THREE-DISTANCE SEQUENCES WITH THREE SYMBOLS

By

Kuniko Sakamoto

Abstract. We will show that every 3 dimensional cutting sequence is a three-distance sequence, and there are uncountable many periodic or aperiodic three-distance sequences (with 3-symbols) which are not 3 dimensional cutting sequences.

1 Introduction

W. F. Lunnon and P. A. B. Pleasants [1] defined two-distance sequences and proved that each 2 dimensional (2D) cutting sequence (see below, for the definition) is a two-distance sequence and the converse also holds. The basic framework of their research is traced back to the one by M. Morse and G. A. Hedlund [4].

In this paper, we will discuss the relationships between 3 dimensional (3D) cutting sequences and three-distance sequences. We will show that every 3D cutting sequence is a three-distance sequence, and there are uncountable many periodic or aperiodic three-distance sequences which are not 3D cutting sequences.

First, we recall the definition of 2D cutting sequences. Although the definition given below is slightly different from that described in [1] or [5], the equivalence of 2D cutting sequences and two-distance sequences ([1, theorem 1]) holds by the same proof.

The set of the real numbers and the rational integers, and the non-negative rational integers are denoted by \mathbb{R} , \mathbb{Z} , \mathbb{Z}_+ , respectively.

We consider the standard orthogonal coordinates x, y in the 2 dimensional Euclidean space \mathbb{R}^2 , and take a line L in \mathbb{R}^2 . We assume that the slope of the line L is non-negative, and L is not parallel to either axis. When the line L crosses a

Revised March 8, 2002.

Key words. Symbolic dynamics, cutting sequence, three-distance sequence, quasicrystals. Received September 7, 2001.

Kuniko Sакамото

vertical grid line or a horizontal one, we mark the point of the intersection and label it as A and B, respectively.

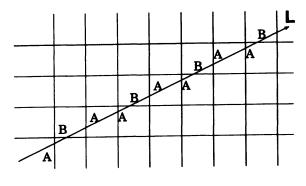


Figure 1

In the above labeling, we need to specify the way of labeling the intersection $L \cap \mathbb{Z}^2$.

Type 1: $\#(L \cap \mathbb{Z}^2) = 1$. Label the point of the intersection $L \cap \mathbb{Z}^2$ by either of the two elements of $S_2 = \{AB, BA\}$.

Type 2: $\#(L \cap \mathbb{Z}^2) \ge 2$. Observe that $\#(L \cap \mathbb{Z}^2) = \infty$.

(1) Label all the points of the intersection $L \cap \mathbb{Z}^2$ by one of the two elements of S_2 .

In this way, we obtain two infinite periodic sequences associated with the line L.

(2) Fix an arbitrary point P on L. The point P divides L into two half-lines L_P^+ and L_P^- . We label the integer points on $L_P^+ \setminus \{P\}$ by an element of S_2 , and label the integer points on $L_P^- \setminus \{P\}$ by another element of S_2 . When P is an integer point, we label P by an element of S_2 .

These give one or more two-way infinite sequences of symbols A and B. Such sequences are called the 2D cutting sequences obtained from L.

REMARK 1.1. The labeling of Type 2 (2) is introduced to obtain the equivalence between 2D cutting sequences and two-distance sequences ([1]).

2 3D Cutting Sequence

In this section, we define 3D cutting sequences as a natural extension of 2D cutting sequences. We consider the standard orthogonal coordinates x, y, z in the 3 dimensional Euclidean space \mathbb{R}^3 . Let $P_{uv}(L)$ be the projection of a line L in \mathbb{R}^3

on the uv-plane, where $u, v \in \{x, y, z\}$. We assume that each projection $P_{uv}(L)$ has a non-negative slope, and L does not lie in any uv-hyperplane. Let \mathcal{H}_A (resp. $\mathcal{H}_B, \mathcal{H}_C$) be the collection of hyperplanes in \mathbb{R}^3 defined by

$$x = r_x$$
, (resp. $y = r_y$, $z = r_z$)

where $r_x, r_y, r_z \in \mathbb{Z}$.

When L intersects with a hyperplane $H_A \in \mathcal{H}_A$ (resp. $H_B \in \mathcal{H}_B$, $H_C \in \mathcal{H}_C$), label the point of the intersection $H_A \cap L$ (resp. $H_B \cap L$, $H_C \cap L$) by A (resp. B, C).

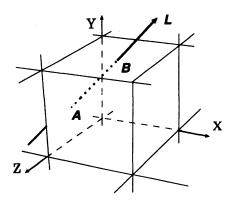


Figure 2

Let \mathcal{L}_x (resp. \mathcal{L}_y , \mathcal{L}_z) be the collection of the lines defined by the equation

 $y = r_y$ and $z = r_z$, $r_y, r_z \in \mathbb{Z}$ (resp. $x = r_x$ and $z = r_z$, $r_x, r_z \in \mathbb{Z}$, $x = r_x$ and $y = r_y$, $r_x, r_y \in \mathbb{Z}$.)

We put $\mathcal{L} = \mathcal{L}_x \cup \mathcal{L}_y \cup \mathcal{L}_z$ and the set $\Lambda = \bigcup \mathcal{L}$ is called the grid of \mathbb{R}^3 in the present paper.

