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PRODUCTS OF $k$-SPACES, AND
SPECIAL COUNTABLE SPACES

By

Yoshio TANAKA and Yuuko SHIMIZU1

Introduction

We recall that every k-space is characterized as a quotient space of a locally
compact space. As is well-known, not every product of a metric space with a k-
space is a k-space.

In this paper, we give special countable spaces, such as the sequential fan,
Arens’ space, their certain subspaces, and modifications of these countable spaces.
In terms of these spaces, we give necessary conditions (resp. necessary and suf-
ficient conditions) for the product $X\times Y$ to be a k-space when $X$ is a certain
non-locally compact space (resp. a bi-k-space), and $Y$ is a sequential space which
is one of the following spaces $(A_{1})\sim(A_{8})$ .

(A) Fr\’echet space.
(A) Space in which every point is a $G_{\delta}$ -set.
(A3) Hereditarily normal space.
(A) Space having a point-countable k-network.
(A5) Quotient s-image of a paracompact countably bi-k-space.
(A) Closed image of a countably bi-k-space.
(A7) Closed image of a normal countably bi-k-space.
(A) Closed image of an M-space.
We assume that all spaces are regular and $T_{1}$ , and all maps are continuous

surjections.
Let us recall some definitions used in this paper. A space $X$ is a sequential

space, if $A\subset X$ is open in $X$ if and only if, for any $x\in A$ and any sequence
$\{x_{n} : n\in N\}$ converging to $x,$ $x_{n}\in A$ except at most finitely many $x_{n}$ .

A space $X$ is Fr\’echet if for any $A\subset X$ and any $x\in\overline{A}$, there exist points
$x_{n}\in A$ such that $\{x_{n} : n\in N\}$ converges to $x$ . Also, a space $X$ is strongly Fr\’echet
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[14] ($=countably$ bi-sequential in the sence of E. Micheal [7]), if for every de-
creasing sequence $\{A_{n} : n\in N\}$ of subsets of $X$ with $x\in A_{n}^{-}$ for any $n\in N$ , then
there exist points $x_{n}\in A_{n}(n\in N)$ such that $\{x_{n} : n\in N\}$ converges to the point $x$ .

Recall that a filter base $\mathscr{F}$ is a non-empty collection of non-empty sets
such that $F_{1},$ $F_{2}\in \mathscr{F}$ implies $F_{3}\subset F_{1}\cap F_{2}$ for some $F_{3}\in \mathscr{F}$ . A filter base $\mathscr{F}$ ac-
cumulates at $x\in X$ if $x\in\overline{F}$ for all $F\in \mathscr{F}$ . Also, a sequence $\{A_{n} : n\in N\}$ in $X$

is k-sequence (resp. q-sequence) [7] if it is a decreasing sequence such that $A=$

$\cap\{A_{n} : n\in N\}$ is compact (resp. countably compact), and any open set $U\supset A$

contains some $A_{n}$ .
A space $X$ is a bi-k-space [7] if, whenever a filter base $\mathscr{F}$ accumulates

at $x\in X$ , then there exists a k-sequence $\{A_{n} : n\in N\}$ such that $x\in\overline{F\cap A_{n}}$ for
all $n\in N$ and all $F\in \mathscr{F}$ . When the filter base $\mathscr{F}$ is a decreasing sequence, then
such a space $X$ is a countably bi-k-space [7]. Every bi-k-space (resp. countably
bi-k-space) is characterized as the bi-quotient (resp. countably bi-quotient) image
of a paracompact M-space; see [7]. Here, a map $f:X\rightarrow Y$ is bi-quotient [6]
if, whenever $y\in Y$ and $\mathscr{U}$ is a cover of $f^{-1}(y)$ by open subsets of $X$ , then finitely
many $f(U)$ , with $U\in \mathscr{U}$ , cover some nbd of $y$ in $Y$ . When the cover $\mathscr{U}$ is count-
able, then such a map $f$ is countably bi-quotient; see [14], for example. We recall
that a space is an M-space if and only if it is the inverse image of a metric space
under a quasi-perfect map (i.e., a closed map such that the inverse image of each
point is countably compact). Also, we recall that a space is of pointwise countable
type (resp. q-space) if each point has a k-sequence (resp. q-sequence) of nbds.
Spaces of poinwise countable type, or M-spaces are q-spaces. For spaces, the
implications below hold. Also, strongly Fr\’echet spaces are countably bi-k, and
the converse holds among Fr\’echet spaces ([13]).

first $countable\rightarrow stronglyFr\acute{e}chet\rightarrow Fr\acute{e}chet\rightarrow sequential\rightarrow k$ . Also,
paracompact $M$ or first $countable\rightarrow pointwise$ countable $type\rightarrow bi- k\rightarrow$

countably $bi- k\rightarrow k$ .

