THREE-DISTANCE SEQUENCES WITH THREE SYMBOLS

By
Kuniko Sakamoto

Abstract

We will show that every 3 dimensional cutting sequence is a three-distance sequence, and there are uncountable many periodic or aperiodic three-distance sequences (with 3-symbols) which are not 3 dimensional cutting sequences.

1 Introduction

W. F. Lunnon and P. A. B. Pleasants [1] defined two-distance sequences and proved that each 2 dimensional (2D) cutting sequence (see below, for the definition) is a two-distance sequence and the converse also holds. The basic framework of their research is traced back to the one by M. Morse and G. A. Hedlund [4].

In this paper, we will discuss the relationships between 3 dimensional (3D) cutting sequences and three-distance sequences. We will show that every 3D cutting sequence is a three-distance sequence, and there are uncountable many periodic or aperiodic three-distance sequences which are not 3D cutting sequences.

First, we recall the definition of 2D cutting sequences. Although the definition given below is slightly different from that described in [1] or [5], the equivalence of 2 D cutting sequences and two-distance sequences ($[1$, theorem 1$]$) holds by the same proof.

The set of the real numbers and the rational integers, and the non-negative rational integers are denoted by $\mathbb{R}, \mathbb{Z}, \mathbb{Z}_{+}$, respectively.

We consider the standard orthogonal coordinates x, y in the 2 dimensional Euclidean space \mathbb{R}^{2}, and take a line L in \mathbb{R}^{2}. We assume that the slope of the line L is non-negative, and L is not parallel to either axis. When the line L crosses a

[^0]vertical grid line or a horizontal one, we mark the point of the intersection and label it as A and B, respectively.

Figure 1

In the above labeling, we need to specify the way of labeling the intersection $\mathrm{L} \cap \mathbb{Z}^{2}$.

Type 1: $\#\left(L \cap \mathbb{Z}^{2}\right)=1$. Label the point of the intersection $L \cap \mathbb{Z}^{2}$ by either of the two elements of $S_{2}=\{\mathrm{AB}, \mathrm{BA}\}$.
Type 2: $\#\left(\mathrm{~L} \cap \mathbb{Z}^{2}\right) \geq 2$. Observe that $\#\left(\mathrm{~L} \cap \mathbb{Z}^{2}\right)=\infty$.
(1) Label all the points of the intersection $L \cap \mathbb{Z}^{2}$ by one of the two elements of S_{2}.
In this way, we obtain two infinite periodic sequences associated with the line L .
(2) Fix an arbitrary point P on L. The point P divides L into two half-lines L_{p}^{+}and L_{p}^{-}. We label the integer points on $L_{P}^{+} \backslash\{P\}$ by an element of S_{2}, and label the integer points on $L_{P}^{-} \backslash\{P\}$ by another element of S_{2}. When P is an integer point, we label P by an element of S_{2}.

These give one or more two-way infinite sequences of symbols A and B. Such sequences are called the 2 D cutting sequences obtained from L.

Remark 1.1. The labeling of Type 2 (2) is introduced to obtain the equivalence between 2D cutting sequences and two-distance sequences ([1]).

2 3D Cutting Sequence

In this section, we define 3D cutting sequences as a natural extension of 2D cutting sequences. We consider the standard orthogonal coordinates x, y, z in the 3 dimensional Euclidean space \mathbb{R}^{3}. Let $\mathrm{P}_{\mathrm{uv}}(\mathrm{L})$ be the projection of a line L in \mathbb{R}^{3}
on the $\mathbf{u v}$-plane, where $\mathbf{u}, \mathbf{v} \in\{x, y, z\}$. We assume that each projection $\mathrm{P}_{\mathrm{uv}}(\mathrm{L})$ has a non-negative slope, and L does not lie in any $u v$-hyperplane. Let \mathcal{H}_{A} (resp. $\left.\mathcal{H}_{\mathrm{B}}, \mathcal{H}_{\mathrm{C}}\right)$ be the collection of hyperplanes in \mathbb{R}^{3} defined by

$$
x=r_{x}, \quad\left(\text { resp. } \quad y=r_{y}, \quad z=r_{z}\right)
$$

where $r_{x}, r_{y}, r_{z} \in \mathbb{Z}$.
When L intersects with a hyperplane $H_{\mathrm{A}} \in \mathcal{H}_{\mathrm{A}}\left(\right.$ resp. $\left.H_{\mathrm{B}} \in \mathcal{H}_{\mathrm{B}}, H_{\mathrm{C}} \in \mathcal{H}_{\mathrm{C}}\right)$, label the point of the intersection $H_{\mathrm{A}} \cap \mathrm{L}$ (resp. $\left.H_{\mathrm{B}} \cap \mathrm{L}, H_{\mathrm{C}} \cap \mathrm{L}\right)$ by A (resp. B, C).

Figure 2

Let $\mathcal{L}_{x}\left(\right.$ resp. $\left.\mathcal{L}_{y}, \mathcal{L}_{z}\right)$ be the collection of the lines defined by the equation

$$
\begin{aligned}
y & =r_{y} \text { and } z=r_{z}, & r_{y}, r_{z} \in \mathbb{Z} \\
(\text { resp. } x & =r_{x} \text { and } z=r_{z}, & r_{x}, r_{z} \in \mathbb{Z} \\
x & =r_{x} \text { and } y=r_{y}, & \left.r_{x}, r_{y} \in \mathbb{Z} .\right)
\end{aligned}
$$

We put $\mathcal{L}=\mathcal{L}_{x} \cup \mathcal{L}_{y} \cup \mathcal{L}_{z}$ and the set $\boldsymbol{\Lambda}=\bigcup \mathcal{L}$ is called the grid of \mathbb{R}^{3} in the present paper.

As we did in defining the 2 D cutting sequences, we need to specify the way of labeling the points of the intersection of L and $\boldsymbol{\Lambda}$ or \mathbb{Z}^{3}. We divide our consideration into the following three cases. First notice that if $L \cap \mathbb{Z}^{3} \neq \varnothing$ then $\#\left(\mathrm{~L} \cap \mathbb{Z}^{3}\right)=1$ or ∞.

Case $1 \mathrm{~L} \cap \mathbb{Z}^{3} \neq \varnothing$ and $\mathrm{L} \cap\left(\mathbf{\Lambda} \backslash \mathbb{Z}^{3}\right)=\varnothing$,
Case $2 \mathrm{~L} \cap \mathbb{Z}^{3}=\varnothing$ and $\mathrm{L} \cap\left(\boldsymbol{\Lambda} \backslash \mathbb{Z}^{3}\right) \neq \varnothing$ and
Case $3 \mathrm{~L} \cap \mathbb{Z}^{3} \neq \varnothing$ and $\mathrm{L} \cap\left(\boldsymbol{\Lambda} \backslash \mathbb{Z}^{3}\right) \neq \varnothing$.