As we did in defining the 2D cutting sequences, we need to specify the way of labeling the points of the intersection of L and A or \mathbb{Z}^3 . We divide our consideration into the following three cases. First notice that if $L \cap \mathbb{Z}^3 \neq \emptyset$ then $\#(L \cap \mathbb{Z}^3) = 1$ or ∞ .

Case 1 $L \cap \mathbb{Z}^3 \neq \emptyset$ and $L \cap (\Lambda \setminus \mathbb{Z}^3) = \emptyset$, **Case 2** $L \cap \mathbb{Z}^3 = \emptyset$ and $L \cap (\Lambda \setminus \mathbb{Z}^3) \neq \emptyset$ and **Case 3** $L \cap \mathbb{Z}^3 \neq \emptyset$ and $L \cap (\Lambda \setminus \mathbb{Z}^3) \neq \emptyset$. Case 1:

type 1: $\#(L \cap \mathbb{Z}^3) = 1$.

Label the point of the intersection $L \cap \mathbb{Z}^3$ by an element of S_3 , where

 $S_3 = \{ABC, ACB, BAC, BCA, CAB, CBA\}.$

In this way, we obtain the six infinite sequences associated with the line L. type 2: $\#(L \cap \mathbb{Z}^3) = \infty$.

Fix an arbitrary point P on L. The point P divides L into two half-lines L_P^+ and L_P^- . Pick up two (possibly equal) elements X^+, X^- of S_3 . Then label the points of the intersection $(L_P^+ \setminus \{P\}) \cap \mathbb{Z}^3$ by X^+ , and label the points of the intersection $(L_P^- \setminus \{P\}) \cap \mathbb{Z}^3$ by X^- .

In this way, we obtain the 36 infinite periodic sequences associated with the line L.

Case 2:

type 1: Suppose that there exists a unique $\ell \in \mathcal{L}$ which intersects with L.

We define S_u (u = x, y, z) as follows.

$$S_x = \{BC, CB\}, S_v = \{AC, CA\}, S_z = \{AB, BA\}.$$

When $\ell \in \mathcal{L}_{u}$, label the point of the intersection $\ell \cap L$ by an element of \mathcal{S}_{u} .

In this way, we obtain two infinite periodic sequences associated with the line L.

type 2: Suppose that there exist two lines $\ell, \ell' \in \mathcal{L}$ such that $\ell \cap L \neq \emptyset$ and $\ell' \cap L \neq \emptyset$, and recall that L does not lie in any uv-hyperplane. Fix an arbitrary point P on L. The point P divides L into two half-lines L_P^+ and L_P^- . Pick up two (possibly equal) elements X_u^+, X_u^- of \mathcal{S}_u . Then label the point of the intersection $(L_P^+ \setminus \{P\}) \cap \ell$, $\ell \in \mathcal{L}_u$ by X_u^+ , and the point of the intersection $(L_P^- \setminus \{P\}) \cap \ell'$, $\ell' \in \mathcal{L}_u$ by X_u^- . When $\{P\} = L \cap \ell$, $\ell \in \mathcal{L}_u$, we label P by an element of \mathcal{S}_u .

Case 3: First we observe that, $\#\{\ell \in \mathcal{L} : L \cap (\ell \setminus \mathbb{Z}^3) \neq \emptyset\} = \infty$.

We define the following notation for the labeling in this case. Let W be the set of all finite sequences with symbols A, B, C. A function

$$\mathcal{D}_{\mathsf{u}}:\mathsf{W}\to\mathsf{W}$$

 $(\mathbf{u} = x, y, z)$ is defined as follows: for $\mathbf{w} \in \mathbf{W}$, $\mathcal{D}_{\mathbf{u}}(\mathbf{w})$ is a finite sequence with two symbols obtained by removing $\delta(\mathbf{u})$ from \mathbf{w} , where

$$\delta(\mathbf{u}) = \begin{cases} \mathbf{A}, & \text{if } \mathbf{u} = x \\ \mathbf{B}, & \text{if } \mathbf{u} = y \\ \mathbf{C}, & \text{if } \mathbf{u} = z. \end{cases}$$

Also a function

$$\mathcal{F}_{u}: W \to W$$

is defined as follows: for an element $\mathbf{w} = w_1 \cdots w_l$ of $\mathbf{W} (\{w_1, \dots, w_l\} \subset \{\mathbf{A}, \mathbf{B}, \mathbf{C}\}), \mathcal{F}_{\mathsf{u}}(\mathbf{w}) = w_l \cdots w_l$.

We fix an arbitrary point P on L. The point P divides L into two half-lines L_P^+ and L_P^- .

type 1: $\#(L \cap \mathbb{Z}^3) = 1$.

Label the point of the intersection $L_P^+ \cap \mathbb{Z}^3$ by an element X of S_3 . For the labeling the intersection $\ell \cap L_P^\pm$, we take the following two ways.

- (1) Label the intersection $\ell \cap L_P^+$ and $\ell' \cap L_P^-$ with $\ell, \ell' \in \mathcal{L}_u$ as $\mathcal{D}_u(X)$.
- (2) Label the intersection $\ell \cap L_{\mathsf{P}}^+$ with $\ell \in \mathcal{L}_{\mathsf{u}}$ by $\mathcal{D}_{\mathsf{u}}(X)$, and the intersection $\ell' \cap L_{\mathsf{P}}^-$ with $\ell' \in \mathcal{L}_{\mathsf{u}}$ by $\mathcal{F}_{\mathsf{u}} \circ \mathcal{D}_{\mathsf{u}}(X)$.

type 2: $\#(L \cap \mathbb{Z}^3) = \infty$.

