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ON HOCHSCHILD COHOMOLOGY RING
OF THE INTEGRAL GROUP RING
OF THE QUATERNION GROUP?

By

Takao Havamr

Abstract. We will determine the ring structure of the Hochschild
cohomology HH*(ZQ,) for the quaternion group Q; of order 8
using the ring isomorphism determined by Siegel and Witherspoon.

Introduction

Let RG be a group ring for a finite group G over a commutative ring R. If G
1s an abelian group, Holm and Cibils and Solotar prove that the
Hochschild cohomology ring HH*(RG) is isomorphic to the tensor product of
RG and the ordinary cohomology ring:

HH*(RG) ~ RG ® H*(G, R).

If G is a non-abelian group, it seems more difficult to investigate the ring
structure of HH*(RG).

On the other hand, it is well known that the Hochschild cohomology ring
HH*(RG) is isomorphic to the ordinary cohomology ring H*(G,yRG). In the
above, yRG is regarded as a left RG-module by conjugation. In fact, there
are periodic resolutions of period 2, 4 of cyclic groups, generalized quaternion
groups, respectively. So it is theoretically possible to calculate the products of
the cohomology using the resolution. Thus we have determined the ring structure
of HH*(ZQ,) for arbitrary generalized quaternion group Q, by calculating the

ordinary cup product in H*(Q:,,ZQ;) (see [4]).
The Hochschild cohomology HH”(RG) is isomorphic to the direct sum of
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the ordinary group cohomology of the centralizers of representatives of the
conjugacy classes of G (see [1, Theorem 2.11.2], [11, Section 4]):

HH*(RG) ~ @® H* (G}, R).
J

Siegel and Witherspoon define a new product on 6—)}. H*(Gj,R) so that
the above additive isomorphism is multiplicative. Besides, they calculate the
Hochschild cohomology rings of F3S3, F»A4, F2D;- using this new product.
The author considers that it is interesting to investigate the ring structure of
the Hochschild cohomology of various group algebras using this new product. As
an example of it, we will consider the ring structure of HH*(Z(Q,) for the
quaternion group Q> of order 8.

Our aim in this paper is to determine the ring structure of HH*(Z Q) using
the new product determined by Siegel and Witherspoon. This method is different
from [4].

In Section 1, as preliminaries, we describe some definitions and properties
about the Hochschild cohomology, group cohomology, and the new product
determined by Siegel and Witherspoon.

In Section 2, we calculate the cup products on HH*(ZQ,). In Section 2.1,
we describe the presentation of the integral cohomology rings of the quaternion
group and the cyclic group. In Section 2.2, as preliminaries of calculating the
cup products, we calculate conjugation, restriction and corestriction between the
integral cohomology rings of the subgroups of Q. In Section 2.3, by calculating
the cup products using the new product determined by Siegel and Witherspoon,
we determine the ring structure of HH*(ZQ,) (Theorem).

1 Preliminaries

Let R be a commutative ring and A an R-algebra which is a finitely
generated projective R-module. Suppose that M is a A°(= A ®x A°P)-module.
Then the n-th Hochschild cohomology of A with coefficients in M is defined by

H™(A, M) := Ext’(A, M).

Suppose N is another left A°-module. Then for every pair of integers p,g >0
there is a (Hochschild) cup product

HP(A,M)®r HY(A,N) = HPYI(A,M ®, N).

If we put M = N = A, then the cup product gives HH*(A) := ), ., HH"(A)
the structure of a graded ring with identity 1 € Z(A) ~ HH°(A), where HH"(A)
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denotes H"(A,A) and Z(A) denotes the center of A. HH*(A) is called the
Hochschild cohomology ring of A. Note that the Hochschild cohomology ring
HH*(A) is anti-commutative, that is, for « € HH?(A) and e HH?(A) we have
af = (—1)?Ba (see [9, Proposition 1.2] for example).

Suppose that G is a finite group and that 4 is a G-module. Then we have the
definition of the n-th cohomology group of G with coefficients in A4:

H"(G, A) := Bxtg(R, A).

Suppose B is another G-module. Then for every pair of integers p,q > 0 there
exists a homomorphism called (ordinary) cup product

H?(G,A) ® HY(G,B) > H"*(G,AQ B).

In the following, we state the definition of conjugation, restriction and cor-
estriction. Suppose H is a subgroup of G, and 4 is a G-module. Let YH denote
the conjugacy subgroup gHg~! of H for ge G. If g€ G, the maps ¢: H — H;
h' — g~ 'h'g and f: A — A; a— ga induce the homomorphism

g*  H"(H,A) — H"(H, A)

and call it conjugation by g. Note that g* is the identity forge H. Let 1 : H — G
denote the inclusion map, and let Id : 4 — 4. Then the induced map

resy : H"(G,A) — H"(H, A)

is called restriction. Let G = U:’;l o;H be a left coset decomposition. If (Z,d) is
an RG-projective resolution, then it is also an RH-projective resolution. Define

SH—»G : HomRH(Zn?A) - HomRG(Zn, A)

