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A CLASS OF REAL-ANALYTIC SURFACES
IN THE $3$-EUCLIDEAN SPACE

By

Naoya ANDO

Abstract. A smooth surface $S$ in $R^{3}$ is called parallel curved if
there exists a plane in $R^{3}$ such that at each point of $S$, there exists
a principal direction parallel to the plane. For example, a plane, a
cylinder and a round sphere are parallel curved. More generally, a
surface of revolution is also parallel curved. The purposes of this
paper are to study the behavior of the principal distributions on a
real-analytic, parallel curved surface and to classify the connected,
complete, real-analytic, embedded, parallel curved surfaces.

1. Introduction

Let $S$ be a smooth surface in $R^{3}$ and $Umb(S)$ the set of the umbilical
points of $S$ . If $ S\backslash Umb(S)\neq\emptyset$ , then there exists a one-dimensional continuous
distribution on $S\backslash Umb(S)$ which gives a principal direction at each points of
$S\backslash Umb(S)$ . Such a distribution is called a principal distribution on $S$ . Let $p0$ be
an isolated umbilical point of $S$. Then the indices of $p0$ with respect to two
principal distributions coincide with each other. The common number is called
the index of $p_{0}$ on $S$ and denoted by $ind_{p0}(S)$ . Let $(x, y)$ be local coordinates
around $p0$ such that $p0$ corresponds to $(0,0)$ and $r_{0}$ a positive number such
that $p_{0}$ is the only umbilical point on $\{x^{2}+y^{2}<r_{0}^{2}\}$ , and let $\phi_{S;P0}$ denote a
continuous function on $(0, r_{0})\times R$ such that for any $(r, \theta)\in(0, r_{0})\times R$ , a tan-
gent vector $\cos\phi_{S;p0}(r, \theta)\partial/\partial x+\sin\phi_{S;p0}(r, \theta)\partial/\partial y$ is in a principal direction at
$(r\cos\theta, r\sin\theta)$ . Then the index $ind_{P0}(S)$ is represented as follows:

$ind_{p_{0}}(S)=\frac{\phi_{S;p0}(r,\theta+2\pi)-\phi_{S;P0}(r,\theta)}{2\pi}$ . (1)
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Let $\mathscr{P}^{k}$ be the set of the homogeneous polynomials in two variables of degree
$k\geqq 2$ and $\mathscr{P}_{0}^{k}$ the set of the elements of $\mathscr{P}^{k}$ such that on each of their graphs, the
origin $0$ $:=(0,0,0)$ of $R^{3}$ is an isolated umbilical point. For $g\in \mathscr{P}^{k}$ and for $\theta\in R$ ,

set $\tilde{g}(\theta):=g(\cos\theta, \sin\theta)$ . In [1], we studied the behavior of the principal distri-
butions around $0$ on the graph $G_{g}$ of $g\in \mathscr{P}_{o}^{k}$ . Then we divided the study into two
cases: $d\tilde{g}/d\theta\equiv 0$ and $d\tilde{g}/d\theta\not\equiv O$ . If $g\in \mathscr{P}_{0}^{k}$ satisfies $d\tilde{g}/d\theta\equiv 0$ , then the “position
vector field” $x\partial/\partial x+y\partial/\partial y$ is in a principal direction at each point of $G_{g}$ , and
from this together with formula (1), $ind_{o}(G_{g})=1$ follows. For $g\in \mathscr{P}_{0}^{k}$ satisfying
$d\tilde{g}/d\theta\not\equiv O$ , we mainly paid attention to the relation between the behavior of the
principal distributions and the behavior of the position vector field around a point
at which the position vector field is in a principal direction, and we presented a
way of computing $ind_{0}(G_{g})$ and proved $ind_{0}(G_{g})\in\{1-k/2+i\}_{i=0}^{[k/2]}$ . In [2], we
have further studied the behavior of the principal distributions in relation to the
existence of other umbilical points than $0$ , around a point at which the position
vector field is in a principal direction. We may find such a point, because Euler’s
identity holds for any homogeneous polynomial. In order to study the behavior of
the principal distributions around an isolated umbilical point on a general surface
by a similar method, we need some other vector field than the position vector
field.

For a smooth function $f$ of two variables $x,$ $y$ , we set

$pf^{;=}\frac{\partial f}{\partial x}$ $qf^{;=}\frac{\partial f}{\partial y}$
$r_{f}$

$:=\frac{\partial^{2}f}{\partial x^{2}}$ , $s_{f}$

$:=\frac{\partial^{2}f}{\partial x\partial y}$ , $t_{\int}$

$:=\frac{\partial^{2}f}{\partial y^{2}}$ ,

$grad_{f}$ $:=\left(\begin{array}{l}pf\\qf\end{array}\right)$ , $grad_{f}^{\perp}:=\left(\begin{array}{l}-qf\\pf\end{array}\right)$ , $Hess_{f}$ $:=\left(\begin{array}{ll}r_{f} & s_{f}\\s_{f} & t_{f}\end{array}\right)$ .

Let $\langle, \rangle$ be the scalar product in $R^{2}$ and set

$\varpi_{f}$
$:=\langle Hess_{f}grad_{f}, grad_{f}^{\perp}\rangle$ .

In Section 2, we shall prove the following:

PROPOSITION 1.1. Let $f$ be a smooth function of two variables and $G_{f}$ the
graph of $f$ Then at a point of $G_{f}$ , the gradient vector field of $f$ is in a principal
direction if and only if $\varpi_{f}=0$ holds.

For $g\in \mathscr{P}^{k}$ , we see by Euler’s identity $(k-1)grad_{g}=Hess_{g}{}^{t}(x, y)$ that

$(k-1)\varpi_{g}=\det(Hess_{g})\frac{d\tilde{g}}{d\theta}(\theta)$ (2)
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holds at $(\cos\theta, \sin\theta)$ for any $\theta\in R$ . Therefore $\varpi_{g}\equiv 0$ holds if and only if
$\det(Hess_{g})\equiv 0$ or $d\tilde{g}/d\theta\equiv 0$ holds. If $g\in \mathscr{P}^{k}$ satisfies $\det(Hess_{g})\equiv 0$ , then there
exists a vector ${}^{t}(\alpha,\beta)\in R^{2}$ satisfying $g=(\alpha x+\beta y)^{k}$ , which implies $g\not\in \mathscr{P}_{0}^{k}$ . There-
fore we see that for $g\in \mathscr{P}_{0}^{k},$ $\varpi_{g}\equiv 0$ (resp. $\not\equiv 0$) is equivalent to $d\tilde{g}/d\theta\equiv 0$ (resp.
$\not\equiv 0)$ and this leads us to study the behavior of the principal distributions in
relation to the behavior of the gradient vector field. In [2], we have carried out
this on $G_{g}$ for $g\in \mathscr{P}_{0}^{k}$ .

