which are needed in the sequel.

Let j : A! B be a morphism of k-algebras. The natural embedding

j� : mod B! mod A allows to identify B-modules as A-modules. Recall that j

is an epimorphism if for all k-algebra morphisms c; w : BxC, the equation

cj ¼ wj implies c ¼ w. Well-known examples are the canonical epimorphisms

A! A=I , the inclusion of the algebra of triangular matrices into the full matrix

algebra and the canonical morphism A! S�1A if A is commutative and SHA is

a multiplicative subset.

62 José A. de la Peña and Changchang Xi



It is well-known that j : A! B is an epimorphism if and only if every A-

linear map BX ! BY is also B-linear, that is, if j� : mod B! mod A is a full

embedding. Another condition is that j is an epimorphism if and only if the

multiplication map BnA B! B is a bimodule isomorphism. The reader is re-

ferred to [8] for further information on epimorphisms of finite dimensional k-

algebras, for instance, among other examples, it is shown that the path algebra

k~AAn of the quiver

~AAn : 1! 2! 3! � � � ! n

accepts 1
nþ2

�
2nþ2
nþ1

�
epiclasses.

If j : A! B is a k-algebra homomorphism, then for any two B-modules X ,

Y we get a natural map j0 : HomBðX ;YÞ ! HomAðX ;Y Þ.
Consider the derived category Dbðmod AÞ of mod A equipped with the

translation functor T given by TðX �Þn ¼ X nþ1 and ðTd�X Þ
n ¼ �d nþ1

X for an object

X � A Dbðmod AÞ with chain maps d n
X : X n ! X nþ1. Recall that there is a natural

identification of mod A with a full subcategory of Dbðmod AÞ and for any two

modules X ;Y A mod A we have

ExtnAðX ;Y Þ ¼ HomDbðmodAÞðX ;T nY Þ:

For concepts related with derived categories see [11].

Consider the induced functor of derived categories

Dbðj�Þ : Dbðmod BÞ ! Dbðmod AÞ:

Then for modules X ;Y A mod B there are natural maps

jn : ExtnBðX ;YÞ ¼HomDbðmodBÞðX ;T nYÞ !HomDbðmodAÞðX ;T nY Þ ¼ ExtnAðX ;Y Þ:

Following [9], we say that j : A! B is a homological epimorphism if

Dbðj�Þ : Dbðmod BÞ ! Dbðmod AÞ is a full embedding, equivalently, if for every

X ;Y A mod B and nb 0 the morphisms jn : ExtnBðX ;YÞ ! ExtnAðX ;Y Þ are iso-

morphisms.

To see whether an epimorphism is a homological epimorphism, we have the

following statements proved in [9].

Lemma 2.1. Assume that j : A! B is an epimorphism. Then the following

statements are equivalent:

(0) j is a homological epimorphism.

(1) For all ib 1, TorAi ðB;BÞ ¼ 0.

(2) For all ib 1 and module BY , TorAi ðB;Y Þ ¼ 0.
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(2 0) For all ib 1 and module XB, TorAi ðX ;BÞ ¼ 0.

(3) For all ib 1 and modules XB, BY , TorAi ðX ;Y Þ !@ TorBi ðX ;Y Þ.
(4) For all ib 1, Ext iAðB;BÞ ¼ 0.

(5) For all ib 1 and Y A mod B, Ext iAðB;YÞ ¼ 0.

(6) For all ib 1 and X ;Y A mod B, Ext iBðX ;YÞ !@ Ext iAðX ;Y Þ.
(0op) jop : Aop ! Bop is a homological epimorphism. 9

The following observation is a variation of some of the above statements.

Proposition 2.2. Let J be an ideal of A and let j : A! B be the canonical

epimorphism with B ¼ A=J: Then

(a) j : A! B is a homological epimorphism if and only if TorAn ðJ;BÞ ¼ 0 for

all nb 0. In this case, J is idempotent.

(b) An idempotent ideal J of A is homological if and only if ExtnAðJ;A=JÞ ¼ 0

for all nb 0.

(c) If J is a projective A-module and J 2 ¼ J, then j is a homological epi-

morphism.

Proof. (a) By applying the functor �nA B to the exact sequence 0!
J !j A! B! 0 we get a new exact sequence

0! TorA1 ðB;BÞ ! JnA B! AnA B! BnA B! 0

and TorAn ðB;BÞ !
@

TorAn�1ðJ;BÞ for nb 2.

Since JnA BF J=J 2 and BFBnA B, we have TorA1 ðB;BÞF J=J 2. Hence

we get the desired condition.

The proof of (b) is similar to (a) and (c) follows from (a). 9

An ideal J of A will be called a homological ideal in A if the quotient

A! A=J is a homological epimorphism. Observe that such ideals were called

strong idempotent ideals in [1].

Since our consideration involves also the enveloping algebras, we need also

the following result.

