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A COMPLETE SEQUENCE OF ORTHOGONAL SUBSETS
IN HM(R") AND A NUMERICAL APPROXIMATION
FOR BOUNDARY VALUE PROBLEMS
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Introduction

Let us consider the boundary value problem of partial differential equations
on a domain Q in R™

P) {Auzf in Q

Bu=0 ondQ (j=1,...,u),

subject to the following two conditions:

(1) the energy estimate holds for the adjoint problem in H*(Q),

(2) there exists a continuous map from H*(Q) to HM(R").

In our previous work ([I]), we have discussed the existence of weak
solutions in L?(Q) and its approximations using a basis S of HM(Q). The
problem we address in this paper is the construction of this set S. When Q is
bounded, we take a > 0 large enough so that Q € Q, = (—an,an)”. Then, since
S = {exp(ia- x/a)|a € Z"} (Z ={0,+1,+2,...}) is a basis of HM(Q,), S|g is a
basis of HM(Q), under the condion (2) (see [I]).

Therefore, our main concern is the case where Q is unbounded. This is easily
reduced to the case where Q = R”. In fact, by virtue of the assumption (2), if S'is a
basis of HM(R"), S|, is a basis of HM(Q). As a preliminary to the construction
of S, we introduce the notion of a complete sequence of orthogonal subsets in §0.
We then construct complete sequences of orthogonal subsets {®y i |ke Z"}
(NeN) in L*(R") and {¢y,lkeZ"} (NeN) in H¥(R") in §1 and §2,
respectively. Our ultimate aim (Theorems B.] and B.2) will be proved in §3.

§0. A Complete Sequence of Orthogonal Subsets in a Hilbert Space

Let H be a Hilbert space. Let {Sy} (N € N) be a sequence of subsets in H.
Let us say that {Sy} (N € N) is a sequence of orthogonal subsets in H, if
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SN = {¢N,j (.] = 112"")}3 ¢N,j # 07 (¢N,ja¢N,k)H =0 (j # k)7

where (,),, denotes the inner product of H. Let us say that {Sy} (NeN) is a
complete sequence of orthogonal subsets in H, if there exists a series { fy} for any
f € H such that

nelSn), fv—f inH,

where {S) denotes the set of linear combinations of finite elements of S.
From the definition, we have

LEMMA 0.1. Let {Sy} (N € N) be a complete sequence of orthogonal subsets
in H, then {\);_\ S¢> is dense in H.

LEMMA 0.2. Let {Sy} (N € N) be a sequence of orthogonal subsets in H. Set

(e 0] —
Fy = ijl ”¢N,j”H2(f’ SN, )N, j
for f € H. Then {Sy} (N € N) is a complete sequence of orthogonal subsets in H,
iff it holds
Fy— f in H (N — o).

Proor. Let {Sy} (N € N) be a complete sequence of orthogonal subsets in

H, then there exists {fny} for f € H such that
nelSn), fn—f in H.

From the definition of Fy, it holds

\Fnv = fllg S v = Fllas
which means
Fy —» f in H (N — o).

Conversely, let

Fy =3 " w5 (fbn,)udn,s

satisfy
FN—>f lIlH(N—-—)OO)
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From the definition of Fy, we can define

= g IR b v,y € <Sn>

such that

Ifv — Fnllg <27V

Therefore, we have

Jn € {Sn

and

v —fllg Ellfv—Fnllg + |1Fv — fllg — 0. O

When {Sy} (N =1,2,...) is a complete sequence of orthogonal subsets in
H, we say that {Fy} (N =1,2,...) is a sequence of quasi-Fourier series of f € H,
corresponding to {Sy} (N =1,2,...), where

Fy = Z]: ”¢N,j”_2(f’ ON, PN, ;-

Let Vy be a closed subspace in H with basis Sy, then Fy is the orthogonal
projection of f on Vy. ‘
From the definition, we have

LemMMa 0.3. Let {Sy} (N € N) be a complete sequence of orthogonal subsets
in H. Then any infinite subsequence {Sy(;)} (A € N), satisfying N(1) < N(2) < ---
is a complete sequence of orthogonal subsets in H.

§1. A Complete Sequence of Orthogonal Subsets in L?(R")

1.1. {®y} in L?(R") Let ye C*(R) satisfy

1 (It < 1/2)
”(’)‘{o (11 > 1),

and set y, (x) = y(x1/A4)---p(x,/A) for Ae N. Set

Ja(x) = y4(x)f (x)
for f e L>(R"), then we have
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fae L*(R\YNLYR"), f4— f in L*(R") (4 — o).

