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RIEMANNIAN MANIFOLDS STRUCTURED
BY A LOCAL CONFORMAL SECTION

By

Filip DEFEVER and Radu ROSCA

Abstract. Geometrical and stmctural properties are proved for
manifolds which are stmctured by the presenoe of a local conformal
section.

1 lntroduction

Let $(M, g)$ be an n-dimensional Riemannian manifold and let $\mathcal{O}=$

$vect\{e_{j}|i=1, \ldots n\}$ be a local field of orthonormal frames over $M$ and let
$\mathcal{O}^{*}=covect\{\omega^{j}|i=1, \ldots n\}$ be its associated coframe. Let $\alpha=\sum_{i^{n}=1}t_{j}\omega^{i}$ be a
globally defined l-form and let $\mathscr{T}=\alpha^{\#}$ be its dual vector field. If the connection
forms $\theta$ associated with $\mathcal{O}$ satisfy

$\langle e_{j}\wedge e_{j}, \mathscr{T}\rangle=\theta_{j}^{i}$ ,

we say that $M$ is stmctured by a local conformal section $\mathscr{T}$ .
In the present paper, we prove that in this case $\mathscr{T}$ is a concurrent vector field

[2] which satisfies

$\nabla_{Z}\mathscr{T}=\rho Z$ , $Z\in\Xi(M),$ $\rho\in C^{\infty}(M)$ .

In consequence of this fact, $\mathscr{T}$ is both a conformal vector field (with $\rho$ as
conformal factor) and an exterior concurrent vector field [12]. Moreover, in
Section 3 the following properties are also proved:

(i) the dual form, the connection forms, and the curvature forms associated
with $\mathcal{O}$ are $d^{-\alpha}$ -exact, $d^{-2\alpha}$ -exact, and $d^{-4\rho\alpha}$ -exact, respectively;

(ii) $\mathscr{T}$ commutes with the dual vectors and the connection forms $\theta$;
(iii) the divergences of $e_{j}$ constitute an m-dimensional eigenspace of $\Delta$ ,

corresponding to the eigenvalue $-((n+1)/2)p$ ;
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(iv) the scalar curvature $S$ of $M$ is expressed by

$S=-\frac{n^{2}+n-2}{2}p$ ;

(v) if $\mathscr{U}$ is any parallel vector field, then through Weitzenbock’s formula [10]
one finds that $g(\mathscr{T}, \mathscr{U})$ is an eigenfunction of $\Delta$ .

Next, in Section 4 we study some properties of the Lie algebra of infinitesimal
transformations induced by $\mathscr{T}$ and prove:

(i) $\mathscr{T}$ defines an infinitesimal conformal transformation of $S$ and of the
function $g(\mathscr{T}, Z)$ , for $Z\in\Xi(M)$ , which means that

$\mathscr{L}_{\mathscr{J}}S=pS$ , $\mathscr{L}_{\mathcal{T}}g(\mathscr{T}, Z)=\frac{2n-3}{n-1}\rho g(\mathscr{T}, Z)$ ;

(ii) we denote by $V,\mu,$ $\psi$ , and $L$ , the canonical vector field, the Liouville 1-
form [4], the canonical symplectic form on $TM$ , and the operator of
Yano and Ishihara, respectively; then $\psi$ is a Finslerian form [4] which is
invariant by $\mathscr{T}$ ;

(iii) the complete lift $\Omega^{C}$ of the symplectic form $\Omega$ of $M$ is also conformally
symplectic on $TM$ ;

(iv) the complete lift $\alpha^{C}$ of $\alpha=^{b}\Gamma$ is also an exact form.

2 Preliminaries

Let $(M, g)$ be an n-dimensional Riemannian manifold and let $\nabla$ be the
covariant differential operator defined by the metric tensor. We assume in the
sequel that $M$ is oriented and that the connection $\nabla$ is symmetric.

Let $\Gamma TM=\Xi(M)$ be the set of sections of the tangent bundle $TM$ , and
$b:TM\rightarrow bT^{*}M$ and $\#:TM\leftarrow\# T^{*}M$

the classical isomorphisms defined by the metric tensor $g$ (i.e. $b$ is the index
lowering operator, and $\#$ is the index raising operator).