Proposition 2.3. Let j : A! B be an epimorphism of k-algebras. Then the

following hold:

(1) je : Ae ! Be is an epimorphism.

(2) je
0 : H 0ðBÞ ! HomAeðB;BÞ is an isomorphism.

Moreover, if j is a homological epimorphism, then
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(3) je is a homological epimorphism.

(4) je
n : H

nðBÞ ! ExtnAeðB;BÞ is an isomorphism for each nb 0.

Proof. In our proof we shall make use of the following identities shown in

Cartan-Eilenberg’s book for any three k-algebras L, G, S and modules XL�G,

LYS, G�SZ:

(a) ðX nL YÞnGnS Z !
@

X nLnG ðY nS ZÞ [4, IX.2.1],

(b) if TorLn ðX ;Y Þ ¼ 0 ¼ TorSn ðY ;ZÞ for all n > 0, then

TorGnS
n ðX nL Y ;ZÞ !@ TorLnG

n ðX ;Y nS ZÞ ½4; IX:2:8�:

Moreover, since j : A! B is an epimorphism, we have

(c) for any B-module X , there is an isomorphism BnA X !m X , bn x 7! bx.

In particular, the algebras BnA Bop and Bop are isomorphic.

(1): Be nAe Be ¼ ðBnk B
opÞnAnAop Be !@

ðaÞ
BnA ðBop nAop BeÞ.

Since Bop nAop ðBnk B
opÞ !@ ðBop nAop BÞnk B

op !@
ðcÞ op

Bnk B
op, we get

Be nAe ðBeÞ !@ ðBnA BÞnk B
op !@
ðcÞ

Bnk B
op ¼ Be:

(2): H 0ðBÞ ¼ HomBeðB;BÞ !@ HomAeðB;BÞ.
Assume now that j : A! B is a homological epimorphism.

(3): We shall check that property (1) in 2.1 is satisfied by je. Namely,

TorA
e

n ðBe;BeÞ ¼ TorAnkA
op

n ðBnk B
op;BeÞ !@

ðbÞ
TorAn ðB;Bop nAop BeÞ ¼

2:1ð2Þ
0:

(4): HnðBÞ ¼ ExtnBeðB;BÞ !@ ExtnAeðB;BÞ. 9

In the following we shall compare the algebra Ae and Be. Let e1; . . . ; en be

a complete set of pairwise orthogonal primitive idempotents for A. Then P1 ¼
Ae1; . . . ;Pn ¼ Aen is a set of representatives of the isomorphism classes of inde-

composable projective A-modules.

Consider Ae ¼ Ank A
op. The elements ei n e

op
j A Ae ð1a i; ja nÞ form a

complete set of pairwise orthogonal primitive idempotents for Ae. Then the

indecomposable projective Ae-modules are of the form Aeðei n ejÞ ¼ Aei nk ejA.

Given an ideal J of A, and the canonical epimorphism j : A! B ¼ A=J,

we consider the ideal I ¼ Ank J
op þ Jnk A

op of Ae, which gives rise to exact

sequences

0! I ! Ae !j
e

Be ! 0 and 0! Jnk J
op ! Ank J

op l Jnk A
op ! I ! 0:

The second sequence is exact since dimkðAnk J
op l Jnk A

opÞ � dimk I ¼
2 dimk A � dimk J � ðdimk AÞ2 þ ðdimk A� dimk JÞ2 ¼ dimk Jnk J

op.
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We get the following technical remark.

Lemma 2.4. If an idempotent ideal J in A is a projective left A-module, then

0! Jnk J
op ! Ank J

op l Jnk A
op ! I ! 0

is a projective presentation of I as Ae-module. Moreover, the two first terms of the

sequence are in addðPÞ for a projective Ae-module P whose trace in Ae is I . In

particular, proj:dimAe Be a 2.

Proof. Assume that J ¼ 0
j AS

Aej ¼ AeA for an idempotent e ¼
P
j AS

ej. Con-

sider the unity 1 ¼
Pn
i¼1

ei of A and set P ¼0
n

i¼1

0
j AS

½Aeðei n e
op
j ÞlAeðej n e

op
i Þ�

which is a projective Ae-module. Then Jnk A
op F 0

j AS

0
n

i¼1

Aej nk ekA
op A addðPÞ

and similarly, Jnk J
op and Ank J

op A addðPÞ.
Finally, the trace of P in Ae is

trPðAeÞ ¼
X

1aian

X
j AS

½Aeðei n e
op
j Þ þ Aeðej n e

op
i Þ� ¼ Ank J

op þ Jnk A
op ¼ I :

9

The above Lemma may be used to provide another proof of the fact that

je : Ae ! Be is a homological epimorphism as a consequence of the following

Theorem shown in [1]:

Let I be a an idempotent ideal of a k-algebra C and D ¼ C=I . Assume that

there is a projective C-module P such that I ¼ trPðCÞ and that the minimal

projective resolution

� � � ! Pi ! � � � ! P1 ! P0 ! I ! 0

has its first sþ 1 terms P0;P1; . . . ;Ps A addðPÞ. Then for any X ;Y A mod D,

Ext iDðX ;Y Þ !@ Ext iCðX ;Y Þ; 0a ia sþ 1:

Let us end this section with some examples of homological epimorphisms and

Hochschild cohomology.

