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RIEMANNIAN MANIFOLDS STRUCTURED
BY A LOCAL CONFORMAL SECTION

By

Filip DerFever and Radu Rosca

Abstract. Geometrical and structural properties are proved for
manifolds which are structured by the presence of a local conformal
section.

1 Introduction

Let (M,g) be an n-dimensional Riemannian manifold and let 0=
vect{e;|i=1,...n} be a local field of orthonormal frames over M and let
0* = covect{w'|i=1,...n} be its associated coframe. Let a =3 " t,w’ be a
globally defined 1-form and let J = o be its dual vector field. If the connection
forms 6 associated with (@ satisfy

(eine, Ty =0,

we say that M is structured by a local conformal section 7.
In the present paper, we prove that in this case J is a concurrent vector field
which satisfies

V2T =pZ, ZeZE(M),peC®(M).

In consequence of this fact, 7 is both a conformal vector field (with p as
conformal factor) and an exterior concurrent vector field [12]. Moreover, in
Section 3 the following properties are also proved:

(i) the dual form, the connection forms, and the curvature forms associated
with @ are d~*-exact, d-**-exact, and d~**-exact, respectively;

(ii) 7 commutes with the dual vectors and the connection forms 6,

(iii) the divergences of e; constitute an m-dimensional eigenspace of A,
corresponding to the eigenvalue —((n+1)/2)p;
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(iv) the scalar curvature S of M is expressed by

2
n-+n-—2
S=-——7F—#

(v) if % is any parallel vector field, then through Weitzenbock’s formula
one finds that g(7,%) is an eigenfunction of A.

Next, in Section 4 we study some properties of the Lie algebra of infinitesimal
transformations induced by 7 and prove:

(i) 7 defines an infinitesimal conformal transformation of S and of the
function ¢(7,Z), for Z € E(M), which means that

-3
LS =pS, Lrg(T,Z) = n”_

(ii)) we denote by V,u,y, and L, the canonical vector field, the Liouville 1-
form [4], the canonical symplectic form on TM, and the operator of
Yano and Ishihara, respectively; then y is a Finslerian form which is
invariant by J;

(iii) the complete lift Q€ of the symplectic form Q of M is also conformally
symplectic on TM;

(iv) the complete lift «¢ of o = 7 > is also an exact form.

2 Preliminaries

Let (M,g) be an n-dimensional Riemannian manifold and let V be the
covariant differential operator defined by the metric tensor. We assume in the
sequel that M is oriented and that the connection V is symmetric.

Let I'TM = E(M) be the set of sections of the tangent bundle TM, and

b TM 5 T*M and #:TM E T*M

b

the classical isomorphisms defined by the metric tensor g (i.e. ’ is the index

lowering operator, and # is the index raising operator).
Following [I10], we denote by

AY(M,TM) = T Hom(A/TM, TM),

the set of vector valued g-forms (¢ < dim M), and we write for the covariant
derivative operator with respect to V

dV i AY(M,TM) — AT\ (M, TM).

It should be noticed that in general d¥° = d¥ od¥ # 0, unlike d2=dod = 0.
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Furthermore, we denote by dp € A'(M,TM) the canonical vector valued 1-
form of M, which is also called the soldering form of M [3]; since V is assumed
to be symmetric, we recall that the identity dV(dp) =0 is valid.

The operator

d? =d + e(w), (1)

acting on AM is called the cohomology operator [5]. In (1), e(w) means the
exterior product by the closed 1-form o, i.e.

| dw‘uzdu—l—av)/\u,
with ue AM. Clearly one has the identity
d®od® = 0. - )
A form u e AM such that
d®u =0, o (3)

is said to be d“-closed, and w is called the cohomology form.
A vector field X which satisfies