We recall that a cover $\mathscr{P}$ of a space $X$ is a k-network for $X$ if, for any
compact subset $K$ , and any open set $V$ with $K\subset V,$ $K\subset\cup \mathscr{F}\subset V$ for some
finite $\mathscr{F}\subset \mathscr{P}$ . Every quotient s-image of a metric space has a point-countable
k-network. Here, an s-image is the image under an s-map (i.e., a map such that
the inverse image of each point is separable). Every k-space with a point-
countable k-network is sequential, and every countably bi-k-space with a point-
countable k-network has a point-countable base ([3]).

Let $X$ be a space. For a (not necessarily open or closed) cover $\mathscr{P}$ of $X,$ $X$ is
determined by a cover $\mathscr{P}$ , if $U\subset X$ is open in $X$ if and only if $U\cap P$ is relatively
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open in $P$ for every $P\in \mathscr{P}$ . Here, we can replace “open” by “closed”. (Following
[3], we shall use “X is determined by $\mathscr{P}$

’ instead of the usual “X has the weak
topology with respect to $\mathscr{P}’$ ). Obviously, every space is determined by its open
cover. As is well-known, a space is called a k-space it is determined by the cover
of all compact subsets, equivalently, it is detemined by some cover of compact
subsets. Recall that a space is sequential if and only if it is determined by some
cover of (compact) metric subsets. Every sequential space is precisely a quotient
space of a (locally compact) metric space ([1]). Sequential spaces, or countably
bi-k-spaces are k-spaces. Every k-space in which each point is a $G_{\delta}$ -set is se-
quential ([7]).

We conclude this section by recording two elementary facts which will be
used. (These are easily or routinely shown).

Fact 1. Let $X$ be a space determined by a cover $\mathscr{P}$ , and let $\mathscr{C}$ be a cover of
X. If each element of $\mathscr{P}$ is contained in some element of $\mathscr{C}$ , then $X$ is also
determined by $\mathscr{C}$

Fact 2. Let $X$ be a space determined by a cover $\{X_{\alpha} : \alpha\}$ . If each $X_{\alpha}$ is
determined by a cover $\mathscr{P}_{\alpha}$ , then $X$ is determined by a cover $\cup\{\mathscr{P}_{\alpha} : \alpha\}$ .

1. Special Countable Spaces

We define some special countable spaces, including canonical sequential
spaces, Arens’ space and the sequential fan.

Let $T=\{\infty\}\cup\{p_{n} : n\in N\}\cup\{p_{nm} : n, m\in N\}$ be the countable space such
that each $p_{nm}$ is isolated in $T,$ $K=\{p_{n} : n\in N\}$ converges to $\infty\not\in K$ , and each
$L_{n}=\{p_{nm} : m\in N\}$ converges to $p_{n}\not\in L_{n}$ .

For the space $T$ , let us consider the following compact space $\tau*$ , and the
non-compact spaces $T_{1^{*}}\& T_{2^{*}}$ .

$T^{*}:$ For every $x_{n}\in L_{n}(n\in N),$ $\{x_{n} : n\in N\}$ converges to $\infty$ .
$T_{1}^{*}:$ For any $x_{n_{i}}\in L_{n_{j}}(i\in N),$ $\{x_{n_{j}} : i\in N\}$ does not converge to $\infty$ .
$T_{2^{*}}:$ For every finite $F_{n}\subset L_{n}(n\in N),$ $\cup\{F_{n} : n\in N\}$ is closed in $T$ .
The space $\tau_{1}*$ is not Fr\’echet nor locally compact, neither is the space $T_{2^{*}}$ . The

space $T_{2^{*}}$ is called the Arens’ space, and it is denoted by $S_{2}$ . The quotient space
$T_{2^{*}}/(K\cup\{\infty\})$ is, so-called, the sequential fan, and it is denoted by $S_{\omega}$ (that is, $S_{\omega}$

is the space obtained from the topological sum of countably many convergent
sequences by identifying all the limit points).

