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BOUND FOR THE WEIERSTRASS WEIGHTS OF POINTS
ON A SMOOTH PLANE ALGEBRAIC CURVE

By

Satoru KiKucHI

Abstract. Let C be a smooth plane algebraic curve of degree n > 3.
We give the upper bound for the weights of points on C and if C
has an involution, i.e., an automorphism of order 2, then we give
the lower bound for the weights of fixed points of the involution on
C. Furthermore, we obtain all the possible Weierstrass gap sequences
and weights of fixed points of the involution for the case n =5 or 6.

1. Introduction

Let C be a smooth plane algebraic curve of genus g and let P be a point
on C. Then we can choose a basis of holomorphic differentials ¢,, ¢,, ..., 9, such
that

O=ki<hky < ---<k;<29-2,

where k; is the order of the zero of ¢, at P. We define the (Weierstrass) weight
of P by w(P) =37 ,(kj+1—j). A point P on C is called a Weierstrass point
if w(P) > 0. The sequence ki + 1,k +1,...,k, + 1 is called the Weierstrass gap
sequence at P. In particular, we call the sequence k1,k3, ..., k, the order sequence
at P. (See [2]). Furthermore, suppose that the degree of C is n and let T be the
tangent line to C at P. If (C-T)p =e > 3, then P is called an (e — 2)-inflection
point, where (C - T)p is the intersection number of C and T at P. In particular,
an (n — 2)-inflection point is called a fotal inflection point. (See [1]).

In Section 2, we give the upper bound for the weights of points on a smooth
plane algebraic curve. Moreover, concerning the weights for fixed points of an
involution, Towse [9] gave the lower bound for the weights of fixed points of an
involution on the Fermat curve. We give the lower bound for the weights of fixed
points of an involution on a smooth plane algebraic curve.
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It is known that all the possible order sequences of the points on a smooth
plane algebraic curve of degree 4 is either 0,1,2 or 0, 1,4. In Section 3, we obtain
all the possible order sequences of the points which are fixed by an involution
on a smooth plane algebraic curve of degree 5 or 6. We see that the five cases,
{0,1,2,3,4,6}, {0,1,2,3,4,8}, {0,1,2,3,4,10}, {0,1,2,4,5,8} or {0,1,2,5,6,10}
occur for a plane curve of degree 5 and the ten cases occur for a plane curve of
degree 6.

In Section 4, we give examples of curves having order sequence appeared
in Proposition 1, thus we can find curves having Weierstrass points on which
equality does not hold in Propositions 1 or 2.

The author would like to thank Professor T. Kato for his invaluable com-
ments. He would also like to thank the referee for his useful suggestions.

2. Results

First we give the upper bound for the weights of points on a smooth plane
algebraic curve.

THEOREM 1. Assume that C is a smooth plane curve of degree n > 3. Then

w(P) < —212 n—1)(n—-2)(n-3)(n+4)

for all P on C, where equality holds if and only if P is a total inflection point.

PrROOF. Assume that D is a divisor on C of degree k. Let r =1(D) — 1, where
/(D) = dim{f is a meromorphic function on C|(f)+ D > 0}. Noether [6] (cf.
[4]) proved the following fact:

(i) If Kk >n(n—-3), then r=k —(1/2)(n—1)(n - 2).

(i) If k <n(n—3), then write k=t —s with 0 <¢t<n—-3 and 0 <s<n.
Then one has

r
#

Choose a point P on C and let D =kP. Let

Le=-1)(+2) ifs>r+1,
Jt+3)—s ifs<r+1

IA A

Le=1)(r+2), m—(n-1)<k<tm—(t+1),1<t<n-3,
rtky=q3t(t+3)+k—m, m—-t<k<ml<t<n-3,
k—in-1)(n-2), k=nn-3)+1,
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and
N={keN|t-1)n+1<k<(t—1Dn+n—t-1),1<t<n-2},

where N is the set of non-negative integers. Then r(k) is monotone increasing
and N satisfies #N = (1/2)(n — 1)(n — 2) = g. In this case, the weight of N is
given by

n—2 n—t-1 (n—1)(n-2)/2

(t=Dn+D— > 1
t=1 I=1 =1

1
ﬁ(n —1)(n-2)(n—-3)(n+4).
We show that N gives the maximum weight. Let
{m,--u} =1{1,...,2g}\N
={keN|m—t<k<ml<t<n-3}U{(n-3)n+2},

where y; < y; if i < j. In order to prove that N gives the maximum weight, it is
enough to prove that for any non-gap sequence {my,...,m,}, where m; < m; if
1<,
W<my, j=1,...,¢g.
From
rim—t)—r(tn—t—-1)=1, 1<t<n-3,

we have |

) —r(—1) =1, j=1,...,9
Furthermore, from

r(t+Dn—-(t+1)—r(imy=1, 1<t<n-2,

and

r((n—=3m+2)—r((n—3)n) =1,
we have

”(ﬂj) _r(ﬂj—l) =1, j=2,.

