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HYP0ELLIPTICITY AND LOCAL S0LVABILITY OF
PSEUDOLOCAL CONTINUOUS LINEAR OPERATORS

IN GEVREY CLASSES

By

Alessandro MORANDO

Abstract. In this paper we extend a well-known result conceming
hypoellipticity and local solvability of linear partial differential
operators on Schwartz distributions (see [14] and [19]) to the
framework of pseudolocal continuous linear maps $T$ acting on
Gevrey classes. Namely we prove that the Gevrey hypoellipticity of
$T$ implies the Gevrey local solvability of the transposed operator
$’\tau$ . As an application, we identify some classes of non-Gevrey-
hypoelliptic operators. A fundamental kemel is also constructed for
any Gevrey hypoelliptic partial differential operator.

1. Introduction

We are concemed with hypoellipticity and local solvability of continuous
linear maps in Gevrey classes. Let us start by recalling that for a real number
$s\geq 1$ and an open set $\Omega\subset R^{n}$ , the space $G^{s}(\Omega)$ of the Gevrey functions of order $s$

is defined to be the class of all functions $f\in C^{\infty}(\Omega)$ such that for any compact
set $ K\subset\Omega$ there is a constant $C=C(K)>0$ for which the following estimates are
fulfilled:

$\max_{x\in K}|\partial^{\alpha}f(x)|\leq C^{|\alpha|+1}(\alpha!)^{s}$ , $\alpha\in Z_{+}^{n}$ . (1.1)

Moreover, for $s>1,$ $G_{0^{s}}(\Omega):=G^{s}(\Omega)\cap C_{0^{\infty}}(\Omega)$ is the space of the Gevrey
functions of order $s$ with compact support in $\Omega$ . We provide the Gevrey classes
$G_{0^{s}}(\Omega)$ and $G^{s}(\Omega)$ with the following usual locally convex topologies

$G_{0}^{s}(\Omega)=ind\lim_{K\subset\subset\Omega}(ind\lim_{\eta\rightarrow 0}G_{0}^{s}(K;\eta))$ ,

$G^{s}(\Omega)=proj\lim_{K\subset\subset\Omega}(ind\lim_{\eta\rightarrow 0}G^{s}(K;\eta))$ .
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For any compact set $ K\subset\Omega$ and every positive number $\eta,$ $G^{s}(K;\eta)$ is the
Banach space of all functions $f\in C^{\infty}(K)$ , the space of the Whitney infinitely

differentiable functions in $K$ (see [17] and [18]), such that $\Vert f\Vert_{K,\eta}:=$

$\sup_{\alpha\in Z_{+}^{n}}\eta^{|\alpha|}(\alpha!)^{-s}\max_{x\in K}|D^{\alpha}f(x)|$ is finite; $G_{0^{s}}(K;\eta):=G^{s}(K;\eta)\cap C_{0}^{\infty}(K)$ and
$ind\lim_{*},$ $proj\lim_{*}$ (here $*stands$ for either $ K\subset\subset\Omega$ or $\eta\rightarrow 0$) means that we are
taking the inductive or projective limit of the preceding Banach spaces as $K$

varies over the family of all compact subsets of $\Omega$ and $\eta$ over the set of all
positive real numbers (see [4] and the references there for a definition of the
projective and inductive limit topologies in an abstract functional setting and [5]

for an exhaustive description of Gevrey spaces from the topological point of
view). Lastly we define the spaces of s-ultradistributions $\mathscr{D}_{s^{\prime}}(\Omega)$ and $\mathscr{E}_{s}^{\prime}(\Omega)$ , for
$s>1$ , as the strong duals of the locally convex spaces $G_{0}^{s}(\Omega)$ and $G^{s}(\Omega)$ re-
spectively, namely $\mathscr{D}_{s^{\prime}}(\Omega):=(G_{0^{s}}(\Omega))^{\prime}$ and $\mathscr{E}_{s}^{\prime}(\Omega):=(G^{s}(\Omega))^{\prime}$ . Let $P=P(x, D)=$

$\sum_{|\alpha|\leq m}a_{\alpha}(x)D^{\alpha}$ be a linear partial differential operator, where $D_{j}=-i\partial_{j}$

$(j=1, \ldots, n),$ $D^{\alpha}$ $:=D^{\alpha_{1}}$ – $D^{\alpha_{n}}$ , $|\alpha|$ $:=\alpha_{1}+\cdots+\alpha_{n}$ for any multi-index $\alpha=$

$(\alpha_{1}, \ldots, \alpha_{n})$ and $m\in N$ . Let us suppose the coefficients $a_{\alpha}(x)$ of $P$ belong to the
Gevrey class $G^{s}(\Omega)$ ; then $P$ continuously maps every one of the spaces $G^{s}(\Omega)$ ,

$G_{0^{s}}(\Omega),$ $\mathscr{D}_{s^{\prime}}(\Omega)$ and $\mathscr{E}_{s}^{\prime}(\Omega)$ into itself (cf. [5], [13]). Under the above assumptions,
we say that $P$ is s-hypoellip $tic$ in $\Omega$ if $s$ –singsupp $u=s$ -singsupp(Pu) for
$u\in \mathscr{D}_{s^{\prime}}(\Omega)$ . Let us recall that for an ultradistribution $u\in \mathscr{D}_{s^{\prime}}(\Omega)$ the s-singular

support of $u$ , denoted by $s$ –singsupp $u$ , is the smallest closed subset of $\Omega$ in the
complement of which $u$ is a $G^{s}$ function. $P$ is said to be s-locally solvable at a
point $ x_{0}\in\Omega$ if there is an open neighbourhood $ U\subset\Omega$ of $x_{0}$ such that for any
$f\in G_{0^{s}}(U)$ there is a s-ultradistribution $u\in \mathscr{D}_{s^{\prime}}(U)$ solving the equation $Pu=f$ in
$U$ . Moreover $P$ is said to be s-locally solvable in $\Omega$ if it is s-locally solvable at any
point $ x_{0}\in\Omega$ . In [1] it is proved that if $P$ is s-hypoelliptic in $\Omega$ then its transposed
operator ${}^{t}P$ is s-locally solvable in $\Omega$ . This result extends to the framework of the
Gevrey classes a well-known result for partial differential operators in the $C^{\infty}$

case (cf. [14] and [19]). The same has been recently obtained by Wakabayashi
in the spaces of the hyperfunctions (see [16]). In \S 2 of this paper we state an
analogous property conceming s-hypoellipticity and s-local solvability of a s-
pseudolocal linear continuous operator from $G_{0^{s}}(\Omega)$ into $G^{s}(\Omega)$ which extends to

a linear continuous operator from $\mathscr{E}_{s}^{\prime}(\Omega)$ into $\mathscr{D}_{s^{\prime}}(\Omega)$ ; the definitions of s-
pseudolocality, s-hypoellipticity and s-local solvability in this context will be
precised in the next section. In \S 3 we restrict ourselves to s-hypoelliptic partial
differential operators for which, following [14], we will prove the existence of a
fundamental kemel. The arguments used are closely related to those of [1]

and [14], nevertheless we will give a self contained exposition of the matter. In \S 4
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we apply the result of \S 2 as a necessary condition of s-hypoellipticity. In this way
we seek some classes of non s-hypoelliptic differential and pseudodifferential
operators.

2. Hypoellipticity and Local Solvability of Linear Continuous Pseudolocal
0perators

Throughout this work we denote by $\mathscr{L}(E, F)$ the space of all continuous
linear operators from a locally convex space $E$ into another locally convex space
$F$ ; moreover we write $E^{\prime}$ for the strong dual of the locally convex space $E$ . Let
us recall also that given an operator $T\in \mathscr{L}(E, F)$ the transposed operator ${}^{t}T$ is
defined as follows:

$\langle {}^{t}Tu, v\rangle$ $:=\langle u, Tv\rangle$ , $u\in F^{\prime},$ $v\in E$ ,

where $\langle. , .\rangle$ is used to denote the duality between any locally convex space $E$ and
its strong dual $E^{\prime}$ . It tums out that ${}^{t}T\in \mathscr{L}(F^{\prime}, E^{\prime})$ .