Pick up two (possibly equal) elements X^+, X^- of S_3 . Label the points of the intersection $L_P^+ \cap \mathbb{Z}^3$ by X^+ and $L_P^- \cap \mathbb{Z}^3$ by X^- . Then label $L_P^+ \cap \ell$ with $\ell \in \mathcal{L}_u$ by $\mathcal{D}_u(X^+)$ and $L_P^- \cap \ell'$ with $\ell' \in \mathcal{L}_u$ by $\mathcal{D}_u(X^-)$.

These give one or more bi-infinite sequences with symbols A, B, C. Such sequences are called the 3D cutting sequences obtained from L.

REMARK 2.1. The function \mathcal{D}_u is naturally extended to a function \mathcal{D}_u : $\Sigma \to \Sigma$ of the set Σ of all infinite sequences with symbols A, B, C.

If S is a 3D cutting sequence associated with a line L, then $\mathcal{D}_{u}(S)$ is a 2D cutting sequence associated with the line $P_{uv}(L)$, where $\{u, v\} \subset \{x, y, z\}$. In this way, 2D cutting sequences are obtained from 3D cutting sequences.

3 Three-Distance Sequence

In this section, we define the notion of three-distance sequences with three symbols. The following definitions are the natural extensions of those for two-distance sequences with two symbols A, B [1].

Let S be a bi-infinite sequence with three symbols A, B, C.

DEFINITION 3.1. A word w in S is a finite string of consecutive symbols from S.

DEFINITION 3.2. The length |w| of a word w is the total number of symbols which are contained in w.

DEFINITION 3.3. The *i*-weight $|\mathbf{w}|_i$ of a word \mathbf{w} ($i \in \{A, B, C\}$) is the number of the symbol *i* in the word \mathbf{w} . Notice that $|\mathbf{w}| = |\mathbf{w}|_A + |\mathbf{w}|_B + |\mathbf{w}|_C$.

DEFINITION 3.4. A sequence S is called a three-distance sequence, if, for each $l \in \mathbb{Z}_+$ and for each $i \in \{A, B, C\}$, we have the inequality

$$\#\{|\mathbf{w}|_i : \mathbf{w} \text{ is a word of } \mathbf{S} \text{ and } |\mathbf{w}| = l\} \le 3.$$

Similarly we define *m*-distance sequences for infinite sequences with *n* symbols $(n \ge 2)$.

DEFINITION 3.5. An infinite sequence S with *n* symbols x_1, x_2, \ldots, x_n is called an *m*-distance sequence if, for each $l \in \mathbb{Z}_+$ and for each x_{α} $(1 \le \alpha \le n)$, we have the inequality

$$\#\{|\mathbf{w}|_{x_n}: |\mathbf{w}|=l\} \le m.$$

By the definition, every (m-1)-distance sequence is an m-distance sequence.

LEMMA 3.1. Let **S** be an infinite sequence with *n* symbols $x_1, x_2, ..., x_n$. (1) If **S** is *m*-distance, then, for each $l \in \mathbb{Z}_+$ and for each x_{α} $(1 \le \alpha \le n)$, there exist $\mu \in \mathbb{Z}_+$ and *m'* with $0 \le m' \le m - 1$ such that

$$\{|\mathbf{w}|_{x_{n}}: |\mathbf{w}| = l\} = \{\mu + \eta: 0 \le \eta \le m'\}.$$

(2) If S is not m-distance, then there exist an $l \in \mathbb{Z}_+$ an $\alpha \in \{1, ..., n\}$ and two words $\mathbf{w}_1, \mathbf{w}_2$ in S of length l, such that $|\mathbf{w}_2|_{x_n} - |\mathbf{w}_1|_{x_n} = m$.

PROOF. Fix an arbitrary $l \in \mathbb{Z}_+$ and $\alpha \in \{1, \ldots, n\}$. We put $\mu = min\{|\mathbf{w}|_{x_{\alpha}} : |\mathbf{w}| = l\}$ and $M = max\{|\mathbf{w}|_{x_{\alpha}} : |\mathbf{w}| = l\}$. Then for each word w such that $|\mathbf{w}| = l$, $\mu \leq |\mathbf{w}|_{x_{\alpha}} \leq M$. When $M - \mu \leq 1$, there is nothing to prove. In what follows, we consider the case $M - \mu \geq 2$. The sequence **S** is written as

$$\mathbf{S} = \cdots w_{-1} w_0 w_1 \cdots w_l w_{l+1} w_{l+2} \cdots$$

Take two words $\mathbf{w}_1, \mathbf{w}_1^+$ in S, such that $|\mathbf{w}_1|_{x_x} = \mu$, $|\mathbf{w}_1^+|_{x_x} = M$. We assume, without loss of generality, that $\mathbf{w}_1 = w_1 w_2 \cdots w_{l-1} w_l$, $\mathbf{w}_1^+ = w_{1+d} w_{2+d} \cdots w_{l-1+d} w_{l+d}$, d > 0. We define

$$\chi(\mathbf{w}_1)=w_2\cdots w_{l+1},$$

and

$$\chi^{c}(\mathbf{w}_{1}) = \chi(\chi^{c-1}(\mathbf{w}_{1})) = w_{1+c} \cdots w_{l+c}, \quad (c \in \mathbb{Z}_{+}).$$

