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A NOTE ON THE GENERALIZED JOSEPHUS PROBLEM

By

Sabur\^o UCHIYAMA

1. This is a continuation, with supplementary notes, of our previous paper
[3] in which some solutions have been provided for the generalized Josephus
problem. If we are given two integers $m\geqq 2$ and $n\geqq 1$ , supposing that $n$ objects,
numbered from 1 to $n$ , are arranged in a circle, starting then with object number
1 and counting each object in tum around the circle, clockwise or anticlockwise
in the same direction fixed once for all, we eliminate every mth object until all the
objects are removed. The kth Josephus number $a_{m}(k,n)(1\leqq k\leqq n)$ is defined to
be equal to $l(1\leqq l\leqq n)$ , if $l$ is the number attached to the object to be removed
at the kth step of reduction. We have plainly

$1\leqq a_{m}(k,n)\leqq n$

and

$a_{m}(1,n)\equiv m$ $(mod n)$ .

Thus far there is no reason to exclude the value $m=1$ , in which case we
have trivially $a_{m}(k, n)=k(1\leqq k\leqq n)$ . For a given $m\geqq 1$ in general $m$ induces
a permutation $\sigma_{m}=\sigma_{m,n}$ of the array $\langle 1,2, \ldots,n\rangle$ , that is, the Josephus
permutation

$\sigma_{m}=\left(\begin{array}{lll}1 & 2 & n\\a_{m}(1,n) & a_{m}(2,n) & a_{m}(n,n)\end{array}\right)$ .

For a fixed integer $n\geqq 1$ the number of all possible, distinct permutations $\sigma_{m}$

for various values of $m$ equals $M_{n}$ , the least common multiple (L.C.M.) of the
integers 1, 2, . .. , $n$ , and this fact is an immediate consequence of the congmence
substantially due to P. G. Tait,

(1) $a_{m}(k+1,n+1)\equiv m+a_{m}(k,n)$ $(mod n+1)$

(cf. Proposition 1 below).
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In \S 2 a description of the permutation $\sigma_{m}$ in terms of certain specific cyclic
permutations will be given together with several interesting consequences thereof.

In the article [3] we have formulated a hypothesis on the infinitude of
“limitative numbers” for every fixed $m$ , suggested by Seki Takakazu (cf. [3]). A
limitative number with respect to a given $m\geqq 2$ is by definition a positive integer
$n$ satisfying the condition $d_{m}(n+1)$ $:=a_{m}(n+1, n+1)=1$ . The hypothesis can
be easily confirmed to be true for $m=2$ and 3, as we have seen in [3; \S 7]. For
$m\geqq 4$ we may only prove that there are infinitely many positive integers $n$

satisfying the condition

$1\leqq d_{m}(n+1)\leqq m-1$ .

A characterization of such integers $n$ will be given in \S 3 below.
It may be of some interest to note that a proposition dual to the hypothesis

above, that is, the proposition to the effect that for every fixed integer $n\geqq 1$ there
exist infinitely many positive integers $m$ such that $d_{m}(n+1)=1$ , is easily shown
to be true (Proposition 6).

Several Japanese mathematicians in the eighteenth century treated also a
further generalization of the Josephus problem to determine Josephus numbers
$a_{m}(k, n)$ in which the integer $m$ may be not necessarily the same in each step of
eliminating the $n$ given objects. We shall present in \S 4 below an algorithm for
determining the Josephus numbers $a_{(m)}(k, n)(1\leqq k\leqq n)$ with an arbitrarily given
sequence $(m)=(m_{1},m_{2},m_{3}, \ldots)$ of positive integers.

In this respect it will be convenient to call the integer $m$ in the Josephus
problem, say, a reduction coefficient ( $\mathfrak{W}a$ , as named by Seki in [2]). Thus we
have so far considered the Josephus problem with a constant reduction coefficient,
and may deal anew also with the problem with various sequences of reduction
coefficients.

Thanks to the referee’s useful comments the writer was able to improve the
original draught of this paper.

2. Let us consider the generalized Josephus problem with given positive
integers $m$ and $n$ as parameters. Here $m$ is at present a constant reduction
coefficient and $n$ is the number of objects to be removed cyclically in tum by
every mth object. With the Josephus numbers $a_{m}(k,n)(1\leqq k\leqq n)$ we set

$ J_{m}=J_{m,n}=\langle a_{m}(1,n),a_{m}(2,n), \ldots,a_{m}(n,n)\rangle$ ,

which will be called the Josephus array corresponding to $m$ . We may write
symbolically
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$J_{m}=\sigma_{m}J_{1}$ ,

where $ J_{1}=\langle 1,2, \ldots, n\rangle$ and $\sigma_{m}$ is the Josephus permutation with respect to $m$

defined in \S 1.
If we set $M_{n}=L.C.M.(1,2, \ldots,n)$ with $M_{1}=1$ , then there holds

PROPOSITION 1. There are exactly $M_{n}$ different Josephus permutations
$\sigma_{m}=\sigma_{m,n}$ possible on 1,2, . . . , $n$ .