Case 1:

type 1: $\#\left(\mathrm{~L} \cap \mathbb{Z}^{3}\right)=1$.
Label the point of the intersection $\mathrm{L} \cap \mathbb{Z}^{3}$ by an element of S_{3}, where

$$
S_{3}=\{\mathrm{ABC}, \mathrm{ACB}, \mathrm{BAC}, \mathrm{BCA}, \mathrm{CAB}, \mathrm{CBA}\}
$$

In this way, we obtain the six infinite sequences associated with the line L.
type $2: \#\left(L \cap \mathbb{Z}^{3}\right)=\infty$.
Fix an arbitrary point P on L. The point P divides L into two half-lines L_{p}^{+}and L_{p}^{-}. Pick up two (possibly equal) elements X^{+}, X^{-}of S_{3}. Then label the points of the intersection $\left(\mathrm{L}_{\mathrm{P}}^{+} \backslash\{\mathrm{P}\}\right) \cap \mathbb{Z}^{3}$ by X^{+}, and label the points of the intersection $\left(L_{P}^{-} \backslash\{P\}\right) \cap \mathbb{Z}^{3}$ by X^{-}.

In this way, we obtain the 36 infinite periodic sequences associated with the line L .

Case 2:

type 1: Suppose that there exists a unique $\ell \in \mathcal{L}$ which intersects with L .
We define $\mathcal{S}_{\mathrm{u}}(\mathrm{u}=x, y, z)$ as follows.

$$
\mathcal{S}_{x}=\{\mathrm{BC}, \mathrm{CB}\}, \quad \mathcal{S}_{y}=\{\mathrm{AC}, \mathrm{CA}\}, \quad \mathcal{S}_{z}=\{\mathrm{AB}, \mathrm{BA}\}
$$

When $\ell \in \mathcal{L}_{\mathrm{u}}$, label the point of the intersection $\ell \cap \mathrm{L}$ by an element of \mathcal{S}_{u}.
In this way, we obtain two infinite periodic sequences associated with the line L .
type 2: Suppose that there exist two lines $\ell, \ell^{\prime} \in \mathcal{L}$ such that $\ell \cap L \neq \varnothing$ and $\ell^{\prime} \cap L \neq \varnothing$, and recall that L does not lie in any uv-hyperplane. Fix an arbitrary point P on L. The point P divides L into two half-lines L_{p}^{+}and L_{p}^{-}. Pick up two (possibly equal) elements $X_{\mathrm{u}}^{+}, X_{\mathrm{u}}^{-}$of \mathcal{S}_{u}. Then label the point of the intersection $\left(\mathrm{L}_{\mathrm{P}}^{+} \backslash\{\mathrm{P}\}\right) \cap \ell, \ell \in \mathcal{L}_{\mathrm{u}}$ by X_{u}^{+}, and the point of the intersection $\left(\mathrm{L}_{\mathrm{p}}^{-} \backslash\{\mathrm{P}\}\right) \cap \ell^{\prime}$, $\ell^{\prime} \in \mathcal{L}_{\mathrm{u}}$ by X_{u}^{-}. When $\{\mathrm{P}\}=\mathrm{L} \cap \ell, \ell \in \mathcal{L}_{\mathrm{u}}$, we label P by an element of \mathcal{S}_{u}.

Case 3: First we observe that, $\#\left\{\ell \in \mathcal{L}: L \cap\left(\ell \backslash \mathbb{Z}^{3}\right) \neq \varnothing\right\}=\infty$.
We define the following notation for the labeling in this case. Let W be the set of all finite sequences with symbols A, B, C. A function

$$
\mathcal{D}_{\mathrm{u}}: \mathrm{W} \rightarrow \mathbf{W}
$$

($\mathrm{u}=x, y, z$) is defined as follows: for $\mathbf{W} \in \mathrm{W}, \mathcal{D}_{\mathrm{u}}(\mathbf{W})$ is a finite sequence with two symbols obtained by removing $\delta(\mathrm{u})$ from \mathbf{w}, where

$$
\delta(\mathbf{u})= \begin{cases}\mathrm{A}, & \text { if } \mathbf{u}=x \\ \mathrm{~B}, & \text { if } \mathbf{u}=y \\ \mathrm{C}, & \text { if } \mathbf{u}=z\end{cases}
$$

Also a function

$$
\mathcal{F}_{\mathrm{u}}: \mathbf{W} \rightarrow \mathbf{W}
$$

is defined as follows: for an element $\mathbf{W}=w_{1} \cdots w_{l}$ of $\mathbf{W}\left(\left\{w_{1}, \ldots, w_{l}\right\} \subset\right.$ $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}), \mathcal{F}_{\mathrm{u}}(\mathbf{w})=w_{l} \cdots w_{1}$.

We fix an arbitrary point P on L. The point P divides L into two half-lines L_{P}^{+} and L_{p}^{-}.
type 1: $\#\left(L \cap \mathbb{Z}^{3}\right)=1$.
Label the point of the intersection $\mathrm{L}_{\mathrm{p}}^{+} \cap \mathbb{Z}^{3}$ by an element X of S_{3}. For the labeling the intersection $\ell \cap L_{\bar{p}}^{ \pm}$, we take the following two ways.
(1) Label the intersection $\ell \cap L_{P}^{+}$and $\ell^{\prime} \cap L_{p}^{-}$with $\ell, \ell^{\prime} \in \mathcal{L}_{\mathrm{u}}$ as $\mathcal{D}_{\mathrm{u}}(X)$.
(2) Label the intersection $\ell \cap \mathrm{L}_{\mathrm{P}}^{+}$with $\ell \in \mathcal{L}_{\mathrm{u}}$ by $\mathcal{D}_{\mathrm{u}}(X)$, and the intersection $\ell^{\prime} \cap L_{\mathrm{P}}^{-}$with $\ell^{\prime} \in \mathcal{L}_{\mathrm{u}}$ by $\mathcal{F}_{\mathrm{u}} \circ \mathcal{D}_{\mathrm{u}}(X)$.
type 2: $\#\left(L \cap \mathbb{Z}^{3}\right)=\infty$.
Pick up two (possibly equal) elements X^{+}, X^{-}of S_{3}. Label the points of the intersection $L_{p}^{+} \cap \mathbb{Z}^{3}$ by X^{+}and $L_{p}^{-} \cap \mathbb{Z}^{3}$ by X^{-}. Then label $L_{p}^{+} \cap \ell$ with $\ell \in \mathcal{L}_{\mathrm{u}}$ by $\mathcal{D}_{\mathrm{u}}\left(X^{+}\right)$and $\mathrm{L}_{\mathrm{p}}^{-} \cap \ell^{\prime}$ with $\ell^{\prime} \in \mathcal{L}_{\mathrm{u}}$ by $\mathcal{D}_{\mathrm{u}}\left(X^{-}\right)$.