Hereafter we fix the attention on a continuous linear operator $ T:G_{0^{s}}(\Omega)\rightarrow$

$G^{s}(\Omega)$ , extending to a continuous linear operator $T:\mathscr{E}_{s}^{\prime}(\Omega)\rightarrow \mathscr{D}_{s}^{\prime}(\Omega),$ $s>1$ , i.e.
$T\in \mathscr{L}(G_{0^{s}}(\Omega), G^{s}(\Omega))\cap \mathscr{L}(\mathscr{E}_{s}^{\prime}(\Omega), \mathscr{D}_{s^{\prime}}(\Omega))$ ; then we have also ${}^{t}T\in \mathscr{L}(G_{0^{s}}(\Omega)$ ,
$G^{s}(\Omega))\cap \mathscr{L}(\mathscr{E}_{s}^{\prime}(\Omega), \mathscr{D}_{s}^{\prime}(\Omega))$ .

DEFINITION 2.1. An operafor $T\in \mathscr{L}(G_{0^{s}}(\Omega), G^{s}(\Omega))\cap \mathscr{L}(\mathscr{E}_{s}^{\prime}(\Omega), \mathscr{D}_{s^{\prime}}(\Omega))$ ,

$s>1$ , is said to be s-pseudolocal in $\Omega lf$ for every ultradistribution $u\in \mathscr{E}_{s}^{\prime}(\Omega)$ it

holds that
$s$ -singsupp(Tu) $\subset s$ –singsupp $u$ .

An example of an operator as in Definition 2.1 is given by any linear partial
differential operator with Gevrey coefficients (see [13]). The classes of the Gevrey
finite-order pseudodifferential operators, s-ultradifferential operators and pseu-
dodifferential operators of infinite order, studied in [13], [5] and [20] (see also the
references there), also satisfy the assumptions of the preceding definition. We are
going now to look at the properties of the s-hypoellipticity and s-local solvability
of an operator $T\in \mathscr{L}(G_{0^{s}}(\Omega), G^{s}(\Omega))\cap \mathscr{L}(\mathscr{E}_{s}^{\prime}(\Omega), \mathscr{D}_{s^{\prime}}(\Omega))$ . Let us rigorously state
the above notions in the present context.

DEFINITION 2.2. An operator $T\in \mathscr{L}(G_{0^{s}}(\Omega), G^{s}(\Omega))\cap \mathscr{L}(\mathscr{E}_{s}^{\prime}(\Omega), \mathscr{D}_{s^{\prime}}(\Omega))$ ,
$s>1$ , is said to be s-hypoelliptic in $\Omega lf$

$s$ -singsupp $u=s$ –singsupp(Tu)
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for all s-ultradistributions $u\in \mathscr{E}_{s}^{\prime}(\Omega)$ . Note that s-hypoelliptic operators are s-
pseudolocal in $\Omega$ . We say that $T\in \mathscr{L}(G_{0^{s}}(\Omega), G^{s}(\Omega))\cap \mathscr{L}(\mathscr{E}_{s}^{\prime}(\Omega), \mathscr{D}_{s}^{\prime}(\Omega)),$ $s>1$ , is
s-locally solvable at a point $x_{0}\in\Omega lf$ there is an open neighbourhood $ U\subset\Omega$ of $x_{0}$

such that for every function $f\in G_{0^{s}}(U)$ there exists an ultradistribution $u\in \mathscr{E}_{s}^{\prime}(\Omega)$

such that $Tu=f$ , as an equality in $\mathscr{D}_{s^{\prime}}(U)$ . We say that $T$ is s-locally solvable in $\Omega$

if it is s-locally solvable at every point of $\Omega$ .

The basic result of this section is given by the following

PROPOSITION 2.1. Assume that $T\in \mathscr{L}(G_{0^{s}}(\Omega), G^{s}(\Omega))\cap \mathscr{L}(\mathscr{E}_{s}^{\prime}(\Omega), \mathscr{D}_{s^{\prime}}(\Omega))$ ,
$s>1$ , is s-hypoelliptic in $\Omega$ . Then ${}^{t}T$ is s-locally solvable in $\Omega$ .

PROOF. Let $x_{0}$ be an arbitrary point in $\Omega$ and take two compact subsets $K$

and $K^{\prime}$ of $\Omega$ , such that $x_{0}\in int(K)$ and $K\subset int(K$
‘

$)$ (here and later int $(K)$ stands
for the interior set of $K$). Moreover let $\chi\in G_{0^{s}}(K$

‘
$)$ be a cut-off function, $\chi\equiv 1$ in

an open neighbourhood $U$ of $K$ . Let $C_{0}(K^{\prime};K)$ be the Banach space of all the
continuous functions in $K$ ‘ compactly supported in $K$ , with norm $|u|_{\infty,K}$ $:=$

$\sup_{x\in K^{\prime}}|u(x)|=\sup_{x\in K}|u(x)|$ . Setting $D_{\chi}$ $:=\{u\in C_{0}(K‘; K) : \chi Tu\in G_{0^{s}}(K‘)\}$ , we
define $T_{\chi}$ : $D_{\chi}\rightarrow G_{0^{s}}(K^{\prime})$ by

$T_{\chi}u$ $:=\chi Tu$ , $u\in D_{\chi}$ . (2.1)

First, we prove that $T_{\chi}$ is closed, that is the graph $\mathscr{G}_{\chi}:=\{(u, T_{\chi}u), u\in D_{\chi}\}\subset$

$C_{0}(K^{\prime};K)\times G_{0^{s}}(K$
‘

$)$ of $T_{\chi}$ is a closed subspace of $C_{0}(K^{\prime};K)\times G_{0^{s}}(K^{\prime})$ , with
respect to the product topology. For this purpose, let $\{(u_{\alpha}, T_{\chi}u_{\alpha})\}_{\alpha\in A}$ be a net of
points $(u_{\alpha}, T_{\chi}u_{\alpha})\in \mathscr{G}_{\chi}$ converging to a point $(u, v)\in C_{0}(K$ ‘; $K)\times G_{0^{s}}(K$

‘
$)$ ; this

means that $u_{\alpha}\rightarrow u$ in $C_{0}(K^{\prime};K)$ and $T_{\chi}u_{\alpha}\rightarrow v$ in $G_{0^{s}}(K$
‘

$)$ . Since $C_{0}(K^{\prime};K)$ is
continuously imbedded in $\mathscr{E}_{s}^{\prime}(\Omega)$ and $T$ is continuous on $\mathscr{E}_{s}^{\prime}(\Omega),$

$u_{\alpha}\rightarrow u$ in
$C_{0}(K^{\prime};K)$ yields $T_{\chi}u_{\alpha}\rightarrow T_{\chi}u$ in $\mathscr{D}_{s^{\prime}}(\Omega)$ ; on the other hand $T_{\chi}u_{\alpha}\rightarrow v$ in $G_{0^{s}}(K^{\prime})$

yields $T_{\chi}u_{\alpha}\rightarrow v$ in $\mathscr{D}_{s^{\prime}}(\Omega)$ . So we have $T_{\chi}u=v$ which shows the closedness of $\mathscr{G}_{\chi}$ .
Using the hypothesis of s-hypoellipticity of $T$ , we prove now that

$D_{\chi}=G_{0}^{s}(K)$ . (2.2)