There is nothing to prove for $n=1$ . If $n=2$ then we have

$\sigma_{m}=\left(\begin{array}{ll}1 & 2\\1 & 2\end{array}\right)$ or $\left(\begin{array}{ll}1 & 2\\2 & 1\end{array}\right)$

according as $m$ is odd or even. Supposing then that $n>2$ and writing

$\sigma_{m}=(_{l^{1_{1}}}$ $l_{2}2$
$l_{n}n$ and $\sigma_{m}/=(_{l_{1}^{1_{/}}}$ $l_{2}2_{/}$

$l_{n}n$ ,

we see that if $m\equiv m^{\prime}(mod M_{n})$ then by Tait’s congruence (1) $l_{i}=l_{i}^{\prime}$ for
$i=1,2,$ $\ldots,$

$n$ , so that $\sigma_{m}=\sigma_{m^{\prime}}$ . Suppose now that $m\not\equiv m^{\prime}(mod M_{n})$ . If
$m\not\equiv m^{\prime}(mod n)$ then $l_{1}\neq l_{1}^{\prime}$ . If $m\equiv m^{\prime}(mod v)$ for $v=n,$ $n-1,$

$\ldots,$
$n-v_{0}+1$

and $m\not\equiv m^{\prime}(mod n-v_{0})$ for some $v_{0}$ with $1\leqq v_{0}\leqq n-2$ , then $l\cdot=l_{i}^{\prime}$ for $i=$

$1,2,$
$\ldots,$

$v_{0}$ and $l_{v_{0+1}}\neq l_{v_{0}+1}^{\prime}$ again by the congruence (1), so that $\sigma_{m}\neq\sigma_{m}/$ .

REMARKS. 1) We have for $1\leqq n\leqq 10$

Note that the relation

$\log M_{n}=(1+o(1))n$ $(n\rightarrow\infty)$
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is a consequence of (in reality, a relation equivalent to) the Prime Number
Theorem.

The set $J_{n}$ of all $M_{n}$ different Josephus permutations $\sigma_{m}=\sigma_{m,n}$ forms a
group under ordinary multiplication of permutations for $1\leqq n\leqq 4$ , in fact,
$J_{n}=S_{n}(1\leqq n\leqq 3)$ and $J_{4}=A_{4}$ ; for $n\geqq 5J_{n}$ does not.

2) W. J. Robinson [1] has also considered Josephus permutations, by re-
garding the Josephus arrays which can be obtained from a given Josephus array
by rotation as equivalent. However, this identification of the circular permu-
tations is apparently inadequate for our present purposes. Our expressions to be
fumished below for Josephus permutations (cf. Proposition 4) can nevertheless be
compared with those of Robinson’s.

We now define $M_{1,1}=1$ and

$M_{n,k}=L.C.M$ . $(n,n-1, \ldots , n-k+1)$ $(1 \leqq k\leqq n)$ .

0bviously we have $M_{n}=M_{n,n}$ and

$M_{n,1}=n$ , $M_{n,2}=n(n-1)$ , $M_{n,k}=L.C.M.(n, M_{n-1,k-1})$ .

PROPOSITION 2. For any given $n$ and $k(1\leqq k\leqq n)$ we have

$a_{j}(k,n)=a_{j}(k,n)$ if $i\equiv j(mod M_{n,k})$

and

$a_{i}(k,n)+a_{j}(k, n)=n+1$ if $i\geqq 1,$ $j\geqq 1$ and $i+j\equiv 1(mod M_{n,k})$ .

PROOF. We have $a_{m}(1,1)=1$ trivially for all $m\geqq 1$ . Suppose that $n\geqq 2$ and
$1\leqq k\leqq n$ . The first assertion of the proposition is an immediate consequence of
(1). As to the second we write

$j=zM_{n,k}+1-i$ $(1 \leqq i\leqq M_{n,k})$ ,

where $z$ denotes a positive integer not necessarily the same in each occurrence in
the following. If we set

$a^{*}(k,n)$ $:=n+1-a_{j}(k,n)$ ,

then with $j=zM_{n,1}+1-i=zn+1-i$

$a^{*}(1,n)=n+1-a_{j}(1,n)\equiv i$ $(mod n)$ ,

and with $j=zM_{n+1,k+1}+1-i$
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$a^{*}(k+1, n+1)=n+2-a_{j}(k+1, n+1)$

$\equiv n+2-(j+a_{j}(k,n))$ $(mod n+1)$

$\equiv i+(n+1-a_{j}(k, n))$ $(mod n+1)$

$\equiv i+a^{*}(k,n)$ $(mod n+1)$ ,

since $M_{n+I,k+1}\equiv 0(mod n+1)$ and $(mod M_{n,k})$ . It follows that $a^{*}(k, n)=$

$a_{i}(k, n)$ in view of Tait’s congruence (1). This completes the proof of our
proposition.