A" (VX) = VX =nndpe AX(M,TM), meAM, (4)

is defined to be an exterior concurrent vector field [12]. The 1-form = in (2) is
called the concurrence form and is defined by

n=AX", (5)

where A€ C*(M) is a nonzero conformal scalar associated with X. If J is any
conformal vector field on M, which means that

gﬂ'g:pg@<VZ~7~,Z’>+<VZ'=O772>:P<Z,Z/>, (6)
then it follows that
p= % div 7. 0

Therefore, in application of Orsted’s lemma one can write
LrZ' =pZ' + 7,2, (8)

where [,] stands for the Lie bracket. If S is the scalar curvature of M, then
Yano’s formula reads

LyrS=(n—-1)Ap— Sp. : 9)
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Let
(Hessy p)(Z,Z') = 9(Z, H,Z"), (10)
where
H,Z' =V grad p, (11)
then
297 R(Z,2') = (Ap)9(Z, Z') — (n — 2)(Hessy p)(Z,2Z"). (12)

In Section 5 we will rely on the following concepts concerning the tangent bundle
manifold TM having as basis manifold M. Denote by V(V!) (i=1,...n) the
Liouville vector field (or the canonical vector field on TM [6]). Accordingly, one
may consider the sets

_ _ * i i —
@—{e,,awll 1. }, and #* ={w',dV'|i=1,...n},

as an adapted vectorial basis, and an adapted cobasis in TM, respectively.
For application in the sequel, we remind that the vertical differential operator
dy is an antiderivation of degree 1 on A(TM), and is defined by

o - N o
B =D g, (@) =0, dr(dv =0, (13)

the vertical operator iy, which is a derivation of degree 0 on A(7M), is defined

by
iv(f)=0, iy(@)=0, ipdV')=aw'" (14)
Moreover, both operators dy and iy satisfy the following relation
[dv,iv] =4d

Next, with ¥ denoting the Liouville vector field V, which may be expressed as

n 0
V=;V’W,

then, by definition, any 1-form u such that
Lyu = yu (15)

is said to be homogeneous of degree .
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The vertical lift ZV of any vector field Z on M with components
Z' (i=1,...n) is expressed by

", 0 0
Vo __ i . .
7 —Zl Zi 0 = (Z,), (16)

and the complete lift Z€ of Z(Z') (i=1,...n) is given by

n

i
ZC:Z<Ziei+0Zi—a-?ﬁ) =: (aZz> (17)

i=1

where 0Z'=3%"7_, V*0,Z', with d, the pfaffian derivative.
Finally, the complete lift ¢ of a 1-form =3 B’ is defined by

BE =S (@B + 5 dV') = (3B, F). (18)

i=1

3 Manifolds with a Local Conformal Section

Considering an n-dimensional manifold (M,g), then in terms of the local
field of adapted vectorial frames (@ =vect{e;|i=1,...n} and its associated
coframe O* = covect{w’|i=1,...n}, the soldering form dp can be expressed as

n
dp = Za)i ® e;; (19)
i=1
and we recall that E. Cartan’s structure equations can be written as
n
Ves=3 02 ®es, (20)
B—1
n
do? = =) 05 n®, (21)
B=1
n
doy = - 05 AO5+OF. (22)
Cc=1

In the above equations 6 (respectively ®) are the local connection forms in the
tangent bundle TM (respectively the curvature 2-forms on M).
Let

o= i ti' (23)
i=1
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be a globally defined 1-form on M and let = o* be its dual vector field. If the
connection forms satisfy

Ceine, Ty =0], (24)

then one says that M is structured by a local conformal section J. From

and one gets that |
0/ = o’ — tiw'. (25)
This implies that
0/(7) =0, (26)

which shows that the forms 6 are integral relations of invariance [8]. Now, in
consequence of [24), and making use of [23), one finds that

do' =arw' = do=0. (27)
Hence, in terms of d“-cohomology, and in view of (3), one may write that
d*w' =0, (28)

i.e. all covectors of O* are d~*-closed. :
Since J = >_", t;e;, and taking into account (20) and [25), it follows that

Vei=t;dp—-0'®7T. (29)

Recalling now that at each point pe M, divZ =Tr(VZ) = Y., w*(V,Z), one
derives from that

div e; = (n — l)t,’, (30)

which provides a geometrical interpretation for the components of 7.
On the other hand, on behalf of one gets

dt; = tia + aw’, ae C*(M), (31)

and by exterior differentiation is can be seen that the scalar function a must
in fact be a constant. Setting 2r = |7 ||* for notational brevity, one finds by

and that
dt = (2t + a)a, (32)

which shows that « is an exact form. If we put

p =22 +a) e C*(M), (33)
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one derives that
dp = 2pa, (34)
and

Fro' =% (35)

The above equation expresses that the vector field  defines an infinitesimal
conformal transformation of all covectors of ©*; according to a well know
definition [8], we say that 7 defines a local conformal section of the manifold M.