Let $\mathscr{A}_{o}^{(2)}$ be the set of the real-analytic functions defined on a connected
neighborhood of $(0,0)$ in $R^{2}$ such that for each $F\in \mathscr{A}_{0}^{(2)},$ $F(O, 0)=p_{F}(0,0)=$

$qF(0,0)=0$ hold, and $\mathscr{A}_{o}^{2}$ the set of the elements of $\mathscr{A}_{o}^{(2)}$ such that on each of
their graphs, $0$ is an isolated umbilical point. One of the purposes of this paper is
to study the behavior of the principal distributions around $0$ on the graph $G_{F}$ of
$F\in \mathscr{A}_{0}^{(2)}$ satisfying $\varpi_{F}\equiv 0$ and the index $ind_{0}(G_{F})$ of $0$ for $F\in \mathscr{A}_{0}^{2}$ satisfying
$\varpi_{F}\equiv 0$ . In Section 5, we shall prove the following:

THEOREM 1.2. Let $F$ be an element of $\mathscr{A}_{o^{2}}$ satisfying $\varpi_{F}\equiv 0$ . Then $G_{F}$ is part

of a surface of revolution such that $0$ lies on the axis of rotation; at any point of
$G_{F}$ , the position vector field is in a principal direction and $ind_{0}(G_{F})=1$ holds.

THEOREM 1.3. Let $F$ be an element of $\mathscr{A}_{0}^{(2)}\backslash \mathscr{A}_{o^{2}}$ satisfying $\varpi_{F}\equiv 0$ . Then one
of the following holds:

(1) $G_{F}$ is part of a plane or a round sphere;
(2) There exist a neighborhood $U_{0}$ of $(0,0)$ in $R^{2}$ and a real-analytic curve $C_{0}$

in $U_{0}$ satisfying the following:
(a) $C_{0}=\{(x, y)\in U_{0};F(x, y)=0\}$ ,
(b) $C_{0}=Umb(G_{F|_{U_{0}}})$ or $Umb(G_{F|_{U_{0}}})=\emptyset$ holds,
(c) For any point $q\in C_{0}$ andfor the plane $P_{q}^{\perp}in$

$R^{3}$ normal to $C_{0}$ at $q$ , the
set $C_{q}^{\perp}:=P_{q^{\perp}}\cap G_{F|_{U_{0}}}$ is a real-analytic curve such that at each point of
$C_{q}^{\perp}$ , a tangent vector to $C_{q}^{\perp}is$ in a principal direction of $G_{F}$ .

REMARK. For an integer $l\geqq 3$ , let $\mathscr{A}_{0}^{(l)}$ be the subset of $\mathscr{A}_{0}^{(2)}$ such that for
any $F\in \mathscr{A}_{0}^{(l)}$ and for non-negative integers $m,n\geqq 0$ satisfying $0\leqq m+n<l$ ,
$(\partial^{m+n}F/\partial x^{m}\partial y^{n})(0,0)=0$ holds. For each $F\in \mathscr{A}_{o^{2}},$ . there exists an element
$f_{F}\in \mathscr{A}_{o}^{(3)}$ satisfying $Umb(G_{F-f_{F}})=G_{F-f_{F}}$ , and there exists a homogeneous poly-
nomial $g_{F}$ of degree $k_{F}$ satisfying $f_{F}-g_{F}\in \mathscr{A}_{0}^{(k_{F}+1)}$ . Let $\mathscr{A}_{00}^{2}$ be the subset of
$\mathscr{A}_{o^{2}}$ such that each $F\in \mathscr{A}_{00}^{2}$ satisfies $g_{F}\in \mathscr{P}_{o}^{k_{F}}$ . In [3], we have mainly studied the
behavior of the principal distributions around $0$ on $G_{F}$ for $F\in \mathscr{A}_{00}^{2}$ satisfying
$\varpi_{F}\not\equiv 0$ and proved $ind_{0}(G_{gF})\leqq ind_{0}(G_{F})\leqq 1$ for $F\in \mathscr{A}_{00}^{2}$ .
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The gradient vector field of a smooth function $f$ is in a principal direction at
a point of $G_{f}$ if and only if there exists a principal direction at the same point
parallel to the xy-plane. A smooth surface $S$ in $R^{3}$ is called parallel curved if
there exists a plane $P$ in $R^{3}$ such that at each point of $S$, there exists a principal
direction parallel to $P$; if $S$ is parallel curved, then such a plane as $P$ is called a
base plane of $S$ and the set of the base planes of $S$ is denoted by $\mathscr{B}_{S}$ . A plane,
a cylinder and a round sphere are examples of parallel curved surfaces. More
generally, a surface of revolution is also parallel curved. We see by Proposition
1.1 that a smooth function $f$ satisfies $\varpi_{f}\equiv 0$ if and only if $G_{f}$ is a parallel curved
surface such that the xy-plane is an element of $\mathscr{B}_{G_{f}}$ . A surface does not have to
be entirely represented as the graph of a function so that the surface is parallel
curved. The other of the purposes of this paper is to classify the connected, com-
plete, real-analytic, embedded, parallel curved surfaces.

Let $C_{b},$ $C_{g}$ be real-analytic, simple curves in $R^{3}$ with the unique intersection
$p(c_{b},c_{g})$ and contained in planes $P_{b},$ $P_{g}$ , respectively. Then a pair $(C_{b}, C_{g})$ is called
generating if we may choose as $P_{g}$ the plane normal to $C_{b}$ at $p_{(C_{b},C_{g})}$ ; if $(C_{b}, C_{g})$

is generating, then $C_{b}$ and $C_{g}$ are called the base curve and the generating curve
of $(C_{b}, C_{g})$ , respectively. In Section 4, we shall prove the following:

PROPOSITION 1.4. Let $(C_{b}, C_{g})$ be a generating pair of which $C_{b}$ (resp. $C_{g}$ )
is the base (resp. generating) curve. Then there exists a connected, real-analytic,
parallel curved surface $S_{0}$ which contains a neighborhood of $p_{(C_{b},C_{g})}$ in $C_{b}\cup C_{g}$

and satisfies $P_{b}\in \mathscr{B}_{S_{0}}$ . In addition, if $S_{0}^{(1)}$ and $S_{0}^{(2)}$ are such surfaces as $S_{0}$ , then
$S_{0}^{(1)}\cap S_{0}^{(2)}$ is also such a surface.