These give one or more bi-infinite sequences with symbols A, B, C. Such sequences are called the $3 D$ cutting sequences obtained from L.

Remark 2.1. The function \mathcal{D}_{u} is naturally extended to a function \mathcal{D}_{u} : $\Sigma \rightarrow \Sigma$ of the set Σ of all infinite sequences with symbols A, B, C.
If S is a 3 D cutting sequence associated with a line L, then $\mathcal{D}_{\mathrm{u}}(\mathbf{S})$ is a 2D cutting sequence associated with the line $\mathrm{P}_{\mathrm{uv}}(\mathrm{L})$, where $\{\mathbf{u}, \mathbf{v}\} \subset\{x, y, z\}$. In this way, 2D cutting sequences are obtained from 3D cutting sequences.

3 Three-Distance Sequence

In this section, we define the notion of three-distance sequences with three symbols. The following definitions are the natural extensions of those for twodistance sequences with two symbols \mathbf{A}, B [1].

Let S be a bi-infinite sequence with three symbols A, B, C.
Definition 3.1. A word \mathbf{w} in S is a finite string of consecutive symbols from S.

Definition 3.2. The length $|\mathbf{w}|$ of a word \mathbf{w} is the total number of symbols which are contained in \mathbf{w}.

Definition 3.3. The i-weight $|\mathbf{w}|_{i}$ of a word $\mathbf{w}(i \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\})$ is the number of the symbol i in the word \mathbf{w}. Notice that $|\mathbf{w}|=|\mathbf{w}|_{A}+|\mathbf{w}|_{\mathrm{B}}+|\mathbf{w}|_{\mathrm{C}}$.

Definition 3.4. A sequence S is called a three-distance sequence, if, for each $l \in \mathbb{Z}_{+}$and for each $i \in\{\mathbf{A}, \mathbf{B}, \mathbf{C}\}$, we have the inequality

$$
\#\left\{|\mathbf{w}|_{i}: \mathbf{w} \text { is a word of } \mathrm{S} \text { and }|\mathbf{w}|=l\right\} \leq 3
$$

Similarly we define m-distance sequences for infinite sequences with n symbols ($n \geq 2$).

Definition 3.5. An infinite sequence S with n symbols $x_{1}, x_{2}, \ldots, x_{n}$ is called an m-distance sequence if, for each $l \in \mathbb{Z}_{+}$and for each $x_{\alpha}(1 \leq \alpha \leq n)$, we have the inequality

$$
\#\left\{|\mathbf{w}|_{x_{x}}:|\mathbf{w}|=l\right\} \leq m .
$$

By the definition, every $(m-1)$-distance sequence is an m-distance sequence.

Lemma 3.1. Let S be an infinite sequence with n symbols $x_{1}, x_{2}, \ldots, x_{n}$. (1) If S is m-distance, then, for each $l \in \mathbb{Z}_{+}$and for each $x_{\alpha}(1 \leq \alpha \leq n)$, there exist $\mu \in \mathbb{Z}_{+}$and m^{\prime} with $0 \leq m^{\prime} \leq m-1$ such that

$$
\left\{|\mathbf{w}|_{x_{\alpha}}:|\mathbf{w}|=l\right\}=\left\{\mu+\eta: 0 \leq \eta \leq m^{\prime}\right\} .
$$

(2) If S is not m-distance, then there exist an $l \in \mathbb{Z}_{+}$an $\alpha \in\{1, \ldots, n\}$ and two words $\mathbf{w}_{1}, \mathbf{w}_{2}$ in S of length l, such that $\left|\mathbf{w}_{2}\right|_{x_{x}}-\left|\mathbf{w}_{1}\right|_{x_{x}}=m$.

Proof. Fix an arbitrary $l \in \mathbb{Z}_{+}$and $\alpha \in\{1, \ldots, n\}$. We put $\mu=\min \left\{|\mathbf{w}|_{x_{\alpha}}\right.$: $|\mathbf{w}|=l\}$ and $M=\max \left\{|\mathbf{w}|_{x_{\alpha}}:|\mathbf{w}|=l\right\}$. Then for each word \mathbf{w} such that $|\mathbf{w}|=l$, $\mu \leq|\mathbf{w}|_{x_{\alpha}} \leq M$. When $M-\mu \leq 1$, there is nothing to prove. In what follows, we consider the case $M-\mu \geq 2$. The sequence S is written as

$$
\mathrm{S}=\cdots w_{-1} w_{0} w_{1} \cdots w_{l} w_{l+1} w_{l+2} \cdots
$$

Take two words $\mathbf{w}_{1}, \mathbf{w}_{1}^{+}$in S , such that $\left|\mathbf{w}_{1}\right|_{x_{\alpha}}=\mu,\left|\mathbf{w}_{1}^{+}\right|_{x_{\alpha}}=M$. We assume, without loss of generality, that $\mathbf{w}_{1}=w_{1} w_{2} \cdots w_{l-1} w_{l}, \quad \mathbf{w}_{1}^{+}=w_{1+d} w_{2+d} \cdots$ $w_{l-1+d} w_{l+d}, d>0$. We define

$$
\chi\left(\mathbf{w}_{1}\right)=w_{2} \cdots w_{l+1}
$$

and

$$
\chi^{c}\left(\mathbf{w}_{1}\right)=\chi\left(\chi^{c-1}\left(\mathbf{w}_{1}\right)\right)=w_{1+c} \cdots w_{l+c}, \quad\left(c \in \mathbb{Z}_{+}\right)
$$

If $\left|\chi^{c}\left(\mathbf{w}_{1}\right)\right|_{x_{\alpha}}=\left|\mathbf{w}_{1}\right|_{x_{\alpha}}$, for each $c \geq 0$, then S is three-distance. If it is not the case, let

$$
c_{1}=\max \left\{c:\left|\chi^{c}\left(\mathbf{w}_{1}\right)\right|_{x_{\alpha}}=\left|\mathbf{w}_{1}\right|_{x_{\alpha}}\right\} .
$$

By the definition, it follows that

$$
\left|\chi^{c_{1}+1}\left(\mathbf{w}_{1}\right)\right|_{x_{\alpha}}=\left|\mathbf{w}_{1}\right|_{x_{\alpha}}+1
$$