Let

Fu&) = JfA (x)e™¢ dx

be the Fourier transform of f,, then we have
fa€ LX(R)NAB(R"),
where
B(R") = {f € C*°(R")|0,f(x) is bounded in R" for any v}.

Moreover, for Be N, we have

(27)"" J F1(E)e™EdE = f4(x) (B— ) in LAR") (Qp = (—B,B)").

Qp
Set
94w (&) = L4(k/N) if &eQpp,
where Qy r = (ki/N, (k1 +1)/N) x --- x (ko/N, (kn + 1)/N). Since

SuP.feQN,JgA,N(f) - fA(é)| = SngenN'k|fA(k/N) - fA(f)l

< (1/N) supg (10, f4 (O] + - -+ + 106, £ (O)),

we have
gan(€) = f4(&) (N — o) (uniformly in R").
Hence we have
(2m)™" JQ ga,n(&)e™* dé — (2n)™" JQ f(&e™¢dE (N — ) in L*(R").
B B
From the definition of g4 x(&£), we have

(2n)”" JQ gA’N(f)eix'é d¢ = Z-NB§k.,...,k,,<NB fA(k/N)(zn)_n JQ et dé.

N,k

Set

Oy x(x) = 2n)™" JQ e*¢ dE,
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then we have

en)" [ gan(@edE =T Ly oy Salk/N) O k() € S,

where Sy = {®y i |k e Z"}.
By the way, we have

Duu(x) = @m)" | e a

Qn i

— (zn)—neikoc/NJ eix-f dé

Qno

— (nN) ek [ i e,
Q0

J e¥x¢ dE = 'ttt (x7lsin xp) -+ - (x;! sin xy),
Q0
(PN i, PN,e) =0 (kK #Y7),
1By 4lI2 = @) "Dy ill? = 1) ™" L dé = (2uN)™.
N,k

Hence we have

LemMa 1.1. (1) Set

Oy k(x) = (Zn)""J e dE,

Qn i
then
By i (x) = (2uN) eV (x/(2N)),
where
s(x) = e ™1 +x) (71 sin xp) - - - (x; ! sin x,),
and

Oy i(x) = N7"®) 1 (x/N), @1 x(x) = @y o(x)e™, @ 0(x) = (27n)"s(x/2),
(®Nk, Pv,e) =0 (k#7), || ®nul® = (27N)".

(2) Set Sy = {®n x|k e Z"}, then {Sy} (N € N) is a complete sequence of
orthogonal subsets in L*(R").
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Here we have from

THEOREM 1.1. Set

Fn(x) = (2aN)">_, . (f,®n)®ni(x) (N eN)

for f e L*>(R"), then it holds
Fy — f in L*(R").

«{Fn(x)} (N eN) is a sequence of quasi-Fourier series in L2(R"), corresponding
to {SN} (NGN)>>
Let us consider

Fn(x) =, . 108kl 72(f, @)Dk (%),

more precisely. Setting
ank = ||Ow &l 7 (f, D ),

we have
Fy(x) =) . an k@ k().

We remark that

o] o]
- {jﬂ ar:}_1 {jﬂ 7@ dr:}

is the integral-mean value of f (&) in Qu k. Moreover, we have

FN(é) =ankx (£eQnik), Fn(x)= (2n)—nJﬁN(é)eixé dé.

THEOREM 1.2. Set

Fn(x) = (22N)" ), .(f,®n)®ri(x) (NeN),

(L {l 0]
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for f e L*(R"). Then

Fn(x) =), s ani®ni(x), Fnv(@) =ank (EeQui),
and

Fy(x) = f(x) in L*(R").
«Fn(&) is a step-function approximation of f(&))

1.2. Analogy to trigonometrical series
(1) When the support of f(x) e L>(R") is contained in (—z,=#)", we have

10 =0 S, [0t pfet i m ),
(2) When the support of f(x) € L(R") is contained in (—N=, Nn)", we have

f(x) = (2aN)™" Zkezn{Jf(y)e"'*"/N dy}e"""‘/N in L*((—N=, Nm)").