Next, with the help of and [(31), we get

VT = é—’ dp, | (36)

which shows that J is a concurrent vector field ‘. In turn, this implies the
following two properties for 7 : |

(@) 7 is a conformal vector field on M, i.e.
ZLrg = pg, (37)
and

div g = gp; (38)

(b) 7 is an exterior concurrent vector field [12], which by satisfies

VT =pandp =pT° ndp. (39)
Further, invoking and yields
d0] = 20 A 0] + 2a0’ A/, (40)

and making use of [24), one finds that the curvature forms @ of M can be
expressed by

i_ i P i i ‘7
®j—aA0j+<§+a>a) Ao’ (41)

In consequence of [41), one finds that the components %#; of the Ricci tensor #
are

{%: —(n=2)(t)* —n(5 - a), (42)
e@ij = —(I’l — 2)lilj. .
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Now it can be observed that for (42) to be consistent with [39), the constant a
must vanish. Accordingly, yields

do] = 2a 10}, (43)
and also
@ =and +Lw' Ao, (44)
J J 2

Next, taking the exterior differential of [44), one finds by that
d®; = 4pan ©;. (45)

In terms of cohomology, the above formulas can be interpreted as follows: on the
considered manifold, the dual forms, the connection forms, and the curvature
forms are d—*-exact, d~2*-exact, and d~*’*-exact, respectively.

If we write now S for the scalar curvature of (M, g), then, in consequence of
and a =0, one gets that

2 -2
§=-"1025), (46)

which since p = 2¢g(7,7) shows that S is always negative. Next, we define
E,'j = t,~ej — tjei, (47)

for the dual vectors of 0{ . Taking the covariant differential of Ej;, one finds by
29)

dE;=a®E; -0/ ® 7, (48)
and on behalf of [31), one may write
(7,E;] =0. (49)

Hence, the conformal section J commutes with all the dual vectors of the
connection forms on M. Now, by reference to Orsted’s lemma [1}, it follows in
virtue of that

Ly 0! = pb!, (50)
and by also that
Lr0! =2p@]. (51)

The above equations now express that the vector field 7 defines an infinitesimal
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conformal transformation [7], not only of the dual forms of ¢*, but also of the
connection and the curvature forms.

Further, since da = —div.Z (where J denotes the codifferential operator),
then, by and [34), one calculates that

Ao = —npa. (52)

This shows that « is an eigenform of the Laplacian with —np as associated
eigenvalue. As p is always positive, it follows from the nature of the spectrum of
the Laplacian operator that a manifold structured by a local conformal section
cannot be compact. With the general formula Av = —divgrad v and using [34),
one gets

n+1

AL =-"1"p, 53
t 5Pt (53)
which by turns into

Adive = - ?—jz_—lp div e;. (54)

The above equation expresses that the divergencies of the vector basis 0 on M
form an n-dimensional space E”(M), which is an eigenspace of A corresponding
to the eigenvalue —((n + 1)/2)p. Similarly, one finds by dt = (2t + a)a (see [32))

and that

tr V2T = —

pT, (55)

and
2

v ==%-. (56)

It can be checked that the above equations, in combination with [52), are indeed
consistent with Bochner’s theorem [10]

2r V2Z, Z> + 2|[VZ||* + A|| Z)|* = 0.
Summarizing, we can formulate the following
THEOREM 3.1. Let (M,g) be an n-dimensional Riemannian manifold struc-

tured by a local conformal section I and let o = T > be the dual form of 7. If O
is a local field of orthonormal frames over M, then the dual forms, the connection
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forms, and the curvature forms are d *-exact, d **-exact, and d~*"*-exact, re-
spectively. Furthermore:

(i) I commutes with the dual vectors of the connection forms 0 on M,

(ii) the divergences of the vector basis on M constitute an eigenspace of A
which corresponds to the eigenvalue —((n+1)/2)p;

(iii) the scalar curvature S of M is negative and is given by S =
—((n? +n—2)/2)p;

(iv) o is an eigenform of A and the manifold M under consideration can not be
compact.