If $\left|\chi^{c}\left(\mathbf{w}_{1}\right)\right|_{x_{\alpha}} \leq\left|\mathbf{w}_{1}\right|_{x_{\alpha}}+1$, for each $c \geq c_{1}$, then S is three-distance. If it is not the case, we put

$$
c_{2}=\max \left\{c:\left|\chi^{c}\left(\mathbf{w}_{1}\right)\right|_{x_{\alpha}} \leq\left|\mathbf{w}_{1}\right|_{x_{\alpha}}+1, c \geq c_{1}\right\}
$$

Then

$$
\left|\chi^{c_{2}+1}\left(\mathbf{w}_{1}\right)\right|_{x_{\alpha}}=\left|\mathbf{w}_{1}\right|_{x_{\alpha}}+2
$$

If $\left|\chi^{c}\left(\mathbf{w}_{1}\right)\right|_{x_{\alpha}} \leq\left|\mathbf{w}_{1}\right|_{x_{\alpha}}+2$, for each $c \geq c_{2}$, then S is three-distance. If it is not the case, let

$$
c_{3}=\max \left\{c:\left|\chi^{c}\left(\mathbf{w}_{1}\right)\right|_{x_{\alpha}} \leq\left|\mathbf{w}_{1}\right|_{x_{\alpha}}+2, c \geq c_{2}\right\} .
$$

Then

$$
\left|\chi^{c_{3}+1}\left(\mathbf{w}_{1}\right)\right|_{x_{\alpha}}=\left|\mathbf{w}_{1}\right|_{x_{\alpha}}+3 .
$$

We repeat this process up to $M-\mu$ steps. If S is m-distance, then $M-\mu<m$. Then μ and $m^{\prime}:=M-\mu$ satisfy the conclusion of (1). If S is not m-distance, then there exist an $l \in \mathbb{Z}_{+}$and an α such that $\#\left\{|\mathbf{w}|_{x_{\alpha}}:|\mathbf{w}|=l\right\}>m$. Arguing as above, we may find two words $\mathbf{w}_{1}, \mathbf{w}_{2}$ in S of length l, such that $\left|\mathbf{w}_{2}\right|_{x_{\alpha}}-\left|\mathbf{w}_{1}\right|_{x_{\alpha}}=m$.

This completes the proof.

Some examples of three-distance sequences with three symbols will be given in the next section.

4 3D Cutting Sequences and Three-Distance Sequences

Example 4.1. The line in \mathbb{R}^{3} defined by the equation " $x=y=z$ " yields a periodic 3D cutting sequence

$$
(A B C)^{\infty}=\cdots A B C A B C A B C A B C \cdots A B C A B C A B C A B C \cdots
$$

It is easy to see that the above sequence is two-distance.

Table 1 is a list of the words in the above sequence of length up to 5 , and their weights.

Table 1

| Length \|w| | Words w | Weights | | |
| :---: | :---: | :---: | :---: | :---: |
| | | $\|\mathbf{w}\|_{\text {A }}$ | $\|\mathbf{W}\|_{B}$ | $\left.{ }^{\mathbf{W}}\right\|_{\text {c }}$ |
| 1 | A, B, C | 0, 1 | 0,1 | 0,1 |
| 2 | $A B, B C, C A$ | 0, 1 | 0, 1 | 0, 1 |
| 3 | $A B C, B C A, ~ C A B ~$ | 1 | 1 | 1 |
| 4 | ABCA, BCAB, CABC | 1, 2 | 1, 2 | 1,2 |
| 5 | ABCAB, BCABC, CABCA | 1, 2 | 1, 2 | 1,2 |

Example 4.2. The line L which passes through the points $(1+\sqrt{2}$, $(1+\sqrt{5}) / 2,1)$ and $(0,0,0)$ yields an aperiodic 3D cutting sequence \cdots BACB-BCABCBBACBCBABCBCBABCBACBBCABCBBACBCBABCBCBABCBACBBCABCBBCABCBABCBCBABABCBBACBBCBACB \cdots. Theorem 4.1 below shows that the above sequence is three-distance.

Table 2 is a list of the words in the above sequence of length up to 4 , and their weights.

Table 2

| Length \|w| | Words w | Weights | | |
| :---: | :---: | :---: | :---: | :---: |
| | | $\|\mathbf{w}\|_{\text {A }}$ | $\|\mathbf{w}\|_{\text {B }}$ | $\|\mathbf{w}\|_{\text {c }}$ |
| 1 | A, B, C | 0,1 | 0, 1 | 0, 1 |
| 2 | AB, BA, BB, AC, CB, CA, BC | 0, 1 | 0, 1, 2 | 0, 1 |
| 3 | $A B C, C B B, B A B, ~ B B A, ~ B C B, ~ C B C, ~ B A C, ~ C A B, ~ C B A, ~$ | 0,1 | 1, 2 | 0, 1, 2 |
| | BBC, BCA, ACB, ABB | | | |
| 4 | ACBB, АBCB, АСBC, АBCB, BACB, BBCA, BCAB, BCBB, BBAC, ВСВА, ВАВС, ВСВС, ВВСС, СВBC, САВС, СВСА, СВВА, САВВ, СВАС, СВАВ, СВСВ | 0, 1 | 1, 2, 3 | 1, 2 |

We show that each 3D cutting sequence is three-distance.
The orthogonal projection on the \mathbf{u}-axis $(\mathbf{u} \in\{x, y, z\})$ in \mathbb{R}^{3} is denoted by P_{u}. Let S be a 3D cutting sequence associated with a line L in \mathbb{R}^{3}. Take an arbitrary word $\mathbf{w}=w_{1} \cdots w_{l}$ in $\mathrm{S},\left\{w_{1}, \ldots, w_{l}\right\} \subset\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$. And take the points
$\mathrm{m}, \mathrm{m}^{\prime}$ which correspond to w_{1} and w_{l} respectively, as the point of the intersection $\mathrm{L} \cap H_{i}\left(H_{i} \in \mathcal{H}_{i}, i \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}\right)$, or $\mathrm{L} \cap \ell(\ell \in \mathcal{L})$, or $\mathrm{L} \cap \mathbb{Z}^{3}$. Let M be the segment of L whose end-points are m and m^{\prime}. The length of the projection of M on the u-axis is denoted by $\overline{P_{u}(M)}$. Then we obtain the following inequalities.