Following [10], we denote by

A $(M, TM)=\Gamma Hom(\Lambda^{q}TM, TM)$ ,

the set of vector valued q-forms $(q<\dim M)$ , and we write for the covariant
derivative operator with respect to $\nabla$

$d^{\nabla}$ : A $(M, TM)\rightarrow A^{q+1}(M, TM)$ .

It should be noticed that in general $d^{\nabla^{2}}=d^{\nabla}\circ d^{\nabla}\neq 0$ , unlike $d^{2}=d\circ d=0$ .
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Furthermore, we denote by $dp\in A^{1}(M, TM)$ the canonical vector valued 1-
form of $M$ , which is also called the soldering form of $M[3]$ ; since $\nabla$ is assumed
to be symmetric, we recall that the identity $d^{\nabla}(dp)=0$ is valid.

The operator

$d’=d+e(\omega)$ , (1)

acting on $\Lambda M$ is called the cohomology operator [5]. In (1), $e(\omega)$ means the
exterior product by the closed l-form $\omega$ , i.e.

$d^{\omega}u=du+\omega\wedge u$ ,

with $u\in\Lambda M$ . Clearly one has the identity

$d^{\omega}\circ d^{\omega}=0$ . (2)

A form $u\in\Lambda M$ such that

$d^{\omega}u=0$ , (3)

is said to be $d^{\omega}$-closed, and $\omega$ is called the cohomology form.
A vector field $X$ which satisfies

$d^{\nabla}(\nabla X)=\nabla^{2}X=\pi\wedge dp\in A^{2}(M, TM)$ , $\pi\in\Lambda^{1}M$ , (4)

is defined to be an exterior concurrent vector field [12]. The l-form $\pi$ in (2) is
called the concurrence form and is defined by

$\pi=\lambda X^{b}$ , (5)

where $\lambda\in C^{\infty}(M)$ is a nonzero conformal scalar associated with $X$ . If $\mathscr{T}$ is any
conformal vector field on $M$ , which means that

$\mathscr{L}_{}g=\rho g\Leftrightarrow\langle\nabla_{Z}\mathscr{T}, Z^{\prime}\rangle+\langle\nabla_{Z^{\prime}}\mathscr{T}, Z\rangle=\rho\langle Z, Z^{\prime}\rangle$ , (6)

then it follows that

$\rho=\frac{2}{n}div\mathscr{T}$ . (7)

Therefore, in application of Orsted’s lemma [1] one can write

$\mathscr{L}_{J}\varpi Z^{b}=\rho Z^{b}+[\mathscr{T}, Z]^{b}$ , (S)

where $[, ]$ stands for the Lie bracket. If $S$ is the scalar curvature of $M$ , then
Yano’s formula [15] reads

$\mathscr{L}_{}S=(n-1)\Delta\rho-S\rho$ . (9)
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Let

$(Hess_{\nabla}\rho)(Z, Z^{\prime})=g(Z, H_{\rho}Z^{\prime})$ , (10)

where

$ H_{p}Z^{\prime}=\nabla_{Z}/grad\rho$ , (11)

then

$2\mathscr{L}_{\mathcal{F}}/\mathscr{R}(Z, Z^{\prime})=(\Delta\rho)g(Z, Z^{\prime})-(n-2)(Hess_{\nabla}p)(Z, Z^{\prime})$ . (12)

In Section 5 we will rely on the following concepts conceming the tangent bundle
manifold $TM$ having as basis manifold $M$ . Denote by $V(V^{i})(i=1, \ldots n)$ the
Liouville vector field (or the canonical vector field on $TM[6]$ ). Accordingly, one
may consider the sets

$\mathscr{B}=\{e_{i},\frac{\partial}{\partial V^{i}}|i=1,$ $\ldots n\}$ , and $\mathscr{B}^{*}=\{\omega^{i}, dV^{j}|i=1, \ldots n\}$ ,

as an adapted vectorial basis, and an adapted cobasis in $TM$ , respectively.
For application in the sequel, we remind that the vertical differential operator

$d_{V}$ is an antiderivation of degree 1 on $\Lambda(TM)$ , and is defined by [4]

$d_{V}(f)=\sum_{i=1}^{n}\frac{\partial f}{\partial V^{i}}\omega^{j}$ , $d_{V}(\omega^{i})=0$ , $d_{V}(dV^{i})=0$ ; (13)

the vertical operator $i_{V}$ , which is a derivation of degree $0$ on $\Lambda(TM)$ , is defined
by [4]

$i_{V}(f)=0$ , $i_{V}(\omega^{l})=0$ , $i_{V}(dV^{i})=\omega^{i}$ . (14)

Moreover, both operators $d_{V}$ and $i_{V}$ satisfy the following relation

$[d_{V}, i_{V}]=d_{V}$ .

