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C0NSTRUCT BI-FROBENIUS ALGEBRAS VIA QUIVERS*

By

Yanhua WANG and Pu ZHANG

Abstract. The aim of this note is to construct explicitly a class
of bi-Frobenius algebras via quivers. In particular, this kind of
bi-Frobenius algebras are not Hopf algebras, and a necessary and
sufficient condition for such algebras being symmetric is given.

1. Introduction

Typical Frobenius algebras are finite group algebras. In general, a finite-
dimensional Hopf algebra is a Frobenius algebra (see Larson and Sweedler [LS],
or 2.1.3 in Montgomery [M]). Relations of the Frobenius algebras with the Yang-
Baxter equations and with the topological quantum field theory can be founded
in [Kad] and [A], respectively. As a natural generalization of finite-dimensional
Hopf algebras, the concept of a bi-Frobenius algebra was introduced by Doi and
Takeuchi [DT] (see also [Kop]). Roughly speaking, this is a Frobenius algebra as
well as a Frobenius coalgebra together with an antipode. Except for an example
given in 2.5 in [DT], there are few explicit constructions of bi-Frobenius algebras
which are not finite-dimensional Hopf algebras. The aim of this note is to provide
such an explicit construction via quivers.

Motivations of our construction is the quiver method in the representa-
tion theory of algebras, see Ringel [R], coalgebra structure on quivers considered
by Chin and Montgomery [CM], and constructing Hopf quiver and quiver
quantum groups by Cibils and Rosso [C], [CR], and E. Green and Solberg [GS],
etc.

We start from the algebra $KZ_{n}/J^{d}$ , where $KZ_{n}$ is the path algebra of the
basic cycle with $n$ vertices and $J$ is the ideal generated by arrows with $d\geq 2$

an integer. This is an augmented Frobenius algebra, and it is a symmetric if
and only if $d\equiv 1(mod n)$ (see Theorem 2.3 below). Endowed with a suitable
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Frobenius coalgebra structure, this Frobenius algebra becomes a bi-Frobenius
algebra, which is not a Hopf algebra (see Theorem 3.3).

The authors thank the referee for pointing out the reference [D]. By Lemma
1.2 in [D], one can prove the both Frobeniusness of $KZ_{n}/J^{d}$ by showing that it
has a bijective bi-Frobenius antipode. So we leave the proof of the Frobeniusness
of algebra (see Lemma 2.1 (ii)) and of coalgebra (see Lemma 3.2) to Theorem 3.3.

Throughout let $K$ be a field. All algebras and coalgebras are over $K$ . The
notations $Hom$ and $\otimes are$ over $K$ .

2. Quivers and Frobenius Algebras

A quiver $Q$ is an oriented graph given by the set $Q_{0}$ of vertices and the set $Q_{1}$

of arrows. Let $KQ$ be the path algebra of a quiver $Q$ (see e.g. [R]). We write the
conjunction of paths from right to left.

A finite-dimensional algebra $A$ is said to be elementary if $A/radA\cong k^{n}$ as
algebras for some positive integer $n$ , where rad $A$ is the Jacobson radical. By
Gabriel’s theorem an elementary algebra is isomorphic to $KQ/I$ , where $Q$ is a
finite quiver, and $I$ is an admissible ideal of $KQ$ (i.e., $J^{N}\subseteq I\subseteq J^{2}$ for some
positive integer $N,$ $J$ is the ideal of $KQ$ generated by the arrows). Such a quiver $Q$

is uniquely determined by $A$ , which is called the Gabriel quiver of $A$ .
Let $A$ be a finite-dimensional algebra, and $A^{*}=Hom(A, K)$ . Then $A^{*}$ has

a natural A-A-bimodule structure given by $(af)(b)=f(ba),$ $(fa)(b)=f(ab)$ ,
$\forall f\in A^{*},$ $a,$ $b\in A$ . We say that $A$ is a Frobenius algebra provided that $AA\cong AA^{*}$

as left A-modules, or equivalently $A_{A}\cong A_{A}^{*}$ as right A-modules; and that $A$ is
symmetric provided that $AAA\cong AA_{A}^{*}$ as A-A-bimodules.