For a generating pair $(C_{b}, C_{g})$ , the maximum of such surfaces as $S_{0}$ in
Proposition 1.4 is denoted by $S_{(C_{b},C_{g})}$ . In Section 6, we shall prove the following:

THEOREM 1.5. Let $S$ be a connected, complete, real-analytic, embedded, par-
allel curved surface. Then $S$ is homeomorphic to a sphere, a plane, a cylinder, or to
a torus. In addition,

(1) if $S$ is homeomorphic to a sphere, then $S$ is a surface of revolution which
crosses its axis of rotation at just two points;

(2) if $S$ is homeomorphic to a plane, then one of the following holds:
(a) $S$ is a surface of revolution which crosses its axis of rotation at just

one point,
(b) $S=S_{(C_{b},C_{g})}$ holds, where $(C_{b}, C_{g})$ is a generating pair each element

of which is isometric to $R$ ;



A class of real-analytic surfaces in the 3-Euclidean space 255

(3) if $S$ is homeomorphic to a cylinder, then $S=S_{(C_{b},C_{g})}$ holds, where $(C_{b}, C_{g})$

is a generating pair such that one of $C_{b}$ and $C_{g}$ is isometric to $R$ and the
other a simple closed curve;

(4) $\iota fS$ is homeomorphic to a torus, then $S=S_{(C_{b},C_{g})}$ holds, where $(C_{b}, C_{g})$ is
a generating pair each element of which is isometric to a simple closed
curve.
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2. Preliminaries

Let $f$ be a smooth function of two variables $x,$ $y$ , and $G_{f}$ the graph of $f$ .
We set

$E_{f}$ $:=1+p_{f^{2}}$ , $F_{f}:=pfqf$ , $G_{f}$ $:=1+q_{f^{2}}$ ,

$L_{f}$
$:=\frac{r_{f}}{\sqrt{\det(I_{f})}}$ , $M_{f}$ $:=\frac{s_{f}}{\sqrt{\det(I_{f})}}$ , $N_{f}$ $:=\frac{t_{f}}{\sqrt{\det(I_{f})}}$ ,

where $\det(I_{f}):=E_{f}G_{f}-F_{f}^{2}$ . The Weingarten map of $G_{f}$ is a tensor field $W_{f}$ on
$G_{f}$ of type $(1, 1)$ satisfying

$[W_{f}(\frac{\partial}{\partial x}),$ $W_{f}(\frac{\partial}{\partial y})]=[\frac{\partial}{\partial x},\frac{\partial}{\partial y}]W_{f}$ ,

where

$W_{f}$ $:=(_{F_{f}}^{E_{f}}$ $F_{f}G^{f}-1(_{M_{f}^{f}}L$ $M_{f}N_{f}$

A principal direction of $G_{f}$ at $(x_{0}, yo)$ is a one-dimensional eigenspace of
$W_{f,(x_{0},yo)}$ . Let $PD_{f}$ be a symmetric tensor field on $G_{f}$ of type $(0,2)$ represented
in terms of the coordinates $(x, y)$ as

$PD_{f}$ $:=\frac{1}{\sqrt{\det(I_{f})}}\{A_{f}dx^{2}+2B_{f}dxdy+C_{f}dy^{2}\}$ ,

where
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$A_{f}$ $:=E_{f}M_{f}-F_{f}L_{f}$ , $2B_{f}$ $:=E_{f}N_{f}-G_{f}L_{f}$ , $C_{f}$ $:=F_{f}N_{f}-G_{f}M_{f}$ ,

$dx^{2}$ $:=dx\otimes dx$ , $dxdy:=\frac{1}{2}(dx\otimes dy+dy\otimes dx)$ , $dy^{2}$ $:=dy\otimes dy$ .

For vector fields $V_{1},$ $V_{2}$ on $G_{f}$ , the following holds:

$\frac{1}{2}\sum_{\{i,j\}=\{1,2\}}V_{i\wedge}W_{f}(V_{/})=\frac{PD_{f}(V_{1},V_{2})}{\sqrt{\det(I_{f})}}(\frac{\partial}{\partial x}\wedge\frac{\partial}{\partial y})$ .

Therefore we obtain

PROPOSITION 2.1. A tangent vector $v_{0}$ to $G_{f}$ at $(x_{0}, y_{0})$ is in a principal
direction $lf$ and only $\iota fPD_{f,(x_{0},yo)}(v_{0}, v_{0})=0$ holds.

Let $D_{f},$ $N_{f}$ be symmetric tensor fields on $G_{f}$ of type $(0,2)$ represented in
terms of the coordinates $(x, y)$ as

$D_{f}$ $:=s_{f}dx^{2}+(t_{f}-r_{f})dxdy-s_{f}dy^{2}$ ,

$N_{f}$ $:=(s_{f}p_{f^{2}}-pfqfr_{f})dx^{2}+(t_{f}p_{f^{2}}-r_{f}q_{f^{2}})dxdy+(pfqf^{t_{f}-s_{f}q_{f^{2}})dy^{2}}\cdot$

Then we obtain $\det(I_{f})PD_{f}=D_{f}+N_{f}$ . For a vector field $V$ on $G_{f}$ , we set

$\tilde{D}_{f}(\nabla)$ $:=D_{f}(V, V)$ , $\tilde{N}_{f}(V)$ $:=N_{f}(V, V)$ ,

$\overline{PD}_{f}(V)$ $:=PD_{f}(V, V)$ .

For $\phi\in R$ , we set

$u_{\phi}$
$:=\left(\begin{array}{l}\phi cos\\sin\phi\end{array}\right)$ , $U_{\phi}$ $:=\cos\phi\frac{\partial}{\partial x}+\sin\phi\frac{\partial}{\partial y}$ .