If $|\chi^c(\mathbf{w}_1)|_{x_{\alpha}} = |\mathbf{w}_1|_{x_{\alpha}}$, for each $c \ge 0$, then S is three-distance. If it is not the case, let

$$c_1 = max\{c: |\chi^c(\mathbf{w}_1)|_{x_\alpha} = |\mathbf{w}_1|_{x_\alpha}\}.$$

By the definition, it follows that

$$|\chi^{c_1+1}(\mathbf{w}_1)|_{x_{\alpha}} = |\mathbf{w}_1|_{x_{\alpha}} + 1.$$

If $|\chi^c(\mathbf{w}_1)|_{x_{\alpha}} \leq |\mathbf{w}_1|_{x_{\alpha}} + 1$, for each $c \geq c_1$, then S is three-distance. If it is not the case, we put

$$c_2 = max\{c : |\chi^c(\mathbf{w}_1)|_{x_{\alpha}} \le |\mathbf{w}_1|_{x_{\alpha}} + 1, c \ge c_1\}.$$

Then

$$|\chi^{c_2+1}(\mathbf{w}_1)|_{x_{\alpha}} = |\mathbf{w}_1|_{x_{\alpha}} + 2.$$

If $|\chi^c(\mathbf{w}_1)|_{x_{\alpha}} \leq |\mathbf{w}_1|_{x_{\alpha}} + 2$, for each $c \geq c_2$, then **S** is three-distance. If it is not the case, let

$$c_3 = max\{c : |\chi^c(\mathbf{w}_1)|_{x_{\alpha}} \le |\mathbf{w}_1|_{x_{\alpha}} + 2, c \ge c_2\}.$$

Then

$$|\chi^{c_3+1}(\mathbf{w}_1)|_{x_{\alpha}} = |\mathbf{w}_1|_{x_{\alpha}} + 3.$$

We repeat this process up to $M - \mu$ steps. If S is *m*-distance, then $M - \mu < m$. Then μ and $m' := M - \mu$ satisfy the conclusion of (1). If S is not *m*-distance, then there exist an $l \in \mathbb{Z}_+$ and an α such that $\#\{|\mathbf{w}|_{x_{\alpha}} : |\mathbf{w}| = l\} > m$. Arguing as above, we may find two words $\mathbf{w}_1, \mathbf{w}_2$ in S of length l, such that $|\mathbf{w}_2|_{x_{\alpha}} - |\mathbf{w}_1|_{x_{\alpha}} = m$.

This completes the proof.

Some examples of three-distance sequences with three symbols will be given in the next section.

4 3D Cutting Sequences and Three-Distance Sequences

EXAMPLE 4.1. The line in \mathbb{R}^3 defined by the equation "x = y = z" yields a periodic 3D cutting sequence

$$(ABC)^{\infty} = \cdots ABCABCABCABC \cdots ABCABCABCABC \cdots$$

It is easy to see that the above sequence is two-distance.

Table 1 is a list of the words in the above sequence of length up to 5, and their weights.

Table 1

Length w	Words w	Weights			
		w _A	w _B	w _c	
1	A, B, C	0, 1	0, 1	0, 1	
2	AB, BC, CA	0, 1	0, 1	0, 1	
3	ABC, BCA, CAB	1	1	1	
4	ABCA, BCAB, CABC	1, 2	1, 2	1, 2	
5	ABCAB, BCABC, CABCA	1, 2	1, 2	1, 2	

Table 2 is a list of the words in the above sequence of length up to 4, and their weights.

Table	2
-------	---

Length w	Words w		Weights		
			w _B	w _c	
1	A, B, C	0, 1	0, 1	0, 1	
2	AB, BA, BB, AC, CB, CA, BC	0, 1	0, 1, 2	0, 1	
3	ABC, CBB, BAB, BBA, BCB, CBC, BAC, CAB, CBA, BBC, BCA, ACB, ABB	0, 1	1, 2	0, 1, 2	
4	ACBB, ABCB, ACBC, ABCB, BACB, BBCA, BCAB, BCBB,	0, 1	1, 2, 3	1, 2	
	BBAC, BCBA, BABC, BCBC, BBCB, CBBC, CABC, CBCA, CBBA, CABB, CBAC, CBAB, CBCB				

We show that each 3D cutting sequence is three-distance.

The orthogonal projection on the u-axis $(u \in \{x, y, z\})$ in \mathbb{R}^3 is denoted by P_u . Let S be a 3D cutting sequence associated with a line L in \mathbb{R}^3 . Take an arbitrary word $\mathbf{w} = w_1 \cdots w_l$ in S, $\{w_1, \ldots, w_l\} \subset \{A, B, C\}$. And take the points

 \square

m, m' which correspond to w_1 and w_l respectively, as the point of the intersection $L \cap H_i$ ($H_i \in \mathcal{H}_i, i \in \{A, B, C\}$), or $L \cap \ell$ ($\ell \in \mathcal{L}$), or $L \cap \mathbb{Z}^3$. Let M be the segment of L whose end-points are m and m'. The length of the projection of M on the u-axis is denoted by $\overline{P_u(M)}$. Then we obtain the following inequalities.

$$\begin{cases} |\mathbf{w}|_{\mathsf{A}} - 1 \leq \overline{\mathsf{P}_{x}(\mathsf{M})} \leq |\mathbf{w}|_{\mathsf{A}} + 1\\ |\mathbf{w}|_{\mathsf{B}} - 1 \leq \overline{\mathsf{P}_{y}(\mathsf{M})} \leq |\mathbf{w}|_{\mathsf{B}} + 1\\ |\mathbf{w}|_{\mathsf{C}} - 1 \leq \overline{\mathsf{P}_{z}(\mathsf{M})} \leq |\mathbf{w}|_{\mathsf{C}} + 1 \end{cases}$$
(4.0)

The symbols A, B, C correspond to x, y, z, respectively via the above inequality.