Suppose now that $n\geqq 2$ and $1\leqq k\leqq n$ . Let $Z_{n,k}(l)$ denote the number of
integers $m(1\leqq m\leqq M_{n,k})$ for which one has $a_{m}(k, n)=l(1\leqq l\leqq n)$ .

PROPOSITION 3. For every $n\geqq 2$ and fixed $k(1\leqq k\leqq n)$ we have

$Z_{n,k}(l)=\frac{M_{n,k}}{n}$

for each $l(1\leqq l\leqq n)$ .

PROOF. If $k=1$ then we have for every $n$

$a_{m}(1,n)\equiv m$ $(mod n)$ ,

whence follows

$Z_{n,1}(l)=1=\frac{M_{n,1}}{n}$

for any $l(1\leqq l\leqq n)$ .
Suppose then that $n$ and $k$ be given integers with $n\geqq k\geqq 2$ and 1

$(1 \leqq l\leqq n)$ be as before any fixed integer and assume that we have $a_{m}(k, n)=l$

for some reduction coefficient $m(1\leqq m\leqq M_{n,k})$ . Writing for simplicity’s sake

$h_{j}=a_{m}(k-i, n-i)$ $(0\leqq i\leqq k)$ ,

where $h_{0}=l,$ $1\leqq h_{i}\leqq n-i(1\leqq i\leqq k-1)$ and $h_{k}=0$ , we see in virtue of Tait’s
congruence (1) that the system of $k$ congmences

$($ 2; $k)$ $m\equiv h_{i-1}-h_{j}(mod n-i+1)$ $(i=1,2, \ldots, k)$

admits a solution in $m(mod M_{n,k})$ . Since by our assumption any subsystem of
the system $($2; $k)$ is soluble in $m$ , we may write $m=m_{n,j}(1\leqq m_{n,j}\leqq M_{n,j})$ for
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the solution of the system (2; j) consisting of the first $j(1\leqq j\leqq k)$ congruences
in $($ 2; $k)$ . Note that the integer $m_{n,j}(1\leqq j\leqq k)$ is uniquely determined (when the
system $($ 2; $j)$ is solvable) by the j-tuple of integers $(h_{1}, \ldots, h_{j})$ and vice versa.

We are now going to evaluate the number $H_{j}(1\leqq j\leqq k-1)$ of the possible
choices of the values of $h_{j}$ when the other $h_{i}\prime s$ are chosen and fixed (with $h_{0}=l$

and $h_{k}=0$ , of course).
We have for $j=1$

$m_{n,1}\equiv h_{0}-h_{1}$ $(mod M_{n,1})$

and for $j=2$

$m_{n,2}\equiv(1-n)(h_{0}-h_{1})+n(h_{1}-h_{2})$ $(mod M_{n,2})$ ,

where the parameter $h_{1}(1\leqq h_{1}\leqq n-1)$ may assume any integral value in
the designated range, so that we have $H_{1}=n-1=(n-1)/d_{1}$ with $d_{1}=$

$G.C.D.(M_{n,1},n-1)=1$ ; here and in what follows we shall write

$d_{/}\cdot=G.C.D.(M_{n,j},n-j)$ for $1\leqq j\leqq k-1$ .

Suppose now that $k>j\geqq 2$ . Then the system $(2; j+1)$ can be rewritten in
the form

$(2; j+1)$ $\left\{\begin{array}{l}m\equiv m_{n,j} (modM_{n,j})\\m\equiv h_{j}-h_{j+l} (modn-j),\end{array}\right.$

where the solvability condition of this system is that

$m_{n,j}\equiv h_{j}-h_{j+1}$ $(mod d_{j})$ .

Let for $1\leqq i\leqq k-1L_{i}$ be an integer satisfying the condition $ L_{j}(M_{n,i}/d_{i})\equiv$

$1(mod (n-i)/d_{i})$ and put $p_{i}=L_{f}M_{n,i}/d_{i}$ . It is not difficult to verify in particular
that

$m_{n,j}\equiv(1-p_{j-1})m_{n,j-1}+p_{j-1}(h_{j-1}-h_{j})$ $(mod M_{n,j})$ .

Since the integers $d_{j}$ and $d_{j-1}$ are coprime, $p_{/-1}$ is divisible by $d_{j}$ , whence follows
at once that $m_{n,j}\equiv m_{n,j-1}(mod d_{j})$ and the solvability condition for the system
$(2; j+1)$ is equivalent to

$m_{n,j-1}\equiv h_{j}-h_{j+1}$ $(mod d_{j})$ ;

thus the integer $h_{j}(1\leqq h_{j}\leqq n-j)$ is uniquely determined to the modulus $d_{j}$ in
terms of the other $h_{l}\prime s$ (in effect, of those $h_{i}\prime s$ for which $1\leqq i\leqq j+1,$ $i\neq j$) when
they are appropriately specified. We have, therefore, $H_{j}=(n-j)/d_{j}$ whatever the
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actual values of the $h_{j}$ thus obtained may be, which naturally holds true for each
$j(1\leqq j\leqq k-1)$ . We thus have proved that, if $n\geqq k\geqq 2$ and $Z_{n,k}(l)>0$ , then
there holds the relation