$$
\left\{\begin{array}{l}
|\mathbf{w}|_{\mathrm{A}}-1 \leq \overline{\mathrm{P}_{x}(\mathrm{M})} \leq|\mathbf{w}|_{\mathrm{A}}+1 \tag{4.0}\\
|\mathbf{w}|_{\mathrm{B}}-1 \leq \overline{\bar{P}_{y}(\mathbf{M})} \leq|\mathbf{w}|_{\mathrm{B}}+1 \\
|\mathbf{w}|_{\mathrm{C}}-1 \leq \overline{\mathrm{P}_{z}(\mathrm{M})} \leq|\mathbf{w}|_{\mathrm{C}}+1
\end{array}\right.
$$

The symbols $\mathrm{A}, \mathrm{B}, \mathrm{C}$ correspond to x, y, z, respectively via the above inequality.
Theorem 4.1. Each $3 D$ cutting sequence is three-distance.
Proof. Let S be a 3D cutting sequence associated with a line L in \mathbb{R}^{3}. We assume that there exist an $i \in\{\mathbf{A}, \mathbf{B}, \mathrm{C}\}$ and two words $\mathbf{w}_{1}, \mathbf{w}_{2}$ in \mathbf{S}, such that $\left|\mathbf{w}_{1}\right|=\left|\mathbf{w}_{2}\right|$ and $\left|\mathbf{w}_{1}\right|_{i}+2<\left|\mathbf{w}_{2}\right|_{i}$. Then we obtain

$$
\begin{equation*}
0<\left|\mathbf{w}_{1}\right|_{i}+1<\left|\mathbf{w}_{2}\right|_{i}-1 \tag{4.1}
\end{equation*}
$$

Let u be the coordinate corresponding to i via (4.0). And let $\mathrm{M}_{1}, \mathrm{M}_{2}$ be the segments of L whose end-points are the points corresponding to the first and last symbols of $\mathbf{w}_{1}, \mathbf{w}_{2}$ respectively. Then the slope of $\mathrm{P}_{\mathrm{uv}}(\mathrm{L})$ is

$$
\frac{\overline{P_{v}\left(M_{1}\right)}}{\overline{P_{u}\left(M_{1}\right)}}=\frac{\overline{P_{v}\left(M_{2}\right)}}{\overline{P_{u}\left(M_{2}\right)}}
$$

Let k be a symbol, $k \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\} \backslash\{i\}$ and v the coordinate corresponding to k, $\mathbf{v} \in\{x, y, z\} \backslash\{\mathbf{u}\}$. By using the inequalities (4.0) and (4.1), it follows that

$$
\frac{\left|\mathbf{w}_{1}\right|_{k}-1}{\left|\mathbf{w}_{1}\right|_{i}+1} \leq \frac{\overline{\mathbf{P}_{\mathrm{v}}\left(\mathbf{M}_{1}\right)}}{\overline{\mathrm{P}_{\mathrm{u}}\left(\mathbf{M}_{1}\right)}}=\frac{\overline{\mathrm{P}_{\mathrm{v}}\left(\mathrm{M}_{2}\right)}}{\overline{\mathrm{P}_{\mathrm{u}}\left(\mathbf{M}_{2}\right)}} \leq \frac{\left|\mathbf{w}_{2}\right|_{k}+1}{\left|\mathbf{w}_{2}\right|_{i}-1}
$$

Therefore, we have

$$
\begin{equation*}
\frac{\left|\mathbf{w}_{1}\right|_{k}-1}{\left|\mathbf{w}_{1}\right|_{i}+1} \leq \frac{\left|\mathbf{w}_{2}\right|_{k}+1}{\left|\mathbf{w}_{2}\right|_{i}-1} . \tag{4.2}
\end{equation*}
$$

From (4.1) and (4.2), we obtain

$$
\begin{equation*}
\left|\mathbf{w}_{1}\right|_{k}-1<\left|\mathbf{w}_{2}\right|_{k}+1 \tag{4.3}
\end{equation*}
$$

Let j be the symbol other then i, k. Namely $\{i, j, k\}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$. Then,

$$
\begin{aligned}
\left|\mathbf{w}_{1}\right| & =\left|\mathbf{w}_{1}\right|_{i}+\left|\mathbf{w}_{1}\right|_{j}+\left|\mathbf{w}_{1}\right|_{k}=\left|\mathbf{w}_{2}\right|_{i}+\left|\mathbf{w}_{2}\right|_{j}+\left|\mathbf{w}_{2}\right|_{k} \\
& <\left|\mathbf{w}_{2}\right|_{i}-2+\left|\mathbf{w}_{1}\right|_{j}+\left|\mathbf{w}_{2}\right|_{k}+2=\left|\mathbf{w}_{2}\right|_{i}+\left|\mathbf{w}_{1}\right|_{j}+\left|\mathbf{w}_{2}\right|_{k}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left|\mathbf{w}_{2}\right|_{j}<\left|\mathbf{w}_{1}\right|_{j} . \tag{4.4}
\end{equation*}
$$

By the symmetric argument, from (4.2), we have

$$
\begin{equation*}
\frac{\left|\mathbf{w}_{1}\right|_{j}-1}{\left|\mathbf{w}_{1}\right|_{i}+1} \leq \frac{\left|\mathbf{w}_{2}\right|_{j}+1}{\left|\mathbf{w}_{2}\right|_{i}-1}, \tag{4.5}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\left|\mathbf{w}_{1}\right|_{j}-1<\left|\mathbf{w}_{2}\right|_{j}+1 \tag{4.6}
\end{equation*}
$$

The inequalities (4.4) and (4.6) imply $\left|\mathbf{w}_{1}\right|_{j}-1<\left|\mathbf{w}_{2}\right|_{j}+1<\left|\mathbf{w}_{1}\right|_{j}+1$. Hence, we have

$$
\begin{equation*}
\left|\mathbf{w}_{2}\right|_{j}+1=\left|\mathbf{w}_{1}\right|_{j} \tag{4.7}
\end{equation*}
$$

Then, $\left|\mathbf{w}_{1}\right|_{i}+\left|\mathbf{w}_{1}\right|_{j}=\left|\mathbf{w}_{1}\right|_{i}+\left|\mathbf{w}_{2}\right|_{j}+1<\left|\mathbf{w}_{2}\right|_{i}+\left|\mathbf{w}_{2}\right|_{j}-1$. Therefore, we obtain

$$
\begin{equation*}
\left|\mathbf{w}_{1}\right|_{k}>\left|\mathbf{w}_{2}\right|_{k} \tag{4.8}
\end{equation*}
$$