THEOREM 4.1. Each 3D cutting sequence is three-distance.

PROOF. Let S be a 3D cutting sequence associated with a line L in \mathbb{R}^3 . We assume that there exist an $i \in \{A, B, C\}$ and two words w_1, w_2 in S, such that $|w_1| = |w_2|$ and $|w_1|_i + 2 < |w_2|_i$. Then we obtain

$$0 < |\mathbf{w}_1|_i + 1 < |\mathbf{w}_2|_i - 1. \tag{4.1}$$

•

Let u be the coordinate corresponding to *i* via (4.0). And let M_1, M_2 be the segments of L whose end-points are the points corresponding to the first and last symbols of w_1, w_2 respectively. Then the slope of $P_{uv}(L)$ is

$$\frac{\mathsf{P}_{\mathsf{v}}(\mathsf{M}_1)}{\mathsf{P}_{\mathsf{u}}(\mathsf{M}_1)} = \frac{\overline{\mathsf{P}_{\mathsf{v}}(\mathsf{M}_2)}}{\overline{\mathsf{P}_{\mathsf{u}}(\mathsf{M}_2)}}$$

Let k be a symbol, $k \in \{A, B, C\} \setminus \{i\}$ and v the coordinate corresponding to k, $v \in \{x, y, z\} \setminus \{u\}$. By using the inequalities (4.0) and (4.1), it follows that

$$\frac{|\mathbf{w}_1|_k-1}{|\mathbf{w}_1|_i+1} \leq \frac{\overline{\mathbf{P}_{\mathbf{v}}(\mathbf{M}_1)}}{\overline{\mathbf{P}_{\mathbf{u}}(\mathbf{M}_1)}} = \frac{\overline{\mathbf{P}_{\mathbf{v}}(\mathbf{M}_2)}}{\overline{\mathbf{P}_{\mathbf{u}}(\mathbf{M}_2)}} \leq \frac{|\mathbf{w}_2|_k+1}{|\mathbf{w}_2|_i-1}.$$

Therefore, we have

$$\frac{|\mathbf{w}_1|_k - 1}{|\mathbf{w}_1|_i + 1} \le \frac{|\mathbf{w}_2|_k + 1}{|\mathbf{w}_2|_i - 1}.$$
(4.2)

From (4.1) and (4.2), we obtain

$$|\mathbf{w}_1|_k - 1 < |\mathbf{w}_2|_k + 1. \tag{4.3}$$

Let j be the symbol other then i,k. Namely $\{i, j, k\} = \{A, B, C\}$. Then,

$$|\mathbf{w}_{1}| = |\mathbf{w}_{1}|_{i} + |\mathbf{w}_{1}|_{j} + |\mathbf{w}_{1}|_{k} = |\mathbf{w}_{2}|_{i} + |\mathbf{w}_{2}|_{j} + |\mathbf{w}_{2}|_{k}$$
$$< |\mathbf{w}_{2}|_{i} - 2 + |\mathbf{w}_{1}|_{j} + |\mathbf{w}_{2}|_{k} + 2 = |\mathbf{w}_{2}|_{i} + |\mathbf{w}_{1}|_{j} + |\mathbf{w}_{2}|_{k}.$$

Hence

$$|\mathbf{w}_2|_j < |\mathbf{w}_1|_j. \tag{4.4}$$

By the symmetric argument, from (4.2), we have

$$\frac{|\mathbf{w}_1|_j - 1}{|\mathbf{w}_1|_i + 1} \le \frac{|\mathbf{w}_2|_j + 1}{|\mathbf{w}_2|_i - 1},$$
(4.5)

and thus

$$|\mathbf{w}_1|_j - 1 < |\mathbf{w}_2|_j + 1.$$
(4.6)

The inequalities (4.4) and (4.6) imply $|w_1|_j - 1 < |w_2|_j + 1 < |w_1|_j + 1$. Hence, we have

$$|\mathbf{w}_2|_j + 1 = |\mathbf{w}_1|_j. \tag{4.7}$$

Then, $|\mathbf{w}_1|_i + |\mathbf{w}_1|_j = |\mathbf{w}_1|_i + |\mathbf{w}_2|_j + 1 < |\mathbf{w}_2|_i + |\mathbf{w}_2|_j - 1$. Therefore, we obtain

$$|\mathbf{w}_1|_k > |\mathbf{w}_2|_k. \tag{4.8}$$

The inequalities (4.8) and (4.3) imply $|\mathbf{w}_1|_k - 1 < |\mathbf{w}_2|_k + 1 < |\mathbf{w}_1|_k + 1$. Hence we have

$$|\mathbf{w}_2|_k + 1 = |\mathbf{w}_1|_k. \tag{4.9}$$

From (4.7) and (4.9),

$$|\mathbf{w}_{1}| = |\mathbf{w}_{1}|_{i} + |\mathbf{w}_{1}|_{j} + |\mathbf{w}_{1}|_{k}$$
$$= |\mathbf{w}_{1}|_{i} + |\mathbf{w}_{2}|_{j} + |\mathbf{w}_{2}|_{k} + 2 < |\mathbf{w}_{2}|_{i} + |\mathbf{w}_{2}|_{j} + |\mathbf{w}_{2}|_{k} = |\mathbf{w}_{2}|.$$

This is the contradiction. Hence for each $i \in \{A, B, C\}$, there exist no words w_1, w_2 such that $||w_2|_i - |w_1|_i| > 2$. So S is a three-distance sequence. Q.E.D

There exists a three-distance sequence which is not a 3D cutting sequence. We give such an example.