Since r(u;) =1, it is easily seen that

ri)=J, j=1....9
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It follows that
min{l <k <2g|rk)=j}=p, j=1,...,9.
From r(u;) = j and I(m;P) = j+1 for any point P on C, we have
r(g;) +1=j+1=1I1mP).
On the other hand,
I(m;P) < r(m;) + 1.
Hence we have
r(u) +1 <r(m;) +1,
1.e.,
() < r(m).
Since r(k) is monotone increasing, if r(y;) < r(m;), then
K < mj,
and since g = min{l < k <2g|r(k) = j}, if r(4;) = r(m;), then
Hi < my.
Therefore we have
“<m, j=1,...,g

M. Coppens and T. Kato proved that P is a total inflection point on a
smooth plane algebraic curve of degree » if and only if the set of non-gaps at P is
{a(n — 1) + bn|a,b € N}. Hence, we see that the weight of a total inflection point
of a smooth plane algebraic curve of degree n is (1/24)(n—1)(n—2)(n—3)-
(n+4). Q.E.D.

We next consider the lower bound for the weights of points which are fixed
by an involution on a smooth plane algebraic curve.

THEOREM 2. Let C be a smooth plane algebraic curve of degree n > 3 given
by F(X,Y,Z)=0. Let o be the involution of the projective plane given by
o(X:Y:Z)=(X:-Y:Z). Suppose that C is invariant by a. Then, for each fixed
point Pe C of o, we have

(n—1)(n—3)/8, n odd,
w(P) = {(n —2)(n—4)/8, n even.
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Proor. The fixed points of ¢ in the projective plane are the points of the
line ¥ =0 and the point Q = (0:1:0). Since C is invariant by o, we have

2] 1y | |
F(X,Y,Z)= Z (Z Cn—2j—k,2j,an_2j_ka) Y%

=0 \ k=0

Put G(X)=F(X,0,1). Then G(X) is a polynomial of degree n. Furthermore,
we see that G(X) has no multiple factors. For, if X =a is a multiple root of
G(X) =0, then G(a) = G'(a) =0. From
n—1
G(X) = Z Cnk,0k X" + coom,
k=0

we have
n—1
G'(X) =" cniopln — k)X,
k=0

On the other hand, from

(/2] /n-2j—1

F(X,Y,Z)= Z( Z Cn—2j—i, 2k XUk ZE 4 Co,2j,n——2jZn_zj) Y%,
=0 \ k=0

we have

(n/2] /n-2j-1
6F(1\;, Y,Z) _ Z( Z oyt i — 2 — k)Xn-—Zj—k—lzk) Yy
X 7=0 \ k=0

Hence we obtain

OF(X,Y,Z)
oX

n—1 .
= Z C,,_k,o’k(n — k)an—k_l.
s ‘

(X1 Y: Z)=(aa0) 1) k=
We also obtain

OF(X,Y,Z)

Y =0

(X,Y,Z)=(a,0,1)

Therefore, if G'(a) = Z,’c’;% cn—k,0k(n —k)a"*1 =0, then

oF OoF
EA—;(G, O, 1) =51—/(a,0,1) = 0.
Hence the point (a:0:1) on C is a singular point. This contradicts that C is

smooth. Thus the line Y = 0 intersects the curve C at n distinct points. The point
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QO belongs to C if and only if »n is odd. Putting all together, we obtain that there
are n (resp. n+ 1) fixed points of ¢ on C if n is even (resp. n is odd). Now the
result follows from [9, Theorem 5] if n > 5. (This result was first proved by Torres
in under some additional hypothesis.) If » =3, then the dimension of the
space of holomorphic differentials on C is 1. Hence w(P) = 0. If n = 4, then the
order sequence at P is either 0,1,2 or 0,1,4. Hence w(P) =0 or 2. Q.E.D.