$Z_{n,k}(l)\leqq\prod_{j=1}^{k-1}H_{j}=\prod_{j=1}^{k-1}\frac{n-j}{d_{/}}=\frac{M_{n,k}}{n}$ ,

which is trivially valid also if $Z_{n,k}(l)=0$ ; in here the inequality sign $\leqq$ must in
fact be the equality $=$ for all 1 $(1 \leqq l\leqq n)$ , since we have

$\sum_{l=1}^{n}Z_{n,k}(l)=M_{n,k}$ .

This completes the proof of our proposition.

Let $m,$ $n$ and $k$ be again given integers such that $m\geqq 1,$ $n\geqq 1$ and $1\leqq k\leqq n$ .
We define $n$ cyclic permutations

(3) $w_{r}=w_{r,n}$ $:=(n-r+1,n-r+2, \ldots,n-1, n)$ $(1 \leqq r\leqq n)$ .

Here $w_{1}=\sigma_{1}$ is always the identical permutation.
The next proposition gives a characterization of our Josephus permutations

defined in \S 1; in there multiplication of two adjacent permutations should be
performed from right to left, the associative law for the product of three or more
permutations being naturally valid.

PROPOSITION 4. We have

(4) $\sigma_{m}=w_{n}^{m-1}w_{n-1}^{m-1}\cdots w_{2}^{m-1}$ ,

where $\sigma_{m}$ is the Josephus permutation

$\sigma_{m}=\sigma_{m,n}=(_{a_{m}(1,n)}1$ $a_{m}(2, n)2$ $a_{m}(n, n)n$

Proof is immediate, if we notice that

$w_{2}^{-m+1}\cdots w_{n-1}^{-m+1}w_{n}^{-m+1}\cdot\sigma_{1}=$ ( $a_{m}(2, n)2$ $a_{m}(n,n)n)=\sigma_{m}^{-1}$ ,

which is nothing but the definition, or the actual formation, of the Josephus array
$J_{m}=J_{m,n}$ ; the result (4) follows from this at once.

We note that Proposition 1 is an obvious consequence of Proposition 4. Also,
it can be easily observed that the congruenoe relation (1) is a corollary of (4). In
fact, we have by Proposition 4
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$ J_{m,n}=w_{n}^{m-1}\langle 1,J_{m,n-1}+\langle 1\rangle_{n-1}\rangle$ ,

where

$\langle 1, J_{m,n-l}+\langle 1\rangle_{n-1}\rangle=\langle 1, l_{1}+1, l_{2}+1, \ldots, l_{n-1}+1\rangle$

if $ J_{m,n-1}=\langle l_{1}, l_{2}, \ldots, l_{n-1}\rangle$ .
Notes. The cyclic permutation $w_{r}=(n-r+1, \ldots,n)(1\leqq r\leqq n)$ is of

length $r$ . Suppose $r\geqq 2$ and determine the integer $s$ by the condition $m-1\equiv s$

$(mod r),$ $0\leqq s\leqq r-1$ . If $s=0$ then

$w_{r}^{m-1}=w_{r}^{0}=w_{1}=\sigma_{1}$ (the identity of $S_{n}$ ),

and if $0<s\leqq r-1$ then, putting

$d_{r}:=G.C.D.(r,m-1)$ and $t_{r}:=\frac{r}{d_{r}}$ ,

we find

$w_{r}^{m-1}=w_{r}^{s}=\pi_{1}\pi_{2}\cdots\pi_{d_{r}}$ ,

where

$\pi_{i}=(a_{i,1},a_{i,2}, \ldots,a_{i,l_{r}})$ $(1\leqq i\leqq d_{r})$

with $a_{i,j}(1\leqq i\leqq d_{r}, 1\leqq j\leqq t_{r})$ determined by the conditions

$n-r+1\leqq a_{i,j}\leqq n$

and

$a_{i,j}\equiv n+i+(j-1)s$ $(mod r)$ .

If $i\neq i^{\prime}$ then $\pi_{i}$ and $\pi_{j^{\prime}}$ have no common components.
By the way, the signature, or character, $\chi(\sigma_{m})$ of the permutation $\sigma_{m}=\sigma_{m,n}$

is given by

$\chi(\sigma_{m})=(-1)^{I}$ with $I=\frac{1}{2}(m-1)n(n-1)$ .

A consequence of Proposition 4 is

PROPOSITION 5. We have for $1\leqq i\leqq M_{n}$

$\sigma_{M_{n}}\sigma_{i}=\sigma_{M_{n}+1-i}$ .
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Here, it will suffice only to note that

(5) $\sigma_{M_{n}}=(w_{2}\cdots w_{n-1}w_{n})^{-1}=\left(\begin{array}{llll}1 & & 2 & n\\n & n & -1 & 1\end{array}\right)$ .