Let $A$ be a Frobenius algebra with $\Phi$ : $AA\cong AA^{*}$ . Then $\phi$ $:=\Phi(1_{A})$ is a cyclic
generator of $AA^{*}$ . Also $\phi$ is a cyclic generator of $A_{A}^{*}$ , and $a\mapsto\phi a$ is an iso-
morphism $A_{A}\cong A_{A}^{*}$ . We will call the pair $(A, \phi)$ is a Frobenius algebra if $\phi$ is
needed to be specified. Let $(x_{j},f_{i}),$ $x_{j}\in A,$ $f_{i}\in A^{*}$ , be a dual basis (i.e., for each
$a\in A,$ $\sum_{j}f_{i}(a)x_{j}=a)$ , and $y_{j}\in A$ with $f_{i}=\phi y_{j}$ . Then we have

$\sum_{i}x_{j}\phi(y_{j}a)=a=\sum_{i}\phi(ax_{j})y_{i}$ , $\forall a\in A$ .

We refer to $\phi$ as a Frobenius homomorphism, $(x_{j}, y_{j})$ as a dual basis, $\sum_{j}x_{j}\otimes y_{j}$

as a Frobenius element, and $(\phi, x_{j}, y_{i})$ as a Frobenius coordinate, see [Kad] or
[KS]. The Nakayama automorphism is the unique algebra isomorphism $ N:A\rightarrow$

$A$ , determined by
$\phi a=N(a)\phi$

for all $a\in A$ . Then we have
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$N(a)=\sum_{i}x_{j}\phi(ay_{j})$ , $\forall a\in A$ .

It is well-known that a Frobenius algebra is symmetric if and only if its
Nakayama automorphism is inner (see e.g. [Y]).

Let $C$ be a finite-dimensional coalgebra with comultiplication $\triangle,$ $C^{*}$ its dual
algebra. Then $C$ is a $C^{*}- C^{*}$ -bimodule via

$fc=\sum c_{1}f(c_{2})$ , $cf=\sum f(c_{1})c_{2}$ $\forall f\in C^{*},$ $c\in C$ .

By definition a pair $(C, t)$ with $t\in C$ is called a Frobenius coalgebra if $C=tC^{*}$ ,
or equivalently $C=C^{*}t$ .

Let $Z_{n}$ denote the basic cycle with $n$ vertices. The set of vertices is denoted
by $\{e_{j}|i\in Z/nZ\}$ , and the set of arrows by $\{a_{j}=i\rightarrow i+1|i\in Z/nZ\}$ . Set
$\gamma_{i^{m}}:=a_{i+m}\cdots a_{i+1}a_{j}$ , the path of length $m$ starting at the vertex $e_{j}$ . Taking the
indices modulo $n$ . Note that $\gamma_{i}^{0}=e_{l}$ and $\gamma_{i^{1}}=a_{j}$ .

The following fact seems to be well-known. For use later, we write out a
direct proof.

LEMMA 2.1. (i) Assume that $KZ_{n}/I$ is a Frobenius algebra, where I is an
admissible ideal. Then I must be of the form $I=J^{d}$ for some positive integer
$d\geq 2$ .

(ii) The algebra $KZ_{n}/J^{d}$ is a Frobenius algebra, which is augmented ( $i.e$. there
is an algebra homomorphism $\epsilon$ : $A\rightarrow K$).

PROOF. (i) Note that an admissible ideal $I$ of $KZ_{n}$ must be generated by
some paths. While $KZ_{n}/I$ is a self-injective algebra, it follows from a direct
calculation that $I=J^{d}$ for some positive integer $d\geq 2$ .

(ii) Write $A=KZ_{n}/J^{d}$ . We have remarked in the introduction that the proof
of the Frobeniusness is left to Theorem 3.3. But for use later, we write out a left
A-module isomorphism $\Phi$ : $A\rightarrow A^{*}$ . Note that $\{\gamma_{i}^{m}|i\in Z/nZ, 0\leq m\leq d-1\}$ is
a basis of $A$ . Let $\{(\gamma_{i^{m}})^{*}|i\in Z/nZ, 0\leq m\leq d-1\}$ denote the dual basis of $A^{*}$ ,
and $\Phi$ : $A\rightarrow A^{*}$ the linear map determined by

$\Phi(\gamma_{i^{m}})=(\gamma_{i+m}^{d-1-m})^{*}$ , $\forall i\in Z/nZ,$ $0\leq m\leq d-1$ . (1)

Actually, $\Phi$ is a left A-module isomorphism and hence $A$ is a Frobenius algebra.
Define $\epsilon:A\rightarrow K$ to be the linear map determined by

$\epsilon(\gamma_{j}^{m})=\overline{\delta}_{i,0}\delta_{m,0}$ $\forall i\in Z/nZ,$ $0\leq m\leq d-1$ (2)
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where $\delta_{i,j}$ is the usual Kronecker symbol, and $\overline{\delta}_{i,j}$ is the one modulo $n$ for
$i,j\in Z/nZ$ . Clearly $\epsilon$ is an algebra map. $\blacksquare$

The following facts can be obtained by direct calculations. We omit the
details.