3. Case of Degree 5 or 6

We can obtain all the possible Weierstrass gap sequences of the points which

are fixed by an involution on a smooth plane algebraic curve of degree 5 or 6.

PROPOSITION 1. Let (a:0:1) be a fixed point of the involution (X,Y,Z) —
(X,—Y,2Z) on a smooth plane algebraic curve of degree S defined by F(X,Y,Z) =

E,io(Z,f;S" C5-2j—ke, 2k X SIHZK)YY = 0. Put py(x) = Youd s-ajok, x> I
(j=0,1,2) and po(x) = (x — a)py(x). Then the order sequence at (a:0:1) is

(1) 0,1,2,4,5,8 if a =0,
(i) 0,1,2,3,4,6 if a, #0, ag # 2a3/az,
(i) 0,1,2,3,4,8 if a, #0, ag = 26142‘/(12, ag # 5a2/a§

or
(iv) 0,1,2,3,4,10 if a, # 0, as = 2a3/az, ag = 5a}/a3,

where
a2 = —p2(a)/fola),
as = —(a2p3(a) + a3 py(a) + pa(a))/Bo(a),
as = —(apy(a)/2 + a3 py (@) /2 + aspj(a) + 2ara4py(a) + axp,(a))/Bo(a),
as = —(a3p$(a) /6 + a3 5 (a) /6 + araap}(a) + 3a3aspy(a) /2 + ad i (a)

+ asps(a) + 2a2a6Po(a) + aspy(a))/Po(a).

Furthermore, the order sequence at (0:1:0) is
(v) 0,1,2,3,4,6 if b3 #0

or

(vi) 0,1,2,5,6,10 if b3 =0,
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where

3

by = kzzy—1)"p§(0){pz<o>}"‘p£")(o>/k!.

PrROOF. Put f(x,y) =F(x,y,1). Since fi(a,0) = pj(a) # 0, there exists a
function
x=x(y) =a+ay’ +ay*+---

which is analytic in some neighborhood of y = 0 such that f(x(y), y) =0. Then
we consider the order sequence of

i
{xy dx|0 < i+jsz}
Sy
at (a,0). Since ord(, ¢)(dx/f,) =0, it is enough to check the order sequence of
{1,x, y,x2,xy, y*} at y = 0, where x = a + a,y* + - - -. Since x is an even function
of y, we consider the even functions part {1, x,x?, *} and the odd functions part
{y,xy}, separately. From x? = a? + 2aayy? + (2aas + a?)y* + (2aas + 2ara4)y% +
(2aag + 2aza6 + a2)y® + (2aa10 + 2azas + 2asas)y'® + - - -, the coefficient matrix of
the terms, »°, 32, y* ..., 1% of {1,x,x2, y?} is

1 0 0 e 0

a a as s ao
a* 2aa, 2aas+ a% <o 2aayo + 2azag + 2aaag
0 1 0 e 0

and the coefficient matrix of the terms, y, y3, 3 of {y,xy} is

1 0 O
a a as)

After a suitable elementary deformation, we have

1 0 O 0 0 0
0 O ag ag as ao
00 a% 2aya4 2azag + aﬁ 2azag + 2a4as
01 0 0 0 0

and

1 0 O
0a2a4'
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If a; =0, then we have

1 0 0 0 O 0

0 0 as ag ag aio
0 0 0 0 a? 2a4a
01 0 0 O 0

and
1 0 O
00 (771 )
If a; =0, then a4 # 0. Therefore, if a; =0, then the order sequence at (a,0) is

0,1,2,4,5,8.
Assume a; # 0. Then we have

1 0 O 0 0 0

2a2 2 al 2 2a2ag
0 0 O a6—a—2“ —%—a—g alo___‘%i’!_#
0 0 a% 2ara4 2axae + aﬁ 2azag + 2aaase
01 0 0 0 0

and
1 0 O
0 ao as)

Hence, if ag # 2a2/a,, then the order sequence at (a,0) is 0,1,2,3,4,6.
Assume ag = 2a3/a;. Then we have

1 0 0 0 0 0
03 a4
00 0 0 ag—2 ap-2am %
2 2
0 0 a? 2aa4 5a? 2mpag + %
01 0 0 0 0

Hence, if ag # 5a}/a2, then the order sequence at (a,0) is 0,1,2,3,4,8.
Assume ag = 5a}/a3. Then we have