Of course we have $G_{0^{s}}(K)\subset D_{\chi}$ . Conversely, suppose $u\in D_{\chi}$ . From $ T_{\chi}u\in$

$G_{0^{s}}(K^{\prime})$ it follows that $(T_{\chi}u)_{|U}=(\chi Tu)_{|U}=(Tu)_{|U}\in G^{s}(U)$ ; because of the s-
hypoellipticity of $T$ we derive $u_{|U}\in G^{s}(U)$ and then $u\in G_{0^{s}}(K)$ , since $suppu\subset K$ .
Thanks to the equality (2.2), we may define $J:\mathscr{G}_{\chi}\rightarrow G_{0^{s}}(K)$ by

$J(u, T_{\chi}u)$ $:=u$ , $u\in D_{\chi}$ . (2.3)
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The operator $J$ is closed; in fact let $\{(u_{\alpha}, T_{\chi}u_{\alpha}, u_{\alpha})\}_{\alpha\in A}$ be a net of points
$(u_{\alpha}, T\chi u_{\alpha}, u_{\alpha})\in \mathscr{G}_{J}$ converging to a point $(u, v, w)\in C_{0}(K$ ‘; $K)\times G_{0^{s}}(K$

‘
$)$ $\times G_{0^{s}}(K)$

with respect to the product topology; $\mathscr{G}_{J}$ is the graph of $J$ , that is the set
$\mathscr{G}_{J}$ $:=\{(u, T_{\chi}u, u) : u\in D_{\chi}=\mathscr{G}_{0}^{s}(K)\}\subset C_{0}(K$ ‘; $K)\times G_{0^{s}}(K^{\prime})\times G_{0^{s}}(K)$ . Since $G_{0^{s}}(K)$

is continuously imbedded in $C_{0}(K^{\prime};K)$ from $u_{\alpha}\rightarrow u$ in $C_{0}(K^{\prime};K)$ and $u_{\alpha}\rightarrow w$

in $G_{0^{s}}(K)$ it follows that $u=w\in G_{0^{s}}(K)$ ; furthermore, by the same argument as
before, $T_{\chi}u=v\in G_{0^{s}}(K^{\prime})$ . So $(u, v, w)\in \mathscr{G}_{J}$ and the closedness of $J$ is then proved.
The next step will be to prove that the topology $\tau$ induced on $\mathscr{G}_{\chi}$ by the product
topology in $C_{0}(K^{\prime};K)\times G_{0^{s}}(K$

‘
$)$ is identical to the topology $\tau_{1}$ defined by

$(\mathscr{G}_{\chi}, \tau_{1})$ $:=ind\lim_{\eta\rightarrow 0}\mathscr{G}_{\chi}\cap[C_{0}(K^{\prime};K)\times G_{0}^{s}(K^{\prime};\eta)]$ . (2.4)

Clearly $\mathscr{G}_{\chi}\cap[C_{0}(K^{\prime};K)\times G_{0^{s}}(K^{\prime};\eta)]$ is a closed subspace of the Banach space
$C_{0}(K^{\prime};K)\times G_{0^{s}}(K$ ‘; $\eta)$ and then, in its tum, a Banach space for each $\eta>0$ . The
inclusion $\tau\subset\tau_{1}$ follows by observing that the maps

$\mathscr{G}_{\chi}\cap[C_{0}(K^{\prime};K)\times G_{0}^{s}(K^{\prime};\eta)]-\rangle(\mathscr{G}_{\chi}, \tau)$ (2.5)

are also continuous for all $\eta>0$ and using the definition of inductive topology.
To show the converse inclusion $\tau_{1}\subset\tau$ , we use the same argument as in
[1]. Notice that $\mathscr{G}_{\chi}$ is closed in $C_{0}(K^{\prime};K)\times G_{0^{s}}(K$

‘
$)$ and $ G_{0^{s}}(K)\times G_{0^{s}}(K^{\prime})\rightarrow$

$C_{0}(K^{\prime};K)\times G_{0^{s}}(K^{\prime})$ with continuous imbedding; then $\mathscr{G}_{\chi}$ is also closed in
$G_{0^{s}}(K)\times G_{0^{s}}(K$

‘
$)$ ; moreover the maps

$G_{0}^{s}(K;\eta)\times G_{0}^{s}(K^{\prime};\eta)\rightarrow G_{0}^{s}(K;\eta^{\prime})\times G_{0}^{s}(K^{\prime}; \eta^{\prime})$

are compact for $\eta>\eta^{\prime}>0$ (see [5]). Since

$G_{0}^{s}(K)\times G_{0}^{s}(K^{\prime})\cong ind\lim_{\eta\rightarrow 0}G_{0}^{s}(K;\eta)\times G_{0}^{s}(K^{\prime}; \eta)$ ,

by [4] Theorem 7’ we derive the following isomorphism

$(\mathscr{G}_{\chi}, \tau_{2})\cong$ indlim $\eta\rightarrow 0\mathscr{G}_{x}\cap[G_{0}^{s}(K;\eta)\times G_{0}^{s}(K^{\prime}; \eta)]$ ,

denoting by $\tau_{2}$ the topology induced on $\mathscr{G}_{\chi}$ by $G_{0^{s}}(K)\times G_{0^{s}}(K$
‘

$)$ . As a conse-
quence, $(\mathscr{G}_{\chi}, \tau_{2})$ is a dual Fr\’echet-Schwartz space and then a semi-Montel space.
Since the inclusion map

$(\mathscr{G}_{\chi}, \tau_{2})\rightarrow(\mathscr{G}_{\chi}, \tau_{1})$

is obviously continuous, from the Open mapping Theorem for LF-spaces ([11]
Theorem 8.4.11) it is also open; so $\tau_{2}=\tau_{1}$ and $(\mathscr{G}_{\chi}, \tau_{1})$ is a semi-Montel space.
Using now Proposition 8.6.8 (v) in [11], we obtain that $\tau=\tau_{1}$ . Since $J$ is a closed
map between two inductive limits of Banach spaces, by the closed graph Theorem
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of Kothe-Grothendieck for LF-spaces (see again [11], Corollary 1.2.20), we have
that $J$ is also continuous. Let $\{p_{\alpha}\}_{\alpha\in A}$ be a fundamental system of continuous
seminorms defining the topology of $G_{0^{s}}(K^{\prime})$ (we refer to [5] and [10] for explicit
systems of seminorms defining the topology of the Gevrey classes). Since the
inclusion $G_{0^{s}}(K)\subset G_{0^{s}}(K^{\prime})$ is an isomorphism (cf. [2] Lemma 4.6), the system
$\{p_{\alpha}\}_{\alpha\in A}$ also defines the topology of $G_{0^{s}}(K)$ . So the continuity of $J$ can be
restated as follows: for any $\alpha\in A$ there exist $\alpha^{\prime}\in A$ and a constant $C_{\alpha}>0$ such
that

$p_{\alpha}(u)\leq C_{\alpha}(|u|_{\infty,K}+p_{\alpha^{\prime}}(T_{\chi}u))$ , (2.6)

for all $u\in G_{0^{s}}(K)$ . Let us denote by $H^{1,\infty}(K)$ the Sobolev space of all the
functions $u\in L^{\infty}(K)$ with partial derivatives $D_{j}u\in L^{\infty}(K),$ $j=1,$

$\ldots,$
$n$ . $H^{1,\infty}(K)$

is a Banach space with norm $|u|_{\infty,K}+\sum_{j^{n}=1}|D_{j}u|_{\infty,K}$ and $G_{0^{s}}(K)$ is continuously
imbedded in $H^{1,\infty}(K)$ . Thus we can find an index $\alpha_{0}\in A$ and a positive constant
$c_{0}$ , such that the following estimate holds