We see from (5) that $d_{m}(n+1)=1$ whenever

$m\equiv 0$ $(mod M_{n+1})$ .

Thus:

PROPOSITION 6. Every integer $n\geqq 1$ is a limitative number with respect to

infinitely many values of reduction coefficient $m$ .

As a matter of fact, for every fixed $n\geqq 1$ the increasing sequence of positive
integers $m$ satisfying the condition $d_{m}(n)=1$ possesses, by Proposition 3,
asymptotic density $1/n$ .

For $n\geqq 2$ the cyclic permutations of $ J_{1}=\langle 1,2, \ldots, n\rangle$ and of $J_{M_{n}}=\langle n$ ,
$n-1,$ $\ldots,$

$ 1\rangle$ can be obtained in the following manner. If $d=G.C.D.(n, M_{n-1})$

then we have

$J_{1+zM_{n- 1}}=w_{n}^{zM_{n- 1}}J_{1}$ $(0\leqq z\leqq\frac{n}{d}-1)$ ,

which follows from Proposition 4, since

$\sigma_{1+zM_{n- I}}=w_{n}^{zM_{n- t}}$ ,

and similarly

$J_{M_{n}-zM_{n- 1}}=w_{n}^{zM_{n- 1}}J_{M_{n}}$ $(0\leqq z\leqq\frac{n}{d}-1)$

in view of Propositions 4 and 5.

3. Let $m$ be a fixed integer, $m\geqq 2$ . We consider Josephus numbers $d_{m}(n):=$

$a_{m}(n,n)$ for various values of $n\geqq 1$ , where $d_{m}(n)$ satisfies the relation (cf. (1))

(6) $d_{m}(n+1)\equiv m+d_{m}(n)$ $(mod n+1)$ .

It follows from (6) that for $m\geqq 3$

$2\leqq d_{m}(m)\leqq m-1$ and $d_{m}(m+1)=d_{m}(m)-1\leqq m-2$ .



58 Sabur\^o UCHIYAMA

We now define a sequence of integers $n_{j}(i=1,2,3, \ldots)$ recursively by

(7) $n_{1}=m\geqq 3$ , $n_{i+1}=\frac{m(n_{i}+1)-d_{m}(n_{i}+1)}{m-1}$ $(i\geqq 1)$ .

Then it can be readily verified that

(8) $1\leqq d_{m}(n_{j}+1)\leqq m-1$ for all $j\geqq 1$ .

In fact, this sequence $n_{i}$ is nothing but the sequence $n_{j}$ defined in [3; \S 4] with
$n_{1}=m$ and $c_{1}=d_{m}(m+1)$ , and our analysis in there guarantees the validity of
inequality (8); thus

PROPOSITION 7. For every fixed reduction coefficient $m\geqq 3$ there are infinitely
many positive integers $n$ satisfying the condition

$1\leqq d_{m}(n+1)\leqq m-1$ ;

the set of all such integers $n$ coincides with the set

$\{1, 2, \ldots,m-1\}\cup\{n_{j} : i=1,2,3, \ldots\}$ .

To ascertain the latter half of the statement of this proposition one may refer
to our formula (15) in [3; \S 5].

For the sake of brevity we set $z_{j}=n_{i}+1(l\geqq 1)$ . It follows from (7) that the
$z_{j}$ satisfy the relation

$(m-1)z_{i+1}-mz_{i}=d_{m}(z_{i+1})-d_{m}(z_{j})$ $(i\geqq 1)$ ,

and we find after a simple computation just as in [3; \S 2]

$\theta:=\lim_{j\rightarrow\infty}z_{j}(\frac{m-1}{m})^{j}=z_{i}(\frac{m-1}{m})^{i}+\sum_{v=i}^{\infty}\frac{d_{m}(z_{v+1})-d_{m}(z_{v})}{m}(\frac{m-1}{m})^{v}$

$=z_{j}(\frac{m-1}{m})^{i}-\frac{d_{m}(z_{i})}{m}(\frac{m-1}{m})^{j}+\frac{1}{m-1}\sum_{v=i+1}^{\infty}\frac{d_{m}(z_{v})}{m}(\frac{m-1}{m})^{v}$

for all $i\geqq 1$ , and this proves

PROPOSITION 8. We have for every fixed $m\geqq 3$ with $z_{i}=n_{i}+1$

$-\frac{m-2}{m}<z_{j}-\theta(\frac{m}{m-1})^{i}<\frac{m-2}{m}$ $(i\geqq 1)$ ,

where $\theta$ is the constant depending only on $m$ defined above.
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For $m=3$ and 4 $z_{j}=n_{j}+1$ is thus determined to be the nearest integer to
$\theta(m/(m-1))^{i}(i\geqq 1)$ .