Then we obtain

LEMMA 2.2. For any $\phi\in R$ , the following hold:

$\tilde{D}_{f}(U_{\phi})=\langle Hess_{f}u_{\phi}, u_{\phi+\pi/2}\rangle$ ,

$\tilde{N}_{f}(U_{\phi})=\langle grad_{f}, u_{\phi}\rangle\langle grad_{f}^{\perp}, Hess_{f}u_{\phi}\rangle$ .

We set

$Grad_{f}$ $:=pf^{\frac{\partial}{\partial x}}+qf^{\frac{\partial}{\partial y}}$ , $Grad_{f}^{\perp}:=-qf^{\frac{\partial}{\partial x}}+pf^{\frac{\partial}{\partial y}}$ .

We shall prove
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PROPOSITION 2.3. At each point of $G_{f}$ , the following conditions are mutually
equivalent:

(1) $\varpi_{f}=0$ ;
(2) $A_{f}+C_{f}=0$ ;
(3) $Grad_{f}$ is in a principal direction of $G_{f}$ ;
(4) $Grad_{f}^{\perp}is$ in a principal direction of $G_{f}$ ;
(5) there exists a principal direction parallel to the xy-plane.

PROOF. The following holds:

$\varpi_{f}=(A_{f}+C_{f})\sqrt{\det(I_{f})}$ .

Therefore we see that (1) is equivalent to (2). By Lemma 2.2, we obtain

$\varpi_{f}=\overline{PD}_{f}(Grad_{f})=-\det(I_{f})\overline{PD}_{f}(Grad_{f}^{\perp})$ .

Therefore we see by Proposition 2.1 that (1), (3) and (4) are mutually equivalent.
It is easily seen that (4) is equivalent to (5). $\square $

From Proposition 2.3, we obtain Proposition 1.1.

3. Parallel Curved Surfaces

Let $S$ be a connected, real-analytic, embedded, parallel curved surface and
for $P\in \mathscr{B}_{S}$ , let $\Xi_{S,P}$ be the subset of $S$ such that for any $q\in\Xi_{S,P}$ , the tangent
plane $T_{q}(S)$ to $S$ at $q$ is not parallel to $P$ . We see that $\Xi_{S,P}$ is an open set of $S$.
If there exists an element $P_{0}$ of $\mathscr{B}_{S}$ satisfying $\Xi_{S,P_{0}}=\emptyset$ , then we see that $S$ is
part of a plane in $R^{3}$ . In the following, suppose $\Xi_{S,P}\neq\emptyset$ for any $P\in \mathscr{B}_{S}$ .

For $P_{0}\in \mathscr{B}_{S}$ and for $q\in\Xi_{S,P_{0}}$ , let $P_{P_{0},q}^{\perp}$ be the plane in $R^{3}$ through $q$

perpendicular to $P_{0}$ and to $T_{q}(S)$ , and $C_{P_{0},q}^{\perp}$ the connected component of
$P_{P_{0}^{\perp},q}\cap\Xi_{S,P_{0}}$ containing $q$ . We shall prove

PROPOSITION 3.1. The plane $P_{P_{0},q}^{\perp}$ is perpendicular to $T_{p}(S)$ for each $p\in C_{P_{0},q}^{\perp}$ .

PROOF. For each $q\in\Xi_{S,P_{0}}$ , there exist orthogonal coordinates $(\xi, v, \zeta)$ on
$R^{3}$ satisfying the following:

(1) the point $q$ corresponds to (0,0,0);
(2) the $\xi\zeta$-plane $P_{\xi\zeta}$ is parallel to $P_{0}$ ;
(3) the $ v\zeta$-plane $P_{v\zeta}$ is equal to $P_{P_{0},q}^{\perp}$ .

Then we see that the $\xi v$-plane $P_{\xi v}$ is not perpendicular to $T_{q}(\Xi_{S,P_{0}})$ . Therefore there
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exist two positive numbers $\xi_{0},$ $v_{0}>0$ and a real-analytic function $F^{\perp}$ defined on a
neighborhood $U_{\xi_{0},v_{0}}:=(-\xi_{0}, \xi_{0})\times(-v_{0}, v_{0})$ of $q$ in $P_{\xi v}$ such that the graph
$G_{F}\perp$ of $F^{\perp}$ is a neighborhood of $q$ in $\Xi_{S,P_{0}}$ . The function $F^{\perp}$ satisfies
$F^{\perp}(O, O)=(\partial F^{\perp}/\partial\xi)(O, O)=0$ . We see that at each point of $G_{F}\perp$ , the tangent
vector $\partial/\partial\xi$ is in a principal direction. Therefore by Proposition 2.1, we obtain

$\frac{\partial^{2}F^{\perp}}{\partial\xi\partial v}\{1+(\frac{\partial F^{\perp}}{\partial\xi})^{2}\}=\frac{\partial F^{\perp}}{\partial\xi}\frac{\partial F^{\perp}}{\partial v}\frac{\partial^{2}F^{\perp}}{\partial\xi^{2}}$ (3)

on $U_{\xi_{0},v_{0}}$ . We may represent $F^{\perp}$ as

$F^{\perp}(\xi, v)$
$:=\sum_{i,j=0}^{\infty}\alpha_{ij}\xi^{i}v^{j}$ ,

where $\alpha_{ij}\in R$ and where $\alpha_{0}=\alpha_{10}=0$ . Then at $(0, v)\in U_{\xi_{0},v_{0}}$ , we may rewrite (3)
into

$(\sum_{j=0}^{\infty}(j+1)\alpha_{1j+1}v^{j})\times(1+(\sum_{j=0}^{\infty}\alpha_{1j}v^{j})^{2})$

$=2(\sum_{j=0}^{\infty}\alpha_{1j}v^{j})\times(\sum_{j=0}^{\infty}(j+1)\alpha_{0_{J}+1}v^{j})\times(\sum_{j=0}^{\infty}\alpha_{2j}v^{j})$ . (4)