REMARK 1.1. The space $T_{2}^{*}$ implies the space $T_{1}^{*}$ . When $T_{1}^{*}$ is sequential,
$T_{1}^{*}=T_{2^{*}}=S_{2}$ . But, the space $\tau_{1}*$ need not imply the space $T_{2}^{*}$ . (Indeed, there
exists a non-Fr\’echet, compact sequential space $\Psi^{*}$ ([2; Example 7.1]). Thus, $\Psi^{*}$
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contains a copy of $\tau_{1}*$ by Proposition 1.3(1) below. If the space $\tau_{1}*$ is the space
$T_{2}^{*}$ , then $\Psi^{*}$ contains $S_{2}$ . Then $\Psi^{*}$ contains a closed copy of $S_{2}$ by Lemma 1.2
below. But, $\Psi^{*}$ is compact, then it does not contain a closed copy of $S_{2}$ , a
contradiction).

LEMMA 1.2. Let $X$ be a sequential space. Then $X$ contains a copy of $S_{\omega}$ (resp.
$S_{2})$ if and only if $X$ contains a closed copy of $S_{\omega}$ (resp. $S_{2}$ ); see [18] (resp. [12]), $or$

[19].

Conceming the spaces $(A_{j})(i=1,2,3,4)$ in the previous section, we recall
the following proposition. (1); and (2) is respectively due to [2]; and [18] or [19].
For (3), the result for the space $(A_{2})$ ; (A3); and $(A_{4})$ is respectively due to [18] or
[19]; [4] or [19]; and [5]. Analogous results on the spaces $(A_{j})(i=5,6,7,8)$ will
be obtained later on; see Propositions 2.8 &2.14.

PROPOSITION 1.3. (1) A sequential space is the space $(A_{1})$ if and only $lf$ it
contains no copy of the space $\tau_{1}*$ .

(2) The space $(A_{1})$ is strongly Fr\’echet if and only if it contains no (closed)
copy of $S_{\omega}$ .

(3) Let $X$ be a sequential space which is the space $(A_{2})$ , (A3), or $(A_{4})$ . Then
$X$ is the space $(A_{1})$ if and only if $X$ contains no (closed) copy of $S_{2}$ .

2. Products

PROPOSITION 2.1. The following property (a), (b), or (c) implies that $X\times Y$ is
a k-space.

(a) $X$ is a locally countably compact k-space, and $Y$ is sequential.
(b) $X$ is bi-k, and $Y$ is countably bi-k.
(c) $X$ and $Y$ are spaces determined by a closed (or increasing) countable cover

of locally compact subsets.

PROOF. The result for property (a) follows from Theorems 2.1 and 2.5, and
Remark (after Theorem 2.5) in [15]. The result for property (b) is due to [17;
Proposition 4.6]. For property (c), we will refer to the proof of [9: Lemma 2.1]
(for the products of countable CW-complxes). Let $X$ (resp. $Y$) be determined by
a closed cover $\{X_{n} : n\in N\}$ (resp. $\{Y_{n}$ : $n\in N\}$ ) of locally compact subsets. Here,
we can assume that $X_{n}\subset X_{n+1}$ , and $Y_{n}\subset Y_{n+1}$ by Fact 1. For $G\subset(X\times Y)$ , let
$G\cap(X_{n}\times Y_{n})$ is open in $X_{n}\times Y_{n}$ for each $n\in N$ . Let $(x, y)\in G\cap(X_{k}\times Y_{k})$ . For