$|u|_{\infty,K}+\sum_{j=1}^{n}|D_{j}u|_{\infty,K}\leq c_{0}p_{\alpha_{0}}(u)$ (2.7)

for every $u\in G_{0^{s}}(K)$ . On the other hand we have for any arbitrary compact set
$H\subset K$

$|u|_{\infty,H}\leq d(H)\sum_{j=1}^{n}|D_{j}u|_{\infty,H}$ , $u\in G_{0}^{s}(H)$ , (2.8)

where $d(H)$ is the diameter of $H$ . Taking now $\alpha$ equal to $\alpha_{0}$ in formula (2.6) and
using estimates (2.7) and (2.8) we get

$p_{\alpha_{0}}(u)\leq C_{\alpha_{0}}(d(H)\sum_{j=1}^{n}|D_{j}u|_{\infty,H}+p_{\alpha_{0}^{\prime}}(T_{\chi}u))$

$\leq C_{\alpha_{0}}d(H)c_{0}p_{\alpha_{0}}(u)+C_{\alpha_{0}}p_{\alpha_{0^{\prime}}}(T_{\chi}u)$ , (2.9)

for any $u\in G_{0^{s}}(H)$ . Notice that the constants $C_{\alpha_{0}}$ and $c_{0}$ involved in the preceding
inequality are independent of $H$ . Choosing then a compact $H_{1}$ such that
$x_{0}\in int(H_{1})$ and $C_{\alpha_{0}}d(H_{1})c_{0}<1/2$ , we derive from (2.9)

$p_{\alpha_{0}}(u)\leq 2C_{\alpha_{0}}p_{\alpha_{0}^{\prime}}(T_{\chi}u)$ , $u\in G_{0}^{s}(H_{1})$ . (2.10)

Let us take an arbitrary function $f\in G_{0^{s}}(U_{1})$ , where $U_{1}\subset H_{1}$ is an
open neighbourhood of $x_{0}$ and define a linear form $L$ on the linear space
$\chi T(G_{0^{s}}(H_{1}))$ $:=\{\chi Tu:u\in G_{0^{s}}(H_{1})\}\subset G_{0^{s}}(K$

‘
$)$ by
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$\langle L,\chi Tu\rangle$ $:=\int_{H_{1}}u(x)f(x)dx$ , $u\in G_{0}^{s}(H_{1})$ . (2.11)

The above definition is well posed; in fact if $\chi Tu_{1}=\chi Tu_{2}$ in $G_{0^{s}}(K^{\prime})$ , with
$u_{1},$ $u_{2}\in G_{0^{s}}(H_{1})$ , then $p_{\alpha_{0}}(u_{1}-u_{2})=0$ because of (2.10) for $u=u_{1}-u_{2}$ ; but this
last equality yields $u_{1}=u_{2}$ taking into account formula (2.7) and the fact that
$|u|_{\infty,H_{1}}+\sum_{j^{n}=1}|D_{j}u|_{\infty,H_{1}}$ is a norm on $H^{1,\infty}(H_{1})$ . We obtain

$|\langle L,\chi Tu\rangle|\leq\int_{H_{1}}|u(x)||f(x)|dx\leq|u|_{\infty,H_{1}}\Vert f\Vert_{L^{1}(H_{1})}$ , (2.12)

for all $u\in G_{0^{s}}(H_{1})$ . On the other hand, from (2.7) we deduce that $|u|_{\infty,H_{1}}\leq$

$c_{0}p_{\alpha_{0}}(u)$ for $u\in G_{0^{s}}(H_{1})$ . Therefore from (2.10) we conclude that

$|\langle L,\chi Tu\rangle|\leq 2c_{0}C_{\alpha_{0}}\Vert f\Vert_{L^{1}(H_{1})}p_{\alpha_{0}^{\prime}}(\chi Tu)$ , (2.13)

for every $u\in G_{0^{s}}(H_{1})$ . This shows the continuity of $L$ with respect to the topology
induced on $\chi T(G_{0^{s}}(H_{1}))$ by $G_{0^{s}}(K^{\prime})$ . From the Hanh-Banach theorem, $L$ extends
to a continuous linear form $L_{0}\in(G_{0^{s}}(K^{\prime}))^{\prime}$ . We can now define a continuous
linear form on $G^{s}(\Omega)$ by setting

$\langle\overline{L}_{0}, u\rangle$ $:=\langle L_{0},\chi u\rangle$ , $u\in G^{s}(\Omega)$ . (2.14)

Actually, $\overline{L}_{0}$ is a linear form on $G^{s}(\Omega)$ . Let us consider now a net $\{u_{\alpha}\}_{\alpha\in A}$ of
points $u_{\alpha}\in G^{s}(\Omega)$ converging to $0$ in $G^{s}(\Omega)$ . By the continuity of $L_{0}$ in $G_{0^{s}}(K^{\prime})$ it
follows that $\langle L_{0},\chi u_{\alpha}\rangle\rightarrow 0$ and then $\overline{L}_{0}\in \mathscr{E}_{s}^{\prime}(\Omega)$ . Taking an arbitrary function
$\varphi\in G_{0^{s}}(U_{1})$ we have

$\langle {}^{t}T\overline{L}_{0}, \varphi\rangle=\langle\overline{L}_{0}, T\varphi\rangle=\langle L_{0},\chi T\varphi\rangle=\int f(x)\varphi(x)dx=\langle f, \varphi\rangle$ . (2.15)

This shows the equality ${}^{t}T\overline{L}_{0}=f$ in $U_{1}$ and completes the proof. Q.E.D.

3. Gevrey Fundamental Kemels of Partial Differential Operators

The theory of the kemels in the frame of s-ultradistributions can be
developed in a manner analogous to the Schwartz distributions case (see [6], [7]
and [13]); essentially it relies on the basic isomorphism

$\mathscr{D}_{s^{\prime}}(\Omega\times\Omega^{\prime})\cong \mathscr{L}(G_{0}^{s}(\Omega^{\prime}), \mathscr{D}_{s}^{\prime}(\Omega))$ , (3.1)

where $\Omega,$
$\Omega^{\prime}\subset R^{n}$ are open sets, which associates to any ultradistribution $K=$

$K(x, y)\in \mathscr{D}_{s}^{\prime}(\Omega\times\Omega^{\prime})$ the operator $K\in \mathscr{L}(G_{0^{s}}(\Omega^{\prime}), \mathscr{D}_{s}^{\prime}(\Omega))$ defined by

$\langle K(\psi), \varphi\rangle=\langle K, \varphi\otimes\psi\rangle$ , $\varphi\in G_{0}^{s}(\Omega),$ $\psi\in G_{0}^{s}(\Omega^{\prime})$ . (3.2)
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Recall that $(\varphi\otimes\psi)(x, y):=\varphi(x)\psi(y)$ is the tensor product of $\varphi$ and $\psi$ . We will
make use of the formal integral

$K(\psi)(x)=\int K(x, y)\psi(y)dy$ (3.3)

to denote the ultradistribution $K(\psi)$ obtained by applying the operator $K$ to the
function $\psi$ . As in the $C^{\infty}$ case, the following properties of a Gevrey distribution
kemel can be stated (see for example [13]).