Since $\alpha_{10}=0$ , we obtain $\alpha_{11}=0$ . Generally, we see by (4) that if each element of
$\{\alpha_{1k}\}_{k=0}^{j-1}$ for $j\in N$ is equal to zero, then $\alpha_{1j}$ is also equal to zero. Therefore we
obtain $\alpha_{1j}=0$ for any $j\in N\cup\{0\}$ . Then for any $v\in(-v_{0}, v_{0}),$ $(\partial F^{\perp}/\partial\xi)(O, v)=0$

holds. This implies that $T_{(0,v)}(G_{F}\perp)$ is perpendicular to $P_{v\zeta}$ . Noticing $P_{v\zeta}=P_{P_{0}^{\perp},q}$ ,
we obtain Proposition 3.1. $\square $

COROLLARY 3.2. The following hold:
(1) $C_{P_{0},q}^{\perp}$ is a real-analytic curve;
(2) A principal direction of $S$ at each point of $C_{P_{0},q}^{\perp}$ parallel to $P_{0}$ is per-

pendicular to $P_{P_{0},q}^{\perp}$ ;
(3) A nonzero tangent vector to $C_{P_{0},q}^{\perp}$ at each point of $C_{P_{0},q}^{\perp}$ is in a principal

direction of $S$ and not parallel to $P_{0}$ .

We shall prove

PROPOSITION 3.3. Let $F$ be an element of $\mathscr{A}_{0}^{(2)}$ satisfying $\varpi_{F}\equiv 0$ . Then one
of the following holds:
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(1) $G_{F}$ is part of a surface of revolution such that $0$ lies on an axis of rotation;
(2) There exist a neighborhood $V_{0}$ of $0$ in the xy-plane $P_{xy}$ and a positive

number $\epsilon_{0}>0$ and a real-analytic curve $\gamma_{\epsilon}$ in $V_{0}$ for each $\epsilon\in(-\epsilon_{0}, \epsilon_{0})$

satisfying the following:
(a) $V_{0}=\bigcup_{\epsilon\in(-\epsilon_{0},\epsilon_{0})}\gamma_{\epsilon}$ ,
(b) for any $\epsilon\in(-\epsilon_{0},\epsilon_{0})$ and for any $(x, y)\in\gamma_{\epsilon},$ $|F(x, y)|=|\epsilon|$ holds,
(c) $\iota f$ a line $l^{\perp}$ in $P_{xy}$ is normal to $\gamma_{\epsilon}$ at a point of $l^{\perp}\cap\gamma_{\epsilon}$ for some

$\epsilon\in(-\epsilon_{0}, \epsilon_{0})$ , then for any $\epsilon^{\prime}\in(-\epsilon_{0}, \epsilon_{0}),$
$l^{\perp}$ is normal to $\gamma_{\epsilon^{\prime}}$ at any

point of $l^{\perp}\cap\gamma_{\epsilon^{\prime}}$ .

To prove Proposition 3.3, we need lemmas.
For any $\phi\in R$ , we set $u_{\phi}(x, y);=(\cos\phi)x+(\sin\phi)y$ . For an element

$F\in \mathscr{A}_{0}^{(2)}$ , it is said that $F$ is of one-variable if there exist a number $\phi_{0}\in R$ and
a real-analytic function $f_{F,1}$ defined on a neighborhood of $0$ in $R$ satisfying
$F=f_{F,1}\circ u_{\phi_{0}}$ around $(0,0)$ , and it is said that $F$ is radial if there exists a real-
analytic function $f_{F,2}$ defined on a neighborhood of $0$ in $R$ satisfying $F=f_{F,2}or^{2}$

around $(0,0)$ , where $r(x, y):=\sqrt{x^{2}+y^{2}}$ . We shall prove

LEMMA 3.4. Let $g$ be an element of $\mathscr{P}^{k}$ . Then $\varpi_{g}\equiv 0$ holds $\iota f$ and only $lfg$ is

of one-variable or radial.

PROOF. We see from equation (2) that $\varpi_{g}\equiv 0$ holds if and only if
$\det(Hess_{g})\equiv 0$ or $d\tilde{g}/d\theta\equiv 0$ holds.

If $d\tilde{g}/d\theta\equiv 0$ , then $g$ is radial (see [1]). Suppose $\det(Hess_{g})\equiv 0$ and
$d\tilde{g}/d\theta\not\equiv O$ , and let $\tilde{g}$ attain a nonzero extremum at $\theta_{0}\in R$ . If we represent $g$

as

$g:=\sum_{i=0}^{k}a_{j}u_{\theta_{0}}(x, y)^{k-t_{\mathcal{U}_{\theta_{0}+\pi/2}}}(x, y)^{i}$ ,

then by $(d\tilde{g}/d\theta)(\theta_{0})=0$ , we obtain $a_{1}=0$ . In addition, by $\det(Hess_{g})\equiv 0$ , we
obtain $a_{j}=0$ for each $l\in\{2, \ldots,k\}$ . Therefore we see that $g$ is of one-variable.

If $g$ is of one-variable (resp. radial), then by direct computation, we obtain
$\det(Hess_{g})\equiv 0$ (resp. $d\tilde{g}/d\theta\equiv 0$).

Hence we have proved Lemma 3.4. $\square $

For integers $k_{1},k_{2},$ $k_{3}\geqq 2$ , let $g_{1},g2,$ $g3$ be elements of $\mathscr{P}^{k_{1}},$ $\mathscr{P}^{k_{2}},$
$\mathscr{P}^{k_{3}}$ , respec-

tively. We set
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$t_{g_{1},g2,g3}$ $:=\langle Hess_{g\mathfrak{l}}grad_{g2},grad_{g3}^{\perp}\rangle$ ,

$T_{g_{1},g_{2},g_{3}}$

$:=\sum_{\{j_{1},j_{2},j_{3}\}=\{1,2,3\}}t_{g_{j_{1}},g_{j_{2}},g_{j_{3}}}$
.

We shall prove

LEMMA 3.5. Suppose $k_{3}\geqq k_{2}\geqq k_{1}$ and that $g1$ and $g2$ are radial. Then $g3$ is
also radial if and only if $T_{g1,g_{2},g_{3}}\equiv 0$ holds.