Products of k-spaces, and special countable spaces 409

each $n\geq k$ , since $X_{n};Y_{n}$ is locally compact, by induction, there exists a nbd $U_{n}$

of $x$ in $X_{n};V_{n}$ of $y$ in $Y_{n}$ such that $\overline{U_{n}}\times\overline{V_{n}}\subset G$ , but $\overline{U_{n}}$ and $\overline{V_{n}}$ are compact
subsets with $U_{n}\subset U_{n+1}$ and $V_{n}\subset V_{n+1}$ . Let $U=\cup\{U_{n} : n\in N\}$ , and $V=\cup\{V_{n}$ :
$n\in N\}$ . Then, each $U\cap X_{n};V\cap Y_{n}$ is open in $X_{n}$ ; $Y_{n}$ . Thus, $U;V$ is open in $X;Y$ .
Then $U\times V$ is a nbd of $(x, y)$ with $U\times V\subset G$ . Thus $G$ is open in $X\times Y$ . This
shows that $X\times Y$ is determined by a cover $\{X_{n}\times Y_{n} : n\in N\}$ of locally compact
subsets. But, each locally compact subset is determined by a cover of compact
subsets. Thus $X\times Y$ is determined by a cover of compact subsets by Fact 2.
Hence, $X\times Y$ is a k-space.

REMARK 2.2. We recall that, for sequential spaces $X$ and $Y,$ $X\times Y$ is
sequential if and only if it is a k-space ([15]). Thus, for sequential spaces $X$ and
$Y$ , property (a), (b), or (c) in Proposition 2.1 implies that $X\times Y$ is sequential.

REMARK 2.3. (1) Every product of a separable metric space with a Fr\’echet
space need not be a k-space. Indeed, let $R;Q;Z$ be the usual space of all real
numbers; rational numbers; integers. Let $R^{*}=R/Z$ and $Q^{*}=Q/Z$ be quotient
spaces, then $R^{*}$ and $Q^{*}$ are Fr\’echet. However, as is well-known, $Q\times Q^{*}$ is not
a k-space ([1]). Similarly, any of $(R-Q)\times Q^{*},$ $Q\times R^{*},$ $(R-\{1/n:n\in N\})\times R^{*}$ ,
$Q^{*}\times Q^{*}$ , and $Q^{*}\times R^{*}$ is not a k-space. While, $R\times R^{*}$ and $R^{*}\times R^{*}$ are sequen-
tial by Remark 2.2.

(2) Every product of sequential countably bi-k-spaces (acutually, strongly
Fr\’echet countable spaces) need not be a k-space under $(2^{\aleph_{0}}<2^{N_{1}})$ ([13]).

In Remark 2.3(1), any of the first cordinate spaces of the products, $Q$ , R–Q,
$R-\{1/n:n\in N\}$ , and $Q^{*}$ is not locally compact. Let us introduce a certain
general type $X(H)$ of these spaces, using a slight modification $T$ ‘ of the count-
able space $T$ in the previous section.

Let $X$ be a space which contains a countable subset $T^{\prime}=\{x_{0}\}\cup\{x_{n}$ :
$n\in N\}\cup\{x_{nm} : n, m\in N\}$ such that each $L_{n}=\{x_{nm} : m\in N\}$ converges to $x_{n}\not\in L_{n}$ ,
and $H=\{x_{n} : n\in N\}$ accumulates to $x_{0}\not\in H$ . When $H$ converges to $x_{0}$ , we will
use $K$ ’ instead of $H’$ . For such a space $X$ , let us define a non-locally count-
ably compact subspace

$X(H)=X-H$ .

If $X$ is the countable space $T$ , then $X(H)=T(K)$ . For any sequential space
$Y$ having a countable non-closed subset $H$ of non-isolated points, the subspace
$Y(H)$ exists.
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REMARK 2.4. (1) A first countable space $X$ is locally countably compact if
and only if it contains no closed copy of the space $T^{*}(K)$ .

(2) For a locally countably compact first countable space $Y$ , and $X\subset Y,$ $X$

is not locally countably compact if and only if $X=Y(K)$ .
(Indeed, for the “if” part of (1), let $X$ be not locally countably compact at

$x\in X$ . Then any $\overline{V_{n}(x}$) is not countably compact for a local base $\{V_{n}(x):n\in N\}$

at $x$ with $\overline{V_{n+1}(x)}\subset V_{n}(x)$ . Hence, there exist distinct points $x_{nm}(n, m\in N)$ such
that for each $n\in N,$ $\{x_{nm} : m\in N\}\subset\overline{V_{n}(x)}$ , and $\{x_{nm} : n, m\in N\}$ has no accu-
mulation points. Then $S=\{\infty\}\cup\{x_{nm} : m, n\in N\}$ is a closed copy of the space
$T^{*}(K)$ . For (2), the “only if” part is shown by putting $V_{n}(x)=X\cap G_{n}(x)$ in the
previous proof, where $\{G_{n}(x) : n\in N\}$ is a local base at $x$ in $Y$ such that each
$\overline{G_{n}(x)}$ is compact with $\overline{G_{n+1}(x)}\subset G_{n}(x))$ .