The inequalities (4.8) and (4.3) imply $\left|\mathbf{w}_{1}\right|_{k}-1<\left|\mathbf{w}_{2}\right|_{k}+1<\left|\mathbf{w}_{1}\right|_{k}+1$. Hence we have

$$
\begin{equation*}
\left|\mathbf{w}_{2}\right|_{k}+1=\left|\mathbf{w}_{1}\right|_{k} . \tag{4.9}
\end{equation*}
$$

From (4.7) and (4.9),

$$
\begin{aligned}
\left|\mathbf{w}_{1}\right| & =\left|\mathbf{w}_{1}\right|_{i}+\left|\mathbf{w}_{1}\right|_{j}+\left|\mathbf{w}_{1}\right|_{k} \\
& =\left|\mathbf{w}_{1}\right|_{i}+\left|\mathbf{w}_{2}\right|_{j}+\left|\mathbf{w}_{2}\right|_{k}+2<\left|\mathbf{w}_{2}\right|_{i}+\left|\mathbf{w}_{2}\right|_{j}+\left|\mathbf{w}_{2}\right|_{k}=\left|\mathbf{w}_{2}\right| .
\end{aligned}
$$

This is the contradiction. Hence for each $i \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$, there exist no words $\mathbf{w}_{1}, \mathbf{w}_{2}$ such that $\left|\left|\mathbf{w}_{2}\right|_{i}-\left|\mathbf{w}_{1}\right|_{i}\right|>2$. So S is a three-distance sequence. Q.E.D

There exists a three-distance sequence which is not a 3D cutting sequence. We give such an example.

EXAMPLE 4.3. A periodic infinite sequence which repeats the word AACABCAB

$$
S=\cdots \text { CABAACABCABAACAB } \cdots=(\text { AACABCAB })^{\infty}
$$

is three-distance. We show that S is not a 3 D cutting sequence. If S is a 3D cutting sequence associated with a line L in \mathbb{R}^{3}, then by Remark 2.1, for each \mathbf{u}, $\mathcal{D}_{\mathrm{u}}(S)$ is a 2 D cutting sequence associated with $\mathrm{P}_{\mathrm{uv}}(\mathrm{L})(\{\mathbf{u}, \mathbf{v}\} \subset\{x, y, z\})$. Here by $[1$, Theorem 1$], \mathcal{D}_{\mathrm{u}}(S)$ is a two-distance sequence. However,

$$
\mathcal{D}_{y}(S)=\cdots \text { CAAACACAAACA } \cdots=(\text { CAAACA })^{\infty}
$$

is not two-distance with two symbols A, C, since the C -weight of the words AAA, ACA, CAC of length 3 in $\mathcal{D}_{y}(S)$ is $0,1,2$ respectively. Thus $\mathcal{D}_{y}(S)$ cannot be a 2D cutting sequence. Accordingly, S is a three-distance sequence which is a not 3D cutting sequence.

5 Three-Distance Sequences which are not 3D Cutting Sequences

In this section, we show that there exist infinitely many three-distance sequences which are not 3 D cutting sequences. Let x_{1}, \ldots, x_{n} be the n symbols. We fix a bijection

$$
\mathbf{f}_{n}:\{1,2, \ldots, n!\} \rightarrow \mathbb{S}_{n}
$$

where

$$
\mathbb{S}_{n}=\left\{x_{\sigma_{1}} \cdots x_{\sigma_{n}}:\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}=\{1, \ldots, n\}\right\}
$$

Note that $\#\left\{\mathbb{S}_{n}\right\}=n$. For each bi-infinite sequence $R_{n}=\cdots \rho_{-1} \rho_{0} \rho_{1} \rho_{2} \cdots$ with $\rho_{v} \in\{1,2, \ldots, n!\} \quad(v \in \mathbb{Z})$, we define a bi-infinite sequence with n symbols x_{1}, \ldots, x_{n} as follows.

$$
\mathbf{f}_{n}\left(R_{n}\right)=\cdots \mathbf{f}_{n}\left(\rho_{-1}\right) \mathbf{f}_{n}\left(\rho_{0}\right) \mathbf{f}_{n}\left(\rho_{1}\right) \mathbf{f}_{n}\left(\rho_{2}\right) \cdots
$$

The set of all such sequences is denoted by $\Sigma_{f_{n}}$.
Proposition 5.1.
(1) If $n \leq 3$, then each sequence of $\Sigma_{\mathrm{f}_{n}}$ is three-distance.
(2) If $n \geq 4$, then each sequence of $\Sigma_{f_{n}}$ is four-distance.

Proof. When $n=1$, there is nothing to prove. Assume $n \geq 2$. Let S be an element of $\Sigma_{\mathrm{f}_{n}}$. Fix an arbitrary $l \in \mathbb{Z}_{+}$. We put $l=n t+r$ with $t \in \mathbb{Z}_{+}$and $0 \leq r<n$. Let \mathbf{w} be a word of \mathbf{S} such that $|\mathbf{w}|=l$. When $l=|\mathbf{w}|<n$, we obtain $|\mathbf{w}|_{x_{\alpha}} \leq 2\left(x_{\alpha} \in\left\{x_{1}, \ldots, x_{n}\right\}\right)$. Now suppose $l \geq n$. We write \mathbf{w} as $\mathbf{w}=\mathbf{w}_{1} \overline{\mathbf{w}} \mathbf{w}_{2}$, where $\overline{\mathbf{w}}=\mathbf{f}_{n}\left(\rho_{v}\right) \cdots \mathbf{f}_{n}\left(\rho_{v+h}\right), v \in \mathbb{Z}, h \in \mathbb{Z}_{+}$, and $\mathbf{w}_{1}, \mathbf{w}_{2}$ are the words of \mathbf{S} such that \mathbf{W}_{1} is a proper subword of $\mathbf{f}_{n}\left(\rho_{v-1}\right)$ and \mathbf{W}_{2} is a proper subword of $\mathbf{f}_{n}\left(\rho_{v+h+1}\right)$. If $\left|\mathbf{w}_{1}\right|=\left|\mathbf{w}_{2}\right|=0$, then $|\mathbf{w}|=|\overline{\mathbf{w}}|=n t$. If $\left|\mathbf{w}_{\mathbf{a}}\right| \neq 0$ and $\left|\mathbf{w}_{\mathrm{b}}\right|=0$ $(\mathrm{a}, \mathrm{b} \in\{1,2\})$, then $|\overline{\mathbf{w}}|=n t$ and $1 \leq\left|\mathbf{w}_{\mathrm{a}}\right|=r<n$. If $\left|\mathbf{w}_{1}\right| \neq 0$ and $\left|\mathbf{w}_{2}\right| \neq 0$, then $2 \leq\left|\mathbf{w}_{1}\right|+\left|\mathbf{w}_{2}\right| \leq 2 n-2$. Thus we have

$$
n t+r-2 \leq|\overline{\mathbf{w}}| \leq n t+r-2 n+2
$$

Since $0 \leq r<n$, we obtain

$$
n t-2 \leq n t+r-2 \leq|\overline{\mathbf{w}}| \leq n t+r-2 n+2<n t-n+2=n(t-1)+2
$$