EXAMPLE 4.3. A periodic infinite sequence which repeats the word AACABCAB

$$S = \cdots \mathsf{CABAACABCABAACAB} \cdots = (\mathsf{AACABCAB})^{\infty}$$

is three-distance. We show that S is not a 3D cutting sequence. If S is a 3D cutting sequence associated with a line L in \mathbb{R}^3 , then by Remark 2.1, for each u, $\mathcal{D}_u(S)$ is a 2D cutting sequence associated with $\mathsf{P}_{uv}(\mathsf{L})$ ($\{\mathsf{u},\mathsf{v}\} \subset \{x, y, z\}$). Here by [1, Theorem 1], $\mathcal{D}_u(S)$ is a two-distance sequence. However,

$$\mathcal{D}_{y}(S) = \cdots$$
 CAAACACAAACA $\cdots = ($ CAAACA $)^{\infty}$

is not two-distance with two symbols A, C, since the C-weight of the words AAA, ACA, CAC of length 3 in $\mathcal{D}_{y}(S)$ is 0, 1, 2 respectively. Thus $\mathcal{D}_{y}(S)$ cannot be a 2D cutting sequence. Accordingly, S is a three-distance sequence which is a not 3D cutting sequence.

5 Three-Distance Sequences which are not 3D Cutting Sequences

In this section, we show that there exist infinitely many three-distance sequences which are not 3D cutting sequences. Let x_1, \ldots, x_n be the *n* symbols. We fix a bijection

$$\mathbf{f}_n:\{1,2,\ldots,n!\}\to \mathbf{S}_n,$$

where

$$\mathbf{S}_n = \{x_{\sigma_1} \cdots x_{\sigma_n} : \{\sigma_1, \ldots, \sigma_n\} = \{1, \ldots, n\}\}.$$

Note that $\#\{S_n\} = n!$. For each bi-infinite sequence $R_n = \cdots \rho_{-1}\rho_0\rho_1\rho_2\cdots$ with $\rho_v \in \{1, 2, \dots, n!\}$ ($v \in \mathbb{Z}$), we define a bi-infinite sequence with *n* symbols x_1, \dots, x_n as follows.

$$\mathbf{f}_n(\mathbf{R}_n) = \cdots \mathbf{f}_n(\rho_{-1}) \mathbf{f}_n(\rho_0) \mathbf{f}_n(\rho_1) \mathbf{f}_n(\rho_2) \cdots$$

The set of all such sequences is denoted by Σ_{f_n} .

PROPOSITION 5.1.

(1) If $n \leq 3$, then each sequence of Σ_{f_n} is three-distance. (2) If $n \geq 4$, then each sequence of Σ_{f_n} is four-distance.

PROOF. When n = 1, there is nothing to prove. Assume $n \ge 2$. Let **S** be an element of Σ_{f_n} . Fix an arbitrary $l \in \mathbb{Z}_+$. We put l = nt + r with $t \in \mathbb{Z}_+$ and $0 \le r < n$. Let **w** be a word of **S** such that $|\mathbf{w}| = l$. When $l = |\mathbf{w}| < n$, we obtain $|\mathbf{w}|_{x_{\alpha}} \le 2$ ($x_{\alpha} \in \{x_1, \ldots, x_n\}$). Now suppose $l \ge n$. We write **w** as $\mathbf{w} = \mathbf{w}_1 \overline{\mathbf{w}} \mathbf{w}_2$, where $\overline{\mathbf{w}} = \mathbf{f}_n(\rho_v) \cdots \mathbf{f}_n(\rho_{v+h})$, $v \in \mathbb{Z}$, $h \in \mathbb{Z}_+$, and $\mathbf{w}_1, \mathbf{w}_2$ are the words of **S** such that \mathbf{w}_1 is a proper subword of $\mathbf{f}_n(\rho_{v-1})$ and \mathbf{w}_2 is a proper subword of $\mathbf{f}_n(\rho_{v+h+1})$. If $|\mathbf{w}_1| = |\mathbf{w}_2| = 0$, then $|\mathbf{w}| = |\overline{\mathbf{w}}| = nt$. If $|\mathbf{w}_a| \neq 0$ and $|\mathbf{w}_b| = 0$ ($\mathbf{a}, \mathbf{b} \in \{1, 2\}$), then $|\overline{\mathbf{w}}| = nt$ and $1 \le |\mathbf{w}_a| = r < n$. If $|\mathbf{w}_1| \neq 0$ and $|\mathbf{w}_2| \neq 0$, then $2 \le |\mathbf{w}_1| + |\mathbf{w}_2| \le 2n - 2$. Thus we have

$$nt+r-2 \leq |\overline{\mathbf{w}}| \leq nt+r-2n+2.$$

Since $0 \le r < n$, we obtain

 $nt - 2 \le nt + r - 2 \le |\overline{w}| \le nt + r - 2n + 2 < nt - n + 2 = n(t - 1) + 2.$