Suo(/)0) =D s (671 (v 2
where f € Homgy(Z,, A). This homomorphism does not depend on the choice of
coset representatives and this induces
corg : H"(H,A) — H"(G, A)
which is called corestriction. Note that
corg -resG o = |G: Hlo =ma for a e H*(G, A). (1.1)

These mappings of the cohomology groups are independent of the choice of
resolutions.
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About the group ring RG, there are close relations between the Hochschild
cohomology and the group cohomology. The following isomorphism is well
known:

H"(RG,M) > H"(G,yM).
In the above, yM denotes M regarded as a G-module using a ring homo-
morphism ¥ : RG — RG®; x — x® (x~!)° for x € G and H"(G, M) denotes the

ordinary n-th group cohomology. Note that the above isomorphism preserves cup
products, that is, the following diagram is commutative:

H?(RG,M) ® H(RG,N) —— HP"(RG, M ®c N)

| |

H?(G,yM) ® H(G,yN) —— HP*(G, (M ®zc N)).

In the above diagram, —, denotes the map induced by the (ordinary) cup product
and a left RG-homomorphism u: yM @ yN — (M Q@prgN); a®b— a@pgb.
If we put M = N = RG and identify RG with RG ®z; RG as an RG®-module,
then we have a ring isomorphism

HH*(RG) = H*(G, 4RG)

(¢f. [11, Proposition 3.2], [10, Section 1] or [8]).

Let g1 =1, g2,...,9, be representatives of the conjugacy classes of G, and
let G; be the centralizer of g;. Fix g; and consider the following two RG;-
homomorphisms

0, : R— RG; 1w Agi,

ng, : RG — R,; Zlaa — Ag,.
aeCG

These maps induce
0; : Hn(Gi,R) - Hn(G,', ./,RG),
7!;'_ : Hn(Gi,lpRG) — Hn(G,',R).

We define y; : H"(G;,R) — H"(G,,RG) by

yi(a) = corgi 0, (a), for ae H*(G;, R).
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Then we have the following isomorphism of graded R-modules

®: H"(G,,RG) > C—BH” (G, R); (v (n, resS (O)) (1.2)

and its inverse is given by ®~!(a) = y,(a) for « € H"(G;, R) (see [11, Section 4]).
Next, let D be a set of double coset representatives for G;\G/G;. For each
a € D, there is a unique k = k(a) such that

gk = g™, (1.3)

for some b € G. In the above, *g denotes xgx~! for x,g € G. Siegel and With-
erspoon define the following new product on (P); H*(Gj, R) so that the above
additive isomorphism is multiplicative:

LemMa 1.1 (Product Formula). Let a € H*(G;, R), f € H*(Gj,R). Then the
Sfollowing equation holds in H*(G, yRG):

7i(@) — %,(B) = 3 vilcor (res;d b*a — resy % (ba)"B)), (1.4)

aeD

where D is a set of double coset representatives for G\G/Gj, k = k(a) and b =
b(a) are chosen to satisfy (1.3), and W = %G;N °G;.

Note that the sum in (1.4) is independent of the choices for a and b.

2 Calculations
Let Q> denote the quaternion group of order 8:
0 = (x, ylx* =1,x2 =y yoy~ = x71.

In this section, we calculate the ring structure of HH*(ZQ;) using the Product
Formula.
We take representatives of the conjugacy classes of O, as follows:

gi=1, g=x* gi=x, ga=y, gs=2xy.
Then the centralizers of them are
Gl = Qza GZ = Q27 G3 = <x>’ G4 = <y>, GS = <xy>

Note that G3, G4 and Gs are cyclic subgroups of order 4.
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2.1 Integral Cohomology Rings of the Quaternion Group and the Cyclic
Group

In this subsection, we describe the presentation of the integral cohomology
rings of the quaternion group and the cyclic group. First, we consider the
quaternion case. In the following, we set A = ZQ,. Then the following periodic
A-free resolution of Z of period 4 is well known (see [2, Chapter XII, Section 7],
[12, Chapter 3, Periodicity]):

(Y,0): o ABABAZATEAIBAS Z o0,
oi(cr,e2) = ci(x = 1) + 2y — 1),
da(crye2) = (ai(x + 1) + ca(xy + 1), —c1(y + 1) + c2(x — 1)),
d3(c) = (e(x — 1), —e(xy — 1)),
54(6') = CNa

where A2 denotes the direct sum A @ A and N denotes ZTEQZ 7 (e A). Applying
the functor Homa(—, Z) to the above periodic resolution (Y,d), we have the
following complex:

(Homy(Y, Z),6%): 0-zh 2% 28 2% 7,

of(2) = (x — 1)z, (y — 1)z) = (0,0),

0¥ (z1,22) = (x+ Dz1 — (¥ + D)z, (xy + D)zy + (x — 1)z3)
= 2z - 22)(1,0) +22(0, 1),

6% (z1,22) = (x — )21 — (xy = )22 =0,

0} (z) = Nz = 8z.