PROOF. If $g1$ and $g2$ are radial, then $k_{1}$ and $k_{2}$ are even. If we set $g_{j}=r^{k_{j}}$

for $j=1,2$ , then we obtain

$t_{g_{j_{1}},g_{j_{2}},g3}=-k_{1}k_{2}(k_{/1}-1)r^{k_{1}+k_{2}-4}(xq_{g3}-yp_{g_{3}})$ ,

$t_{g_{J_{1}},g3,g_{j_{2}}}=k_{1}k_{2}r^{k_{1}+k_{2}-4}(xq_{g3}-yp_{g3})$ ,

$t_{g3,g_{j_{1}},g_{j_{2}}}=k_{1}k_{2}(k_{3}-1)r^{k_{1}+k_{2}-4}(xq_{g3}-yp_{g3})$ ,

where $\{j_{1},j_{2}\}=\{1,2\}$ . Therefore we obtain

$T_{gl,g2,g3}=k_{1}k_{2}(2k_{3}-k_{1}-k_{2}+2)r^{k_{1}+k_{2}-4}(xq_{g3}-yp_{g3})$ .

Since $k_{3}\geqq k_{2}\geqq k_{1}$ , we see that $T_{gl,g2,g3}\equiv 0$ is equivalent to $xq_{g3}\equiv yp_{g3}$ . In
addition, noticing that $xq_{g3}\equiv yp_{g3}$ is equivalent to $d\tilde{g}_{3}/d\theta\equiv 0$ , we see that
$T_{g_{1},g2,g3}\equiv 0$ holds if and only if $g_{3}$ is radial. Hence we have proved Lemma
3.5. $\square $

PROOF OF PROPOSITION 3.3. We may represent $F\in \mathscr{A}_{o}^{(2)}$ as $F:=\sum_{i\geqq 2}F^{(i)}$ ,
where $F^{(i)}\in \mathscr{P}^{i}$ . We suppose $F\not\equiv O$ and set

$I_{F}$ $:=\{i_{0}\in N;F^{(i_{0})}\neq 0\}$ , $m_{F}$ $:=\min I_{F}$ .

Then we may represent $\varpi_{F}$ as

$\varpi_{F}=\sum_{j_{1},j_{2},j_{3}\in I_{F}}t_{F^{(j_{1})},F^{(j_{2})},F^{(j_{3})}}$
,

and we obtain $\varpi_{F}^{(3m_{F}-4)}=\varpi_{F^{(m_{F})}}$ . Therefore by Lemma 3.4, we see that if $F\in \mathscr{A}_{0}^{(2)}$

satisfies $\varpi_{F}\equiv 0$ , then $F^{(m_{F})}$ is of one-variable or radial. If $I_{F}=\{m_{F}\}$ , then we
obtain Proposition 3.3.

Suppose $I_{F}\neq\{m_{F}\}$ and that $I_{F}$ is a finite set. Then set $n:=\# I_{F}$ and let
$i_{1},$

$\ldots,$
$i_{n}$ be the integers satisfying $i_{1}<\cdots<i_{n}$ and $I_{F}=\{i_{/}\}_{j^{n}=1}$ . If $F^{(i_{1})},$ $\ldots,F^{(i_{j})}$
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are radial for $j\in\{1, \ldots,n-1\}$ , then we see by Lemma 3.5 that $F^{(i_{j+1})}$ is also
radial. Therefore we see that if $F^{(m_{F})}$ is radial, then $F$ is also radial. If $I_{F}$ is an
infinite set, then we obtain the same result. Hence we see that if $F^{(m_{F})}$ is radial,
then $G_{F}$ is part of a surfece of revolution such that $0$ lies on an axis of rotation.

Suppose $I_{F}\neq\{m_{F}\}$ and that $F^{(m_{F})}$ is of one-variable. Then we may suppose
$F^{(m_{F})}=x^{m_{F}}$ . For each $q\in G_{F}$ , let $\Pi_{q}^{\perp}$ be the set of the planes in $R^{3}$ through $q$

such that each $P^{\perp}\in\Pi_{q}^{\perp}$ is perpendicular to $P_{xy}$ and to $T_{p}(G_{F})$ for any point $p$ of
the connected component of $P^{\perp}\cap G_{F}$ containing $q$ . By Proposition 3.1, we obtain
$\#\Pi_{q}^{\perp}=1$ for any $q\in\Xi_{G_{F},P_{xy}}$ . In addition, we shall prove

LEMMA 3.6. If $F$ is not of one-variable, then the following hold:
(1) For each $q\in G_{F},$ $\#\Pi_{q}^{\perp}=1$ holds;
(2) the xz-plane $P_{xz}$ is the only one element of $\Pi_{0}^{\perp}$ .

$PR\infty F$ . By $\varpi_{F}\equiv 0$ , we obtain $q_{F^{(i)}}(x, 0)=0$ for any $x\in R$ and for any
$i\in I_{F}$ . Therefore we obtain $P_{xz}\in\Pi_{o}^{\perp}$ and $P_{XZ}=P_{P_{xy},q}^{\perp}$ for any $q\in P_{xz}\cap\Xi_{G_{F},P_{xy}}$ . We
easily see that for any $\phi\in(-\pi/2, \pi/2)\backslash \{0\}$ , the plane perpendicular to $P_{xy}$ and
determined by $u_{\phi}$ is not an element of $\Pi_{o}^{\perp}$ . Therefore we see that for each $q\in G_{F}$ ,
$\#\Pi_{q}^{\perp}=1$ or $=2$ holds and that if $\#\Pi_{q}^{\perp}=2$ , then the two elements of $\Pi_{q}^{\perp}$ are
perpendicular to each other. Suppose that there exists a point $q0\in G_{F}$ satisfy-
ing $\#\Pi_{q}^{\perp_{0}}=2$ . Then we see that for any $q\in G_{F}$ , an element of $\Pi_{q}^{\perp}$ is par-
allel or perpendicular to $P_{xz}$ . Therefore by Proposition 2.3 and by Corollary 3.2,
we see that each of $\partial/\partial x$ and $\partial/\partial y$ is in a principal direction at each point of
$G_{F}$ and that $F$ is of one-variable. Therefore we obtain $\#\Pi_{q}^{\perp}=1$ for any $q\in G_{F}$ .
Particularly, $\Pi_{o}^{\perp}=\{P_{x},\}$ holds and we have proved Lemma 3.6. $\square $

Suppose that $F^{(m_{F})}$ is of one-variable and that $F$ is not of one-variable. Then
for each $q\in G_{F}$ , we denote by $P_{q^{\perp}}$ the only one element of $\Pi_{q}^{\perp}$ . Then we may
find a positive number $y0>0$ and an open line segment $l_{y}$ in $P_{xy}$ through $(0, y)$

for each $y\in(-y0, yo)$ satisfying the following:
(1) $l_{y}\subset P_{(0,y,F(0,y))}^{\perp}$ holds for any $y\in(-y0, yo)$ ;
(2) $\tilde{V}_{o}$