Next, with $V$ denoting the Liouville vector field $V$ , which may be expressed as [6]

$V=\sum_{i=1}^{n}V^{i}\frac{\partial}{\partial V^{i}}$ ,

then, by definition, any l-form $u$ such that

$\mathscr{L}_{V}u=\gamma u$ (15)

is said to be homogeneous of degree $\gamma$ .
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The vertical lift $Z^{V}$ [16] of any vector field $Z$ on $M$ with components
$Z^{j}(i=1, \ldots n)$ is expressed by

$Z^{V}=\sum_{i=1}^{n}Z^{j}\frac{\partial}{\partial V^{i}}=:\left(\begin{array}{l}0\\Z^{j}\end{array}\right)$ ; (16)

and the complete lift $Z^{C}$ of $Z(Z^{j})(i=1, \ldots n)$ is given by

$Z^{C}=\sum_{i=1}^{n}(Z^{i}e_{j}+\partial Z^{l}\frac{\partial}{\partial V^{j}})=:\left(\begin{array}{l}Z^{i}\\\partial Z^{j}\end{array}\right)$ , (17)

where $\partial Z^{j}=\sum_{\kappa=1}^{n}V^{\kappa}\partial_{\kappa}Z^{i}$ , with $\partial_{\kappa}$ the pfaffian derivative.
Finally, the complete lift $\beta^{C}$ of a l-form $\beta=\sum_{i^{n}=1}\beta_{i}\omega^{j}$ is defined by

$\beta^{C}=\sum_{i=1}^{n}(\partial\beta^{i}\omega^{j}+\beta^{j}dV^{j})=:(\partial\beta^{j},\beta^{j})$ . (18)

3 Manifolds with a Local Conformal Section

Considering an n-dimensional manifold $(M, g)$ , then in terms of the local
field of adapted vectorial frames $O=vect\{e_{j}|i=1, \ldots n\}$ and its associated
coframe $\mathcal{O}^{*}=covect\{\omega^{i}|i=1, \ldots n\}$ , the soldering form $dp$ can be expressed as

$dp=\sum_{i=1}^{n}\omega^{i}\otimes e_{j}$ ; (19)

and we recall that $E$ . Cartan’s structure equations can be written as

$\nabla e_{A}=\sum_{B=1}^{n}\theta_{A}^{B}\otimes e_{B}$ , (20)

$d\omega^{A}=-\sum_{B=1}^{n}\theta_{B}^{A}\wedge\omega^{B}$ , (21)

$d\theta_{B}^{A}=-\sum_{C=1}^{n}\theta_{B}^{c}\wedge\theta_{C}^{A}+\Theta_{B}^{A}$ . (22)

In the above equations $\theta$ (respectively $\Theta$) are the local connection forms in the
tangent bundle $TM$ (respectively the curvature 2-forms on $M$).

Let

$\alpha=\sum_{i=1}^{n}t_{j}\omega^{j}$ (23)
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be a globally defined l-form on $M$ and let $\mathscr{T}=\alpha^{\#}$ be its dual vector field. If the
connection forms satisfy

$\langle e_{j}\wedge e_{j}, \mathscr{T}\rangle=\theta_{i}^{j}$ , (24)

then one says that $M$ is structured by a local conformal section $\mathscr{T}$ . From (23)
and (24) one gets that

$\theta_{i}^{j}=t_{i}\omega^{j}-t_{j}\omega^{i}$ . (25)

This implies that

$\theta_{i}^{j}(\mathscr{T})=0$ , (26)

which shows that the forms $\theta$ are integral relations of invariance [8]. Now, in
consequence of (24), and making use of (23), one finds that

$d\omega^{i}=\alpha\wedge\omega^{i}\Rightarrow d\alpha=0$ . (27)

Hence, in terms of $d^{\omega}$ -cohomology, and in view of (3), one may write that