As a weaker condition than “strongly Fr\’echet spaces”, we recall the fol-
lowing condition (C) introduced in [16], and define condition $(C^{*})$ as its modifi-
cation. (A space satisfying (C) is called a Tanaka space in [11]).

(C) Let $\{A_{n} : n\in N\}$ be a decreasing sequence of subsets of $X$ with $x\in A_{n}^{-}$

for any $n\in N$ . Then there exist $x_{n}\in A_{n}$ such that $\{x_{n} : n\in N\}$ converges to some
point $y\in X$ .

$(C^{*})$ Let $\{A_{n} : n\in N\}$ be a sequence of countable subsets of $X$ with $x\in A_{n}^{-}$

for any $n\in N$ . Then there exist $x_{n}\in A_{n}$ such that $\{x_{n} : n\in N\}$ accumulates to
some point $y\in X$ .

REMARK 2.5. (1) Among sequential spaces, $(C^{*})$ implies (C). (In fact, among
sequential spaces, for $x\in\overline{A}$, there exist a countable set $\{x_{n} : n\in N\}\subset A$ which
accumulates to the point $x$ ([7]); while, every subset having an accumulation point
contains a convergent sequence).

(2) q-spaces satisfy $(C^{*})$ . Among sequential spaces, countably bi-k-spaces or
q-spaces satisfy (C).

(3) Any space satisfying (C) or $(C^{*})$ contains no closed copy of $S_{\omega}$ , and
no $S_{2}$ . Among sequential spaces, the closedness of the copies can be omitted by
Lemma 1.2.

LEMMA 2.6. (1) If $X(H)\times Y$ is a k-space, then $Y$ satisfies $(C^{*})$ .
(2) Let $X$ be a bi-k-space. If $X\times Y$ is a k-space, then $X$ is locally countably

compact, or $Y$ satisfies $(C^{*})$ .

PROOF. (1) Suppose that $Y$ does not satisfy $(C^{*})$ . Then there exist a point
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$y0\in Y$ , and a sequence $\{A_{n} : n\in N\}$ of countable subsets with $y0\in A_{n}^{-}$ for any
$n\in N$ , but no $\{y_{n} : n\in N\}$ with $y_{n}\in A_{n}$ has accumulation points in $Y$ . Let $X(H)$

$=X-H\supset\{x_{0}\}\cup\{x_{nm} : n, m\in N\}$ , where $H=\{x_{n} : n\in N\}$ accumulates to the
point $x_{0}$ , and each $x_{n}$ is a limit point of the sequence $L_{n}=\{x_{nm} : m\in N\}$ in
$X(H)$ . Let $A_{n}=\{y_{nm} : n, m\in N\}$ for each $n\in N$ . Let $F=\{(x_{nm}, y_{nm}):n, m\in N\}$ .
Then, $(x_{0}, yo)\in\overline{F}-F$ . Hence $F$ is not closed in $X(H)\times Y$ . Since $X(H)\times Y$ is a
k-space, it is determined by the cover of all compact subsets. But, each compact
set in $X(H)\times Y$ is contained in some compact set $C\times K$ in $X(H)\times Y$ . Thus, by
Fact 1, $X(H)\times Y$ is determined by $\mathscr{P}=\{C\times K:C\times K$ is compact in $ X(H)\times$

$Y\}$ . While, each compact set $K$ in $Y$ meets only finitely many $A_{n}$ , because no
$\{x_{n} : n\in N\}$ with $x_{n}\in A_{n}$ has accumulation points in $Y$ . But, each compact set
$C$ in $X(H)$ meets only finitely many points in $L_{n}$ . Hence, for each $C\times K\in \mathscr{P}$ ,
$F\cap(C\times K)$ is finite, hence closed in $C\times K$ . Thus, $F$ is closed in $X(H)\times Y$ . This
is a contradiction. Hence $Y$ satisfies $(C^{*})$ .