DEFINITION 3.1. We say that a Gevrey distribution kernel $K(x, y)$ is s-
semiregular in $x$ if (3.2) gives a $con$tinuous linear operator from $G_{0^{s}}(\Omega^{\prime})$ to $G^{s}(\Omega)$ .
We say that $K(x, y)$ is s-semiregular in $y\iota fK$ can be extended as a continuous
linear map from $\mathscr{E}_{s}^{\prime}(\Omega^{\prime})$ to $\mathscr{D}_{s^{\prime}}(\Omega)$ (or equivalently the transposed map ${}^{t}K$ is s-
semiregular in $x$). We call $K(x, y)$ s-regular if $lt$ is s-semiregular both in $x$ and $y$ .
$K$ is called s-regularizing kernel $\iota f$ it is an element of $G^{s}(\Omega\times\Omega^{\prime})$ (or equivalently
the corresponding map can be extended to a continuous linear map of $\mathscr{E}_{s}^{\prime}(\Omega^{\prime})$

into $G^{s}(\Omega))$ . Finally $K(x, y)\in \mathscr{D}_{s}^{\prime}(\Omega\times\Omega)$ is said to be s-very regular $lf$ it is s-
regular and, moreover, is a $G^{s}$ function in the complement of the diagonal $\Delta:=$

$\{(x, y)\in\Omega\times\Omega : x=y\}$ in $\Omega\times\Omega$ .

REMARK 1. Conceming the above definition, let us observe in addition that
the following isomorphism $\mathscr{L}(G_{0^{s}}(\Omega^{\prime}), G^{s}(\Omega))\cong G^{s}(\Omega;\mathscr{D}_{s}^{\prime}(\Omega^{\prime}))$ holds (see [7],
Theorem 5.2); so the kemels s-semiregular in $x$ can be identified with the $G^{s}$

functions of $ x\in\Omega$ valued in the space $\mathscr{D}_{s^{\prime}}(\Omega^{\prime})$ , while the kemels s-semiregular in
$y$ are identified with the $G^{s}$ functions of $y\in\Omega^{\prime}$ valued in $\mathscr{D}_{s^{\prime}}(\Omega)$ .

In this section we restrict ourselves to a linear partial differential operator

$P(x, D)=P=\sum_{|\alpha|\leq m}a_{\alpha}(x)D^{\alpha}$
, (3.4)

with coefficients $a_{\alpha}\in G^{s}(\Omega)$ , for a given open subset $\Omega$ of $R^{n}$ . Given an
ultradistributions $K(x, y)\in \mathscr{D}_{s^{\prime}}(\Omega_{x}\times\Omega_{y}^{\prime})$ we may consider the operator $P$ in (3.4)
acting on $K(x, y)$ with respect to the x-variables:

$P_{X}(K(x, y))=\sum_{|\alpha|\leq m}a_{\alpha}(x)D_{X}^{\alpha}K(x, y)$
;

here $P_{X}$ and $D_{x}^{\alpha}$ just mean that we are considering $P$ and $D^{\alpha}$ acting on the $x$

variables; with the same convention, we will write $P_{y}$ and $D_{y^{\alpha}}$ . According to [14],
we may give the following
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DEFINmON 3.2. Let $P$ be a linear partial $d_{l}fferen$tial operafor with $G^{s}$

coefficients. A kernel $K(x, y)\in \mathscr{D}_{s}^{\prime}(\Omega\times\Omega)$ is called a fundamental kernel of $P$ if

$P_{X}K(x, y)-\delta(x-y)=0$ ,

where we write $\delta(x-y)$ for the Dirac measure on the diagonal of $\Omega\times\Omega$ . We say
that $K(x, y)$ is a two-sided fundamental kernel of $Plf$ it satisfies

$P_{X}K(x, y)-\delta(x-y)=0$ ${}^{t}P_{y}K(x, y)-\delta(x-y)=0$

or equivalently

$ KP\psi=PK\psi=\psi$

for all $\psi\in G_{0^{s}}(\Omega)$ , being $K$ the map in $\mathscr{L}(G_{0^{s}}(\Omega), \mathscr{D}_{s^{\prime}}(\Omega))$ corresponding to $K(x, y)$

by (3.2).

The following proposition conceming the above properties of a distribution
kemel can be proved easily, by using arguments analogous to those for the
“singular support lemma” (see for example [15]).

PROPOSITION 3.1. If the distribution kernel $K(x, y)\in \mathscr{D}_{s^{\prime}}(\Omega\times\Omega)$ is s-very
regular, then the continuous linear operator $K$ corresponding to $K(x, y)$ by (3.2) is
s-pseudolocal in $\Omega$ .

The main result of this section is given by the following.

PROPOSITION 3.2. Let $P$ be a linear partial $d_{l}fferential$ operator with coef-
ficients in $G^{s}(\Omega)$ , where $\Omega$ is an open subset of $R^{n}$ , and suppose $P$ is s-hypoelliptic
in $\Omega$ . Then every point of $\Omega$ has an open neighbourhood in which the transposed
operator ${}^{t}P$ has a fundamental kernel. If ${}^{t}P$ is also s-hypoelliptic, every point of $\Omega$

has a neigbourhood where $P$ has a two-sided s-very regular fundamental kernel.

We need some preparation before proving the proposition. First of all we
introduoe the following

DEFINITION 3.3. A continuous increasing function $\sigma:[0, \infty$ ) $\rightarrow R$ is said to be
a subordinate function if it satisfies:

(i) $\sigma(0)=0$ ;
(ii) $\frac{\sigma(\rho)}{\rho}\rightarrow 0$ as $\rho\rightarrow\infty$ .
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Hereafter we write $\Sigma$ for the class of all the subordinate functions and for any
$\sigma\in\Sigma$ we set, with abuse of notation, $\sigma(\xi)$ $:=\sigma(|\xi|)$ . The importance of the above
definition in our context is that the expressions

$\Vert f\Vert_{s,\sigma}$
$:=\Vert\exp(\sigma(\xi)^{1/s})\hat{f}(\xi)\Vert_{2}$ (3.5)

give a fundamental system of continuous seminorms on $G_{0^{s}}(K)$ , for any compact
set $K\subset R^{n}$ , as $\sigma$ varies in $\Sigma$ (see [5], Theorem 9.4), where $\Vert.\Vert_{2}$ is the norm in
the space $L^{2}(R^{n})$ and $\hat{f}(\xi):=\int\exp(-i\xi\cdot x)f(x)dx$ is the Fourier transform of
$f\in G_{0^{s}}(K)$ . For fixed $s>1$ and $\sigma\in\Sigma$ , we define the space $\Phi_{\sigma}^{s}$ by

$\Phi_{\sigma}^{s}$ $:=\{u\in \mathscr{S}^{\prime}(R^{n}) : \Vert u\Vert_{s,\sigma}<\infty\}$ ,

where $\mathscr{S}^{\prime}(R^{n})$ is the space of the tempered distributions in $R^{n}$ and the Fourier
transformation is defined on $\mathscr{S}^{\prime}(R^{n})$ by duality. It is a standard argument to
show that $\Phi_{\sigma}^{s}$ is a Hilbert space with inner product given by

$(u, v)_{s,\sigma}$
$:=(\exp(\sigma(\xi)^{1/s})\hat{u}(\xi), \exp(\sigma(\xi)^{1/s})\hat{v}(\xi))$ , $u,$ $v\in\Phi_{\sigma}^{s}$ , (3.6)

denoting by $($ . , . $)$ the inner product in $L^{2}(R^{n})$ . In view of Lemma 3.3 in [5]
and Definition 3.3, it immediately follows that $G_{0^{s}}(\Omega)\subset\Phi_{\sigma}^{s}$ with continuous
imbedding, for any open $\Omega\subset R^{n},$ $s>1$ and $\sigma\in\Sigma$ . This allows us to define the
space $G_{\sigma^{s}}(\Omega)$ as the closure of $G_{0^{s}}(\Omega)$ in $\Phi_{\sigma}^{s}$ . As a closed subspace of $\Phi_{\sigma}^{s},$ $G_{\sigma^{s}}(\Omega)$ is
in its tum a Hilbert space with the inner product (3.6).