$d^{-\alpha}\omega^{j}=0$ , (28)

i.e. all covectors of $\mathcal{O}^{*}$ are $d^{-\alpha}$ -closed.
Since $\mathscr{T}=\sum_{i=1}^{n}t_{j}e_{j}$ , and taking into account (20) and (25), it follows that

$\nabla e_{i}=t_{i}dp-\omega^{i}\otimes \mathscr{T}$ . (29)

Recalling now that at each point $p\in M,$ $divZ=Tr(\nabla Z)=\sum_{i=1}^{n}\omega^{j}(\nabla_{e_{j}}Z)$ , one
derives from (29) that

$dive_{i}=(n-1)t_{i}$ , (30)

which provides a geometrical interpretation for the components of $\mathscr{T}$ .
On the other hand, on behalf of (27) one gets

$dt_{j}=t_{j}\alpha+a\omega^{i}$ , $a\in C^{\infty}(M)$ , (31)

and by exterior differentiation is can be seen that the scalar function $a$ must
in fact be a constant. Setting $2t=\Vert \mathscr{T}\Vert^{2}$ for notational brevity, one finds by (31)
and (32) that

$ d\iota=(2t+a)\alpha$ , (32)

which shows that $\alpha$ is an exact form. If we put

$\rho=2(2t+a)\in C^{\infty}(M)$ , (33)
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one derives that

$ d\rho=2p\alpha$ , (34)

and

$\mathscr{L}_{\Gamma}/\omega^{j}=\frac{\rho}{2}\omega^{l}$ . (35)

The above equation expresses that the vector field $\mathscr{T}$ defines an infinitesimal
conformal transformation of all covectors of 0*; according to a well know
definition [8], we say that $\mathscr{T}$ defines a local conformal section of the manifold $M$ .

Next, with the help of (29) and (31), we get

$\nabla \mathscr{T}=\frac{\rho}{2}dp$ , (36)

which shows that $\mathscr{T}$ is a concurrent vector field [2]. In tum, this implies the
following two properties for $\mathscr{T}$ :

(a) $\mathscr{T}$ is a conformal vector field on $M$ , i.e.

$\mathscr{L}_{F}g=pg$ , (37)

and

$div\mathscr{T}=\frac{n}{2}\rho$ ; (38)

(b) $\mathscr{T}$ is an exterior concurrent vector field [12], which by (34) satisfies

$\nabla^{2}\mathscr{T}=\rho\alpha\wedge dp=\rho \mathscr{T}^{b}\wedge dp$ . (39)

Further, invoking (25) and (31) yields

$d\theta_{j}^{i}=2\alpha\wedge\theta_{j}^{i}+2a\omega^{i}\wedge\omega^{j}$ , (40)

and making use of (24), one finds that the curvature forms $\Theta$ of $M$ can be
expressed by

$\Theta_{j}^{i}=\alpha\wedge\theta_{j}^{i}+(\frac{\rho}{2}+a)\omega^{i}\wedge\omega^{j}$ . (41)

In consequence of (41), one finds that the components $\mathscr{B}_{ij}$ of the Ricci tensor $\mathscr{B}$

are

$\left\{\begin{array}{l}\mathscr{B}_{ii}=-(n-2)(t_{i})^{2}-n(\frac{\rho}{2}-a),\\\mathscr{R}_{ij}=-(n-2)t_{i}l_{j}.\end{array}\right.$ (42)
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Now it can be observed that for (42) to be consistent with (39), the constant $a$

must vanish. Accordingly, (40) yields

$d\theta_{j}^{i}=2\alpha\wedge\theta_{j}^{i}$ , (43)

and also

$\Theta_{j}^{i}=\alpha\wedge\theta_{j}^{i}+\frac{\rho}{2}\omega^{i}\wedge\omega^{j}$ . (44)

Next, taking the exterior differential of (44), one finds by (34) that

$d\Theta_{j}^{j}=4p\alpha\wedge\Theta_{j}^{i}$ . (45)

In terms of cohomology, the above formulas can be interpreted as follows: on the
considered manifold, the dual forms, the connection forms, and the curvature
forms are $d^{-\alpha}$ -exact, $d^{-2\alpha}$-exact, and $d^{-4\rho\alpha}$ -exact, respectively.