Namely

$$n(t-1) \le nt - 2 \le |\overline{\mathbf{w}}| < n(t-1) + 2.$$

Therefore $|\overline{\mathbf{w}}| = n(t-1)$. First, we consider the case $|\overline{\mathbf{w}}| = nt$. Then $|\mathbf{w}_1| + |\mathbf{w}_2| = r$ and $|\overline{\mathbf{w}}|_{x_{\alpha}} = t$, $0 \le |\mathbf{w}_1|_{x_{\alpha}} + |\mathbf{w}_2|_{x_{\alpha}} \le 2$. Since $|\mathbf{w}|_{x_{\alpha}} = |\mathbf{w}_1|_{x_{\alpha}} + |\overline{\mathbf{w}}|_{x_{\alpha}} + |\mathbf{w}_2|_{x_{\alpha}}$, we have

$$t \le |\mathbf{w}|_{x_{\pi}} \le t + 2. \tag{5.10}$$

Next, we consider the case $|\overline{\mathbf{w}}| = n(t-1)$. Then $|\mathbf{w}_1| + |\mathbf{w}_2| = n+r$ and $0 \le |\mathbf{w}_1|_{x_a} + |\mathbf{w}_2|_{x_a} \le 2$, and $|\overline{\mathbf{w}}|_{x_a} = t-1$. Thus we have

$$t - 1 \le |\mathbf{w}|_{x_{\pi}} \le t + 1. \tag{5.11}$$

By inequalities (5.10) and (5.11), we obtain $t - 1 \le |\mathbf{w}|_{x_{\alpha}} \le t + 2$. Therefore S is at most four-distance. Furthermore, if $n \ge 4$, it is easy to create a four-distance sequence. Next, we consider the following case: $n \le 3$.

Case 1: When n = 2, an arbitrary *l* is written as l = 2t or l = 2t + 1.

First, we assume $l = |\mathbf{w}| = 2t$. If $|\overline{\mathbf{w}}| = 2t$, then $|\mathbf{w}|_{x_{\alpha}} = |\overline{\mathbf{w}}|_{x_{\alpha}} = t$. If $|\overline{\mathbf{w}}| = 2(t-1)$, then $t-1 \le |\mathbf{w}|_{x_{\alpha}} \le t+1$. Hence, we obtain $t-1 \le |\mathbf{w}|_{x_{\alpha}} \le t+1$.

Next, we assume $l = |\mathbf{w}| = 2t + 1$. If $|\overline{\mathbf{w}}| = 2t$, then $t \le |\mathbf{w}|_{x_{\alpha}} \le t + 1$. We note that $|\overline{\mathbf{w}}| = 2(t-1)$ does not hold in this case. Because, if $|\overline{\mathbf{w}}| = 2(t-1)$, then we obtain $|\mathbf{w}_1| + |\mathbf{w}_2| = 3$. Hence $|\mathbf{w}_1| = 1$ and $|\mathbf{w}_2| = 2$, or $|\mathbf{w}_1| = 2$ and $|\mathbf{w}_2| = 1$. This is contrary to our assumption that \mathbf{w}_1 and \mathbf{w}_2 are proper subwords of $f_n(\rho_{\nu-1})$ and $f_n(\rho_{\nu+h+1})$, respectively.

Therefore, if n = 2, then **S** is three-distance.

Case 2: When n = 3, an arbitrary l is written as l = 3t or l = 3t + 1 or l = 3t + 2.

First, we assume $l = |\mathbf{w}| = 3t$. If $|\overline{\mathbf{w}}| = 3t$, then $|\mathbf{w}|_{x_{\alpha}} = |\overline{\mathbf{w}}|_{x_{\alpha}} = t$. If $|\overline{\mathbf{w}}| = 3(t-1)$, then $t-1 \le |\mathbf{w}|_{x_{\alpha}} \le t+1$. Hence, we obtain $t-1 \le |\mathbf{w}|_{x_{\alpha}} \le t+1$.

Next, we assume $l = |\mathbf{w}| = 3t + 1$. If $|\overline{\mathbf{w}}| = 3t$, then $t \le |\mathbf{w}|_{x_x} \le t + 1$. If $|\overline{\mathbf{w}}| = 3(t-1)$, then $t-1 \le |\mathbf{w}|_{x_x} \le t+1$. Hence, we have $t-1 \le |\mathbf{w}|_{x_x} \le t+1$.

Assume $l = |\mathbf{w}| = 3t + 2$. If $|\overline{\mathbf{w}}| = 3t$, then $t \le |\mathbf{w}|_{x_{\alpha}} \le t + 2$. We note that $|\overline{\mathbf{w}}| = 3(t-1)$ does not hold in this case. Because, if $|\overline{\mathbf{w}}| = 3(t-1)$, then we obtain $|\mathbf{w}_1| + |\mathbf{w}_2| = 5$. Hence $|\mathbf{w}_1| = 1$ and $|\mathbf{w}_2| = 4$, or $|\mathbf{w}_1| = 4$ and $|\mathbf{w}_2| = 1$, or $|\mathbf{w}_1| = 2$ and $|\mathbf{w}_2| = 3$, or $|\mathbf{w}_1| = 3$ and $|\mathbf{w}_2| = 2$. This is contrary to our assumption that \mathbf{w}_1 and \mathbf{w}_2 are proper subwords of $f_n(\rho_{\nu-1})$ and $f_n(\rho_{\nu+h+1})$, respectively.