In other words,
{When the support of f(x)e L?>(R") is contained in (—N=,N=)",

fx) = . cnxe™ /N in L*((~N=,Nm)") (Fourier series)

where

cv .k = (2nN)™" J f(»)e¥* /N dy (Fourier coefficient))

(3) In our case, the sequence of quasi-Fourier series of f(x)e L*(R") is
written as

Fn(x) = (2rN)" > _.(fOn,k)Pw, k(%)

= QN Y. [ SR TP FVS N} dy

X {(2nN)'”eix'k/Ns(X/(2N))}

= QAN Y, [ S OHETFTEND} dy

x {e**/Ns(x/(2N))} in L*(R"),
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where we remark

s(x/(2N)) -1 (N — oo) (uniformly in a compact set).

In other words,
{Let f(x)e L?>(R"™), then we have

Fy(x) =), . cni{e™ Ns(x/(2N))} in L*(R")
(analogue of Fourier series),
Fy — f in L?(R")

where

e = @aN) " [ £ TSR} dy
(analogue of Fourier coefficient))

(4) Especially when the support of f(x) e L?(R") is contained in (—Nn, Nxn)",
since

en i = (2uN) ™" j S N s(3] @N))} dy

(:analogue of Fourier coefficient of f),

~ @uN)™ [ ITEND YT dy
(:Fourier coefficient of {f(x)s(x/(2N))}),
we have from (2)
D ez ke N = f(x)s(x/(2N)) in L*((~Nm,Nn)").

Since

Fy(x) =Y, . cni{e™ s(x/(2N))}

_ {Zkezn cN,ke"X'k/N}s(x/(zN))

in L2(R"), we have

Fy(x) = f(x)s(x/(2N))s(x/(2N)) in L*((~N=,Nm)").
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Let f, ~(x) be a periodic function with period 2N in each variable x; satisfying

fn(x) = f(x)s(x/(2N)) in (~N=,Nm)",

then we have

fvx) =Y, . cvee™ N in R
and

Fn(x) = fy(x)s(x/(2N)) in R".

Hence we have

THEOREM 1.3. Suppose that the support of f(x)e L*(R") is contained in
(=Nn,Nn)". Let fy(x) be a periodic function with period 2Nr in each variable x;

satisfying
fn(x) = f(x)s(x/(2N)) in (—N=,Nm)",
then we have

Fy(x) = fy(x)s(x/(2N)) in R".
§2. Complete Sequences of Orthogonal Subsets in H*(R")

21. {®y,} in HM(R") In general, in the same way as in §I,
{Sn} (N € N) is a complete sequence of orthogonal subsets in HM(R"), where
Sy ={®y |k e Z"}. In fact, for f € HM(R"), setting

Ja(x) = y4(x)f(x),
we have
fae HY(R")NLY(R"), f4— f in HY(R") (4 — o).
Then we have
(1€l + )™ fy e L2(R") N B(R")

and

(2m)™" JQ fa(&)e™ de — fu(x) in HY(R") (B — o).

Setting
gan(&) = f4(k/N) if &eQuy,
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we have

er) [ aan( @ E= ST oy Falk/N)B()

and
(2n>“"J gA,N(é)e"’"fd(:ﬁ(zn)‘”J f4(&)e™¢ dE (N — o) in HM(R™).
Qp Qp

Therefore, {Sy} (N e N) is a complete sequence of orthogonal subsets in
HM™(R"). Moreover, since

3Dy 1 (x) = (Zn)—"J

Qn

(i€)"e™¢ d¢,
Kk
we have

1w il = <2n)‘"j

Q,

Ly (&) dé

= (2zN)™" J Ly ((E+k)/N) dé

Q0

= (27N)™" jﬂ > an (G H )N (& + hon) [N) 2 dE

= (2zN)""Ppy(1/N,k/N),

where

Lu@) =3 0 1€

and Py (Xo, X1,...,X,) is a polynomial with respect to (Xp, X1,...,X,) of order
2M.
Here we have

LemMA 2.1.
(1) It holds
(PN, PN )y =0 (k#2), || Dwilli = (2nN)"Pa(1/N,k/N).
(2) Sy ={DPn |k e Z"} (N e N) is a complete sequence of orthogonal subsets
in HM(R™).