LEMMA 2.2. For the Frobenius algebra $A=KZ_{n}/J^{d}$ with isomorphism $\Phi$

given as above, we have

(i) The Frobenius homomorphism is $\phi=\sum_{u=0}^{n-1}(\gamma_{u}^{d-1})^{*}$

(ii) The Frobenius element is $\sum_{i=0}^{n-1}\sum_{m=0}^{d-1}\gamma_{i}^{m}\otimes\gamma_{i+m}^{d-1-m}$ .
(iii) The space of left and right integrals are $K\gamma_{1-d}^{d-1}$ and $K\gamma_{0}^{d-1}$ , respectively.

Hence $kZ_{n}/J^{d}$ is unimodular $\iota f$ and only $lfd\equiv 1(mod n)$ .
(iv) The right modular function $\alpha$ : $A\rightarrow K$ is given by $\alpha(\gamma_{i^{m}})=\overline{\delta}_{i,d-1}\delta_{m,0}$ .
(v) The Nakayama automorphism $N:A\rightarrow A$ is given by $N(\gamma_{i^{m}})=\gamma_{i-(d-1)}^{m}$ .

Thus the order of $N$ is exactly $n/(d-1, n)$ , where $(d-1, n)$ is the greatest

common divisor.

THEOREM 2.3. The Frobenius algebra $KZ_{n}/J^{d}$ is symmetric $lf$ and only if
$d\equiv 1(mod n)$ .

PROOF. If $KZ_{n}/J^{d}$ is symmetric, then $KZ_{n}/J^{d}$ is unimodular, and hence
$d\equiv 1(mod n)$ , by Lemma 2.2(iii). If $d\equiv 1(mod n)$ , then $N(\gamma_{i}^{m})=\gamma_{i}^{m}$ by
Lemma 2.2(v), and hence $\phi a=a\phi$ for $a\in KZ_{n}/J^{d}$ . It follows that $KZ_{n}/J^{d}$ is
symmetric. $\blacksquare$

REMARK 2.4. By [CHYZ], the Frobenius algebras and the symmetric
algebras constructed above are all possible connected monomial Frobenius
algebras and monomial symmetric algebras, respectively.

3. A Class of Bi-Frobenius Algebras

DEFINITION 3.1 ([DT]). Let $A$ be a finite-dimensional algebra and coalgebra
with $t\in A$ and $\phi\in A^{*}$ . Suppose that

(i) the counit $\epsilon$ is an algebra map and $1_{A}$ is a group-like element;

(ii) $(A, \phi)$ is a Frobenius algebra, and $(A, t)$ is a Frobenius coalgebra with
comultiplication $\triangle$ ;

(iii) The linear map $\psi$ : $A\rightarrow A$ , given by
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$\psi(a)=\sum\phi(t_{1}a)t_{2}$ (3)

for all $a\in A$ , is an anti-algebra map as well as an anti-coalgebra map,
where $\triangle(t)=\sum t_{1}\otimes t_{2}$ .

Then the quadruple $(A, \phi, t, \psi)$ is called a bi-Frobenius algebra, and the map $\psi$ is
called the antipode of $A$ .

Now we attach a Frobenius coalgebra structure to $KZ_{n}/J^{d}$ .

LEMMA 3.2. The quadruple $(KZ_{n}/J^{d}, t, \triangle, \epsilon)$ is a cocommutative Frobenius
coalgebra, where

$t=\gamma_{0}^{d-1}$ (4)
and

$\triangle(\gamma_{i}^{m})=\sum_{p+q=i,l+s=m}\gamma_{p}^{l}\otimes\gamma_{q}^{s}$
, $\forall i,$ $p,$ $q\in Z/nZ,$ $0\leq m,$ $l,s\leq d-1$ , (5)

and the counit $\epsilon$ is defined as in (2).

PROOF. By a routine verification one sees that $(KZ_{n}/J^{d}, \triangle, \epsilon)$ is a coal-
gebra. The Frobeniusness is proved in Theorem 3.3 below. $\blacksquare$

THEOREM 3.3. The quadruple $(KZ_{n}/J^{d}, \phi, t, \psi)$ is a bi-Frobenius algebra but
not a Hopf algebra, with $t,$ $\phi,$ $\psi$ defined as above.