REMARK 2. Let us observe that for any $s>1$ and $\sigma\in\Sigma$ , in view of the
Parseval’s identity we have for every $u\in\Phi_{\sigma}^{s}$ :

$\Vert u\Vert_{2}=c_{n}\Vert\hat{u}\Vert_{2}\leq c_{n}\Vert\exp(-\sigma(.)^{1/s})\Vert_{\infty}\Vert u\Vert_{s,\sigma}\leq C_{n}\Vert u\Vert_{s,\sigma}$ ,

where $c_{n}$
$:=(2\pi)^{-n/2}$ and $C_{n}$ $:=c_{n}\Vert\exp(-\sigma(.)^{1/s})\Vert_{\infty}<\infty$ , since from Definition

3.3 it follows that $\exp(-\sigma(\xi)^{1/s})\in L^{\infty}(R^{n})$ . So the space $\Phi_{\sigma}^{s}$ is included in $L^{2}(R^{n})$

with continuous imbedding. As a subspace of $\Phi_{\sigma}^{s},$ $G_{\sigma^{s}}(\Omega)$ is also included in
$L^{2}(R^{n})$ with continuous imbedding for any $\Omega\subset R^{n}$ open.

Hereafter, for a given subordinate function $\sigma\in\Sigma$ and a real number $s>1$ , we
denote by $j$ the operator which associates to each function $f\in L^{2}(R^{n})$ the linear
form $j(f)$ on $G_{\sigma^{s}}(\Omega)$ defined by

$\langle j(f), \psi\rangle=\int f(x)\psi(x)dx$ , $\psi\in G_{\sigma}^{s}(\Omega)$ . (3.7)

We also write $J$ for the operator which associates to every linear form $u$ , taken
in the strong dual $(G_{\sigma^{S}}(\Omega))^{\prime}$ of $G_{\sigma^{s}}(\Omega)$ , the restriction of $u$ to the space $G_{0^{s}}(\Omega)$ .
Conceming the preceding operators $j$ and $J$ , the following lemma is valid.
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LEMMA 3.1. For any open set $\Omega\subset R^{n}$ , $s>1$ , $\sigma_{1},$
$\sigma_{2}\in\Sigma$ the following

operators
(a) $j:L^{2}(R^{n})\rightarrow(G_{\sigma^{s_{2}}}(\Omega))^{\prime}$ ;
(b) $J$ : $(G_{\sigma_{1}^{s}}(\Omega))^{\prime}\rightarrow \mathscr{D}_{s^{\prime}}(\Omega)$ ;
(c) $j:G_{\sigma_{1}^{s}}(\Omega)\rightarrow(G_{\sigma_{2}^{S}}(\Omega))^{\prime}$

are continuous and injective.

PROOF. In view of Remark 2, the operator $j$ in (a) is well-defined by means
of (3.7). Moreover if $\psi_{v}\rightarrow 0$ in $G_{\sigma^{s_{2}}}(\Omega)$ as $ v\rightarrow\infty$ then

$|\langle j(u), \psi_{v}\rangle|\leq\Vert u\Vert_{2}\Vert\psi_{v}\Vert_{2}$ (3.8)

so that $|\langle j(u), \psi_{v}\rangle|\rightarrow 0$ , since $G_{\sigma}^{s_{2}}(\Omega)$ is continuously imbedded in $L^{2}(R^{n})$ . This
shows $j(u)\in(G_{\sigma^{s_{2}}}(\Omega))^{\prime}$ . It is easily seen that $j$ is injective; finally from (3.8) we see
that $u_{v}\rightarrow 0$ in $L^{2}(R^{n})$ , as $ v\rightarrow\infty$ , yields $j(u_{v})\rightarrow 0$ in $(G_{\sigma}^{s_{2}}(\Omega))^{\prime}$ . The continuity
of the operator $J$ in (b) plainly follows by observing that $J$ is the transposed of
the inclusion map $G_{0^{s}}(\Omega)\rightarrow G_{\sigma_{1}^{S}}(\Omega)$ which is obviously continuous. Moreover $J$

is injective, since $G_{0^{s}}(\Omega)$ is dense in $G_{\sigma_{1}^{S}}(\Omega)$ . The operator $j$ in (c) is obviously
injective and continuous since it is the restriction to the space $G_{\sigma_{1}^{s}}(\Omega)$ of the
operator in (a) and $G_{\sigma_{1}^{s}}(\Omega)$ is continuously imbedded in $L^{2}(R^{n})$ , in view of
Remark 2. Q.E.D.

PROOF (of Proposition 3.2). Let us take an arbitrary point $x_{0}$ in $\Omega$ . The
family $\{\Vert.\Vert_{s,\sigma}\}_{\sigma\in\Sigma}$ , where $\Vert.\Vert_{s,\sigma}$ is defined by (3.5), is a fundamental system of
continuous seminorms in $G_{0^{s}}(K)$ for any compact set $K$ . Therefore by repeating
the argument used to get the inequality (2.10) for $P$ instead of $T$ and without
inserting the cut-off function $\chi$ (see also Lemma 2.3 in [1]), we may find two
subordinate functions $\sigma_{0}$ and $\sigma_{1}$ , an open neighbourhood $ U\subset\Omega$ of $x_{0}$ and a
positive constant $C$ so that:

$\Vert f\Vert_{s,\sigma_{0}}\leq C\Vert Pf\Vert_{s,\sigma_{1}}$ , (3.9)

for every $f\in G_{0^{s}}(U)$ . From the above inequality it comes that the map $Pf\mapsto f$ is
well-defined on $P(G_{0^{s}}(U))$ ; indeed if $Pf_{1}=Pf_{2},$ $f_{1},f_{2}\in G_{0^{s}}(U)$ , writing (3.9) for
$f_{1}-f_{2}$ instead of $f$ we derive $\Vert f_{1}-f_{2}\Vert_{s,\sigma_{0}}=0$ and then $f_{1}=f_{2}$ . Moreover the
same inequality (3.9) tells us that the preceding map is a continuous linear
operator from $P(G_{0^{s}}(U))$ , as a subspace of $G_{\sigma_{1}^{s}}(U)$ , into $G_{\sigma_{0}^{S}}(U)$ . So, denoting by
$M$ the closure of $P(G_{0^{s}}(U))$ in $G_{\sigma_{1}^{S}}(U)$ , we can extend $Pf\mapsto f$ to a continuous
linear operator $T$ ‘ from $M$ to $G_{\sigma^{s_{0}}}(U)$ . Taking now advantage from the fact that
$G_{\sigma_{1}^{S}}(U)$ is a Hilbert space, we can further extend $T$ ‘ to a continuous linear
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operator, say $T$ , from the whole $G_{\sigma_{1}^{S}}(U)$ to $G_{\sigma^{s_{0}}}(U)$ putting it equal to $0$ on the
orthogonal $M^{\perp}$ of the space $M$ . The operator $T:G_{\sigma_{1}^{s}}(U)\rightarrow G_{\sigma}^{s_{0}}(U)$ satisfies by
definition:

$T(Pf)=f$ , (3.10)

for $f\in G_{0^{s}}(U)$ . Let us consider now the transposed operator ${}^{t}T$ ; it is a continuous
linear map ${}^{t}T:(G_{\sigma^{s_{0}}}(U))^{\prime}\rightarrow(G_{\sigma_{1}^{s}}(U))^{\prime}$ . By virtue of the imbeddings given by the
operators (a) and (b) in Lemma 3.1, we may regard ${}^{t}T$ as a continuous linear
operator from $G_{0^{s}}(U)$ to $\mathscr{D}_{s^{\prime}}(U)$ . By means of the kemel theorem for ultra-
distributions, the operator ‘ $T$ corresponds to a distribution kemel in $\mathscr{D}_{s^{\prime}}(U\times U)$

giving the required fundamental kemel of ${}^{t}P$ in the neighbourhood $U$ of the
arbitrary point $x_{0}$ . Indeed from equality (3.10), we readily deduce