Example 1. In this example we shall have a homological epimorphism

j : A! A=J with non-projective AJ.

Consider the algebra A ¼ kQ=I with Q and I given by

Q : 1 ��!a ��
b

2; I ¼ hbabi:

66 José A. de la Peña and Changchang Xi



Let J be the trace in A of the projective module P1 corresponding to the

vertex 1. A projective resolution of J is:

� � � ! P1 !
f2

P1 !
f1

P1 lP1 !
f0

J ! 0;

where f0ðe1; 0Þ ¼ e1, f0ð0; e1Þ ¼ b, f1ðe1Þ ¼ ð0; baÞ, f2ðe1Þ ¼ ba; . . . . Hence J has

infinite projective dimension. Moreover, the ring B ¼ A=J is just k with AB the

simple S2 at the vertex 2. Hence ExtnAðB;BÞ ¼ 0 for all nb 1 since

� � � ! P1 !
f2

P1 ! P2 ! B! 0

e1 7! b

is a projective resolution which remains exact after applying HomAðS2;�Þ. There-

fore j : A! B is a homological epimorphism.

Example 2. Let A and B be two algebras and let F : Dbðmod AÞ !
Dbðmod BÞ be a derived equivalence which sends A to B. Happel has shown

[10] that HnðAÞ !@ HnðBÞ for all nb 0. In fact, one can establish a derived

equivalence ~FF : Dbðmod AeÞ ! Dbðmod BeÞ sending A to B. Then HnðAÞ ¼
ExtnAeðA;AÞ ¼ HomDbðmodAeÞðA;T nAÞ G HomDbðmodBeÞðB;T nBÞ ¼ ExtnBeðB;BÞ ¼
HnðBÞ. Especially, the Hochschild cohomology of an algebra is both tilting-

invariant and Morita-invariant.

Example 3. Finally, let us remark that there is a formula between

Hochschild cohomology and homology, namely, HiðA;XÞFHiðA;DX Þ for all

A-A-bimodule X , where D is the k-duality. However, this does not help us very

much when we calculate Hochschild cohomology HiðAÞ. For example, it is

proved in [20] that for a quasi-hereditary algebra A we always have HnðAÞ ¼ 0

for all nb 1, but the Hochschild cohomology HnðAÞ may not vanish. An

easy example is the Auslander algebra A of k½x�=ðxnÞ, in this case, we obtain

dimk H 0ðAÞ ¼ n, dimk H
1ðAÞ ¼ n� 1, and dimk H

2ðAÞ ¼ n� 1; and HiðAÞ ¼ 0

for all ib 3 since the global dimension of A is at most 2. (For this and other

similar examples see [10].)

3. Hochschild Cohomology of an Algebra with Homological Ideals

In this section we assume that A is a finite dimensional k-algebra and J is a

homological ideal of A. Write B ¼ A=J. Our results in this section will be useful

for calculation of the Hochschild cohomology of an algebra with homological

ideals.
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Proposition 3.1. (a) For every B-B-bimodule Y , there is a long exact se-

quence

0! H 1ðB;Y Þ ! H 1ðA;YÞ ! Ext1
AeðJ;YÞ ! � � � !

! HiðB;YÞ ! HiðA;Y Þ ! Ext iAeðJ;YÞ ! � � � :

Moreover, H 0ðBÞ ¼ H 0ðA;BÞ.
(b) If AJ is projective, then Ext1

AeðJ;Y Þ ¼ 0 for every B-B-bimodule Y. In

particular, H 1ðBÞ ¼ H 1ðA;BÞ.
(c) If J is a projective Ae-module, then H iðBÞ ¼ HiðA;BÞ for ib 0.

Proof. Consider the exact sequence 0! J ! A! B! 0 of Ae-modules.

The sequence in (a) is obtained by applying HomAeð�;Y Þ to get the long exact

sequence

0! HomAeðB;YÞ !HomAeðA;YÞ !HomAeðJ;YÞ ! Ext1
AeðB;Y Þ ! Ext1

AeðA;Y Þ

! Ext1
AeðJ;YÞ ! � � � ! Ext iAeðB;YÞ ! Ext iAeðA;YÞ ! Ext iAeðJ;YÞ ! � � � :

We show that HomAeðJ;Y Þ ¼ 0: Indeed, let a A HomAeðJ;YÞ be an element.

Since J is idempotent by 2.2, any element x A J is a linear combination of

elements of the form uv with u; v A J. Thus aðuvÞ ¼ uaðvÞ A JY ¼ 0 and

a ¼ 0.