EXAMPLES. 1) $m=3$ : $\theta=2.73758147\ldots$

2) $m=4$ : $\theta=3.88885089\ldots$

3) $m=5$ : $\theta=5.00535701\ldots$

4) $m=6$ : $\theta=5.78453860\ldots$

5) $m=7$ : $\theta=6.79391843\ldots$

6) $m=8$ : $\theta=7.98689276\ldots$

7) $m=9$ : $\theta=8.66739501\ldots$

8) $m=10$ : $\theta=9.64158446\ldots$

4. As is noted in \S 1 above, it is known to us that some Japanese
mathematicians in the Edo era treated the Josephus problem in such a still more
generalized form as the reduction coefficient $m$ may vary in each step of
eliminating the given objects. Thus we are given a number $n\geqq 2$ of the objects
and a certain sequence of reduction coefficients $m_{v}\geqq 1(v=1,2,3, \ldots)$ , and have
to find for instance the number attached to the object which is to be removed
at the specific vth step, especially in the nth step, of reduction. The sequences
$(m)=(m_{v})$ of reduction coefficients we often observe in the existing literature
(most of which has already become hardly accessible to us, however) are, for
instance,

the natural numbers: $m_{v}=v$ ,

the triangular numbers: $m_{v}=\frac{1}{2}v(v+1)$ and

the tetrahedral numbers: $m_{v}=\frac{1}{6}v(v+1)(v+2)$ .

Now, let $ J_{1}=\langle 1,2, \ldots, n\rangle$ be as before the initial Josephus array. With the
cyclic permutations $w_{r}=w_{r,n}(1\leqq r\leqq n)$ specified in (3) we have

PROPOSITION 9. The Josephus array $J_{(m)}$ of $n$ objects 1, 2, . . . , $n$ with respect
to a given sequence of reduction coefficients $(m)=(m_{v})$ can be obtained through

$J_{(m)}=\sigma_{(m)}J_{1}$ ,

where $\sigma_{(m)}$ is the permutation defined by

$\sigma_{(m)}=w_{n}^{m_{1}-1}w_{n-1}^{m_{2}-1}\cdots w_{2}^{m_{n- 1}-1}$ .
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For $1\leqq k<n$ (or rather $k<n-1$ ) the first $k$ components of $J_{(m)}$ are de-
termined by the first $k$ factors ( $i.e$. the $k$ factors counting from the left end) of this
permutation $\sigma_{(m)}$ .

Proof is similar to that of Proposition 4.

5. Here we collect some examples to our Propositions 4 and 9, illustrating
the scope of the algorithms thereby implied.

Given an integer $n\geqq 2$ and a sequenoe of positive integers $(m)=(m_{v})$ , we set
the starting array

$ J^{(1)}=J_{1}=\langle 1,2, \ldots,n\rangle$

and successively determine the arrays

$J^{(s+\mathfrak{l})}=w_{s+1}^{m_{n- s}-1}J^{(s)}$ $(1 \leqq s\leqq n-1)$

with the cyclic permutations $w_{r}$ defined in (3). The final array $J^{(n)}=J_{(m)}$ is the
required Josephus array with respect to the sequence of reduction coefficients
$(m_{v})$ .

In order only to determine the first $k$ components of the Josephus array $J_{(m)}$ ,

where $1\leqq k<n$ , we may begin with $J^{(n-k)}=J_{1}$ and then deal with the arrays
$J^{(s)}(n-k<s\leqq n)$ just as in the above.

Note that for $s(2\leqq s<n)$ the first $n-s$ components of the array $J^{(s)}$ are
regularly 1, 2, . . . , $n-s$ . In the examples that follow we shall, therefore, omit to
enter these obvious numerals in the arrays relevant to our algorithms.

EXAMPLE 1. $n=16,$ $m=10$

$ J^{(2)}=\langle 16, 15\rangle$
$ J^{(3)}=\langle 14, 16, 15\rangle$
$ J^{(4)}=\langle 14, 15, 13, 16\rangle$
$ J^{(5)}=\langle 16, 13, 14, 12, 15\rangle$
$ J^{(6)}=\langle 14, 13, 16, 11, 15, 12\rangle$
$ J^{(7)}=\langle 12, 16, 15, 11, 13, 10, 14\rangle$
$ J^{(8)}=\langle 10, 13, 9, 16, 12, 14, 11, 15\rangle$
$ J^{(9)}=\langle 8, 10, 13, 9, 16, 12, 14, 11, 15\rangle$

$ J^{(10)}=\langle 16, 7, 9, 12, 8, 15, 11, 13, 10,14\rangle$

$ J^{(11)}=\langle 15, 14, 16, 7, 10, 6, 13, 9, 11, 8, 12\rangle$

$ J^{(12)}=\langle 14, 12, 11, 13, 16, 7, 15, 10, 6, 8, 5, 9\rangle$

$ J^{(13)}=\langle 13, 10, 8, 7, 9, 12, 16, 11, 6, 15, 4, 14, 5\rangle$
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$ J^{(14)}=\langle 12, 8, 5, 3, 16, 4, 7, 11, 6, 15, 10, 13, 9, 14\rangle$