Therefore, if n = 3, then S is three-distance. This completes the proof.

EXAMPLE 5.1. When n = 3, $\#\{S_3\} = 6$. We put $\{x_1, x_2, x_3\} = \{A, B, C\}$. Let $f_3 : \{1, 2, ..., 6\} \rightarrow S_3$ be a bijection given by:

 $1 \mapsto ABC$, $2 \mapsto ACB$, $3 \mapsto BAC$, $4 \mapsto BCA$, $5 \mapsto CAB$, $6 \mapsto CBA$.

By Proposition 5.1, an infinite sequence

 $R_3 = \cdots 52435364564311432253522451353624626625316243341334622466243235$

543456625426166216231525522166544...,

produces a three-distance sequence S ($\in \Sigma_{f_3}$),

$\mathbf{S} = \cdots \mathbf{C} \mathbf{A} \mathbf{B} \mathbf{A} \mathbf{C} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{A}$

BCBCA · · · .

However,

 $\mathcal{D}_{x}(S) = \cdots CBCBBCBBCCBBCCBB \cdots$

and

$$\mathcal{D}_{y}(\mathbf{S}) = \cdots \mathbf{CAACCAACCAACCACAC} \cdots,$$

$$\mathcal{D}_z(\mathsf{S}) = \cdots \mathsf{ABABBABAABBABABAABBABAB} \cdots$$

are not two-distances with two symbols BC, CA, AB respectively. Namely, there does not exist a line in \mathbb{R}^2 which has $\mathcal{D}_u(S)$ as its 2D cutting sequence. Therefore S is a three-distance sequence which is not a 3D cutting sequence. From the above construction, it is easy to see that there are infinitely many such sequences.

The set of the elements of Σ_{f_3} which are not 3D cutting sequences is denoted by $\Sigma_{f_3}^*$.

COROLLARY 5.2. card $\Sigma_{f_3}^* = card \ \Sigma_{f_3} = card \ \mathbb{R}$.

PROOF. The set of bi-infinite sequences with symbols 1, 2, ..., 6 is denoted by \mathcal{R}_3 . For a sequence $R_3 = \cdots r_{-1}r_0r_1r_2\cdots \in \mathcal{R}_3$ with $r_v \in \{1, 2, ..., 6\}$ $(v \in \mathbb{Z})$, we define the infinite sequence $R_3^* = \cdots r_{-1}135r_0r_1r_2\cdots$. We put

$$\mathcal{R}_3^* = \{ R_3^* : R_3 \in \mathcal{R}_3 \}.$$

Then we have card $\mathcal{R}_3^* = card \mathcal{R}_3 = card \mathbb{R}$. Note that

$$\mathcal{D}_z \circ f_3(135) = \mathcal{D}_z(f_3(1)f_3(3)f_3(5)) = \mathcal{D}_z(\mathsf{ABCBACCAB}) = \mathsf{ABBAAB}.$$

Hence, for any element R_3^* of \mathcal{R}_3^* , $\mathcal{D}_z \circ f_3(R_3^*)$ is not two-distance with two symbols A, B. Thus $\mathcal{D}_z \circ f_3(R_3^*)$ cannot be a 2D cutting sequence. From Remark 2.1, we see $f_3(R_3^*) \in \Sigma_{f_3}^*$. We put

$$\Sigma_{\mathbf{f}_3}^*(135) = \{\mathbf{f}_3(R_3^*) : R_3^* \in \mathcal{R}_3^*\}.$$

Note that $\Sigma_{f_3}^*(135) \subset \Sigma_{f_3}^*$. Since there exists an injection:

$$\mathcal{R}_3^* \rightarrow \Sigma_{f_3}^* (135), \quad \mathcal{R}_3^* \mapsto f_3(\mathcal{R}_3^*),$$

we have card $\mathbb{R} \leq card \Sigma_{f_3}^*$ (135). Hence card $\mathbb{R} \leq card \Sigma_{f_3}^*$. Therefore we obtain

card $\mathbb{R} \leq card \Sigma_{f_3}^* \leq card \Sigma_{f_3} \leq card \mathbb{R}$,

and

card
$$\Sigma_{f_3}^* = card \Sigma_{f_3} = card \mathbb{R}$$
. Q.E.D

References

- [1] W. F. Lunnon, P. A. B. Pleasants. Characterization of two-distance sequences, J. Austral. Math. Soc. (Series A) 53 (1992), 198-218.
- [2] J. S. W. Lamb. On the canonical projection method for one-dimensional quasicrystals and invertible substitution rules, J. Phys. A.: Math. Gen. 31 (1998), L331-L336.
- [3] M. Morse, G. A. Hedlund. Symbolic dynamics, Amer. J. Math 60 (1938), 815-866.
- [4] M. Morse, G. A. Hedlund. Symbolic dynamics II. sturmian trajectories, Amer. J. Math 62 (1940), 1-42.
- [5] C. Series. The geometry of Markoff numbers, Math. Intelligencer 7 (3) (1985), 20-29.

The Doctoral Program in Mathematics University of Tsukuba 1-1-1, Ten-nōdai, Tsukuba-shi Ibaraki 305-8571, Japan kuniko@math.tsukuba.ac.jp