By 2.2, HiðB;YÞ ¼ Ext iBeðB;Y Þ ¼ Ext iAeðB;Y Þ, for ib 0. The result fol-

lows.

(b): Assume that J is a projective A-module. Since J is an idempotent ideal,

we have J ¼ AfA for some idempotent element f A A. Then, the projectivity of J

implies that J !@ Af nfAf fA. Consider the exact sequence

0! K ! Af nk fA!g JFAf nfAf fA! 0;

where gðank bÞ ¼ anfAf b. Then K is the A� A-bimodule generated by

fxn f � f n x j x A fAf g.
To show that Ext1

AeðJ;YÞ ¼ 0, it is enough to prove that HomAeðK ;YÞ ¼ 0.

Indeed, let a A HomAeðK ;YÞ and consider the element xn f � f n x A K with

x A fAf . Then we get in the B-module Y

aðxn f � f n xÞ ¼ að f ðxn f � f n xÞÞ ¼ f aðxn f � f n xÞ A JY ¼ 0:

Hence HomAeðK ;Y Þ ¼ 0 and (b) is proved.

68 José A. de la Peña and Changchang Xi



(c): If J is a projective Ae-module, then Ext iAeðJ;Y Þ ¼ 0 for any Ae-module

Y and ib 1. The result follows from (a). 9

Let ZðAÞ denote the center of A. It is well-known (and trivial to show) that

H 0ðAÞ ¼ ZðAÞ. More generally, HomAeðA; JÞ ¼ ZðAÞV J for any two-sided ideal

J of A.

Proposition 3.2. (a) Assume that AJ is a projective A-module. Then there is

an exact sequence

0! ZðAÞV J ! H 0ðAÞ ! H 0ðBÞ ! Ext1
AeðA; JÞ

! H 1ðAÞ ! H 1ðBÞ ! Ext2
AeðA; JÞ ! H 2ðAÞ:

(b) Assume that J is a projective Ae-module. Then there exist a long exact

sequence

0! ZðAÞV J ! H 0ðAÞ ! H 0ðBÞ ! Ext1
AeðA; JÞ ! H 1ðAÞ

! H 1ðBÞ ! � � � ! Ext iAeðA; JÞ ! HiðAÞ ! HiðBÞ ! � � � :

(c) Assume that J is a projective ideal in A generated by a primitive idempotent

element f with fAf F k. Then there exist a long exact sequence

0! ZðAÞV J ! H 0ðAÞ ! H 0ðBÞ ! Ext1
AðDð fAÞ;Af Þ ! H 1ðAÞ

! H 1ðBÞ ! � � � ! Ext iAðDð fAÞ;Af Þ ! HiðAÞ ! HiðBÞ ! � � � ;

where D is the usual duality Homkð�; kÞ.

Proof. By applying HomAeðA;�Þ to the exact sequence 0! J ! A!
B! 0 we get a long exact sequence

0! HomAeðA; JÞ ! HomAeðA;AÞ ! HomAeðA;BÞ ! Ext1
AeðA; JÞ ! Ext1

AeðA;AÞ

! Ext1
AeðA;BÞ ! � � � ! Ext iAeðA; JÞ ! Ext iAeðA;AÞ ! Ext iAeðA;BÞ ! � � � :

The first two statements follow from 3.1. To prove the statement (c), we no-

tice that JFAf nk fA and that DðAf nk fAÞFDð fAÞnk DðAf Þ. Thus, by [4,

Chap. IX, Exercise 8, p. 181], we have DExt iAeðA; JÞ ¼ DH iðA; JÞFHiðA;DJÞ ¼
HiðA;Dð fAÞnk DðAf ÞÞ. It follows further from [4, Chap. IX, Corollary 4.4,

p. 170 and Chap. VI, Proposition 5.3, p. 120] that HiðA;Dð fAÞnk DðAf ÞÞF
TorAi ðDðAf Þ;Dð fAÞÞFDExt iAðDð fAÞ;Af Þ. Thus we have proved (c). 9
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Let us remark that Theorem 5.3 in [10] now follows easily from 3.2(c):

Suppose f is the idempotent of the one-point extension A ¼ B½M� such that

M ¼ radðAf Þ. Let S be the simple injective A-module Dð fAÞ. Then fAf F k. It

follows from the exact sequence 0!M ! Af ! S ! 0 that Ext1
AðDð fAÞ;Af ÞF

HomAðM;Af Þ=kFHomAðM;MÞ=k and Ext iþ1
A ðDð fAÞ;Af ÞFExt iAðM;Af ÞF

Ext iAðM;MÞ. Thus the long exact sequence in [10, Theorem 5.3] follows im-

mediately from 3.2.

As a direct consequence of 3.2, we have the following corollary.

Corollary 3.3. Assume that J is a projective ideal in A generated by a

primitive idempotent element f with fAf F k. If the injective dimension of the right

A-module fA is at most m, then H iðAÞ ¼ HiðBÞ for all i > m. In particular, if

idðAAÞa 1, then H iðAÞ ¼ HiðBÞ for all i > 1. 9

Recall that an idempotent ideal I of A is a heredity ideal if I is a projective

left module and EndAðIÞ is a semisimple ring. The following is probably well-

known.