Clearly the module structure of H"(Q,,Z) is presented by the form of a sub-
quotient of the complex Homp(Y,Z) as follows:

(Z for n =0,

Z/8 forn=0 mod4,n#0,
H"(Q2,Z) =40 forn=1 mod 4,

Z(1,0)/2® Z(0,1)/2 forn=2 mod4,

L0 forn=3 mod4.

By calculating the products of generators 4 := (1,0), B:= (0,1) e H*(Q,,Z) and
C:=1e H*(Q,,Z) using a diagonal approximation on (Y,d), we have
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H*(Q3,Z) = Z|A,B, C]/(24,2B,8C, A*, B*, AB — 4C),

where deg 4 = deg B=2 and deg C =4 (see [5, Section 4]).

Next, we describe the integral cohomology ring of the cyclic group. Let
H = <{a) denote the cyclic group of order m for any positive integer m > 2. We
set = ZH. Then the following periodic I'-free resolution for Z of period 2 is
well known (see [2, Chapter XII, Section 7] for example):

(Za, p): - —— DO p O p O p Ol p O e 7 o,

(Or)1(c) = e(a - 1),

m—1
(On)y(c)=c ) a'.
i=0
Applying the functor Homr(—, Z) to the above periodic resolution, we have the

following complex:

©m¥ _, (@n)}
_

0 #
(Homr(Zx, Z), (0m)*): 0— 2 2 7 Oah,

zZ

Z___>...,

(@m)7 (¢) = (a—1)c =0,
(0m)¥(c) = rnz_:laic = mec.
i=0

Hence we have

Z for n =0,
H"(H,Z)={Z/m forn=0 mod2,n#0,
0 forn=1 mod 2.

By calculating the products of a generator D := 1€ H*(H,Z), we have
H*(H,Z) = Z|D]/(mD),

where deg D =2 (see [2, Chapter XII, Section 7]).

2.2 Conjugation, Restriction and Corestriction
In the following, we set
H*(G.,Z) = Z[A,B, C]/(24,2B,8C, A*>, B>, AB — 4C)
(deg A =deg B=2,deg C =4),
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H*(G3,Z) = Z[2]/(42) (deg i =2),

H*(Gs,Z) = Z[y]/(4n) (degpu=2),

H*(Gs,Z) = Z]V]/(4v) (degv=2),
where r =1,2. By [1.2), we have

(Z3 forn =0,
(Z/8)*® (Z/4)® forn=0 mod4, n+0,
H"(Q2,yZ0Q2) =140 forn=1 mod 4,
(Z/2)*®(Z/4)® forn=2 mod 4,
0 forn=3 mod4.

Furthermore we set
H*({x*),Z) = Z[0]/(20) (dego = 2).

In order to calculate the cup products using the Product Formula, we need the
calculation of conjugation, restriction and corestriction.

First, we calculate conjugation maps. This is given by calculating the images
of the generators of the cohomologies on the cochain level. For the calculation,
we need the following two lemmas.

LEMMA 2.1. Let H = {a) denote the cyclic group of order m for any positive
integer m > 2. (Zy,0y) denotes the periodic resolution of H and (Xy,dy) denotes
the standard resolution of H.

(i) An initial part of chain transformation (vy), : (Zy), — (Xu), lifting the
identity map on Z is given as follows:

(vr)o(1) = [];
(ve)y (1) = [a];

m—1

(vm),(1) = D _la'la].
i=0
(ii) An initial part of chain transformation (up), : (Xu), — (Zg), lifting the
identity map on Z is given as follows:

(ur)o([D) = 1;

al+a24+... 41 (i=1)

(n)i(la) = { o)
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i) =y (172

for 0 <i,j<m.

PrROOF. See [6, Proposition 1] for (i). Note that the notation in this prop-
osition is independent of the notation in [6, Proposition 1].

As for (ii), it suffices to show that (dy), - (un), = (un),_; - (du), holds for
n=1,2. In fact, for any integer n > 3, we can define (uy), inductively. For any
integer { > 0, we set

i-1 i-2 .. ;
M= (o AT (1.21)
0 (i=0).
Note that the equations M;+a'M; = M;,; and M;(a—1)=a'—1 hold for
i,j=0. In the case n =1 we have the following:
(0n)y - (um)y (@) = Mi(a— 1) = @’ — 1 = (un)o(a'[] = []) = (un)p - (dn),(la]).
In the case n =2, the proof is divided into two cases.
Case 0 < i+ j < m: The left hand side is as follows:

(0r), - (un),([a’|a’]) = 0.
The right hand side is as follows:
(un); - (dn)y([a'la’]) = (un),(a'[a’] - [a™] + [a'])
=a'M; — M, ; + M,
=0.