If we write now $S$ for the scalar curvature of $(M, g)$ , then, in consequence of
(45) and $a=0$ , one gets that

$ S=-\frac{n^{2}+n-2}{2}\rho$ , (46)

which since $\rho=2g(\mathscr{T}, \mathscr{T})$ shows that $S$ is always negative. Next, we define

$E_{ij}=t_{i}e_{j}-t_{j}e_{j}$ , (47)

for the dual vectors of $\theta_{i}^{j}$ . Taking the covariant differential of $E_{ij}$ , one finds by
(29)

$dE_{ij}=\alpha\otimes E_{ij}-\theta_{i}^{j}\otimes \mathscr{T}$ , (48)

and on behalf of (31), one may write

$[\mathscr{T}, E_{ij}]=0$ . (49)

Hence, the conformal section $\mathscr{T}$ commutes with all the dual vectors of the
connection forms on $M$ . Now, by reference to Orsted’s lemma [1], it follows in
virtue of (49) that

$\mathscr{L}_{F}\theta_{i}^{j}=\rho\theta_{i}^{j}$ , (50)

and by (44) also that

$\mathscr{L}r\Theta_{i}^{j}=2\rho\Theta_{i}^{j}$ . (51)

The above equations now express that the vector field $\mathscr{T}$ defines an infinitesimal
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conformal transformation [7], not only of the dual forms of 0*, but also of the
connection and the curvature forms.

Further, since $\delta\alpha=-div\mathscr{T}$ (where $\delta$ denotes the codifferential operator),
then, by (37) and (34), one calculates that

$\Delta\alpha=-np\alpha$ . (52)

This shows that $\alpha$ is an eigenform of the Laplacian with $-n\rho$ as associated
eigenvalue. As $\rho$ is always positive, it follows from the nature of the spectrum of
the Laplacian operator that a manifold structured by a local conformal section
cannot be compact. With the general formula $\Delta v=-divgradv$ and using (34),
one gets

$\Delta t_{j}=-\frac{n+1}{2}\rho t_{j}$ , (53)

which by (30) tums into

$\Delta dive_{l}=-\frac{n+1}{2}\rho dive_{j}$ . (54)

The above equation expresses that the divergencies of the vector basis $0$ on $M$

form an n-dimensional space $E^{n}(M)$ , which is an eigenspace of $\Delta$ corresponding
to the eigenvalue $-((n+1)/2)\rho$ . Similarly, one finds by $ dt=(2t+a)\alpha$ (see (32))
and (31) that

tr $\nabla^{2}\mathscr{T}=-\frac{n-2}{4}\rho \mathscr{T}$ , (55)

and

$\Vert\nabla \mathscr{T}\Vert^{2}=\frac{n\rho^{2}}{2}$ . (56)

It can be checked that the above equations, in combination with (52), are indeed
consistent with Bochner’s theorem [10]

$2\langle tr\nabla^{2}Z, Z\rangle+2\Vert\nabla Z\Vert^{2}+\Delta\Vert Z\Vert^{2}=0$ .

Summarizing, we can formulate the following

THEOREM 3.1. Let $(M, g)$ be an n-dimensional Riemannian mamfo $ld$ struc-
tured by a local conformal section $\mathscr{T}$ and let $\alpha=\mathscr{T}^{b}$ be the dual form of $\mathscr{T}$ . If $\mathcal{O}$

is a local field of orthonormal frames over $M$, then the dual forms, the connection
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forms, and the curvature forms are $d^{-\alpha}$ -exact, $d^{-2\alpha}$ -exact, and $d^{-4p\alpha}$ -exact, re-
spectively. Furthermore:

(i) $\mathscr{T}$ commutes with the dual vectors of the connection forms $\theta$ on $M$;
(i1) the divergences of the vector basis on $M$ constitute an eigenspace of $\Delta$

which corresponds to the eigenvalue $-((n+1)/2)\rho$ ;
(iii) the scalar curvature $S$ of $M$ is negative and is given by $S=$

$-((n^{2}+n-2)/2)p$ ;
(iv) $\alpha$ is an eigenform of $\Delta$ and the mamfold $M$ under consideration can not be

compact.

