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ON A RESULT OF FLAMMENKAMP-LUCA
CONCERNING NONCOTOTIENT SEQUENCE

By

Aleksander GrRyrCczUK and Barbara MEDRYK

Abstract. Let ¢(n) be the Euler totient function of n. A positive
integer m is called a noncototient if the equation n — ¢(n) = m has
no solution in positive integers n. The sequence (2*p);°, which is
noncototient for some prime p will be called as Sierpinski’s sequence.
In this paper we prove some interesting properties of the Sierpinski
sequence given in the Theorem 1, 2, 3.

1. Introduction

In 1959 Sierpinski ([6], pp. 200-201) asked whether there exist infinitely many
natural numbers m such that m # n — ¢(n), (see also, Erdés [2] and B36 in [4]).
Using Riesel’s result ([5]), that all numbers of the form 2kpy — 1 with prime
po = 509203 are composite for k = 1,2, ..., Browkin and Schinzel proved that
all numbers 2%p, can not be presented in the form n — ¢(n). It is a positive
answer to the question posed by Sierpinski.

Hence there is Sierpinski’s sequence with py = 509203.

In the paper Flammenkamp and Luca proved the following sufficient
condition for the sequence (2%p),., to be noncototient.

Let p be a positive integer satisfying the following four conditions:

(i) p is an odd prime

(ii) p is not a Mersenne prime

(iii) the number 2¥p — 1 is composite for all integers k > 1

(iv) 2p is a noncototient.

Then the sequence (2¥p),., is a noncototient, so is the Sierpifiski se-

quence.
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In this connection we prove, in the that the above conditions are
also neccessary. Moreover in the we prove that there are infinitely
many primes p for which the conditions (ii) and (iii) are fulfilled. Further in the
we prove that 2p is of the form n — ¢(n) if and only if there are
different odd primes p; where j=1,2,...,r; r>1 such that p=pips---p, —

Lo = D(pa—1)--(p, - 1).
2. The Results

THEOREM 1. Let p be an odd prime. The sequence (2¥p)X, is the Sierpinski
sequence if and only if:

19. 2p is a noncototient

20, p is not a Mersenne prime

30, 2kp — 1 is composite for every positive integer k > 1.

THEOREM 2. There are infinitely many primes p in the arithmetical pro-

6 6
gression: m [] q; + po, where py = 509203, [] g; =3 x 5 x 7 x 13 x 17 x 241 such
. o

that: =1 J
19. 2%p — 1 is composite for every positive integer k > 1
2% p is not a Mersenne prime.

THEOREM 3. The number 2p, where p is an odd prime is of the form n — ¢(n)
if and only if there are different odd primes p;, where j=1,2,...,r; r > 1 such

that p=pip2---pr =31 = D(p2—1)---(pr — 1).

3. Proof of

The sufficiency of conditions we prove by induction with respect to k. Suppose
that the conditions 1°-3° are satisfied. Then we see that the first step of inductive
process follows by the assumption 1°. Now, we assume that the number 2¥~!p is a
noncototient and suppose that 2*p is a cototient. Hence, for some natural number
n; we have

(3.1) 2kp = ny — ().

Since ¢(nx) =0 (mod4) or ¢(n) =2 (mod4) then from we have
n.=0 (mod4) or nmy =2¢g% o>1, where g is odd prime, respectively. If
ny =0 (mod 4) then %") =¢(%) and by it follows that
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ety e (e

and we get a contradiction with inductive assumption.
In the second case implies

(3:3) 2%p =24 — p(24") = ¢* (g + 1).

If «=1 then (3.3) implies 2¥p — 1 = ¢, contrary to condition 3°. Hence,
o> 1 and from (3.3) we obtain
(34) q*7'|p.

From we have a = 2 and ¢ = p and (3.3) implies 2¥ — 1 = p. Again we
obtain a contradiction with condition 2°.

Now, we can prove the necessity of these conditions. Suppose that the se-
quence (2%p) k>1 is noncototient for every positive integer k. Then we see that the
condition 1° follows immediately for k = 1.

It remains to prove that the conditions 2° and 3° are satisfied. We prove

this fact by contraposition. Indeed suppose that for some natural kK > 1 we have
2¥ — 1= p or 2¥p — 1 = g, where p and ¢ are odd primes. Let p = 2% — 1. Then
taking n = 2p? we get

(3.5) n—o(n) =2p* — p(2p*) = 20> — p(p — 1) = p(p +1).

Since p =2% —1 then implies n — p(n) = 2%p.
The case 2%p — 1 = g is considered similarly. Taking n = 2g we get

n—on)=29—929) =29—(g—1)=q+1=2%

and the proof of the theorem 1 is complete. [

4. Proof of the
In the proof of the we use of the following Lemma:

LEMMA 1. Let py = 509203. Then we have

(4.1) po = 2% (mod gj)
(4.2) 2kpo =1 (mod g;),
where

(4.3) gj,a> = {<3,0>,45,3>,(7,1,<13,5),17,1),<241, 21}
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for j=1,2,...,6 and every integer k satisfies of the congruences
(4.4) k = —a; (mod m;),

Sfor m; =2,4,3,12,8,24 and j=1,2,...,6 respectively.

The proof of Lemma is given in the paper [1]. For the proof of the
2 consider the following arithmetical progression:

6
gi+po, [Jar=3x5x7x13x17x 241
] j=1

6
(4.5) m
j=

6
By (4.2) it follows that { po, [[ ¢; | = 1 and consequently Dirichlet’s theorem
j=1
on arithmetical progression implies that there are infinitely many primes p con-

6
tained in the progression [4.5). Let p = m [] g; + po be one of such primes. Then
we have =1

6 6
(4.6) 2kp—1=2k(quj+po> —1=2*m]]q+2"po - 1.
j=1 j=1
From and (4.2) we obtain
2¥p —1 =0 (mod g)),

hence, all numbers 2%p — 1 are composite.
For the proof of the second part of the theorem 2 suppose that there is a

6
prime number p in the arithmetical progression m [ g; + po that is a Mersenne

prime. Hence for some prime k we have s=1

(4.7) p=m

6
gi+po=25-1.

j=1
From (4.7) we get

(4.8) gi|2¥ —1— py, for some g; =3,5,7,13,17,241.
By (4.8) it follows that

(4.9) i | po(2¥ =1 = po) = 2%po — po(po +1) + 1 — 1.
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Since g;|2*py — 1, from (4.2) then by it follows that

(4.10) gl po(po+1) — 1.
Using computer calculation we get the following factorization into primes
(4.11) " po(po+1) —1 =509203 x 509204 — 1 = 59 x 71 x 809 x 76511.

From (4.11) it follows that none of g; = 3,5,7,13,17, 241 satisfies the relation

(4.10).

The proof of the theorem 2 is complete. |

5. Proof of the

Suppose that for some natural number » the number 2p has presantation in
the form

(5.1) 2p =n—g(n)

Let n = 2%} p3*- .- p¥, where p; are different odd primes for j=1,2,...,r;
r>1 then ¢(n) =2%'py~t... p#=l(p; ~1)---(p,— 1) and by it follows
that

(5.2) 2p=2%1pn "l pa=l(2p - p, — (p1 = 1) - (pr — 1)).

If «>2 then is impossible. Hence, « =1 and by follows that
aj =1 for j=1,2,...,r and consequently implies that

(53) p=pip2- o =3 (o~ (P2 = 1) (o~ 1).

Conversely, assume that is satisfied. Then putting n = 2p; - - - p, we have
p(n) =(p1 —1)---(p, — 1) and we see that implies 2p = n — ¢(n). The proof
is complete. [
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