Case i+ j > m: The left hand side is as follows:

-1

(0r); - (un)y([a'la’]) = (Om),(1) = ) d* = M.
0

3

wn
Il

The right hand side is as follows:
(un)y - (dn)y([a'la’]) = (un),(a'[a’] — [a™7"] + [a])
=a'M;— Miyjm+ M;
= Miyj — Miyj-m
= My j — (M — a™™"M,,)
=M,
This completes the proof. O
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LEMMA 2.2. Suppose H is a subgroup of a finite group G and A is a G-
module. (Xu,dn) and (X(on),dsp)) denote the standard resolutions of H and
9H = gHg™! for g € G, respectively. Then the conjugation map g* : H"(H, A) —
H"(9H, A) is given by the following on the cochain level:

g : HOIDZH((XH)n,A) - Homz(gH)((X(gH))n,A)
GUND = af () (n=10),
@GN Upilpal - --1pa)) = af (g7 p19l9 7 pagl - - 197 pug)) (= 1),

where py,ps,...,Pp, € IH.
ProoF. See [13, Proposition 2-5-1]. O

PRrROPOSITION 2.3. The following hold:

yi () =-4 x*(u)=-p x()=-
Moreover, t*(1) =1 holds for 1 € H*(G,,Z) (1 <r <5) and 7€ Qs.
PrOOF. Note that {(x), {y) and {xy) are normal subgroups of Q,. First, we
calculate the image of A by y* : H*({x),Z) — H?*({x), Z). This is given by the

composition of the following maps:

B
y APREEN Homl(x)((z<x>)27 Z)

(4w}

—22, Homzxs((X¢x3)s, Z)

—y——-> Homz<x>((X<x>)2, Z)

(U X )
—22, Homz(xy ((Z(xy), Z)

B> Z,

where B, denotes the isomorphism Homgz¢xy((Z¢xy),, Z) — Z. So we have

Y (A) =B (v)F - 7 (ue)¥ - B2 (A)
=B5"(2) - (ucxy), (Z[x'lx l])

=1



Hochschild cohomology ring of quaternion group 373

Similarly we calculate the image of u by x* : H2({y>, Z) — H*({y),Z) and the
image of v by x* : H*((xy), Z) — H*({xy), Z):

X*(u) = By - (vy3)5 - %+ (ueyy)F - (B~ (w)

= (B3) ™ (1) - (ucyy), (Z[y |x y])

= —H,

x*(v) zﬂg'(v@y))z (u<xy>) (ﬁ )~ l(v)
= (BT - (ucwy), (Z[(xy o™ y])

= —V,

where 5, and p) are the isomorphisms Homgz(,y((Z¢)),,Z) — Z and

Homz(yys((Z¢xy3),, Z) — Z, tespectively. The other equation is easily obtained.
This completes the proof. O

Next, we calculate restriction maps.
LEMMA 2.4. Let (Y,0) be the periodic resolution of Q, and (Zy,0n) the
periodic resolution of a cyclic subgroup H of Q.

(i) A chain transformation (w¢xy), : (Z¢xy), — Yu lifting the identity map on
Z is given as follows:

Wen)ae(1) = 1
(W )ager (1) = (1,0);
(Weny)asa (1) = (1 = X%p, (x + 1)xp);
Wey)aers(l) = yx+ 1 for k> 0.

(i) A chain transformation (w¢yy), : (Z¢yy), — Yn lifting the identity map on
Z is given as follows:

Wepy)a(1) = 1
(W<y>)4k+1(1) = (0,1);
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(Wery)aksa(1) = (=x*(y + 1), (x + Dxp);
(Wyp)akas(l) =x+1 for k> 0.

(iii) A chain transformation (W(xy5), : (Z¢xyy), — Y lifting the identity map
on Z is given as follows:

(Wexys)ae(1) = 1
(Wexpy)ars1 (1) = (1, x);
(Wexyy)agr2(1) = (=x2(y + 1), (x + D)xp + x* + 1);
(Wexyy)ara(l) =x+ yx  for k=2 0.
ProOF. We prove (i) only. The proof of (ii) and (iii) are done similarly.
In this proof, we set (0¢xy)y,; = (0¢xy); for any integer k >0 and i=1,2,

since (Z¢x»,0¢xy) is periodic of period 2. It suffices to show that the equation
On - (Wexy)y = Wexy ),y * (0¢xy), holds for n =1,2,3,4. In the case n = 1, we have

01+ (W) (1) =61(1,0) =x — 1 = (W o (x — 1) = (Weny)o + (8¢xy)1 (1)
In the case n =2, we have
92 - (Wexy )2 (1)
= ((1 = %) (x + 1) + (x*y + xp) (xy + 1),
%y = 1)y + 1) + (¥%p + xp)(x = 1))
= (N¢x»,0)
= (W) - (0¢xy)a(1),
where Ny =322, x'. In the case n =3, we have
93+ (Wey)s(1) = ((yx + 1) (x = 1), (ypx + 1)(1 — xp))
= ((x=1)(1 = %), (x = 1)(x* + x)y)
= (Wexy)z - (0¢xy)3(1).
In the case n =4, we have
04 - (Wexy)a(1) = N = Ny - (px+ 1) = (Wi )3 - (0cny)a(1),

where N =3 . 7. This completes the proof. O
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LemMA 2.5. Let H = {a) be the cyclic group of order 2m for any pos-
itive integer m > 2. Let (Zy,0n) denote the periodic resolution of H and let
(Z a2y, 0¢a2y) denote the periodic resolution for the subgroup {a*) of order m. Then
a chain transformation s, : (Z,2y), — (Zn), lifting the identity map on Z is given
as follows:

S2k(1) = 1;

S2k+1(l) =a+1 for k>0.