Therefore we have from and Lemma 0.2
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THEOREM 2.1. Set

Fn(x) =Y, . 1Onkll3r (f Px k) @y k(%) (N €N)

for fe HM(R™), then
Fy — f in HY(R").
«{Fn(x)} (NeN) is a sequence of quasi-Fourier series in H™(R"), corre-

sponding to {Sy} (N e N)»
Let us consider

Fn(x) =, 10w kll5f (f, O k) 4y P i (%),
more precisely. Setting

an k= | On k|37 (s ON &) a>

we have
FN(X) = ZkeZ" aN,k(I)N,k(x).

We remark that

-1
aN,k={(27z)”"JQ LM(f)df} {(271)”"JQ f(f)LM(é)dé}

-1
_ {J La(€) dé} {J FE)Lu (&) dé}
QN k Qn

is the weighted-integral-mean value of f (&) in Qu x. Moreover, we have

Ex(Q)=avi (CeQui), Fy(x)=(@2m)~" J Fy(&)e™ de.

Hence we have

THEOREM 2.2. Set

Fn(x) =Y, o 1On k37 (f ®w k) e P k(%) (N € N),

-1
aN,kz{ L Lu(©) dé} {L A& Ly (@) dé}
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for fe HM(R™). Then

Fn(x) =), . avi®ni(x), En(&)=ani (£€Qnu),

and

Fy(x) — f(x) in H¥(R").
«Fn(&) is a step-function approximation of f(&))
22, {#yi(x)} in HM(R") Set
Bn,k(x) = Ly *On 1 (%)
= @0 | L)

Qn «

then we have

LeMMA 2.2. It holds

WO =0 (k#¢), ldnills = (2aN)™

THEOREM 2.3. Set

Fn(x) = (ZNN)"ZkeZ,,(f, S )Py k(x) (N eN)
for fe HM(R™), then

Fn— f in HY(R") (N — o).

ProOF. Since f e HM(R"), we have L}‘ff € L2(R"). Therefore, we have
from

Gn(x) = (22N)" Y, (Liff, ®n ) ®n k(x) € LX(R"),

IGy = Ly fIl = 0 (N — o).
Set
Fn(x) = L;}*Gn(x) e HY(R),
then
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Fn(x) = Q2aN)" Y (Laff @w i) Ly @ ie(x)

= (22N)" Y ", (2w P, (%)

and
15 — fllag = 13" (Fn = I =0 (N> o). O
Set sy = {@n x(x) |k € Z"}, then, {sy} (N e N) is a complete sequence of
orthogonal subsets in H™ (R"), from [Lemma 0.2. In other words, {#y(x)} (N € N)
in is a sequence of quasi-Fourier series of f in HM(R"), corre-
sponding to {sy} (N € N).

THEOREM 2.4. Set

Fn(x) = (2zN)" ZkeZ"(f’ on ) mPni(x) (N eN)

for fe HM(R"), then Fy(x) — f(x) in HM(R") (N — ). Moreover, set

bN,k={jQ dé} {JQ f(f)LM(f)l/zdf}

e (: integral-mean of (LM2 f )(&) in QN k),

FNX) =D i i(x),  FN(E) =briLlu(&)? (E€Qup).
{Fn(&) is a waved-step-function approximation of f(& )

PrROOF. Since

bnk = 2aN)"(f, v i) m

- N{j FELu(©)"? dé}
QN

Il

r _1 r
{ dé} { FELu(&)? dé}
JQu JQn

r _1 r
{ dé} { (L)) d:},
JOQu k JQn i
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we have
Fn(x) = aN)" Y, (651 b i (x)
= i ezn DN (X)
SICORD DAY g ORGSR
that is, |

Fn(&) =brpLlu(@™? ((eQuy). O
§3. A Sequence of Orthogonal Bases

3.1. A sequence of orthogonal bases in L?(R") In §1, we considered a
complete sequence of orthogonal subsets {Sy} (N eN) in L?(R"), where

Sy = {®nk |
ke Z"}. Here, for simplicity, we consider a sub-sequence of {Sn}:

{Svw}, N@A)=2% (1eN).

From [Lemma 0.3, {Sy(;} (A€ N) is also a complete sequence of orthogonal
subsets in L2(R"). Let us construct a sequence of orthogonal bases {Z;} (1€ N)
in L?(R") satisfying Sy < Z;.