$ J^{(15)}=\langle 11, 6, 2, 14, 12, 10, 13, 16, 5, 15, 9, 4, 7, 3, 8\rangle$

$J^{(16)}=\langle 10, 4, 15, 11, 7, 5, 3, 6, 9, 14, 8, 2, 13, 16, 12, 1\rangle=J_{10}$

EXAMPLE 2. $n=20,$ $m_{v}=2v-1(v\geqq 1)$

$ J^{(2)}=\langle 19, 20\rangle$
$ J^{(3)}=\langle 19, 20, 18\rangle$
$ J^{(4)}=\langle 17, 19, 20, 18\rangle$
$ J^{(5)}=\langle 16, 17, 19, 20, 18\rangle$
$ J^{(6)}=\langle 19, 20, 15, 17, 18, 16\rangle$
$ J^{(7)}=\langle 19, 17, 18, 20, 15, 16, 14\rangle$
$ J^{(8)}=\langle 13, 19, 17, 18, 20, 15, 16, 14\rangle$
$ J^{(9)}=\langle 16, 17, 14, 12, 13, 15, 19, 20, 18\rangle$

$ J^{(10)}=\langle 11, 16, 17, 14, 12, 13, 15, 19, 20, 18\rangle$

$ J^{(11)}=\langle 17, 18, 12, 13, 10, 19, 20, 11, 15, 16, 14\rangle$

$ J^{(12)}=\langle 13, 9, 10, 16, 17, 14, 11, 12, 15, 19, 20, 18\rangle$

$ J^{(13)}=\langle 9, 14, 10, 11, 17, 18, 15, 12, 13, 16, 20, 8, 19\rangle$

$J^{(14)}=$ \langle 19, 7, 12, 8, 9, 15, 16, 13, 10, 11, 14, I8, 20, $ 17\rangle$

$ J^{(15)}=\langle 16, 14, 17, 7, 18, 19, 10, 11, 8, 20, 6, 9, 13, 15, 12\rangle$

$ J^{(16)}=\langle 13, 8, 6, 9, 15, 10, 11, 18, 19, 16, 12, 14, 17, 5, 7, 20\rangle$

$ J^{(17)}=\langle 10, 19, 14, 12, 15, 4, 16, 17, 7, 8, 5, 18, 20, 6, 11, 13, 9\rangle$

$ J^{(18)}=\langle 7, 14, 5, 18, 16, 19, 8, 20, 3, 11, 12, 9, 4, 6, 10, 15, 17, 13\rangle$

$ J^{(19)}=\langle 4, 9, 16, 7, 20, 18, 2, 10, 3, 5, 13, 14, 11, 6, 8, 12, 17, 19, 15\rangle$

$J^{(20)}=\langle 1,4,9,16,7,20,18,2,10,3,5,13,14,11,6,8,12,17,19,15\rangle=J_{(m)}$

EXAMPLE 3. $n=20,$ $m_{2v-1}=9,$ $m_{2v}=13(v\geqq 1)$

$ J^{(2)}=\langle 19, 20\rangle$
$ J^{(3)}=\langle 18, 19, 20\rangle$
$ J^{(4)}=\langle 17, 18, 19, 20\rangle$
$ J^{(5)}=\langle 18, 19, 20, 16, 17\rangle$
$ J^{(6)}=\langle 17, 20, 15, 16, 18, 19\rangle$
$ J^{(7)}=\langle 19, 15, 18, 20, 14, 16, 17\rangle$
$ J^{(8)}=\langle 13, 19, 15, 18, 20, 14, 16, 17\rangle$
$ J^{(9)}=\langle 15, 16, 13, 18, 12, 14, 17, 19, 20\rangle$

$ J^{(10)}=\langle 19, 13, 14, 11, 16, 20, 12, 15, 17, 18\rangle$

$ J^{(11)}=\langle 11, 20, 14, 15, 12, 17, 10, 13, 16, 18, 19\rangle$

$ J^{(12)}=\langle 17, 19, 16, 10, 11, 20, 13, 18, 9, 12, 14, 15\rangle$
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$ J^{(13)}=\langle 20, 16, 18, 15, 9, 10, 19, 12, 17, 8, 11, 13, 14\rangle$

$ J^{(14)}=\langle 15, 14, 10, 12, 9, 17, 18, 13, 20, 11, 16, 19, 7, 8\rangle$

$ J^{(15)}=\langle 18, 12, 11, 7, 9, 6, 14, 15, 10, 17, 8, 13, 16, 19, 20\rangle$

$ J^{(16)}=\langle 13, 10, 20, 19, 15, 17, 14, 6, 7, 18, 9, 16, 5, 8, 11, 12\rangle$

$ J^{(17)}=\langle 16, 8, 5, 15, 14, 10, 12, 9, 18, 19, 13, 4, 11, 17, 20, 6, 7\rangle$