(2) Assume that $X$ is not locally countably compact at $x_{0}\in X$ . Let $\mathscr{F}=$

{ $V-C:V$ is a nbd of $x_{0};C$ is countably compact in $X$}. Then $\mathscr{F}$ is a filter base
accumulating at $x_{0}$ . Since $X$ is bi-k, there exists a k-sequence $\{A_{n} : n\in N\}$ such
that $x_{0}\in F$ A $A_{n}$ for all $n\in N$ and all $F\in \mathscr{F}$ . Here, we can assume that the $A_{n}$ are
closed in $X$ . Then, any $A_{n}$ is not countably compact. Thus, for each $n\in N$ , there
exists an infinite discrete countable closed subset $D_{n}$ of $X$ with $D_{n}\subset A_{n}$ . Let $A=$

$\cap\{A_{n} : n\in N\},$ $S=\cup\{D_{n} : n\in N\}\cup A$ , and let $M=S/A$ . Then, $S$ is closed in
$X$ , thus $S\times Y$ is a k-space. While, $M\times Y$ is the perfect (hence, quotient) image
of $S\times Y$ . Thus, $M\times Y$ is a k-space. But, the countable space $M$ is a copy of
$T^{*}(K)$ . Thus $T^{*}(K)\times Y$ is a k-space. Thus $Y$ satisfies $(C^{*})$ by (1).

REMARK 2.7. $S_{\omega}\times S_{\omega},$ $S_{\omega}\times S_{2},$ $S_{2}\times S_{2},$ $T^{*}\times S_{\omega}$ , and $T^{*}\times S_{2}$ are all se-
quential spaces by Remark 2.2. While, neither $T^{*}(K)\times S_{\omega}$ nor $T^{*}(K)\times S_{2}$ is a
k-space by Lemma 2.6(1).

PROPOSITION 2.8. Let $Y$ be a sequential space. Let $Y$ be the space (A5) under
a quotient s-map $f$ , or the space $(A_{6})$ under a closed map $g$ . Then $Y$ is countably
bi-k if and on $ly$ if $Y$ satisfies (C). For the space $(A_{6})$ , it is possible to replace “(C)
$by$

“
$Y$ contains no (closed) copy of $S_{\omega}’$ .

PROOF. The “only if” part holds by Remark 2.5(2)&(3). For the “if”
part, first recall that a space $X$ is an A-space (resp. inner-closed A-space) [8] if,
whenever $\{A_{n} : n\in N\}$ is a decreasing sequence with $x\in(\overline{A_{n}-\{x\})}$ , then there
exist $B_{n}\subset A_{n}$ (resp. $B_{n}\subset A_{n}$ which are closed in $X$) such that $\cup\{\overline{B_{n}} : n\in N\}$ is
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not closed in $X$ . Now, let $Y$ satisfy (C). Then $Y$ is an inner-closed A-space, be-
cause, among sequential spaces, we can assume that $\cap\{A_{n} : n\in N\}=\emptyset$ in the
above definition; cf. [8; Lemma 4.1]. Thus the quotient s-map $f$ is bi-quotient by
Theorem 9.5 and Lemmas 8.3&9.6 in [7]. For the space $(A_{6})$ , more generally, let
$Y$ contain no closed copy of $S_{\omega}$ . Then the sequential space $Y$ is an A-space by
[18; Theorem 1.1]. Thus the closed map $g$ is countably bi-quotient by Proposi-
tion 2.4 and Theorem 6.3 in [8]. While, every countably bi-quotient image of a
countably bi-k-space is countably bi-k; see [7]. Thus, $Y$ is countably bi-k.

THEOREM 2.9. Let $Y$ be a sequential space, and let $X(H)\times Y$ be a k-space.
Then the $fo$llowing (1) and (2) hold. Also, the converses of these hold if $X$ or $X(H)$

is bi-k.
(1) $Y$ is strongly Fr\’echet if $Y$ is the space $(A_{1}),$ $(A_{2})$ , (A3), or $(A_{4})$ . ( $Y$ has a

point-countable base for the space $(A_{4}))$ .
(2) $Y$ is countably bi-k if $Y$ is the space (A5) or $(A_{6})$ .