Lemma 3.4. Assume that k is an algebraically closed field and that J is an

indecomposable idempotent two-sided ideal of A. The following conditions are

equivalent:

(a) J is a heredity ideal;

(b) J is a projective Ae-module with EndAeðJÞ ¼ k;

(c) The multiplication map m : JnA J ! J is an isomorphism and

EndAeðJÞ ¼ k;

(d) EndAeðJÞ ¼ k and TorA2 ðB;BÞ ¼ 0, where B ¼ A=J.

Proof. (a)) (b): Since J is an indecomposable two-sided ideal in A,

it must be generated by a primitive idempotent element f in A. Thus JF
Af nfAf fA: Since fJf is isomorphic to k, we have that EndAeðJÞF f � Ae � f F
fAf nk fAf F k.

(b)) (a): This is clear.

(a)) (c): Applying JnA � to the exact sequence 0! J ! A! B! 0, we

get

0! TorA1 ðJ;BÞ ! JnA J !m JF JnA A! JnA B ¼ 0:

If J is a projective A-module, then TorA1 ðJ;BÞ ¼ 0.

(c), (d): Applying �nA B to the canonical sequence, we get
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0 ¼ TorA2 ðA;BÞ ! TorA2 ðB;BÞ ! TorA1 ðJ;BÞ ! TorA1 ðA;BÞ ¼ 0:

Then TorA1 ðJ;BÞ ¼ 0 exactly when TorA2 ðB;BÞ ¼ 0.

(c)) (a): It is shown in [1, (5.3) and (1.4)]. 9

Proposition 3.5. Assume that k is algebraically closed and J is an inde-

composable heredity ideal of A. Then

(a) HomAeðJ; JÞ ¼ k ¼ HomAeðJ;AÞ.
(b) HiðBÞ ¼ Ext iAeðA;BÞ for all ib 0.

(c) HiðAÞ ¼ Ext iAeðB;AÞ for all ib 1.

(d) dimk H
0ðAÞ ¼ dimk HomAeðB;AÞ þ 1.

Proof. We apply di¤erent functors to the canonical exact sequence 0!
J ! A! B! 0.

For (a) we apply HomAeðJ;�Þ and use 3.4 and 3.1(a).

(b) Follows from 3.4 and 3.1(c).

(c) and (d): By applying HomAeð�;AÞ we get the following exact sequence

0! HomAeðB;AÞ ! HomAeðA;AÞ !a HomAeðJ;AÞ

! Ext1
AeðB;AÞ ! Ext1

AeðA;AÞ ! 0

and Ext iAeðB;AÞ !@ Ext iAeðA;AÞ for ib 2. By (a), a is surjective since að1Þ0 0.

Therefore (c) and (d) follow. 9

The next lemma shows that the terms Ext iAeðA; JÞ in the long exact sequence

3.2 may be replaced by Ext iAeðB; JÞ in certain cases.

Lemma 3.6. Under the assumptions of 3.5, we have Ext iAeðA; JÞ !@ Ext iAeðB; JÞ
for i0 1 and dimk Ext1

AeðA; JÞ ¼ dimk Ext1
AeðB; JÞ � 1.

Proof. We apply HomAeð�; JÞ to the canonical sequence to get

0! HomAeðB; JÞ ! HomAeðA; JÞ ! HomAeðJ; JÞ !d Ext1
AeðB; JÞ

! Ext1
AeðA; JÞ ! 0

and Ext iAeðB; JÞ !@ Ext iAeðA; JÞ for ib 2.

Since dð1JÞ corresponds to our canonical sequence, the map d is a mono-

morphism and the result follows. 9
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By 3.2, to compare the Hochschild homologies of A and B, we need to

calculate the groups ExtnAeðA; JÞ. In general, fAf may not be isomorphic to k,

this implies that we cannot use the third exact sequence of 3.2. However, the

following result will be helpful in some cases.

Proposition 3.7. Suppose that J is an ideal in A generated by an idempotent

element f such that AJ is projective. We denote by TrfAf ðMÞ the transpose of an

fAf -module M.

If Ext ifAf ðTrfAf ð fAÞ;Af Þ ¼ 0 for all ib 1, then ExtnAeðA; JÞF
ExtnAnkð fAf Þ opðHomfAf ð fA; fAf Þ;Af Þ for all nb 1.

Proof. It follows from [2, Proposition 3.2, p. 123] that Af nfAf fAF
HomfAf ðHomfAf ð fA; fAf Þ;Af Þ if Ext1

fAf ðTrfAf ð fAÞ;Af Þ ¼ 0¼Ext2
fAf ðTrfAf ð fAÞ;Af Þ.