Proor. It suffices to show that the equation (0n), : Sn = Sn—1 - (0¢42y), holds
for n=1,2. In the case n =1, we have

(0r); - s1(1) = (Bu)y(a+ 1) =a® — 1 = s(a® — 1) = 50 - (O¢a2y)1 (1)
In the case n =2, we have
(0r), - 52(1) = (On),(1) = N = s1(Na2y) = 51+ (9¢a2y), (1),

where Ny = Z,z__'_'b Yai and Ny = 315 Lg%, O

PropPOSITION 2.6. The following hold:

(i) res® 4=0, resgf> B=2], res<x> Ck = 2* for k> 0.
(ii) res<Qy2> A= res<y> B =2y, res<y> Ck = u?* for k > 0.
(iii) resgjy> A =2y, res<xy> B =0, resgfy> Ck =v?* for k = 0.

2 2% = resS) pk = resSY vk = g% for k> 0.

(iv) resiz, iy (x2)

res

ProOF. We prove (i) only. First we calculate res<x> A and resgf> B. Using
Lemma 2.4 (i), these are given by the composition of the following maps:

-1
Z®Z - Homp (Y, Z)

(wey)¥
Wwla, Homzxy((Z¢x));, Z)

B, Z,
where a, denotes the isomorphism Homy(Y2,Z) = Z @ Z and B, denotes the
isomorphism Homz,y((Z¢xy),, Z) — Z stated in the proof of [Proposition 2.3,
Thus we obtain
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res&y A =fy - (wew)3 - ag' (4)
= (23" (4) - (weny)o) (1)
= (a5'(4))(1 — %%y, (x* + x)y)
=0,
resdy B= (o' (B))(1 - x7y, (x* + x)y)
=21

Next we calculate res<x> C* for k = 0. This is given by the composition of the
following maps:

-1
Z —a4-11—> HomA( Y4k, Z)

(W) b e da

—3 Homz(xy ((Z(xy) aer Z)

Bak Z,

where o4, denotes the isomorphism Homp (Y4, Z) > Z and [34k denotes the

isomorphism Homzxs((Z¢xy)ax» Z) — Z. Then we have re:s<x> = (agl (CF))(1)
— iZk.

The other computations are similar. These are given by using (ii),
(iii) and Lemma 2.5. O

Finally, we calculate corestriction maps.

LEMMA 2.7. Let (X,d) be the standard resolution of Q,. An initial part of
chain transformation v, : Y, — X, lifting the identity map on Z is given as follows:

vo(1) = [);
01(1,0) = [x]v 01(0, 1) = [y];
v2(1,0) = [x|x] = [¥|¥], ©2(0,1) = [x[y] + [xp|x].

ProOF. See [5, Proposition 1). O

LeMMA 2.8. Suppose H is a subgroup of index m of a finite group G and A
is a G-module. Fix a set of right coset representatives S = {t1(=1),72,...,Tm} of
H in G, and let c(c) (e S) denote the representative of the right coset containing
oeG. (Xg,dg) and (Xy,dy) denote the standard resolutions of G and H, re-
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spectively. Then the corestriction map cory : H"(H,A) — H"(G, A) is given by the
following on the cochain level:

TS : Homzg((Xg),, A) — Homzs((Xg),, A)

(TE@)([D =Y« 'u(l]) (©=0),

TeS

(Tg W) ([o1]o2] - .- |on])
= Z tYu(le(t)ore(ta1) " e(to1 ) ore(tara2) 7 .

TesS
le(za1 - Ouei)Onc(to1 - 00) "' ]) (= 1),

where u € Homzy((Xy),, A) and oy,02,...,0, € G.
ProOOF. See [13, Proposition 2-5-2]. O

PROPOSITION 2.9. The following hold:

(i) corgf> A=A, corgf> A% = 2Ck for k> 0.
(ii) cor<y> u=A+ B, cor< >,u =2C* for k > 0.
(iii) cor®, v =B, cor® v* =2C* for k= 0.
(

iv) cor<">> ok = 21% corl¥}. ok = 2uk, corSl ok = 2k for k = 0.

{x2y (x>

ProoF. In this proof, we calculate cor<x> A, cor< , u and corgfy> v only. The

other equations are easily obtained by [1.1) and [Proposition 2.6l For example,

cord A% =corZ -res® Ck =0, : (x)|CF =2C%, for k= 0.