PROOF. By Lemma 2.6(1), $Y$ satisfies $(C^{*})$ , thus, $Y$ also contains no closed
copy of $S_{\omega}$ , and no $S_{2}$ by Remark 2.5(3). Then (1) holds by Proposition 1.3, and
(2) holds by Proposition 2.8 and Remark 2.5(1). For the latter part, let $X$ be bi-k.
Since $X(H)$ is a $G_{\delta}$-subset of $X,$ $X(H)$ is bi-k by [7; Proposition 3. $E.4$]. Thus the
latter part holds by Proposition 2.1.

REMARK 2.10. For the latter part of Theorem 2.9, the bi-k-ness of $X$ or
$X(H)$ is essential even if $X(H)$ is Fr\’echet, and $Y$ is metric. (Indeed, let $X=R/Z$ ,

and let $Y=Q=S(K)$ for the obvious countable subspace $S$ of R. Thus $ X(K)\times$

$Q(=S(K)\times X(K))$ is not a k-space by Theorem 2.9, because the sequential space
$X(K)$ which is the spaces $(A_{1})\sim(A_{6})$ is not strongly Fr\’echet, nor countably bi-k).

Similarly as in the proof of Theorem 2.9, using Lemma 2.6(2), we have the
following characterization for the products of bi-k-spaces with certain sequential
spaces to be k-spaces. (1) is due to [16], where $X$ is first countable, and $Y$ is the
space $(A_{1})$ or $(A_{2})$ .

THEOREM 2.11. Let $X$ be a bi-k-space, and let $Y$ be sequential. Then the
following (1) and (2) hold.

(1) Suppose that $Y$ is the space $(A_{1}),$ $(A_{2})$ , (A3), or $(A_{4})$ . Then $X\times Y$ is a
k-space $lf$ and only if $X$ is locally countably compact, or $Y$ is strongly Fr\’echet.

( $Y$ has a point-countable base for the space $(A_{4})$ ).
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(2) Suppose that $Y$ is the space (A5) or $(A_{6})$ . Then $X\times Y$ is a k-space $lf$ and
only if $X$ is locally countably compact, or $Y$ is countably bi-k.

LEMMA 2.12. Let $f:X\rightarrow Y$ be a closed map such that $X$ is a normal space
or an M-space, and $Y$ is sequential. If $Y$ contains no closed copy of $S_{\omega}$ , then every
boundary $\partial f^{-1}(y)$ is countably compact.

PROOF. If $X$ is normal, then the result holds by [19; Proposition 1.13]. If
$X$ is an M-space, then the result also holds by the same way. (Recall that every
discrete closed subset $\{x_{n} : n\in N\}$ of $X$ , there exists a discrete open collection
$\{U_{n} : n\in N\}$ with $x_{n}\in U_{n}$ , because $X$ is the inverse image of a metric space under
a quasi-perfect map).

LEMMA 2.13. (1) Every quasi-pefect image of an M-space (resp. countably
bi-k-space) is a q-space (resp. countably bi-k-space).

(2) Every product of a bi-k-space with a k-and-q-space is a k-space.

PROOF. (1) is known or routinely shown. (In fact, let $f$ : $X\rightarrow Y$ be a quasi-
perfect map with $X$ an M-space. Let $y\in Y$ . Then there exist a q-sequence { $V_{n}$ :
$n\in N\}$ of open sets such that $f^{-1}(y)\subset V_{n}$ , because $X$ is the inverse image of
a metric space under a quasi-perfect map. Then the point $y$ has a q-sequence
$\{W_{n} : n\in N\}$ of nbds such that $f^{-1}(W_{n})\subset V_{n}$ . Thus $Y$ is a q-space). For (2),
recall that every bi-k-space is precisely the bi-quotient image of a paracompact
M-space ([7]), and that every product of bi-quotient maps is bi-quotient ([6]),
hence, quotient. Now, let $X$ be bi-k, and let $Y$ be a k-and-q-space. Then $X$ is
the bi-quotient image of a paracompact M-space $Z$ . Thus $X\times Y$ is the quotient
image of $Z\times Y$ . While, $Z$ is of pointwise countable type, and $Y$ is a k-and-q-
space, then $Z\times Y$ is a k-space by [15; Theorem 2.6]. Thus, $X\times Y$ is also a k-
space.