$:=\bigcup_{y\in(-y0,y0)}l_{y}$ is a neighborhood of $0$ in $P_{xy}$ .
In addition, we may find a real-analytic vector field on $\tilde{V}_{o}$ nonzero and tangent to $l_{y}$

for some $y\in(-y0, yo)$ at each point of $\tilde{V}_{0}$ . Therefore we may find a neighborhood
$V_{0}$ of $0$ in $P_{xy}$ and a positive number $\epsilon_{0}>0$ and a real-analytic curve $\gamma_{\epsilon}$ in $V_{0}$ for
each $\epsilon\in(-\epsilon_{0}, \epsilon_{0})$ satisfying $(a)\sim(c)$ of (2) of Proposition 3.3. If $F$ is of one-
variable, then we may easily obtain the same result. Hence we have proved
Proposition 3.3. $\square $
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4. Generating Pairs

Let $P$ be a plane in $R^{3}$ and $\Gamma_{P}$ the set of the real-analytic, simple curves in
$P$ , and for $C\in\Gamma_{P}$ and for a point $p\in C$ , let $L_{p}^{\perp}$ be the line in $P$ normal to $C$ at
$p$ . Then for $C,\tilde{C}\in\Gamma_{P}$ , we write $C\sim\tilde{C}$ if and only if there exists a continuous
bijective map $\alpha_{C,\overline{C}}$ from $C$ onto $\tilde{C}$ satisfying $L_{\alpha_{C.\tilde{C}}(p)}^{\perp}=L_{p}^{\perp}$ for any $p\in C$ . It is
seen that $\sim$ is an equivalence relation in $\Gamma_{P}$ . We denote by $\Gamma_{C}$ the equivalence
class of $C\in\Gamma_{P}$ , and by $\Sigma(C)$ the connected component of the set $\bigcup_{C^{\prime}\in\Gamma_{C}}$ C’
containing $C$. We immediately obtain

LEMMA 4.1. For $C\in\Gamma_{P}$ and for each $p\in C$ , there exists a neighborhood $O_{p}$

of $p$ in $C$ such that $\Sigma(0_{p})$ is a domain of $P$ .

For each plane $P$ in $R^{3}$ , we denote by $Proj_{P}$ the map from $R^{3}$ onto $P$ such
that if a line $L$ is perpendicular to $P$, then $Proj_{P}(L)$ consists of the only one
point of $P\cap L$ . Then by Corollary 3.2 and by Proposition 3.3, we obtain

PROPOSITION 4.2. Let $S$ be a connected, real-analytic, embedded, parallel
curved surface and $P_{0}$ an element of $\mathscr{B}_{S}$ . Then for any $q\in S$ , just one of the
following holds:

(1) $S$ is part of a surface of revolution such that the line through $q$ per-
pendicular to $P_{0}$ is an axis of rotation of $S$;

(2) There exists a neighborhood $U_{q}$ of $q$ in $S$ such that $lfP_{1}$ and $P_{2}$ are
base planes of $S$ parallel to $P_{0}$ and satisfying $ P_{i}\cap U_{q}\neq\emptyset$ for $i=1,2$ ,
then each connected component $C_{i}$ of $Proj_{P_{0}}(P_{i}\cap U_{q})$ is an element of $\Gamma_{P_{0}}$

satisfying $C_{1}\sim C_{2}$ .

COROLLARY 4.3. Let $S$ be a real-analytic, embedded, parallel curved surface
and $P_{0}$ an element of $\mathscr{R}_{S}$ and $q$ a point of $S$ for which (2) of Proposition 4.2
holds. Then there exists a generating pair $(C_{b}, C_{g})$ of which $C_{b}$ (resp. $C_{g}$ ) is the
base (resp. generating) curve and which satisfies $q=p(c_{b},c_{g}),$ $C_{b},$ $C_{g}\subset S$ and that
$P_{b}$ is parallel to $P_{0}$ .

$PR\infty F$ OF PROPOSITION 1.4. Let $(C_{b}, C_{g})$ be a generating pair and $P_{b},$ $P_{g}$

planes satisfying $C_{b}\subset P_{b},$ $C_{g}\subset P_{g}$ and that $P_{g}$ is normal to $C_{b}$ at $p(c_{b},c_{g})$ , and
$P^{\perp}$ the plane through $p(c_{b},c_{g})$ perpendicular to $P_{b}$ and to $P_{g}$ . If $C_{g}\subset P_{b}$ , then
we see that a connected, real-analytic, parallel curved surface $S_{0}$ which contains
a neighborhood of $p_{(C_{b},C_{g})}$ in $C_{b}\cup C_{g}$ and satisfies $P_{b}\in \mathscr{B}_{S_{0}}$ is part of $P_{b}$ . In
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the following, suppose $C_{g}\not\leqq P_{b}$ . Then by Lemma 4.1, we see that there exist
neighborhoods $O_{b},$ $O_{g}$ of $p(c_{b},c_{g})$ in $C_{b},$ $C_{g}$ , respectively satisfying $Proj_{P_{b}}(O_{g})\subset$

$\Sigma(O_{b})$ and the condition that $Proj_{P^{\perp}}$ embeds each connected component of
$O_{g}\backslash \{p_{(C_{b},C_{g})}\}$ into $P^{\perp}$ . For $O_{b},$ $O_{g}$ , there exists a real-analytic surface $S$ satisfying
$O_{b},$ $O_{g}\subset S$ and the condition that if $P$ is a plane parallel to $P_{b}$ and satisfying
$ P\cap O_{g}\neq\emptyset$ , then each connected component of $Proj_{P_{b}}(P\cap S)$ is an element of
$\Gamma_{O_{b}}$ . The minimum of such surfaces as $S$ is denoted by $S_{O_{b},O_{g}}$ . Then we see that
$P_{b}$ is not parallel to $T_{q}(S_{O_{b},O_{g}})$ for any $q\in S_{O_{b},O_{g}}\backslash O_{b}$ . For each $q\in S_{0_{b},0_{g}}\backslash O_{b}$ ,
let $(\xi, v, \zeta)$ be orthogonal coordinates on $R^{3}$ satisfying the following:

(1) the point $q$ corresponds to (0,0,0);
(2) $P_{\xi\zeta}$ is parallel to $P_{b}$ ;
(3) $P_{v\zeta}$ is perpendicular to $P_{b}$ and to $T_{q}(S_{O_{b},0_{g}})$ .