4 The Lie Algebra of Infinitesimal Transformations

In this section, we discuss some properties of the Lie algebra of infinitesimal
transformations generated by the conformal field $\mathscr{T}$ . First, by (36), one may write

$gradp=2\rho \mathscr{T}\Rightarrow\Vert grad\rho\Vert^{2}=2\rho^{3}$ . (57)

Therefore,
div(grad $\rho$ ) $=(n+2)\rho^{2}$ . (58)

The above equations show that $\Vert gradp\Vert^{2}$ and div(grad p) can be expressed as
functions of $\rho$ . Thus, on behalf of a well known definition [14], it follows that the
conformal scalar $\rho$ is an isoparametric function.

Now, by reference to Yano’s formula (9) one gets

$\mathscr{L}_{F}S=-\frac{n^{2}+n-2}{2}p^{2}-\rho S$ , (59)

i.e. $S$ defines an infinitesimal conformal transformation of the scalar curvature $S$ .
Next, since

$\nabla_{i}rgradp=3\rho^{2}\mathscr{T}$ ,

one finds by (11), (12), and (42) that

$\mathscr{L}_{F}g(\mathscr{T}Z)=\frac{2n-3}{n-1}pg(\mathscr{T}Z)$ , $Z\in\Xi(M)$ .

Therefore, and on behalf of (57), it follows that

$\nabla grad\rho=\rho^{2}dp+2\alpha\otimes grad$ p. (60)

This shows that $gradp$ is a torse forming vector field [15] [13] [9] with $ 2\alpha$ as
generating form.



Riemannian manifolds structured by a local conformal section 411

We assume from now on that $M$ is of even dimension, say $n=2m$ , and we
suppose that the following 2-form of rank $2m$ is globally defined on $M$

$\Omega=\sum_{i=1}^{m}\omega^{j}\wedge\omega^{l^{*}}$ , $i^{*}=i+m$ . (61)

Exterior differentiation of (61) gives in combination with (29) that

$d^{-2\alpha}\Omega=0$ , (62)

which shows that $\Omega$ defines a local conformal symplectic structure with $\alpha$ (resp.
$\mathscr{T})$ as covector of Lee (resp. vector of Lee).

Next, by (37) it follows that

$\mathscr{L}_{F}\Omega=\rho\Omega$ , (63)

which means that $\mathscr{T}$ defines an infinitesimal conformal transformation of $\Omega$ .
Let now $\mathscr{E}_{\alpha}$ be the vector space such that for every $X_{\alpha}\in \mathscr{E}_{\alpha}$

$\alpha(X_{\alpha})=Cst$ .

Denote by

$\mu$ : $TM\rightarrow T^{*}M$ : $Z\rightarrow i_{Z}\Omega$

the bundle isomorphism defined by $\Omega$ . Setting then $\beta=\mu(X_{\alpha})$ , one gets by (62)

$\mathscr{L}_{X_{\alpha}}\Omega=d^{-2\alpha}\beta+2c\Omega$ ,

and on behalf of (2) one derives

$d^{-2\alpha}(\mathscr{L}_{X_{\alpha}}\Omega)$ .

Therefore, we conclude that the Lie derivatives $\mathscr{L}_{\chi_{\infty}}\Omega$ are also $d^{-2\alpha}$ -exact. Set
now

$X_{\beta}=\beta^{\#}=\sum_{i=1}^{m}(t_{i}e_{j}*-t_{i^{*}}e_{j})$ ,

and operate on $X_{\beta}$ by $\nabla$ . By (31) and (33), with $a=0$ , one calculates that

$\nabla X_{\beta}=X_{\beta}\wedge \mathscr{T}$ ,

which shows that $X_{\beta}$ is a Killing vector field. Moreover, one can also verify that
$[\mathscr{T}, X_{\beta}]$ , i.e. $X_{\beta}$ commutes with $\mathscr{T}$ .

Summarizing, we can formulate the following
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THEOREM 4.1. Let $(M, g)$ be the manifold defined in Section 3. Then, the

conformal scalar $\rho$ associated with $\mathscr{T}$ is an isoparametric function and $\mathscr{T}$ defines an
infinitesimal conformal transformation of the scalar curvature $S$ on $M$ and of the

functions $g(\mathscr{T}, Z)(Z\in\Xi(M))$ ; that is

$\mathscr{L}_{F}S=\rho S$ ,

$\mathscr{L}_{F}g(\mathscr{T}, Z)=\frac{2n-3}{n-1}\rho g(\mathscr{T}, Z)$ .