PROPOSITION 2.14. Let $Y$ be a sequential space. If $Y$ is the space (A7) (resp.
(A) $)$ under a closed map $f$ , then the following are equivalent.

(a) $Y$ is a countably bi-k-space (resp. q-space).
(b) $Y$ contains no (closed) copy of $S_{\omega}$ .
(c) Every $\partial f^{-1}(y)$ is countably compact.

PROOF. $(a)\Rightarrow(b)$ holds by Remark 2.5(2)&(3). $(b)\Rightarrow(c)$ holds by Lemma
2.12. For $(c)\Rightarrow(a)$ , since $f$ is closed, as is well-known, there exists a closed subset
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$F$ of the domain such that $f(F)=Y,$ $f^{-1}(y)=\partial f^{-1}(y)$ or a singleton on $F$ .
Thus we can assume that $f$ is quasi-perfect. Then $Y$ is a countably bi-k-space
(resp. q-space) by Lemma 2.13(1).

THEOREM 2.15. Let $Y$ be a sequential space. If $Y$ is the space (A7) (resp.
(A) $)$ under a closed map $f$ , then (1) and (2) below hold.

(1) The implication $(a)\Rightarrow(b)\Leftrightarrow(c)$ below holds. If $X$ or $X(H)$ is bi-k, then
(a), (b), and (c) are equivalent.

(a) Let $X(H)\times Y$ be a k-space.
(b) Every $\partial f^{-1}(y)$ is countably compact.
(c) $Y$ is a countably bi-k-space (resp. q-space).
(2) Let $X$ be a bi-k-space. Then the following are equivalent.
(a) $X\times Y$ is a k-space.
(b) $X$ is locally countably compact, or every $\partial f^{-1}(y)$ is countably compact.
(c) $X$ is locally countably compact, or $Y$ is a countably bi-k-space (resp. q-

space).

PROOF. We show that (2) holds since (1) is similarly shown. $(a)\Rightarrow(b)$ holds
by Lemma 2.6(2) and Proposition 2.14. $(b)\Rightarrow(c)$ holds by Proposition 2.14.
$(c)\Rightarrow(a)$ holds by Proposition 2.1 and Lemma 2.13(2).

Finally, let us give Question 2.16 below in view of the results, Theorems 2.11
&2.15, Remark 2.5, and Lemma 2.6(2). In this question, $(a)\Rightarrow(b)\Rightarrow(c)\Rightarrow(d)$

holds by these results. If $Y$ is one of the spaces $(A_{1})\sim(A_{8})$ , then $(a)\Leftrightarrow(b)\Leftrightarrow(c)$

holds, and so does $(a)\Leftrightarrow(d)$ , but except for the space (A5) in view of the proof
of Theorems 2.11 &2.15. We do not know whether $(a)\Leftrightarrow(d)$ holds for the space
(A5).

QUESTION 2.16. Let $X$ be a bi-k-space, and let $Y$ be a sequential space.
Then, are the following equivalent?

(a) $X\times Y$ is a k-space.
(b) $X$ is locally countably compact, or $Y$ satisfies $(C^{*})$ .
(c) $X$ is locally countably compact, or $Y$ satisfies (C).
(d) $X$ is locally countably compact, or $Y$ contains no (closed) copy of $S_{\omega}$ ,

and no $S_{2}$ .

Comment. The equivalence $(a)\Leftrightarrow(b)\Leftrightarrow(c)$ holds. Indeed, when $X$ is first
countable, $(c)\Rightarrow(a)$ holds by combining [10] and [11]. Thus, when $X$ is bi-k, this
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implication also holds as in the proof of Proposition 4.6 in [17]. Thus, $(a)\Leftrightarrow$

$(b)\Leftrightarrow(c)$ holds. However, we do not know whether $(a)\Leftrightarrow(d)$ holds or not.
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