Namely

$$
n(t-1) \leq n t-2 \leq|\overline{\mathbf{w}}|<n(t-1)+2 .
$$

Therefore $|\overline{\mathbf{w}}|=n(t-1)$. First, we consider the case $|\overline{\mathbf{w}}|=n t$. Then $\left|\mathbf{w}_{1}\right|+$ $\left|\mathbf{w}_{2}\right|=r$ and $|\overline{\mathbf{w}}|_{x_{\alpha}}=t, 0 \leq\left|\mathbf{w}_{1}\right|_{x_{\alpha}}+\left|\mathbf{w}_{2}\right|_{x_{\alpha}} \leq 2$. Since $|\mathbf{w}|_{x_{\alpha}}=\left|\mathbf{w}_{1}\right|_{x_{\alpha}}+|\overline{\mathbf{w}}|_{x_{\alpha}}+$ $\left|w_{2}\right|_{x_{\alpha}}$, we have

$$
\begin{equation*}
t \leq|\mathbf{w}|_{x_{\alpha}} \leq t+2 \tag{5.10}
\end{equation*}
$$

Next, we consider the case $|\overline{\mathbf{W}}|=n(t-1)$. Then $\left|\mathbf{w}_{1}\right|+\left|\mathbf{w}_{2}\right|=n+r$ and $0 \leq\left|\mathbf{w}_{1}\right|_{x_{\alpha}}+\left|\mathbf{w}_{2}\right|_{x_{\alpha}} \leq 2$, and $|\overline{\mathbf{w}}|_{x_{\alpha}}=t-1$. Thus we have

$$
\begin{equation*}
t-1 \leq|\mathbf{w}|_{x_{\alpha}} \leq t+1 \tag{5.11}
\end{equation*}
$$

By inequalities (5.10) and (5.11), we obtain $t-1 \leq|\mathbf{w}|_{x_{\alpha}} \leq t+2$. Therefore S is at most four-distance. Furthermore, if $n \geq 4$, it is easy to create a four-distance sequence. Next, we consider the following case: $n \leq 3$.

Case 1: When $n=2$, an arbitrary l is written as $l=2 t$ or $l=2 t+1$.
First, we assume $l=|\mathbf{w}|=2 t$. If $|\overline{\mathbf{w}}|=2 t$, then $|\mathbf{w}|_{x_{\alpha}}=|\overline{\mathbf{w}}|_{x_{\alpha}}=t$. If $|\overline{\mathbf{w}}|=$ $2(t-1)$, then $t-1 \leq|\mathbf{w}|_{x_{\alpha}} \leq t+1$. Hence, we obtain $t-1 \leq|\mathbf{w}|_{x_{\alpha}} \leq t+1$.

Next, we assume $l=|\mathbf{w}|=2 t+1$. If $|\overline{\mathbf{w}}|=2 t$, then $t \leq|\mathbf{w}|_{x_{\alpha}} \leq t+1$. We note that $|\overline{\mathbf{w}}|=2(t-1)$ does not hold in this case. Because, if $|\overline{\mathbf{w}}|=2(t-1)$, then we obtain $\left|\mathbf{w}_{1}\right|+\left|\mathbf{w}_{2}\right|=3$. Hence $\left|\mathbf{w}_{1}\right|=1$ and $\left|\mathbf{w}_{2}\right|=2$, or $\left|\mathbf{w}_{1}\right|=2$ and $\left|\mathbf{w}_{2}\right|=1$. This is contrary to our assumption that \mathbf{w}_{1} and \mathbf{w}_{2} are proper subwords of $f_{n}\left(\rho_{v-1}\right)$ and $f_{n}\left(\rho_{v+h+1}\right)$, respectively.

Therefore, if $n=2$, then S is three-distance.

Case 2: When $n=3$, an arbitrary l is written as $l=3 t$ or $l=3 t+1$ or $l=3 t+2$.

First, we assume $l=|\mathbf{w}|=3 t$. If $|\overline{\mathbf{w}}|=3 t$, then $|\mathbf{w}|_{x_{\alpha}}=|\overline{\mathbf{w}}|_{x_{\alpha}}=t$. If $|\overline{\mathbf{w}}|=$ $3(t-1)$, then $t-1 \leq|\mathbf{w}|_{x_{\alpha}} \leq t+1$. Hence, we obtain $t-1 \leq|\mathbf{w}|_{x_{\alpha}} \leq t+1$.

Next, we assume $l=|\mathbf{w}|=3 t+1$. If $|\overline{\mathbf{w}}|=3 t$, then $t \leq|\mathbf{w}|_{x_{\alpha}} \leq t+1$. If $|\overline{\mathbf{w}}|=3(t-1)$, then $t-1 \leq|\mathbf{w}|_{x_{\alpha}} \leq t+1$. Hence, we have $t-1 \leq|\mathbf{w}|_{x_{\alpha}} \leq t+1$.

Assume $l=|\mathbf{w}|=3 t+2$. If $|\overline{\mathbf{w}}|=3 t$, then $t \leq|\mathbf{w}|_{x_{\alpha}} \leq t+2$. We note that $|\overline{\mathbf{w}}|=3(t-1)$ does not hold in this case. Because, if $|\overline{\mathbf{w}}|=3(t-1)$, then we obtain $\left|\mathbf{w}_{1}\right|+\left|\mathbf{w}_{2}\right|=5$. Hence $\left|\mathbf{w}_{1}\right|=1$ and $\left|\mathbf{w}_{2}\right|=4$, or $\left|\mathbf{w}_{1}\right|=4$ and $\left|\mathbf{w}_{2}\right|=1$, or $\left|\mathbf{w}_{1}\right|=2$ and $\left|\mathbf{w}_{2}\right|=3$, or $\left|\mathbf{w}_{1}\right|=3$ and $\left|\mathbf{w}_{2}\right|=2$. This is contrary to our assumption that \mathbf{w}_{1} and \mathbf{w}_{2} are proper subwords of $\mathbf{f}_{n}\left(\rho_{v-1}\right)$ and $\mathbf{f}_{n}\left(\rho_{v+h+1}\right)$, respectively.

Therefore, if $n=3$, then S is three-distance.
This completes the proof.