1 0 O 0 0 0

14a4
00 0 O 0 -
0 0 a? 2aas 543 %
01 O 0 0 0

Hence the order sequence at (a,0) is 0,1, 2,3,4,10. Note that the maximum value
of the order is 10.
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Next we study the representations of a,,as,as and ag. Put py(x) = dyx* +
---+d1x + do. Note that py(a) # 0. Consider the coefficient of y? of f(x(y), y).
Then only p,(x(y))y? and po(x(y)) have nonzero coefficient of y?. Hence we
have

0=rF(x(»),)
= ((6320(13 + 0221a2 + c122a + 6023) + az(d4a4 +.-+dia+ do))y2 “+ .-,

It follows that

__p(9)
Po(a)’

Similarly, we have
as = —(arpy(a) + a3 Bo(a) + pa(a)) /Bo(a),
as = —(a3p}(@)/2 + a3 5 (@) /2 + asp3(a) + 2a2a4 (@) + a2p3(a)) /Bo(a),
ag = —(a%pé” (a)/6 + a;ﬁ((f) (a)/6 + azaspy(a) + 3a3aspy(a)/2 + a2 py(a)
+ aspy(a) + 2axas py(a) + aspy(a))/po(a).

Finally, we check the order sequence at (0:1:0). Put g(u,v) = F(u,1,v).
Since we may assume that g,(0,0) # 0, there exists a function

u=u(v) = b+ b3+

which is analytic in some neighborhood of v =0 such that g(u(v),v) = 0. Then
we consider the order sequence of

iy]
{”” du|0$i+js2}
gv

at (0,0). Since ord g, (du/g,) =0, it is enough to check the order sequence of
2 uv,u*} at v =0, where u = byv + b30> + - --. Since u is an odd function
of v, we consider the even functions part {1, 02, uv,u?} and the odd functions part
{v,u}, separately. From u? = b?v? + 2b1b30* + (2b1bs + b2)v6 + 2(b1b7 + b3bs)v® +
(2b1bg + 2b3b7 + b2)v'% + - - - the coefficient matrix of the terms, v°, 02, v*, ..., v'°
of {1,v?,uv,u?} is

{L,v,u,v

1 O 0 cee 0
0 1 0 e 0
0 b b3 .. by
0 b12 2bibsy  --- 2b1bg + 2b3b; + bg
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3,0° of {v,u} is

1 0 O
by by bs)

After a suitable elementary deformation, we have

and the coefficient matrix of the terms, v,v

1 0 0 O 0 0
01 0 O 0 0
00 b3 b5 b7 b9
0 0 0 b2 2b3hs 2b3by+b?

and

1 0 O
0 b3 bs)
Hence, if b3 # 0, then the order sequence at (0,0) is 0,1,2,3,4,6.
Assume b3 = 0. Then we have

1000 0 0
0100 0 0
0 0 0 bs b; b
000 0 0 B2

and

1 0 0
0 0 bs)
Hence, if b3 =0, then the order sequence at (0,0) is 0,1,2,5,6,10.

Using the same method as getting the representation of ap,...,ag, we can
obtain

(0) Z( 1)1 pk (0){p4(0)}> 5% (0) k.
Dy

Note that p;(0) = c140 # 0. Since our concern is whether b3 is equal to 0 or not,
we may take

Z( 1)*p¥(0){p;(0)} *p3(0) /. QED.

Using a similar method to the proof of Proposition 1, we can obtain the
following:
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PROPOSITION 2. Let (a:0:1) be a fixed point of the involution (X,Y,Z) —
(X,-Y,Z) on a smooth plane algebraic curve of degree 6 given by F(X,Y,Z) =
0. Then the order sequence at (a:0:1) is

i 0,1,2,3,4,5,6,8,9,12,
() 0,1,2,3,6,7,8,12,13,18,
(iii) 0,1,2,3,4,5,6,8,9,10,
(iv) 0,1,2,3,4,5,6,10,11,12,
(v) 0,1,2,3,4,5,6,12,13,14,
(vi) 0,1,2,3,4,5,6,7,8, 10,
(vii) 0,1,2,3,4,5,6,7,8,12,
(viii) 0,1,2,3,4,5,6,7,8, 14,
(ix) 0,1,2,3,4,5,6,7,8,16

or

(x) 0,1,2,3,4,5,6,7,8,18.