4 The Lie Algebra of Infinitesimal Transformations

In this section, we discuss some properties of the Lie algebra of infinitesimal
transformations generated by the conformal field 7. First, by [36), one may write

grad p = 2p7 = ||grad p||* = 2p°. (57)

Therefore,
div(grad p) = (n+ 2)p%. (58)

The above equations show that ||grad p||2 and div(grad p) can be expressed as
functions of p. Thus, on behalf of a well known definition [14], it follows that the
conformal scalar p is an isoparametric function.

Now, by reference to Yano’s formula (9) one gets

LrS = —

i.e. S defines an infinitesimal conformal transformation of the scalar curvature S.
Next, since
Vs grad p = 3p>7,

one finds by (11}, (12}, and (42) that

2n

- __13/)9(72), ZeE(M).

Ly9(TZ) =
Therefore, and on behalf of (57), it follows that
V grad p = p? dp + 2a ® grad p. (60)

This shows that grad p is a torse forming vector field [9] with 2o as
generating form.
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We assume from now on that M is of even dimension, say n = 2m, and we
suppose that the following 2-form of rank 2m is globally defined on M

Q:Zw"Awi*, i*=1i+m. (61)
i=1

Exterior differentiation of gives in combination with that
d—*Q =0, (62)

which shows that Q defines a local conformal symplectic structure with « (resp.
J) as covector of Lee (resp. vector of Lee).
Next, by it follows that

LrQ = pQ, (63)

which means that 4 defines an infinitesimal conformal transformation of Q.
Let now &, be the vector space such that for every X, € &,

a(Xy) = Cst.
Denote by
u:TM - T*M : Z — izQ
the bundle isomorphism defined by Q. Setting then g = u(X,), 6ne gets by
P Q=d [+ 2cQ,
and on behalf of (2) one derives
A= (%, Q).

Therefore, we conclude that the Lie derivatives #x,Q are also d ?*-exact. Set
now o

Xﬂ = ﬁ# = Z(t,-e,w - t,-*e,-),
i=1
and operate on Xz by V. By and [33), with a =0, one calculates that
VXp = Xp AN f,

which shows that X} is a Killing vector field. Moreover, one can also verify that
(7, Xp], ie. Xz commutes with 7.
Summarizing, we can formulate the following
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THEOREM 4.1. Let (M,g) be the manifold defined in Section 3. Then, the
conformal scalar p associated with J is an isoparametric function and I defines an
infinitesimal conformal transformation of the scalar curvature S on M and of the
Sfunctions g(7 ,Z) (Z € E(M)); that is

Z78 = pS,
2n-3
L5797, 2) =——r9(7,2).

Besides, if M is of even dimension, it admits a conformal symplectic structure
(Q,a), having o =T > as covector of Lee, ie. d2*Q =0, and T defines an
infinitesimal conformal transformation of Q, ie. L7Q = pQ. If &y is the vector
space such that for X, € &, one has a(Xy) = Cst., then the Lie derivative ¥x,Q is
d=*-exact and Xg is a Killing vector field which commutes with T .