By definition of the transpose, if P1 ! P0 ! fA! 0 is a projective presentation

of the fAf -module fA, then we have a presentation of right fAf -module

TrfAf ð fAÞ:

0! HomfAf ð fA; fAf Þ ! HomfAf ðP0; fAf Þ ! HomfAf ðP1; fAf Þ ! TrfAf ð fAÞ ! 0:

Now it follows from this sequence that Ext ifAf ðHomfAf ð fA; fAf Þ;Af ÞF
Ext iþ2

fAf ðTrfAf ð fAÞ;Af Þ ¼ 0 for ib 1. By [4, Chap. IX, Theorem 2.8a, p. 167],

Ext iAnAopðA;HomfAf ðHomfAf ð fA; fAf Þ;Af ÞÞFExt iAopnfAf ðAnA HomfAf ð fA; fAf Þ;
Af Þ ¼ Ext iAopnfAf ðHomfAf ð fA; fAf Þ;Af Þ. If we understand each A-fAf -bimodule

as left An ð fAf Þop-module, then the last cohomology group is just what we

want. This finishes the proof. 9

The condition in the above proposition can be satisfied if Af is an injective

right fAf -module, or fA is a projective fAf -module. The following is an example

in which Af is an injective right fAf -module.

Let A be the algebra given by the following quiver with the relation:

a dA �
1
 ����b �

2
a2 ¼ 0:

We consider the ideal J of A generated by the primitive idempotent element

f corresponding to the vertex 1. Then J is a projective left ideal in A, fAf is

isomorphic to k½x�=ðx2Þ and Af ¼ fAf .

In fact, we have the following more general result.

Corollary 3.8. Let f be an idempotent element in A such that AJ ¼ AfA is
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projective and that ð1� f ÞAfAð1� f Þ ¼ ð1� f ÞAð1� f Þ. If fAf is self-injective,

then ExtnAeðA; JÞFExtnAnkð fAf Þ opðHomfAf ð fA; fAf Þ;Af Þ for nb 1.

Proof. Let e ¼ 1� f . Then we have a matrix presentation of A:

A ¼ eAe eAf

fAe fAf

� �
:

Since eAfAe ¼ eAe, both the right fAf -module eAf and the left fAf -module fAe

are projective by [3, Theorem II.3.4]. Since fAf is self-injective , the right fAf -

module Af ¼ fAf l eAf is injective. Thus the corollary follows from 3.7 im-

mediately. 9

A very special case is that fAf is a symmetric algebra, that is, as an fAf -fAf -

bimodules we have fAf FDð fAf Þ. In this case we have

Corollary 3.9. Under the assumption of 3.7 the following statement is

true: If fAf is symmetric and ExtnfAf ðDðAf Þ;W2ð fAÞÞ ¼ 0 for all nb 1, then

ExtnAeðA; JÞFExtnAnkð fAf ÞopðDð fAÞ;Af Þ for all nb 1, where W2 is the second

syzygy operator.

Proof. Since fAf is symmetric, we have that DTrfAf ¼ W2 and DF
HomfAf ð�; fAf Þ. Thus the result follows. 9

Now let us consider the Hochschild cohomology of a quasi-hereditary al-

gebra. As is known, quasi-hereditary algebras were introduced in [6] and are a

special kind of algebras of finite global dimension. They include many important

algebras such as Temperley-Lieb algebras (see [16]) and Birman-Wenzl algebras

(see [17]), and so on.

Recall that an algebra A is called quasi-hereditary if there is decomposi-

tion of 1 ¼ e1 þ e2 þ � � � þ em into primitive orthogonal idempotents ej such that

each ideal Aðei þ eiþ1 þ � � � þ emÞA=Aðeiþ1 þ � � � þ emÞA is a heredity ideal in

A=Aðeiþ1 þ � � � þ emÞA for all i. Set Ai ¼ A=Ji with Ji ¼ Aðei þ eiþ1 þ � � � þ emÞA
and Jmþ1 ¼ 0. So each Ai is an A-A-bimodule and the injective Ai-module

Dðei�1 þ JiÞAi is isomorphic with Dðei�1AiÞ. With the these notations we have the

following result which is a direct consequence of 3.2.

Proposition 3.10. Let A be a quasi-hereditary algebra. Then
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X
ib0

ð�1Þ i dimk H
iðAÞ ¼

X
ib0

ð�1Þ i dimk H
iðAjÞ

þ
X

jasam

X
ib0

ð�1Þ i dimk Ext iAðDðesAsþ1Þ;Asþ1esÞ

for all 1a jam. 9

As is well-known, a quasi-hereditary algebra A can be defined by standard

modules DðiÞ and costandard modules ‘ð jÞ. Given an order of the idempotent

elements ej as above, the standard module DðiÞ is the maximal factor module

of Aei with composition factors Sð jÞ such that ja i. Similarly, the costandard

module ‘ðiÞ is the maximal submodule of DðeiAÞ with composition factors Sð jÞ
such that ja i. Thus the projective Aj-module Ajej�1 is just the standard module