PROOF. It is easy to check the identity $1=\sum_{i=0}^{n-1}\gamma_{i}^{0}$ is a group-like element.
By Lemma 1.2 in [D], it remains to check that $\psi$ is an anti-algebra and anti-

coalgebra automorphism.
Since $\psi(a)=\sum\phi(t_{1}a)t_{2}$ , we have

$n-1d-1$ $n-1d-1$

$\psi(\gamma_{i}^{m})=\sum\sum\phi(\gamma_{j}^{l}\gamma_{i^{m}})\gamma_{n-j^{1-l}}^{d-}=\sum\sum\overline{\delta}_{j,i+m}\phi(\gamma_{i}^{l+m})\gamma_{n-j^{1-l}}^{d-}$

$j=0l=0$ $j=0l=0$

$=\sum\sum^{]}^{n-1}\overline{\delta}_{j,i+m}d-(\sum_{u=0}^{n-1}(\gamma_{u}^{d-1})^{*})(\gamma_{i}^{l+m})\gamma_{n-j^{1-l}}^{d-}$

$j=0l=0$

$=\overline{\delta}_{j,i+m}\delta_{d-1,l+m}\gamma_{n-j}^{d-1-l}$

$=\gamma_{-i-m}^{m}$ .

It is clear that $\psi$ is bijective.
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Obviously, $\psi(\sum_{i=0}^{n-1}\gamma_{i}^{0})=\sum_{i=0}^{n-1}\gamma_{i}^{0}$ , and $\epsilon\circ\psi=\epsilon$ . Note that

$\psi(\gamma_{i}^{m}\gamma_{j}^{/})=\overline{\delta}_{i,j+l}\psi(\gamma_{j}^{m+/})=\overline{\delta}_{i,j+l}\gamma_{-j-m-/}^{m+/}$ .

On the other hand,

$\psi(\gamma_{j}^{l})\psi(\gamma_{i}^{m})=\gamma_{-j-l}^{l}\gamma_{-i-m}^{m}=\overline{\delta}_{-j-l,-i}\gamma_{-i-m}^{l+m}=\overline{\delta}_{j+/,i}\gamma_{-j-T-m}^{l+m}$ .

So $\psi$ is an anti-algebra automorphism.
Let $\tau$ be the twist map. Then we have

$\tau 0\triangle(\psi(\gamma_{i^{m}}))=\tau 0\triangle(\gamma_{-i-m}^{m})=\sum_{p+q=-i-m}\gamma_{p}^{/}\otimes\gamma_{q}^{s}$

and

$(\psi\otimes\psi)(\triangle(\gamma_{i}^{m}))=(\psi\otimes\psi)(\sum_{u+v=i}\gamma_{u}^{t}\otimes\gamma_{v}^{r})$

$=$
$\sum_{u+v=i,t+r=m}\gamma_{-u-t}^{t}\otimes\gamma_{-v-r}^{r}$

$=\sum_{t+r=m}\gamma_{-u-t}^{t}\otimes\gamma_{-v-r}^{r}-u-t-v-r=-i-m$

This means $\tau 0\triangle\psi=(\psi\otimes\psi)\triangle$ , i.e., $\psi$ is an anti-coalgebra automorphism.
Since $\triangle$ is not an algebra map, it follows that it is not a Hopf algebra.

$\blacksquare$

REMARKS 3.4.

(i) The order of $\psi$ is 2 since the coalgebra is cocommutative.
(ii) There may be other comultiplication on $KZ_{n}/J^{d}$ . In fact we can endow

a non-cocommutative comultiplication to $KZ_{2}/J^{2}$ as follows

$\triangle(e_{0})=e_{0}\otimes e_{0}+e_{1}\otimes e_{1}$

$\triangle(e_{1})=e_{1}\otimes e_{0}+e_{0}\otimes e_{1}$

$\triangle(a_{0})=e_{0}\otimes a_{0}+e_{1}\otimes a_{1}+a_{0}\otimes e_{0}-a_{1}\otimes e_{1}$

$\triangle(a_{1})=e_{1}\otimes a_{0}+e_{0}\otimes a_{1}+a_{1}\otimes e_{0}-a_{0}\otimes e_{1}$

This is exactly Sweedler’s 4-dimensional Hopf algebra
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$ H_{4}=\langle g, x|g^{2}=1, x^{2}=0, gx+xg=0, \triangle(g)=g\otimes g, \triangle(x)=g\otimes x+x\otimes 1\rangle$ ,

via
$1=e_{0}+e_{1}$ , $g=e_{0}-e_{1}$ , $x=a_{1}-a_{0}$ .

(iii) Actually, if $d\parallel n$ , the algebra $KZ_{n}/J^{d}$ can never become a Hopf algebra,
with any comultiplication, see [CHYZ] for detail.

(iv) Dually, we may obtain a class of bi-Frobenius algebras starting from
path coalgebras.
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