5 Geometry of the Tangent Bundle

Let now TM be the tangent bundle having as basis the manifold M
introduced in Section 3, which is now in addition assumed to be of dimension
2m. In the present section we will study the properties of the lifts to the tangent
bundle TM of the tensor fields discussed in the previous sections. Denote by
V(V") the canonical vector field (or Liouville vector field) and consider
B* ={w',dV'|i=1,...2m} as a covectorial basis of TM. Recalling that the
complete lift of the 2-form w’Aw/ is defined by

(@' A)C =dVine + o' AdV, (64)
one derives by reference to that

m
Q€ =) @V ro" +o' AdV"), i*=it+m; (65)
i=1
we remind that one knows from that Q€ defines an almost symplectic
structure on TM. Taking the exterior differential of Q, one finds by

dQ¢ = a A QF. (66)

Hence, we observe that in the case under consideration the conformal character
of Q is conserved bij complete lifting; we emphasize the remarkable aspect of this
fact, since in general this property is not conserved. Next, since with respect to
the vectorial basis # = {e;,d/0V'|i=1,...2m} the Liouville vector field V is
expressed by
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2m
;0
V:;VW, (67)

one may compute from this that
£Q° =QF; (68)

with reference to [5] this shows that Q€ is homogeneous of degree 1. Setting now
p=c/f* (c=const.), and on behalf of [34), we can write that

af
= —= (69)
S
In addition, we put
V=232 (70)
i=1
and consider the function
I=fv. (71)
If we operate on I by the vertical differential operator dj, then we find
2m o
dv(l)=fY Vo' (72)
i=1
The basic 1-form
2m o
u=3 Vol 73)

is also known as the Liouville form on 7M (Alternatively, one can also write
that = V*). By one can now derive that

d(dyl) = fin:dV" Aot =i (74)
i=1

Since the 2-form y is clearly of maximal rank on TM, the above equation shows
that ¢ is an exact (or potential) symplectic form. Since iy = fu, then by
reference to [16], we call  the canonical symplectic form on 7M. Invoking [69),
we can check that the Lie derivative of y with respect to V is given by

Lvy = (75)
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Consequently, ¥ is (like Q) also homogeneous of degree 1. Besides, operating on
Y by the vertical derivative operator iy and invoking [15), leads to

iv(y) = 0. (76)

On basis of and we conclude that y is a Finslerian form [4].
Denote by 0; the Pfaffian derivative with respect to ' and set according to

2m
2=>Y Vo (77)
i=1
Therefore, by reference to [16], the complete lift «€ of a is defined by
O(C = (6t,', [,‘). (78)
Next, setting
2m
p=> uav’, (79)
i=1
one finds
«€ =va+f =dv, (80)

in which we have used the notation v := La for the image of the 1-form « under
the operator L of Yano and Ishihara (see [16]). Equation shows that the
complete lift € is, like «, also an exact form. Consider now on TM the following
2-form of rank 4m

b= v(anp+) (81)

By exterior differentiation and taking into account and [74), one obtains
a¢ o«

dé — (T - 7) A . (82)

From the above it follows that ¢ defines on TM a second conformal symplectic
structure having the exact form a¢/v —a/f as covector of Lee. One also finds
that

$V¢ = 2¢a

which shows that ¢ is homogeneous of degree 2. Further, let

0 ¢
TV = (t,.), and 7€ = (azi>’ (83)
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be the vertical and the complete lift respectively of the conformal section 7. By
83) one may write

g*VZZziW, (84)

and
TC=T +vT". (85)

By and one finds that
g[l/I:O, g[V!//—‘—‘O, ,?Iclp:O,v

which shows that the canonical symplectic form ¢ is invariant by 7,7 ", and
7 v .

Summarizing, we can formulate the following

THEOREM 5.1. Let TM be the tangent bundle manifold having as basis the
manifold in Section 3 which is now in addition assumed to be of even dimension.
Let V,u, Y, and L, be the canonical vector field, the Liouville form, the canonical
Jorm on TM, and the operator which assigns to 1-forms on M functions on TM,
respectively. Then:

() ¥ is a Finslerian form which is invariant under the conformal section I
and its vertical and complete lifts TV and T €, respectively;

(i) the complete lift QF of the conformal symplectic form Q on M is a
conformal symplectic form on TM, which is d~*-exact and homogeneous
of degree 1;

(iii) the complete lift o€ of o is also an exact form and the 2-form

¢ =v(eAp+y)

defines a second conformal symplectic form on TM, having the exact form

C

04
vf

as covector of Lee.
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