$ J^{(18)}=\langle 11, 6, 16, 13, 5, 4, 18, 20, 17, 8, 9, 3, 12, 19, 7, 10, 14, 15\rangle$

$ J^{(19)}=\langle 14, 4, 18, 9, 6, 17, 16, 11, 13, 10, 20, 2, 15, 5, 12, 19, 3, 7, 8\rangle$

$J^{(20)}=\langle 9,2,12,6,17,14,5,4,19,1,18,8,10,3,13,20,7,11,15,16\rangle=J_{(m)}$

EXAMPLE 4. $n=20,$ $m_{v}=\frac{1}{2}v(v+1)(v\geqq 1)$

$ J^{(2)}=\langle 20, 19\rangle$
$ J^{(3)}=\langle 20, 19, 18\rangle$
$ J^{(4)}=\langle 17, 20, 19, 18\rangle$
$ J^{(5)}=\langle 16, 17, 20, 19, 18\rangle$
$ J^{(6)}=\langle 20, 15, 16, 19, 18, 17\rangle$
$ J^{(7)}=\langle 20, 19, 14, 15, 18, 17, 16\rangle$
$ J^{(8)}=\langle 15, 14, 13, 16, 17, 20, 19, 18\rangle$
$ J^{(9)}=\langle 17, 20, 19, 18, 12, 13, 16, 15, 14\rangle$

$ J^{(10)}=\langle 16, 12, 15, 14, 13, 17, 18, 11, 20, 19\rangle$

$ J^{(11)}=\langle 20, 15, 11, 14, 13, 12, 16, 17, 10, 19, 18\rangle$

$ J^{(12)}=\langle 17, 16, 11, 19, 10, 9, 20, 12, 13, 18, 15, 14\rangle$

$ J^{(13)}=\langle 17, 13, 12, 20, 15, 19, 18, 16, 8, 9, 14, 11, 10\rangle$

$ J^{(14)}=\langle 20, 16, 12, 11, 19, 14, 18, 17, 15, 7, 8, 13, 10, 9\rangle$

$ J^{(15)}=\langle 11, 10, 6, 17, 16, 9, 19, 8, 7, 20, 12, 13, 18, 15, 14\rangle$

$ J^{(16)}=\langle 19, 9, 8, 20, 15, 14, 7, 17, 6, 5, 18, 10, 11, 16, 13, 12\rangle$

$ J^{(17)}=\langle 13, 11, 18, 17, 12, 7, 6, 16, 9, 15, 14, 10, 19, 20, 8, 5, 4\rangle$

$ J^{(18)}=\langle 8, 18, 16, 5, 4, 17, 12, 11, 3, 14, 20, 19, 15, 6, 7, 13, 10, 9\rangle$

$ J^{(19)}=\langle 4, 10, 20, 18, 7, 6, 19, 14, 13, 5, 16, 3, 2, 17, 8, 9, 15, 12, 11\rangle$

$J^{(20)}=\langle 1,4,10,20,18,7,6,19,14,13,5,16,3,2,17,8,9,15,12,11\rangle=J_{(m)}$

EXAMPLE 5. $n=16,$ $m_{v}=\frac{1}{6}v(v+1)(v+2)(v\geqq 1)$

$ J^{(2)}=\langle 16, 15\rangle$
$ J^{(3)}=\langle 15, 14, 16\rangle$
$ J^{(4)}=\langle 15, 13, 16, 14\rangle$
$ J^{(5)}=\langle 15, 13, 16, 14, 12\rangle$
$ J^{(6)}=\langle 14, 12, 16, 13, 11, 15\rangle$
$ J^{(7)}=\langle 12, 16, 14, 11, 15, 13, 10\rangle$
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$ J^{(8)}=\langle 13, 16, 12, 10, 15, 11, 9, 14\rangle$
$ J^{(9)}=\langle 10, 15, 9, 14, 12, 8, 13, 11, 16\rangle$

$ J^{(10)}=\langle 10, 13, 8, 12, 7, 15, 11, 16, 14, 9\rangle$

$ J^{(11)}=\langle 6, 10, 13, 8, 12, 7, 15, 11, 16, 14, 9\rangle$

$ J^{(12)}=\langle 15, 16, 8, 11, 6, 10, 5, 13, 9, 14, 12, 7\rangle$

$ J^{(13)}=\langle 10, 8, 9, 14, 4, 12, 16, 11, 6, 15, 7, 5, 13\rangle$

$ J^{(14)}=\langle 12, 5, 3, 4, 9, 13, 7, 11, 6, 15, 10, 16, 14, 8\rangle$

$ J^{(15)}=\langle 5, 15, 8, 6, 7, 12, 16, 10, 14, 9, 3, 13, 4, 2, 11\rangle$

$J^{(16)}=\langle 1,5,15, 8, 6, 7, 12, 16, 10, 14, 9, 3, 13, 4, 2, 11\rangle=J_{(m)}$
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