First, we define fundamental functions. Set

1 (0<t<])
a(t) = {0 (otherwise)’
o () = a(t — k),
o k(1) = w(2t) = a2/t — k) = a(2/(t — 277k)).
Set
Ay = {4 k(0 ]j=0,1,2,..., ke Z}
for Ae N, then {(4;) is dense in L?(R). Set
1 0<t<1/2)
B =< -1 (1/)2<t< 1),
0  (otherwise)
Bi (1) = B(t — k),
B k(1) = Bi(271)
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and
B}» = {(XLk(Z) (k € Z)’ﬂl+j,k(t) (.] = 0’ 172’ R ,k € Z)}a
then B, is an orthogonal subset in L?(R). Moreover, since
%412k (8) = (1/2)0,(2) + (1/2)B;, (1),
%i41,241(2) = (1/2)o,4(2) = (1/2)B;,(2),

we have (4;> = (B;), therefore, (B;)> is dense in L?(R). Hence B; is an
orthogonal basis in L?(R). Set

J=1{-1,0,1,2,.. .},
By, -1,k(8) = az, (),
By ik () = Brasic(®)  (G=0,1,2,..),

then
By ={Bu,xt) (jeJ keZ)}
Now, define
W (0,56(E) = W0y, vy Gt i) ()
= By ik (1) - By ok (&n) for jeJ" and ke Z".
Remarking
Pk (E) = @k (1) -+ A iy (En) = Py, 1(E),

we have

Lemma 3.1.

(1) Set

2= {‘P(l),j,k(x) |J= (j17j27""jn) EJn7 k = (kl’k27°"’kn) EZn}a

then T; is an orthogonal basis in L*(R").
(2) It holds

Yy, (=1, =1),6(X) = Py, (X)y ¥y, (=1, =1kl = 2aN (1))~

Hence we have

f(x) = Zjel..,kezn I .kl =2 ¥y, ¥,k (x) in L (R™)
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for f € L?(R"). On the other hand, Fy(;(x) in is written as

Here we have

THEOREM 3.1. Let

f(x) = Zje,n’kezn ¥ .okl 72 ¥ ) P,k (%) in LA(R™)

be the Fourier series for f € L>(R"), corresponding to the orthogonal basis X,.
Then its sub-series

-2
Fny(x) = Zkezn ¥, (=1, =1, 1l P ), (=1, =10, k) P (1), (=1, = 1),k (X)

satisfies
|Fnay — fIl =0 (42— o).

A sequence of orthogonal bases in H*(R") In §2, we considered a complete
sequence of orthogonal subsets {sy} (N €N) in HM(R"), where sy = {dy |
k € Z"}. Here, we consider sub-sequence of {sy}:

{svwy}s N(A)=2* (AeN).

From Lemma 0.3, {sy(;} (A€ N) is also a complete sequence of orthogonal
subsets in HM(R™). Let us construct a sequence of orthogonal bases {6;} (4 € N)
in HM(R") satisfying sy < 6. Set

Wi,k (E) = a1 (O Lm (&)™,
then
Vi (w1 1) k(&) = i (E1) -+~ oz i, (En) Lag (€)'

= Sy k(L (&) = fyiay ()

Hence we have

LemMMA 3.2.
(1) Set

G, = {lﬁ(i),]’,k(X) |j= (j],jz,...,jn) EJ”,k = (k],kz,...,kn) GZ”},

then o, is an orthogonal basis in HM(R").
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(2) It holds

Yy, (=1, - 1),k (%) = vy k(%) W), (<1, —1),kllar = (2rN(4)) ™.

Hence we have

f(x) = Zjejn,kezn “‘/’(l),j,k“;;(f> Yy, m¥, k() in HY(R")
for f € HY(R"). On the other hand, %Fy(;(x) in MTheorem 2.3 is written as
Fnuy(x) = (2N (A))" Zkezn (fs 80y i) mPha),k(X)

-2
= Zkezn Wy, (=1,.... 1), kellag 5 Wy, (<1, =10, ) eV (0), (=1, = 1,1 ()

Here we have

THEOREM 3.2. Let

-2 .
f(x) = Z.eﬂ’kezn ey, siellad (Fs Wiy ) ey, i (x)  in HM(R™)

J

be the Fourier series for f € HM(R"), corresponding to the orthogonal basis ;.
Then its sub-series

)
Frnay(x) = Zkezn 10, <1, —1y,kllag s ¥, <1, =100 ¥ (), (=1, —1), 6 (X)

satisfies

\Fnoy — fllyr =0 (2 — o).
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