Example 5.1. When $n=3, \#\left\{\mathbb{S}_{3}\right\}=6$. We put $\left\{x_{1}, x_{2}, x_{3}\right\}=\{\mathbf{A}, \mathbf{B}, \mathrm{C}\}$.
Let $f_{3}:\{1,2, \ldots, 6\} \rightarrow \mathbb{S}_{3}$ be a bijection given by:
$1 \mapsto A B C, \quad 2 \mapsto A C B, \quad 3 \mapsto B A C, \quad 4 \mapsto B C A, \quad 5 \mapsto C A B, \quad 6 \mapsto C B A$.
By Proposition 5.1, an infinite sequence

$$
\begin{aligned}
R_{3}= & \cdots 52435364564311432253522451353624626625316243341334622466243235 \\
& 543456625426166216231525522166544 \cdots,
\end{aligned}
$$

produces a three-distance sequence $S\left(\in \Sigma_{f_{3}}\right)$,

$$
\begin{aligned}
\mathrm{S}= & \cdots \text { САВАСВВСАВАССАВВАССВАВСАСАВСВАВСАВАСАВСА } \\
& \text { BСВСА } \cdots .
\end{aligned}
$$

However,

$$
\mathcal{D}_{x}(\mathbf{S})=\cdots \text { СВСВВСВССВВССВВ } \cdots
$$

and

$$
\begin{aligned}
& \mathcal{D}_{y}(\mathrm{~S})=\cdots \text { CAACCAACCAACCACAC } \cdots, \\
& \mathcal{D}_{z}(\mathbf{S})=\cdots \text { ABABBABAABBABABAABBABAB } \cdots
\end{aligned}
$$

are not two-distances with two symbols $B C, C A, A B$ respectively. Namely, there does not exist a line in \mathbb{R}^{2} which has $\mathcal{D}_{u}(S)$ as its 2 D cutting sequence. Therefore S is a three-distance sequence which is not a 3 D cutting sequence. From the above construction, it is easy to see that there are infinitely many such sequences.

The set of the elements of $\Sigma_{f_{3}}$ which are not 3D cutting sequences is denoted by $\Sigma_{\mathfrak{f}_{3}}^{*}$.

Corollary 5.2. $\quad \operatorname{card} \Sigma_{\mathrm{f}_{3}}^{*}=\operatorname{card} \Sigma_{\mathrm{f}_{3}}=\operatorname{card} \mathbb{R}$.
Proof. The set of bi-infinite sequences with symbols $1,2, \ldots, 6$ is denoted by \mathcal{R}_{3}. For a sequence $R_{3}=\cdots r_{-1} r_{0} r_{1} r_{2} \cdots \in \mathcal{R}_{3}$ with $r_{v} \in\{1,2, \ldots, 6\} \quad(v \in \mathbb{Z})$, we define the infinite sequence $R_{3}^{*}=\cdots r_{-1} 135 r_{0} r_{1} r_{2} \cdots$. We put

$$
\mathcal{R}_{3}^{*}=\left\{R_{3}^{*}: R_{3} \in \mathcal{R}_{3}\right\} .
$$

Then we have $\operatorname{card} \mathcal{R}_{3}^{*}=\operatorname{card} \mathcal{R}_{3}=\operatorname{card} \mathbb{R}$. Note that

$$
\mathcal{D}_{z} \circ f_{3}(135)=\mathcal{D}_{z}\left(\mathbf{f}_{3}(1) \mathbf{f}_{3}(3) \mathbf{f}_{3}(5)\right)=\mathcal{D}_{z}(\text { ABCBACCAB })=\mathrm{ABBAAB}
$$

Hence, for any element R_{3}^{*} of $\mathcal{R}_{3}^{*}, \mathcal{D}_{z} \circ \mathrm{f}_{3}\left(R_{3}^{*}\right)$ is not two-distance with two symbols A, B. Thus $\mathcal{D}_{z} \circ f_{3}\left(R_{3}^{*}\right)$ cannot be a 2D cutting sequence. From Remark 2.1, we see $f_{3}\left(R_{3}^{*}\right) \in \Sigma_{f_{3}}^{*}$. We put

$$
\Sigma_{\mathrm{f}_{3}}^{*}(135)=\left\{\mathrm{f}_{3}\left(R_{3}^{*}\right): R_{3}^{*} \in \mathcal{R}_{3}^{*}\right\} .
$$

Note that $\Sigma_{f_{3}}^{*}(135) \subset \Sigma_{f_{3}}^{*}$. Since there exists an injection:

$$
\mathcal{R}_{3}^{*} \rightarrow \Sigma_{\mathrm{f}_{3}}^{*}(135), \quad R_{3}^{*} \mapsto \mathrm{f}_{3}\left(R_{3}^{*}\right),
$$

we have $\operatorname{card} \mathbb{R} \leq \operatorname{card} \Sigma_{\mathrm{f}_{3}}^{*}(135)$. Hence card $\mathbb{R} \leq \operatorname{card} \Sigma_{\mathrm{f}_{3}}^{*}$. Therefore we obtain

$$
\operatorname{card} \mathbb{R} \leq \operatorname{card} \Sigma_{\mathrm{f}_{3}}^{*} \leq \operatorname{card} \Sigma_{\mathrm{f}_{3}} \leq \operatorname{card} \mathbb{R}
$$

and

$$
\operatorname{card} \Sigma_{\mathfrak{f}_{3}}^{*}=\operatorname{card} \Sigma_{\mathfrak{f}_{3}}=\operatorname{card} \mathbb{R}
$$

References

[1] W. F. Lunnon, P. A. B. Pleasants. Characterization of two-distance sequences, J. Austral. Math. Soc. (Series A) 53 (1992), 198-218.
[2] J. S. W. Lamb. On the canonical projection method for one-dimensional quasicrystals and invertible substitution rules, J. Phys. A.: Math. Gen. 31 (1998), L331-L336.
[3] M. Morse, G. A. Hedlund. Symbolic dynamics, Amer. J. Math 60 (1938), 815-866.
[4] M. Morse, G. A. Hedlund. Symbolic dynamics II. sturmian trajectories, Amer. J. Math 62 (1940), 1-42.
[5]
C. Series. The geometry of Markoff numbers, Math. Intelligencer 7 (3) (1985), 20-29.

The Doctoral Program in Mathematics
University of Tsukuba
1-1-1, Ten-nōdai, Tsukuba-shi
Ibaraki 305-8571, Japan
kuniko@math.tsukuba.ac.jp

[^0]: Key words. Symbolic dynamics, cutting sequence, three-distance sequence, quasicrystals.
 Received September 7, 2001.
 Revised March 8, 2002.