Dð jÞ and the injective Aj-module Dðej�1AjÞ is just the costandard module ‘ð jÞ.
Note that DðmÞ is the projective module Aem and ‘ðmÞ is the injective module

DðemAÞ. The above proposition can be reformulated as follows:

Proposition 3.11. Let A be a quasi-hereditary algebra. Then

X
ib0

ð�1Þ i dimk H
iðAÞ ¼

X
ib0

ð�1Þ i dimk H
iðAjÞ

þ
X

jasam

X
ib0

ð�1Þ i dimk Ext iAð‘ðsÞ;DðsÞÞ

for all 1a jam. 9

As a corollary we have

Corollary 3.12. Let A be a algebra (over k) given by a connected quiver

with relations. If there is no oriented cycles in the quiver, then

X
ib0

ð�1Þ i dimk H iðAÞ ¼ 1þ
Xm
j¼1

X
ib1

ð�1Þ i dimk Ext iAðEðSð jÞÞ;Sð jÞÞ;

where Sð jÞ stands for the simple module corresponding to the vertex j and EðSð jÞÞ
is the injective envelope of Sð jÞ.

Proof. Since the quiver of the algebra has no oriented cycles, we can have

an order on the simple modules such that all standard modules are just the simple
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modules. In this case the costandard modules are just the indecomposable

injective modules. Thus the result follows from the previous proposition. 9

The cohomology groups Ext iAð‘ð jÞ;Dð jÞÞ of the costandard modules and

standard modules play an important role in the calculation of the Hochschild

cohomology of a quasi-hereditary algebra. In this direction we have the following

result.

Proposition 3.13. Let A be a quasi-hereditary algebra with standard modules

Dð jÞ and costandard modules ‘ð jÞ, 1a jam. Suppose that there is a duality on

the the module category mod-A which fixes simple modules. If proj.dim Dð jÞa 1

for all j, then Ext iAð‘ð jÞ;Dð jÞÞ ¼ 0 for all ib 3.

Proof. Since proj.dim Dð jÞa 1 and the duality fixes each simple module

but interchanges Dð jÞ and ‘ð jÞ, we know that proj.dim T a 1, inj.dim ‘ð jÞa 1

and inj.dim T a 1, where T is the characteristic tilting module of A. Further-

more, by a result of Ringel in [15], there is an exact sequence

0! Dð jÞ ! Tð jÞ ! X ð jÞ ! 0

with T ¼0m

j¼1
Tð jÞ. Hence Ext1

AðT ;X ð jÞÞ ¼ 0 for all j. This implies that X ð jÞ A
addðTÞ. Now applying HomAð‘ð jÞ;�Þ to the above exact sequence, we obtain a

new exact sequence

� � � ! Ext2
Að‘ð jÞ;X ð jÞÞ ! Ext3

Að‘ð jÞ;Dð jÞÞ ! Ext3
Að‘ð jÞ;Tð jÞÞ ! � � � :

This new exact sequence implies that Ext iAð‘ð jÞ;Dð jÞÞ ¼ 0 for ib 3 and 1a

jam. 9

As an example of quasi-hereditary algebras satisfying all conditions in the

proposition we mention the dual extension of a finite dimensional hereditary

algebra (for the definition of dual extensions we refer to [18]).

Let us end this section by an example which illustrates how we can use the

results of this section to compute the Hochschild cohomology. Before we do this,

let us recall the following result in [10] which is needed sometimes for particular

computation.

Let k be a perfect field and A an algebra over k. If e1; e2; . . . ; em form

a complete set of primitive orthogonal idempotents in A, then ei n e
op
j , 1a i;

jam, are a compete set of primitive orthogonal idempotents in Ae. Let SðiÞ
denote the simple top of PðiÞ :¼ Aei and Sði; jÞ denote the simple top of Ae-

module Pði; jÞ :¼ Ae � ðei n e
op
j Þ. Observe that Sði; jÞFHomkðSðiÞ;Sð jÞÞ.
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Lemma 3.14 [10]. Let � � � ! Rn ! Rn�1 ! � � �R1 ! R0 ! A! 0 be a mini-

mal projective resolution of A over Ae. Then

Rn ¼0
i; j

Pði; jÞdimk ExtnAðSðiÞ;Sð jÞÞ:

In particular, the projective dimension of Ae-module A equals the global dimension

of A.

Note that Lemma 3.14 is valid for algebras given by quivers with relations

over any field.