First we calculate cor<x> /. Using Lemmas 2.1, 2.7 and 2.8, this is given by
the composition of the following maps:

—1

B
Z -;* HOmZ<x>((Z<x>)2, Z)

(uey )
=02, Homzexy (Xxy)zs Z)

2
T( €23

— Homy (X3, Z)

#
2, Homy(Y3,Z)

2, ZoZ.
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Let {1, y} be a set of right coset representatives of {(x)» in Q,. Then ¢(x') = 1 and
¢(x'y) = y hold for 0 <i < 3. Since

(T (87" (2) - (uxy)2)) (22(1,0))
= (TZ (85" (4) - (ueey))) ([xIx] = [¥17])
= 87" (2) - (ueey)y(le(V)xe(x) ™ |e(x)xe(x?) ™' + [e(y)xe(yx) " e(yx)xe(yx?) ]
— [e(1) ye(») () ye(x®) 7' = [e(») ye(x®) " e(x?) ye(x*y) ')
= 85" (2) - (uewy )2 (x1x] + [¥°1%°]) = [1%7] — [¥]1])

=1,
(TE(B7" (A) - (ue)2)) (02(0, 1))
= (T (87" (3) - (ucxy)))([x]¥] + [xylx])
= 8" (4) - (ueo)a(fe(V)xe(x) ™ |e(x) ye(ey) ™' + [e(3)xe(yx) ™ |e(yx) ye(x) ']
+ [e()xye(xp) ™ eGey)xe(») 7] + [e(y)xye(x) " e(x)xe(x?) ™)
= 85" () - (e )y (1] + [F16%] + [%1x°] + [xlx])
=2,

we have cor<sz> A=A+2B=A.

Next let {1,x} be a set of right coset representatives of <y in Q,. Then
c(x’y/) =1 (i=0,2) and c(x'y/) =x (i=1,3) hold for j =0, 1. Since
(TE By (1) - (ucy)2)) (02(1,0))

= By (1) - (uyy)o([e(V)xe(x) ™ e(x)xe(x?) '] + [e(x)xe(x?) ™ e(x?)xe(x) ']

— le(D)ye(») 7 e ye(x®) '] = [e(x) ye(xp) ' le(xp) ye(x*) ™)
= 8571 () - (ugyy)2([(1x%] + 211] = [¥1y] = [XPyIx?y])

=1,

(TEL(B5 (1) - (u¢35)2))(22(0, 1))
= B3 (1) - (u¢yy)o([e(V)xe(x) " e(x) ye(xp) '] + [e(x)xe(x?) " e(x?) ye(x?y) ']

+ [e(D)xye(xy) " e(xp)xe(y) '] + le(x)xpe(x?y) " e(xPy)xe(xp) ™))
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_ pr-1

= B57 (1) - (i) (LX) + 21] + [¥2p1x®] + [¥*y]1])
=1,

we have cor<Qy2> u=A+ B.
Finally let {1,x} be a set of right coset representatives of {xy» in Q>. Then
c(x 1) =c(x'y) =1 (i=1,3) and c¢(x*!) = c(x'y) = x (i =0,2) hold. Since

(T2, (877 (¥) - (4ex)2)) (v2(1,0))
= B3I (¥) - (tayy o (fe(D)xe(x) ™ |e()xe(x?) 7] + [e(x)xe(x®) " e(x?)xe(x*) ]
— le(M)ye(») M e(») ye(x®) ] = le(x) ye(xp) " e(xp) ye(x*) ')
= BN (V) - ()2 (X% + [X211] = Pevley] = [yl
=0,
(T (857 (v) - (te))) (22(0, 1))
= B3 (9) - (ugayy ) ([e(1)xe(x) ™ [e(x) ye(ey) '] + [e(x)xe(x) ™' e(x?) ye(x?y) ']
+ [e(1)xpe(xy) " e(e)xe(3) ™) + [e(x)xpe(x?y) " e(x?y)xe(x) ')
= B3N (V) - ()2 (1] + (2] + bey[1] + [Xy1x7])
=1,

we have corgfy> v = B. This completes the proof. O

2.3 Products on H*(Q2,,Z02)(~ HH*(Z(Q))

In this subsection, we calculate the products on the Hochschild cohomology
H*(Q2,yZ0>)(~ HH*(ZQ,)) using the Product Formula (see Lemma 1.1). In
the following, we write XY in place of X — Y for brevity.

PROPOSITION 2.10. The following equations hold in H°(Q,,yZQ>) for the
generators of H°(Q2,yZQ,):

n2=1, nMyA)=y01), 710> =201+y(1) (for r=3,4,5),
y3(1)ya(1) = 2p5(1),  p3(L)ys(1) = 2p4(1),  v4(1)ps(1) = 2y3(1).

Proor. Note that the relations of degree 0 correspond to the multiplication
in the center of ZQ,;. So we obtain, for example,

72(D73(1) = ¥ (x +x71) = x + 371 = p3(1). O
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Next, we compute the cup product of the generators of H%(Q,,,ZQ,) and

the generators of H2(Q,,yZQ>). The following Table 1 is useful for Propositions

211 and 2.12.
Table 1. Data for the Product Formula
i j a g, |b| k| ®G | G | W=>"GNnkG,
1|r(<r<s) 1| g [1]|r] @ G, G,
2 2 1 1 11| @ [0} O
2 3 L x| y|3] @& | < x>
2 4 L X%y | x|4] O | W <»w
2 5 Lixy [ x|5] @ | < Cxpd
3 3 Ll ox2 [ ]2] < | & (x>
y 1 L1 & | & x>
3 4 Ll xy [ 15| <> | O (x?)
3 5 1l x%y [ x |4 <& | o (x?y
4 4 L x2 |12 | <» <
x 1 LT D | <
4 5 L x [1 ]3] )| & (x2)
5 5 Ll ox2 | 12| o | <o (xy>
x 1 LT ey | <xp <xy?