Besides, if $M$ is of even dimension, it admits a conformal symplectic structure
$(\Omega, \alpha)$ , having $\alpha=\mathscr{T}^{b}$ as covector of Lee, i.e. $d^{-2\alpha}\Omega=0$ , and $\mathscr{T}$ defines an
infinitesimal conformal transformation of $\Omega,$ $i.e$. $\mathscr{L}_{i}r^{\Omega}=\rho\Omega$ . If $\mathscr{E}_{\alpha}$ is the vector

space such that for $X_{\alpha}\in \mathscr{E}_{\alpha}$ , one has $\alpha(X_{\alpha})=Cst.$ , then the Lie derivative $\mathscr{L}_{X_{\alpha}}\Omega$ is
$d^{-2\alpha}$-exact and $X_{\beta}$ is a Killing vector field which commutes with $\mathscr{T}$ .

5 Geometry of the Tangent Bundle

Let now $TM$ be the tangent bundle having as basis the manifold $M$

introduced in Section 3, which is now in addition assumed to be of dimension
$2m$ . In the present section we will study the properties of the lifts to the tangent
bundle $TM$ of the tensor fields discussed in the previous sections. Denote by
$V(V^{j})$ the canonical vector field (or Liouville vector field) [5] and consider
$\mathscr{B}^{*}=\{\omega^{i}, dV^{i}|i=1, \ldots 2m\}$ as a covectorial basis of $TM$ . Recalling that the
complete lift [16] of the 2-form $\omega^{j}\wedge\omega^{j}$ is defined by

$(\omega^{j}\wedge\omega^{j})^{C}=dV^{j}\wedge\omega^{j}+\omega^{i}\wedge dV^{j}$ , (64)

one derives by reference to (61) that

$\Omega^{C}=\sum_{i=1}^{m}(dV^{i}\wedge\omega^{j^{*}}+\omega^{j}\wedge dV^{i^{*}})$ , $j^{*}=i+m$ ; (65)

we remind that one knows from [16] that $\Omega^{C}$ defines an almost symplectic
structure on $TM$ . Taking the exterior differential of $\Omega^{C}$ , one finds by (29)

$d\Omega^{C}=\alpha\wedge\Omega^{C}$ . (66)

Hence, we observe that in the case under consideration the conformal character
of $\Omega$ is conserved bij complete lifting; we emphasize the remarkable aspect of this
fact, since in general this property is not conserved. Next, since with respect to
the vectorial basis $\mathscr{B}=\{e_{j}, \partial/\partial V^{j}|i=1, \ldots 2m\}$ the Liouville vector field $V$ is
expressed by
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$V=\sum_{i=1}^{2m}V^{i}\frac{\partial}{\partial V^{i}}$ , (67)

one may compute from this that

$\mathscr{L}_{V}\Omega^{C}=\Omega^{c_{;}}$ (68)

with reference to [5] this shows that $\Omega^{C}$ is homogeneous of degree 1. Setting now
$\rho=c/f^{2}(c=const.)$ , and on behalf of (34), we can write that

$\alpha=-\frac{df}{f}$ . (69)

In addition, we put

$v=\frac{1}{2}\sum_{i=1}^{2m}(V^{j})^{2}$ , (70)

and consider the function

$I=fv$ . (71)

If we operate on $I$ by the vertical differential operator $d_{V}$ , then we find

$d_{V}(I)=f\sum_{i=1}^{2m}V^{j}\omega^{j}$ . (72)

The basic l-form

$\mu=\sum_{i=1}^{2m}V^{i}\omega^{j}$ , (73)

is also known [16] as the Liouville form on $TM$ (Altematively, one can also write
that $\mu=V^{b}$ ). By (69) one can now derive that

$ d(d_{V}I)=f\sum_{i=1}^{2m}dV^{j}\wedge\omega^{i}=:\psi$ . (74)

Since the 2-form $\psi$ is clearly of maximal rank on $TM$ , the above equation shows
that $\psi$ is an exact (or potential) symplectic form. Since $ i_{V}\psi=f\mu$ , then by
reference to [16], we call $\psi$ the canonical symplectic form on $TM$ . Invoking (69),
we can check that the Lie derivative of $\psi$ with respect to $V$ is given by