Example 4. Suppose A is an algebra (over a field k) given by the quiver

with relations:

�
1
����!a 0

 ����
a

�
2
����!b 0

 ����
b

�
3
; aa 0 ¼ bb 0 ¼ 0:

This algebra is the dual extension of the hereditary algebra of the linear

quiver of A3 and has global dimension 2. We denote by J the ideal of A

generated by the idempotent e3 corresponding to the vertex 3. An easy calculation

shows that the center ZðAÞ of A is of dimension 3, ZðAÞV J is 1-dimensional and

that ZðBÞ is of dimension 2. Thus it follows from 3.2(c) that the sequence

0! Ext1
Að‘ð3Þ;Dð3ÞÞ ! H 1ðAÞ ! H 1ðBÞ ! Ext2

Að‘ð3Þ;Dð3ÞÞ

! H 2ðAÞ ! H 2ðBÞ ! 0

is exact.

Note that dimk H
0ðBÞ ¼ dimk Ext iAð‘ð3Þ;Dð3ÞÞ ¼ 2 and dimk H iðBÞ ¼ 1 for

i ¼ 1; 2. By 3.11, we see that dimk H 1ðAÞ ¼ dimk H
2ðAÞ. On the other hand, a

simple calculation using the sequence (3.14), shows that dimk H
1ðAÞ ¼ 3.

Similarly, we can calculate the Hochschild cohomology of the following

quasi-hereditary algebra A given by

�
1
����!a 0

 ����
a

�
2
����!b 0

 ����
b

�
3
;

aa 0 ¼ b 0b; bb 0 ¼ 0;

ba ¼ a 0b 0 ¼ 0:

Here we have that dimk H 0ðAÞ ¼ 3 and dimk H
iðAÞ ¼ 1 for 1a ia 4. (Note

that the global dimension of this algebra is 4.)
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4. Applications

In this section we apply our results to calculate the Hochschild cohomology

of the Temperley-Lieb algebras. Our method can be used to determine the

Hochschild cohomology of the partition algebras in [13].

Let k be a field and n an integer. Recall that the Temperley-Lieb alge-

bra AnðdÞ for d A k is defined to be a k-algebra with identity generated by

t1; t2; . . . ; tn�1 subject to the relations:

ð1Þ titjti ¼ ti if j j � ij ¼ 1;

ð2Þ titj ¼ tjti if j j � ij > 1;

ð3Þ t2
i ¼ dti for 1a ia n� 1:

It was proved in [16] (see also [12]) that a block of a non-semisimple Temperley-

Lieb algebra is Morita equivalent to the algebra Am given by the following quiver

with relations:

�
1
����!b1

 ����
a1

�
2
����!b2

 ����
a2

�
3
� � � �

m�1
����!bm�1

 ����
am�1

�
m

aiþ1ai ¼ bi�1bi ¼ 0;

biþ1aiþ1 ¼ aibi;

am�1bm�1 ¼ 0:

As was proved in [19], the non-trivial block of the representation-finite

q-Schur algebra Sqðm; rÞ with mb r is Morita equivalent to an algebra of the

form An. For the definition of q-Schur algebras we refer to [7]. Hence, to get

the Hochschild cohomology of these algebras, it is su‰cient to calculate the

Hochschild cohomology for the algebra An, and this will be done in the fol-

lowing.

Proposition 4.1. Let k be any field and An the k-algebra defined as above.

Then

dimk H
iðAnÞ ¼

n i ¼ 0;

1 1a ia 2n� 2;

0 ib 2n� 1:

8<
:

Proof. We show this by induction on n. For n ¼ 1, the algebra A1 is a

simple algebra and the proposition is trivially true. For n ¼ 2 or 3, the prop-

osition follows from Example 3 and Example 4 in the previous sections. Suppose

now that the proposition holds for n� 1 with nb 4. Let J be the ideal in An

generated by the idempotent en corresponding to the vertex n. Then J is a hered-
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ity ideal such that An=JFAn�1. We may use the following minimal projective

resolution of ‘ðnÞ to compute Ext jAð‘ðnÞ;DðnÞÞ:

0 �! Q2n�2 �!d2n�2
Q2n�3 �!d2n�3 � � � �! Qn�1 �! Qn�2

�! � � � �! Q1 �!d1
Q0 �!d0

‘ðnÞ �! 0;

where Qi ¼ Pðn� i � 1Þ for 0a ia n� 1, and Qj ¼ Pð j � nþ 2Þ for n� 1a ja

2n� 2. (Here Pð jÞ stands for the indecomposable projective An-module corre-

sponding to the vertex j.) In fact, the kernel of di is ‘ðn� iÞ, if 1a ia n� 1;

and Dði � nþ 2Þ, if n� 1a ia 2n� 2. Thus we have for ib 1

dimk Ext iAn
ð‘ðnÞ;DðnÞÞ ¼ 1 i A f2n� 3; 2n� 2g;

0 otherwise:

�

Note that gl.dim An ¼ 2n� 2. Thus the proposition follows directly from 3.11

and induction. 9

Since Hochschild cohomology of algebras is Morita-invariant by [10, The-

orem 4.2], the above proposition describes also the Hochschild cohomology of

both the Temperley-Lieb algebras and the representation-finite q-Schur algebras

Sqðn; rÞ for nb r and r < 2p, where p is the characteristic of the field.
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