REMARK. Put F(X,Y,Z) =37 ((X0=¥ co-2j k24X I *ZK)YY =0, pyy(x)
= Sp=d C6-2j—k, 2 kx®¥F (j=0,1,2,3) and po(x) = (x — a)py(x). Then each
order sequence appeared in Proposition 2 occurs under the following condition:

(1) a = 03 as # 0)

(ll) a = O, ag = 0,

(i) a2 #0, ag = 2a3/az, ag # 5a3/a3,

(iv) ar #0, ag =2a3/az, as = 5a3/a3, ap # 14a}/a3,

(V) @ #0, ag =2a3/ay, ag = 5a}/a3, aio = 14a}/a3,

(Vi) a, #0, ag # 2a3/az, aig # Ao,

(vil) az #0, ag #2a3/az, aio = A, a2 # A2,

(vill) @z # 0, ag # 2a%/az, aio = A, a2 = A1z, a1s # Aua,

(ix) a2 #0, ag # 2a3/az, aio = A, a2 = A1z, a1s = A4, ai6 # Aie,

(x) a2 #0, ag # 2a3/as, aio = A, a1z = A1z, a1s = Ara, aie = A,
where

az = —p2(a)/po(a),
as = —(a2p;(a) + a3 py(a) + pa(a))/Bo(a),

as = —(a2p}(a)/2 + @3 Bl (a) /2 + aspy(a) + 2maspl(a) + a:pi(a) + pe(a))/Bo(a),
a3 = —(&3p) (a) /6 + ai B (@) /6 + @rasp} () + 3adaspy (@) /2 + d3pi(a)

+ asp3(a) + 2azas py(a) + aspy(a) + a3 p; (a)/2) /o),
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ap =

a4

a6 =
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—(a3psV(a)/24 + &35y (a)/24 + ddaupl) (a) /2 + 2a3aspf (a) /3
+a3p}(a)/2 + 3axal 5y (a) /2 + araspy(a) + 3adaspy (a)/2 + 2asas py(a)
+asp}(a) + 2ara3 5 (a) + aspy(a) + arasp}(a))/Bo(a),

—(a$55)(a)/120 + ajasp? (a) /6 + Safaspy (a) /24 + axalpl) (a) /2
+a3aip) (a) + a}py(a)/2 + adaspl) (a) /2 + 2a3as 5 () /3 + asaspy (a)
+ 3aasaspy (a) + a2 py(a) + azaspy (a) + 3a2ag pll (a) /2 + 2aqaspy(a)

+ aop3(a) + 2aran0 p(a) + aspy(a) + agp; (a)/2 + azasp; () /Bo(a),

= —(a3aspy (a)/20 + G3a3pl’ (a)/4 + Sa3aipl () /12 + apf) (a) /6

+ 2420355 (a) /3 + a3acpy’ (a)/6 + Sajaspy’ (a)/24 + azasasp$ (a)
+ 2a3asacpy (@) + 3ajaspy (a)/2 + a2 py(a)/2 + 3azal p (a) /2
+ a3agp; )(a) /2 + 2a3a3p Po (a) /3 + asagp; (a) + 3arasag pg (a) + 2aeas py(a)
+aa0p; (a) + 3ajai pg (@) /2 + 2asai05g(a) + a1 py(a) + 2aza12 5y (a)
+ aiopy(a) + asaspy (a) + aras py (a))/Po(a),
—(a2a2p{ (a)/8 + a2a4p(4) (a)/6 + 5a3ai 5 (a) /12 + a2 5§ (a) /6
+a3aspy) (a)/20 + alasasp’? (a)/2 + Sa3aaspy (a)/6 + adasp}) (a) /2
+ 2‘12"406170 (a) + 02‘161’2 N(a)/2+ a2a6p Y (a) + 3asag by (a)/2
+alasp}) () /6 + Sasaspi’ (a) /24 + axasaspl (a) + 2adasas 5y (a)
+ 3ajas g (a)/2 + asasp; (a) + 3arasas iy (a) + a3 po(a) + adawopy) (a) /2
+2d3a10p8 (@) /3 + asaropl (@) + 3ayasaro py (a) + 2asaio py(a) + azaiz py (a)
+ 3a2a12p (@) /2 + 2a4a12po(a) + a1aps(a) + 2a2a14p)(a) + a2 ps(a)