${}^{t}P({}^{t}Tf)=f$ ,

for all $f\in G_{0^{s}}(U)$ . This proves the first assertion of the proposition. Let us
assume now that even ${}^{t}P$ is s-hypoelliptic. Arguing as before we can find an open
neighbourhood $U^{\prime}$ of $x_{0}(U^{\prime}$ could be assumed to be equal to $U$ in (3.9) without
loss of generality) on which we get an estimate such as:

$\Vert g\Vert_{s,\epsilon_{0}}\leq C\Vert {}^{t}Pg\Vert_{s,\epsilon_{1}}$ , $g\in G_{0}^{s}(U)$ , (3.11)

where $\epsilon_{0},$
$\epsilon_{1}\in\Sigma$ are suitable subordinate functions. Since for any couple of

subordinate functions $\sigma_{0}$ and $\sigma_{1}$ the functions $\eta_{0}$ and $\eta_{1}$ defined by:

$\eta_{0}(p)$ $:=\min(\sigma_{0}(\rho), \sigma_{1}(\rho))$ , $\eta_{1}(\rho)$ $:=\max(\sigma_{0}(\rho), \sigma_{1}(\rho))$ , $\rho>0$

are subordinate functions too, taking into account formula (3.5), we can always
assume $\sigma_{i}=\epsilon_{l},$ $i=0,1$ , in (3.9) and (3.11). So arguing as before (where $P$ and ${}^{t}P$

are interchanged) we obtain a continuous linear operator $S:G_{\sigma_{1}^{S}}(U)\rightarrow G_{\sigma}^{s_{0}}(U)$

such that:

$S({}^{t}Pf)=f$ , $f\in G_{0}^{s}(U)$ . (3.12)

Following now [14], we define the operator

$E:=\tau_{pM}+{}^{t}S(I-pM)$ ,

where $pM$ is the projection of the Hilbert space $G_{\sigma_{1}^{s}}(U)$ onto the closed subspace
$M$ and $I$ is the identity map. By use of the imbeddings given by the operators
$(a)-(c)$ in Lemma 3.1, we see that $E\in \mathscr{L}(G_{0^{s}}(U), \mathscr{D}_{s^{\prime}}(U))$ (so it is a kemel
distribution in $\mathscr{D}_{s^{\prime}}(U\times U)$ again) and
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$E(Pf)=Tp_{M}Pf+\prime S(I-p_{M})Pf$

$=TPf+{}^{t}S(Pf-Pf)=f$ , $f\in G_{0}^{s}(U)$ , (3.13)

taking into account (3.10). Moreover we have:

$P(Ef)=PTp_{M}f+P({}^{t}S(I-p_{M})f)$

$=PTp_{M}f+(I-p_{M})f$ , $f\in G_{0}^{s}(U)$ , (3.14)

since $P^{t}Sf=f$ as a consequence of (3.12). Now we are going to show that
$PTp_{M}f=p_{M}f$ for $f\in G_{0^{s}}(U)$ . Indeed there is a sequence $\{f_{v}\}_{v=1}^{\infty}$ of functions
$f_{v}\in G_{0^{s}}(U)$ such that $Pf_{v}\rightarrow p_{M}f$ in $G_{\sigma_{1}^{s}}(U)$ , as $p_{M}f\in M$ . Since $T$ is a con-
tinuous operator on $G_{\sigma_{1}^{S}}(U)$ and satisfies (3.10), we derive then

$f_{v}=TPf_{v}\rightarrow Tp_{M}f$ , $ v\rightarrow\infty$

in $G_{\sigma_{0}^{S}}(U)$ and then in $\mathscr{D}_{s}^{\prime}(U)$ , because of Lemma 3.1 (b) and (c). So we conclude
that $Pf_{v}\rightarrow PTp_{M}f$ in $\mathscr{D}_{s^{\prime}}(U)$ . This just yields $PTp_{M}f=p_{M}f$ which gives

$P(Ef)=f$ , (3.15)

for all $f\in G_{0^{s}}(U)$ . Equations (3.13) and (3.15) just mean that the distribution
kemel in $\mathscr{D}_{s^{\prime}}(U\times U)$ corresponding to $E$ is a two-sided fundamental kemel of $P$

in $U$ . It remains to see that such a kemel $E$ is s-very regular. This last assertion
will be a consequence of the next lemma. Q.E.D.

LEMMA 3.2. Let $P$ be a linear partial $d_{l}fferential$ operator on an open set
$\Omega\subset R^{n}$ , with coefficients in $G^{s}(\Omega)$ . If $P$ and ${}^{t}P$ are s-hypoelliptic in $\Omega$ then every
two sided fundamen $tal$ kernel $T(x, y)\in \mathscr{D}_{s}^{\prime}(\Omega\times\Omega)$ of $P$ is s-very regular.

PROOF. Let $T\in \mathscr{L}(G_{0^{s}}(\Omega), \mathscr{D}_{s}^{\prime}(\Omega))$ be the operator corresponding to $T(x, y)$

by (3.2). Since $PTf=f$ , for every $f\in G_{0^{s}}(\Omega)$ , from the s-hypoellipticity of $P$

it follows that $T(G_{0^{s}}(\Omega))\subset G^{s}(\Omega)$ . From that we deduce the graph of $T$ ,
$\mathscr{G}(T):=\{(f, Tf),f\in G_{0^{s}}(\Omega)\}$ is a closed subspace of $G_{0^{s}}(\Omega)\times G^{s}(\Omega)$ and then
we claim $T\in \mathscr{L}(G_{0^{s}}(\Omega), G^{s}(\Omega))$ . To prove this last assertion, let $K$ be any
compact subset of $\Omega,$ $\chi\in G_{0^{s}}(\Omega)$ a cut-off function, such that $\chi\equiv 1$ on $K$ , and for
every $f\in G_{0^{s}}(\Omega)$ set $T_{\chi}f$ $:=\chi Tf$ , as in the proof of Proposition 2.1. We have that
$T_{\chi}\in \mathscr{L}(G_{0^{s}}(\Omega), \mathscr{E}_{s}^{\prime}(\Omega))\subset \mathscr{L}(G_{0^{s}}(\Omega), \mathscr{D}_{s^{\prime}}(\Omega))$ and $T_{\chi}(G^{s}(\Omega))\subset G_{0^{s}}(K)\subset G_{0^{s}}(\Omega)$ .
Arguing then on the graph $\mathscr{G}(T_{\chi})$ of $T_{\chi}$ as before, it tums that $\mathscr{G}(T_{\chi})$ is a closed
subspace of $G_{0^{s}}(\Omega)\times G_{0^{s}}(\Omega)$ . By Kothe-Grothendieck’s closed graph theorem for
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LF-spaces ([11], Corollary 1.2.20), it follows that $T_{\chi}\in \mathscr{L}(G_{0^{s}}(\Omega), G_{0^{s}}(\Omega))$ . In view

of definition of $\chi$ it comes that the map

$\psi\mapsto(T\psi)_{|K}$

associating to any $\psi\in G_{0^{s}}(\Omega)$ the restriction of $ T\psi$ to $K$ , is a continuous linear

operator from $G_{0^{s}}(\Omega)$ to $G^{s}(K)$ . Because of the arbitrary of $K$ , this shows the
continuity of $T:G_{0^{s}}(\Omega)\rightarrow G^{s}(\Omega)$ and then $T$ is s-semiregular in $x$ . Since the

fundamental kemel $T$ of $P$ is two sided and ${}^{t}P$ is also s-hypoelliptic, arguing

as before with ${}^{t}P$ and ${}^{t}T$ instead of $P$ and $T$ respectively, we prove that $T$ is

s-semiregular in $y$ . Let us notice that, in view of Remark 1, $ T(x, y)\in$

$G^{s}(\Omega_{y};\mathscr{D}_{s^{\prime}}(\Omega_{X}))$ . It remains now to show that $T(x, y)$ is a $G^{s}$ function in the

complement of the diagonal $\Delta\subset\Omega\times\Omega$ . In order to do it, let $U$ and $V$ be two

open subsets of $\Omega$ such that $ U\cap V=\emptyset$ and $\alpha\in Z_{+}^{n}$ an arbitrary multi-index.