PROPOSITION 2.11. The following equations hold in H?*(Q,,4ZQ>) for the

generators of H°(Q2,4ZQ,) and the generators of H*(Q>,yZQ>):

(D) 72(1)71(4) = y2(4), y2(1)71(B) = 12(B), y2(D)y3(4) = =73(4),
P2(1)ya(1) = —p4 (1), y2(1)ys(v) = —ps(v).

(i) py3()9(4) =0,  7(D)yi(B) =2y3(4),  y3(D)y3(4) = 1 (A)(1 + y,(1)),
73(1)ya (1) = 2y5(v), 73(1)ys(v) = 294(n).

(i) y4(1)71(4) = y4()y1(B) = 274(),  va()y3(2) = 295(v),  v4(D)yalpe) =
P1(4 + B)(1 +7,(1)), r4(1)ys(v) = 273(4).

(iv) ps(D)y1(A4) =2p5(v), ps(1)y1(B) =0, ps(1)y3(4) = 2p4(1), ys(1)ya(pe) =
2y3(4), ys(1)ys(v) = y1(B)(1 + p,(1)).

In particular, H*(Q,,yZQ,) is generated by the products of y,(1), y,(A4), y,(B),
3(4), va(w) and ys(v).
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PrROOF. These are obtained by using [Lemma 1.1, Propositions 2.3, and
and Table 1 as follows:
(i): The calculation of the products of y,(1) and the generators of

H?(Q2,yZ Q)
71(A)72(1) = py(cor* (resS? A - resS? 1)) = y,(4),
71(B)72(1) = p,(cor$ (res$’ B - resS’ 1)) = y(B),
72(1)73(4) = y3(cor$(res@ y7 (1) - res$y y*(4))) = —73(4),
y2(1)74(1) = va(corR (resy x*(1) - res$ x* (1)) = —va(n),
72(1)5(v) = ys(corgs(res@, x*(1) - resgol x*(v))) = —y5(v).

(ii): The calculation of the products of 7;(1) and the generators of
H(02,yZ Q)

y1(A)73(1) = p3(cor{ (resZ A - res{ 1))
=0,

P1(B)y3(1) = p3(corsX (res2 B - ressX 1))

1 3 (x> (x> (x>

= 27}30‘)?

73(1)73(4) = 7,(cor&% (res$ 1 1es$ 1)) + 71 (corZ (res{ 1 resy p*(4)))
= 7,(4) — y,(4),

73(1)74(1) = 75(corg (res$ay 1 ress u))

{xyd )
x2)

= 2}'5("),

73(1)75(v) = a(cor$2 (resiy x*(1) - resSE x*(4))

= ys(cor

= —74(00f<y>> o)
= 2y,(p).

(iii): The calculation of the products of 7,(1) and the generators of
H*(Qs,yZQy):
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71(A)ys(1) = y4(cor8§(res<y> A resgi 1))

= 2y4(n),

71(B)74(1) = pa(cor{3 (reszy B - res$? 1))
= 2y,4(n),

y3(A)74(1) = ys(corg (ressrdy 4 - resi3 1))

= ps (coréi{i o)

= 2y5(v)1
<

7a(1)74(1) = ya(cor (res$ 1 res$?) )

+ 7 (cor<Qy2>(res<;’§ 1. resgi x*(u)))

12/} )

=7 (COI'( wH#) =N (c°r<Q ;> )

= y,(4 + B) — 7,(4A + B),

7a(1)75(v) = p3(cor&, (resZi, 1 - resS v)

§§Z> a)

= 2y3(4).

= y3(cor

(iv): The calculation of the products of ys(1) and the generators of
H* (05,4 ZQ,):

VI(A)Y5(1) = yS(corgii(reSOcy) 4. resgiig 1))
= 2y5(v)’

n(B)ys(l) = yS(cor<xy§(res(xy) B- resggi 1)
=0,

y3(A)7s5(1) = ya(corsya (resSay x*(4) - resSR x*(1)))

=74 (COI’<§2> N )

= 2)}4(/‘)’
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ra()ys(1) = »s (COY(X> (res<y2>> u- YGSEX; 1))
=y, (corgi> o)
= 23 (4),

ys(1)ys(v) = yz(cor<xy>(res<g§ 1. reségi ) + 7 (cor<xy>(res<§i§ 1- resggi *v))

= py(cor,, v) — pi(cords,y v)
= 7,(B) — y,(B).