+ agpy (a)/2 + asaspy (a) + axaropy (a)) /Py (a),

Ay = —(3a4 6a2a4a6 + 2c12a4a6 3a2a6 + 2a2a4ag

+ 4azasasas — asal)/(a3(—2a3 + azas)),

Az = —(a3 — 24ayalas + 45a3aial — 15a3a3al + Tajasal + a2ag(9as — 32aralas

+9a3alal — Ta3al) + ajasal(—al + 8azas) — alad)/(ad (=242 + azas)?),
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A1y = (17a}? — 60ayallas + 18a2ada? + 52a3aSad + 15a5a%ag — 24a3a3a;

+ 12a5al — 4a3aqag(a’ — 3azas)(7a§ — 18azabas + 9a3azai — 4azal)
+ 6atal(—7aS + 10ayatas — aaia? + 2a3a}) + 4a3asa3(a; — 3azas)
+d3ag)/(a3(—24] + a2a6)°),

A = —(=95a)° + 628ayal’as — 1481a3al'a? + 1652a3aja; — 1159a3a}ag

+ 683a3ajai — 255a5alal + 60ajasal — Sa2ag(37a}* — 16aza,’as

— 39a2a3a2 + 98a3aSal — 11adalad — 9a3a3a] + 9aial)

+ Satasal(14al — 132a2a8as + 177a2a%al — 80a3asag + 27a5a)

— aSai(—74a§ + T6azalas + Tazaiai + 18a3a])

+ ddasag(—Ta2 + 16aya6) — a)a3)/(aS(—2a5 + aa6)?).

4. Examples

Let F, be the Fermat curve defined by X” + Y" + Z" = 0. As mentioned in
[7, p. 72], Leopoldt pointed out that the 3n? points
(1:a:v28),(1:V2B:a),(1:B/V2:a8/¥2), a"=1,p"=—

‘are Weierstrass points on F,. We call them the Leopoldt Weierstrass points on F,.
In [5], T. Kato and S. Kikuchi proved that equality in [9, Corollary 8] holds for
the Leopoldt Weierstrass points for n < 14. We use Propositions 1 and 2 to give
an alternative proof for n = 5 and 6. Furthermore, in [3], Hasse proved that the
3n trivial points

(1:0:8),0:1:8),(1:8:0), p"=-1,

are Weierstrass points on F, and its weight is

1

ﬂ(n —1)(n—2)(n—-3)(n+4).
We see that our results agree with Hasse’s.

ExaMmpPLE 1. For n =5 or 6, each Leopoldt Weierstrass point has weight 1.
Furthermore, each trivial Weierstrass point has weight 9 for n =5 or weight 25
for n=6.

ProorF. Let P,Q be Leopoldt Weierstrass points or trivial Weierstrass
points on F,. Then there exists an automorphism 7 of F, such that T(P) =
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Hence it is enough to consider the special points (1:1: (—2)1/ "yand (1:-1:0)
if nis odd. Let F(X,Y,Z) = 0 be the equation of the Fermat curve transformed
by t:(X,Y,Z) > U X +Y)—(-1)"V"Z 21X = Y),(-1)"V"Z). We
have 7(1:1:(=2)"")=(0:0:1) and 7(1: —1:0) = (0: 1 : 0). Putting f(x, y) =
F(x,y,1), we have

F06,¥) = Popyy () H + -+ pa(x)y? + po(x)

where po(x)=(x+1)"-1= xz o ( ) nk=1 and pp(x) = (M) (x+1)"* (k=
-,2[n/2]). Put py(x) = 3p5 k)x k-

For n =15, we obtain p4(x) = 5(x + 1), pa(x) = 10(x +1)* and py(x) = x* +
5x3 4+ 10x2 + 10x + 5. Then we have ps(0) =5, p;(0) =5, p2(0) =10, p5(0) =
30, p(0) =60, p{’(0) =60, 5y(0) =5, p,(0) =10 and p{(0) =20. Hence we
have a; = -2, a4 = 3, a¢ = 0 and b3 = 0, which satisfy the conditions (ii) and (vi)
in Proposition 1. It follows that the order sequences at (0:0:1) and (0:1:0)
are 0,1,2,3,4,6 and 0,1,2,5,6,10 respectively. Hence, the weights of (0:0: 1)
and (0:1:0) are 1 and 9 respectively.