From now on $T(x, y)$ stands for its restriction to $U_{x}\times V_{y}$ . Since $T(x, y)$ is a
fundamental kemel we have

$P_{X}(\partial_{y^{\alpha}}T(x, y))=0$ , in $U_{X}\times V_{y}$

so that the set of ultradistributions $\mathscr{R}$ $:=\{\partial_{y^{\alpha}}T(. , y) : \alpha\in Z_{+}^{n}, y\in V_{y}\}\subset \mathscr{D}_{s^{\prime}}(U_{X})$ is

contained in the null space of $P,$ $KerP$ , where now we think about $P$ as a
continuous linear operator $P:\mathscr{D}_{s^{\prime}}(U)\rightarrow \mathscr{D}_{s}^{\prime}(U)$ . On the other hand $KerP\subset$

$G^{s}(U_{x})$ , because of the s-hypoellipticity of $P$ . Arguing as in the proof of Theorem

52.1 of [14] we see that the topologies of $G^{S}(U_{X})$ and $\mathscr{D}_{s^{\prime}}(U_{X})$ coincide on $KerP$

(and then on $\mathscr{R}$). Thus it follows that $T(x, y)\in G^{s}(V_{y};G^{S}(U_{\lambda}))\cong G^{S}(U_{X}\times V_{y})$ .

Indeed, let $\{q\tau\}_{l\in L}$ be a fundamental system of continuous seminorms on $\mathscr{D}_{s^{\prime}}(U_{\lambda})$ :

we know that for any compact $K\subset V$ and $l\in L$ there is a constant $C_{T}=$

$C_{l}(K)>0$ such that

$\max_{y\in K}qf(\partial_{y^{\alpha}}T(. , y))\leq C_{l}^{|\alpha|+1}(\alpha!)^{s}$ , $\alpha\in Z_{+}^{n}$ (3.16)

(cf. [7] Definition 3.9). Moreover, let $\{p_{j}\}_{j\in J}$ be a fundamental system of

continuous seminorms on $G^{s}(U_{x})$ . Then for all $j\in J$ there is a $l_{j}\in L$ and $C_{j}>0$

such that
$p_{j}(f)\leq C_{l}ql_{j}(f)$ $f\in Ker$ P. (3.17)

From (3.16) and (3.17) we deduce that for any compact set $K\subset V_{y}$ and $j\in J$

$\max_{y\in K}p_{j}(\partial_{y^{\alpha}}T(. , y))\leq C_{j}^{|\alpha|+1}(\alpha!)^{s}$ , $\alpha\in Z_{+}^{n}$ ,

for some positive constant $C_{j}=C_{j}(K)$ , which proves $T(x, y)\in G^{s}(U_{X}\times V_{y})$ and

concludes the proof. Q.E.D.
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4. Applications

As a necessary condition of s-hypoellipticity, Proposition 2.1 may be used to

deduce some results of non s-hypoellipticity from known results of non s-local
solvability. More precisely, analogously to the differential case studied in [1], we
obtain that if an operator $T\in \mathscr{L}(G_{0^{s}}(\Omega), G^{s}(\Omega))\cap \mathscr{L}(\mathscr{E}_{s}^{\prime}(\Omega), \mathscr{D}_{s^{\prime}}(\Omega)),$ $s>1$ , is not

s-locally solvable in $\Omega$ , then the transposed ${}^{t}T$ is non s-hypoelliptic in $\Omega$ . Assume

in particular that $T$ belongs to $\mathscr{L}(G_{0^{s}}(\Omega), G^{s}(\Omega))\cap \mathscr{L}(\mathscr{E}_{s}^{\prime}(\Omega), \mathscr{D}_{s^{\prime}}(\Omega))$ for all $s>1$

(this is the case when, for instance, $T$ is an analytic pseudodifferential operator);

we deduce that if $T$ is not s-locally solvable then ${}^{t}T$ is neither s’-hypoelliptic
for all $1<s\leq s^{\prime}$ nor hypoelliptic. In fact s’-hypoellipticity for ${}^{t}T$ would imply

s’-local solvability of $T$ , and hence s-local solvability for $s\leq s^{\prime}$ . A number of

applications in this direction can be found in [1]; all of them concems differential
operators. Here we add few very elementary applications conceming Gevrey

pseudolocal model operators which might be also not differential. We begin with

the class of partial differential operators $P$ in $R_{x_{1},x_{2}}^{2}$ of the following form

${}^{t}P=(\partial_{x_{1}}+i\varphi(x_{1})\partial_{x_{2}})^{m}+D_{X}^{m_{2}-1}$ , (4.1)

where $\varphi(x_{1})\in G^{\theta}(R),$ $\theta>1$ and changes sign at $x_{1}=0$ . From the Gevrey non
solvability result in [8] Theorem 5.1, see also [9], we readily derive the following

PROPOSITION 4.1. The operator (4.1) is neither s-hypoelliptic for all $ s\geq\theta$ nor
hypoelliptic.

Another example is given by the pseudodifferential operators in $R_{x_{1},x_{2}}^{2}$ studied

in [12]
$Q_{p}$ $:=D_{x_{1}}+ix_{1^{h}}|D_{x_{2}}|^{\rho}$ , (4.2)

where $0<\rho\leq 1,$ $h$ is an odd integer and $|D_{x_{2}}|^{\rho}$ is the pseudodifferential operator

with symbol $|\xi_{2}|^{\rho}$ . In [12] it is proved that the operator $Q_{\rho}$ is not s-locally

solvable for $s>1/p$ , whereas it is s-locally solvable for $ 1<s<1/\rho$ . In particular
$Q:=D_{x_{1}}+ix_{1^{h}}|D_{x_{2}}|$ is not s-locally solvable for any $s>1$ . From Proposition 2.1
we deduce now the following Gevrey non hypoellipticity result.

PROPOSITION 4.2. The transposed ${}^{t}Q_{\rho}=-D_{x_{1}}+ix_{1}^{h}|D_{x_{2}}|^{\rho}$ is neither s-
hypoelliptic for all $ s>1/\rho$ , nor hypoelliptic.

Finally, let us consider the model operator in $R_{x_{1},x_{2}}^{2}$ with multiple charac-

teristics
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$P_{m}=(D_{x_{1}}+ix_{1^{h}}|D_{x_{2}}|)^{m}+lower$ order terms, $m\geq 2$ , (4.3)

where $h$ is an odd positive integer. It is proved in [3], [9] that $P_{m}$ is not s-locally
solvable for each $s>1$ , while it is s-hypoelliptic in $R_{x_{1},x_{2}}^{2}$ for all $1<s<$

$m/(m-1)$ . By use of Proposition 2.1 we derive then the following

PROPOSITION 4.3. The operator

${}^{t}P_{m}=(-D_{x_{1}}+ix_{1}^{h}|D_{x_{2}}|)^{m}+lower$ order terms

is neither s-hypoelliptic, for all $s>1$ , nor hypoelliptic in $R_{x_{1},x_{2}}^{2}.{}^{t}P_{m}$ is s-locally
solvable in $R_{x_{1},x_{2}}^{2}$ for every $1<s<m/(m-1)$ .

More general classes of operators containing the preceding models can be
found in [3], [9] and the references there; results of Gevrey non-hypoellipticity for
them can be deduced in a similar way.
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