This completes the proof. O

ReEMARK 1. By the Product Formula, it is easy to see that the following
equation holds:

7(C),(8) = 3, (cord (res& C* - resZ f)) = y,(res C* - )
where fe H*(G,,Z), 1 <r <5 and k > 0. Since the equations

k= 2 k k _ 2
res<x> ct =1 res<y> Cck = u* res<xy> Ct=v* (k=0)

hold by [Proposition 2.6, the cup product with y,(C) gives a periodicity iso-
morphism

1(C) — —: H"(Q2,yZQ2) = H™*(02,yZQ2)

for all n > 1. In particular, we have

72(C) = 71(C)y2(1), V3()~2) = 71(C)y3(1),

V4(/‘2) = 71(C)74(1), )’5("2) = 71(C)ys(1).

Finally, we compute the relations in degree 4. These are obtained by a
method similar to the above proposition.

PROPOSITION 2.12. The following equations hold in H*(Q,,yZQ,) for the
generators of H*(Q2,,ZQ>) and the generators of H*(Q2,yZ():

(1) Vx(A)z = 71(A4)y3(A) = 0, y,(4)7:(B) = 41(C), » (A)y4(p) = 2y1(C)y4(1),
71(A4)ys(v) = 2y, (C)ys(1).

(i) 7,(B)* =y (B)ys(v) =0, P (B)y3(4) = 2y, (C)y3(1), 71(B)ya(p) =
2y, (C)ya(1).

(i) 73(4) =27 (CO) (1) = 1), p3(Ara(p) =21(C)ys(1),  73(V)ys(v) =
2y, (C)y4(1).
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(iv) 74(1)% = 291(C) (72 (1) = 1), pa(@)ys(v) = 29, (C)y5(1).
V) 75(v)? =29, (C)(y,(1) = 1).

ProOOF. These are obtained by using Lemma 1.1, Propositions 2.3, 2.6 and
2.9 and Table 1 as follows:

(i) and (i1): First, note that y, is a monomorphism between the cohomology
rings (see [11, Section 5]). Then by Section 2.1 the equations y,(4)* = y,(B)> =0
and y,(A4)y,(B) = 4y,(C) hold. The other computations are as follows:

y1(A)y3(2) = y3(cor$R (resZ A - resi 1)) =0,

y1(A)4(1) = ya(cor{3(resPy A - resP? ) = y4(2) = 27, (C)ya(1),

y1(A)ys(v) = ps(corSl(res@ s 4 - res$? v)) = ps(2v%) = 2,(C)ys(1),

71(B)73(2) = y3(res B- 2) = 73(24%) = 29, (C)y3(1),
y1(B)ya(4) = ya(res@y B p) = y4(26) = 2y,(C)y4(1),
N(B)ys(v) = Vs(res<xy> B-v)=0.

(iii): The calculation of the products of y;(4) and the generators of

H?*(Q2,yZQ):
y3(A)? = yz(cor<x>(res<)‘> A res<x> A) + yl(cor<sz>(res<"> A resgc‘; y*(4))
= yz(cor<x> %) — yl(corgf> A?)

=2y,(C)(r2(1) = 1),

y3(A)va(n) = ys(cor$R (res{, A - restdy u))

=7s (Corx’z’i a?)
=21 (C)rs(1),

93 (A)ps(v) = ra(cor (ressy x*(4) - resS2) x* (1))

< 2)
(x%)

= 2y1(C)ya(1).

(iv): The calculation of y,(u)? and y,(u)ys(v):

= —y4(cor
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2 *
ya(p)? = py(cor@2 (res$? - res$? p)) + p) (cor@ (res$? pu- res)? x* (1))

= pa(cory #?) — yi(cory u?)

=271 (O)(r(1) = 1),

7a(1)7s(v) = p3(cor$y, (res) - resCR v)
=7, (cor§§2> o?)
= 29,(C)p3(1).

(v): Finally, we calculate ys(v)*:
ys(v)? = yz(corgfy)(reség; V- resgg; v)) + yl(corgfy> (resgﬁ; V- reségi x*(v)))
= (e, v?) = pi(cor&y v?)
= 2y,(C)(r2(1) — 1).
This completes the proof. O

We will state the ring structure of H*(Q,,,ZQ,) by summarizing Propo-
sitions 2.10 through 2.12 and Remark 1.

THEOREM. The Hochschild cohomology ring H*(Q3, yZQ2)(~ HH*(ZQ3)) is
commutative, generated by the elements

() =1, 7(1),73(1),74(1),75(1) € H*(Q2,4ZQ2),
y1(A4), 71(B), v3(A), va (), vs(v) € H*(Q2,yZ Q2),
11(C) € HY(Q,y Z05).

The relations are given by Table 2.

REMARk 2. If we put
Ao=1, Bo=y(1), (Ci)g=73(1), Do=ry4(1), Eo=7s(1);
(Aa)y =71(4),  (4p)y =11(B), (Ba), = 11(4)12(1),
(Bg)y = 11(B)r2(1),  (Ci)y =73(4), Da=ry4(), Ez=ys5(v);
As =y (C),
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then the relations of the generators of the cohomology H*((Q;,,ZQ>):
(~ HH*(ZQ,)) stated in Table 2 correspond to the result given by calculating
the product using a diagonal approximation on the periodic resolution of Q, (see
[4, Table 3]).

the
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