For n =6, we obtain pg(x) = 1, ps(x) = 15(x+ 1), pa(x) = 15(x + 1)* and
Po(x) = x> + 6x* + 15x3 + 20x% + 15x + 6. Then we have p4(0) = 15, p;(0) = 30,
pl(0) =30, py(0) =15, pj(0) = 60 P 7(0) = 180, p(3)(0) = 360, p(4)(0) = 360,
Po(0) =6, py(0) = 15, py(0) = 40, Po (0) = 90 and po (0) 144. Hence we have
ay = —5/2, as = 55/8, ag = —583/48, ag = —20735/384 and a;o = 137005/256,
which satisfy the condition (vi) in Proposition 2. It follows that the order se-
quence at (0:0:1) is 0,1,2,3,4,5,6,7,8,10, thus this point has weight 1.

It is easy to see that each point (X : ¥ :Z) = (8:0:1), (8°=—1), on the
Fermat curve, X%+ Y%+ Z® =0, satisfies the condition (ii) in Proposition 2,
whence these points have weight 25. Q.E.D.

We show that all the cases occur in Proposition 1. An example of the cases
(i) and (vi) in Proposition 1 is shown in Example 1.

ExaMpLE 2. The weights of the points (X : Y:Z)=(0:0:1) and (0:1:0)
on the curve

(22X —Z2)Y*+Z2°Y? 4+ X(X* -3X3Z2+ 2% =0
are 5 and 1, respectively. (This curve is an example satisfying the cases (iv) and

(v) in Proposition 1).

Proor. First of all, we prove that the curve
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C:(=2x—1)y*+ >+ po(x) = 0, (1)
where po(x) = x(x* — 3x> + 1) is a smooth curve. Multiplying the equation of (1)
by (=2x —1)°, we have
(=2x — 1)*y* + (=2x = 1)°y2 + (=2x = 1) po(x) = 0.
Putting z = (—2x — 1)y, we have
4 4 (=2x — )22 + (=2x — 1)°po(x) = 0.
Now we consider the automorphism ¢ : (x,z) — (x, —z). The order of ¢ is 2 and

the fixed points of ¢ are (x,z) =(—1/2,0),(a;,0) (i=1,...,5), where ay,...,as
are the solutions of py(x) = 0. Furthermore, these fixed points are also the branch

points of the covering
n:C— C/{o).
Hence, by the Riemann-Hurwitz formula, we have

29 —2=2(2g' —2) +6,

1e.,

g=29"+2,
where g and g’ are the genera of C and C/{c>, respectively. The following three
conditions are equivalent:

C is smooth;

Define the mapping ¢ as u = x, v = z2. Then the equation of C/{c) is given by
v? + (=2u — 1)+ (=2u — 1)*po(u) = 0.

Putting w =v/(—2u— 1)+ 1/2, we have
1
w? =2+ (2u+ 1)po(u).
The degree of p(u) =1/4+ (2u+ 1)po(u) is 6 and the discriminant of p(u) is
equal to —1788325/128 # 0. Hence p(u) has six simple roots. Therefore g’ = 2,
ie., C is smooth.

Put ps(x) = —2x—1, pa(x) =1 and py(x) = x* —3x>+ 1. Then we have
P4(0) = _1: p‘/‘(o) = —2’ PZ(O) = 1: pé(o) = O> pé,(o) = 0’ pr)(O) = 03 ﬁO(O) = 13
54(0) =0, 5¢(0) = 0 and 5 (0) = —18. Hence we have a; = —1, a4 = 1, a5 = —2,
ag = 5 and b3 = 1, which satisfy the conditions (iv) and- (v) in Proposition 1. It
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follows that the order sequences at (0:0:1) and (0:1:0) are 0,1,2,3,4,10 and
0,1,2,3,4,6, respectively. Hence, the weights of (0:0:1) and (0:1:0) are 5
and 1, respectively. Q.E.D.

ExaMpLE 3. The weight of the point (X : Y :Z)=(0:0:1) on the curve
(X +2Z2)Y* + XZ°Y? + X(X* +4X3Z - 1X?Z2 +24Z% =0

is 5. (This curve is an example satisfying the case (i) in Proposition 1).

ExampLE 4. The weight of the point (X : Y :Z)=(0:0:1) on the curve
(22X - 2)Y*+Z2°Y 4+ X(X*+5X3Z2+ 2 =0

is 3. (This curve is an example satisfying the case (iii) in Proposition 1).

Using a similar method to the proof of Example 2, we see that the curves
given in Example 3 or Example 4 are smooth.
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