$\mathscr{L}_{V}\psi=\psi$ . (75)
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Consequently, $\psi$ is (like $\Omega^{C}$ ) also homogeneous of degree 1. Besides, operating on
$\psi$ by the vertical derivative operator $i_{V}$ and invoking (15), leads to

$i_{V}(\psi)=0$ . (76)

On basis of (75) and (76) we conclude that $\psi$ is a Finslerian form [4].
Denote by $\partial_{j}$ the Pfaffian derivative with respect to $\omega^{j}$ and set according to

[16]

$\partial=\sum_{i=1}^{2m}V^{i}\partial_{j}$ . (77)

Therefore, by reference to [16], the complete lift $\alpha^{C}$ of $\alpha$ is defined by

$\alpha^{C}=(\partial t_{i}, t_{j})$ . (78)

Next, setting

$\beta=\sum_{i=1}^{2m}\iota_{j}dV^{j}$ , (79)

one finds
$\alpha^{C}=v\alpha+\beta=dv$ , (80)

in which we have used the notation $ v:=L\alpha$ for the image of the l-form $\alpha$ under
the operator $L$ of Yano and Ishihara (see [16]). Equation (80) shows that the
complete lift $\alpha^{C}$ is, like $\alpha$ , also an exact form. Consider now on $TM$ the following
2-form of rank $4m$

$\phi=v(\alpha\wedge\mu+\psi)$ . (81)

By exterior differentiation and taking into account (73) and (74), one obtains

$ d\phi=(\frac{\alpha^{C}}{v}-\frac{\alpha}{f})\wedge\phi$ . (82)

From the above it follows that $\phi$ defines on $TM$ a second conformal symplectic
structure having the exact form $\alpha^{C}/v-\alpha/f$ as covector of Lee. One also finds
that

$\mathscr{L}_{V}\phi=2\phi$ ,

which shows that $\phi$ is homogeneous of degree 2. Further, let

$\mathscr{T}^{V}=\left(\begin{array}{l}0\\l^{i}\end{array}\right)$ , and $\mathscr{T}^{C}=\left(\begin{array}{l}t^{i}\\\partial\iota^{i}\end{array}\right)$ , (83)
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be the vertical and the complete lift respectively of the conformal section $\mathscr{T}$ . By
(83) one may write

$\mathscr{T}^{V}=\sum_{i=1}^{2m}t^{j}\frac{\partial}{\partial V^{j}}$ , (84)

and

$\mathscr{T}^{C}=\mathscr{T}+v\mathscr{T}^{V}$ . (85)

By (74) and (83) one finds that

$\mathscr{L}_{I}\psi=0$ , $\mathscr{L}_{I^{V}}\psi=0$ , $\mathscr{L}_{I^{C}}\psi=0$ ,

$which\mathscr{T}^{C}$

.
shows that the canonical symplectic form $\psi$ is invariant by $\mathscr{T},$

$\mathscr{T}^{V}$ , and

Summarizing, we can formulate the following

THEOREM 5.1. Let $TM$ be the tangent bundle mamfold having as basis the
mamfold in Section 3 which is now in addition assumed to be of even dimension.
Let $V,\mu,$ $\psi$ , and $L$ , be the canonical vector field, the Liouville form, the canonical
form on $TM$, and the operator which assigns to l-forms on $M$ functions on $TM$,
respectively. Then:

(i) $\psi$ is a Finslerian form which is invariant under the conformal section $\mathscr{T}$

and its vertical and complete lifts $\mathscr{T}^{V}$ and $\mathscr{T}^{C}$ , respectively;
(ii) the complete $l_{l}ft\Omega^{C}$ of the conformal symplectic form $\Omega$ on $M$ is a

conformal symplectic form on $TM$, which is $d^{-\alpha}$ -exact and homogeneous
of degree 1;

(iii) the complete $l_{l}ft\alpha^{C}$ of $\alpha$ is also an exact form and the 2-form
$\phi=v(\alpha\wedge\mu+\psi)$

defines a second conformal symplectic form on $TM$, having the exact form

$\frac{\alpha^{C}}{v}-\frac{\alpha}{f}$ .

as covector of Lee.
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