Then there exist two positive numbers $\xi_{0},$ $v_{0}>0$ and a real-analytic function $F^{\perp}$

defined on a neighborhood $U_{\xi_{0},v_{0}}$ $:=(-\xi_{0}, \xi_{0})\times(-v_{0}, v_{0})$ of $q$ in $P_{\xi v}$ such that the
graph $G_{F^{\perp}}$ of $F^{\perp}$ is a neighborhood of $q$ in $S_{O_{b},0_{g}}\backslash O_{b}$ . Then we obtain

$\frac{\partial F^{\perp}}{\partial\xi}(0, v)=\frac{\partial^{2}F^{\perp}}{\partial\xi\partial v}(0, v)=0$

for any $v\in(-v_{0}, v_{0})$ . Therefore by Proposition 2.1, we see that each of $\partial/\partial\xi$ and
$\partial/\partial v$ is in a principal direction at $(0, v,F^{\perp}(0, v))$ for any $v\in(-v_{0}, v_{0})$ . Since $\partial/\partial\xi$

is parallel to $P_{b}$ , we see that $S_{0_{b},O_{g}}\backslash 0_{b}$ is a parallel curved surface satisfying
$P_{b}\in \mathscr{B}_{s_{o_{b},0_{g}\backslash O_{b}}}$ . Then we see that a tangent vector to $O_{b}$ at each point of $O_{b}$ is
in a principal direction of $S_{O_{b},O_{g}}$ . Therefore $S_{0}:=S_{O_{b},O_{g}}$ is a parallel curved
surface which contains a neighborhood $0_{b}\cup O_{g}$ of $p(c_{b},c_{g})$ in $C_{b}\cup C_{g}$ and sat-
isfies $P_{b}\in \mathscr{B}_{S_{0}}$ . It is clear that if $S_{0}^{(1)}$ and $S_{0}^{(2)}$ are parallel curved surfaces which
contain a neighborhood of $p(c_{b},c_{g})$ in $C_{b}\cup C_{g}$ and satisfy $P_{b}\in \mathscr{B}_{s_{0}^{(i)}}$ for $i=1,2$ ,
then $S_{0}^{(1)}\cap S_{0}^{(2)}$ is also such a surface as $S_{0}^{(i)}$ . Hence we have proved Proposition
1.4. $\square $

5. Proof of Theorem 1.2 and Theorem 1.3

Suppose that $F\in \mathscr{A}_{0}^{(2)}$ satisfies $\varpi_{F}\equiv 0$ and (1) of Proposition 3.3. Then $F$

is radial. Then the following hold:

$grad_{F}=2\frac{df_{F,2}}{d\rho}or^{2}\left(\begin{array}{l}x\\y\end{array}\right)$ ,

$Hess_{F}=2\frac{df_{F,2}}{d\rho}or^{2}\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)+4\frac{d^{2}f_{F,2}}{d\rho^{2}}or^{2}\left(\begin{array}{ll}x^{2} & xy\\xy & y^{2}\end{array}\right)$ .
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Therefore by Lemma 2.2, we obtain

$\det(I_{F})\overline{PD}_{F}(U_{\phi})$

$=4\{-\frac{d^{2}f_{F,2}}{d\rho^{2}}or^{2}+2[\frac{df_{F,2}}{dp}or^{2}]^{3}\}u_{\phi}(x, y)u_{\phi}(-y, x)$ .

This implies that the position vector field $x\partial/\partial x+y\partial/\partial y$ is in a principal direc-
tion at any $(x, y)\in G_{F}$ . If $d^{2}f_{F,2}/d\rho^{2}\not\equiv 2(df_{F,2}/d\rho)^{3}$ , then we obtain $F\in \mathscr{A}_{o^{2}}$

and by formula (1), we obtain $ind_{o}(G_{F})=1$ . If $d^{2}f_{F,2}/d\rho^{2}\equiv 2(df_{F,2}/d\rho)^{3}$ ,
then $f_{F,2}\equiv 0$ holds or there exists a positive number $a_{F}>0$ satisfying $f_{F,2}=$

$\sqrt{a_{F}}-\sqrt{a_{F}-\rho}$ or $=-\sqrt{a_{F}}+\sqrt{a_{F}-\rho}$ . Therefore we see that $G_{F}$ is part of a
plane or a round sphere.

Suppose that $F\in \mathscr{A}_{0}^{(2)}$ satisfies $\varpi_{F}\equiv 0$ and (2) of Proposition 3.3. Then we
see that there exist a neighborhood $V_{o}$ of $0$ in $P_{xy}$ and a real-analytic curve $\gamma_{0}$

in $V_{0}$ satisfying $\gamma_{0}=\{(x, y)\in V_{o};F(x, y)=0\}$ . For each $F_{0}\in \mathscr{A}_{0}^{(2)}$ and for each
$q0:=(x_{0}, yo)\in\gamma_{0}$ , we set $f_{F_{0},q0}(x, y):=F_{0}(x-x_{0}, y-yo)$ . The function $f_{F_{0},q0}$ is
defined on a neighborhood of $q0$ in $P_{xy}$ . We shall prove

LEMMA 5.1. For each $q_{0}\in\gamma_{0}$ , there exists an element $F_{q0}$ of $\mathscr{A}_{0}^{(2)}$ satisfying
$G_{f_{F_{q0},q_{0}}}\subset G_{F}$ and $m_{F_{q0}}=m_{F}$ .

PROOF. There exist positive numbers $u_{0},$ $v_{0}>0$ and a real-analytic map $\Phi$

from $U_{u_{0},v_{0}}$ $:=(-u_{0}, u_{0})\times(-v_{0}, v_{0})$ into $V_{o}$ satisfying the following:
(1) The Jacobian of $\Phi$ is nonsingular at each point of $U_{u_{0},v_{0}}$ ;
(2) for any $u^{\prime}\in(-u_{0}, u_{0}),$ $\Phi$ maps the open line segment $\{u=u^{\prime}\}$ in $U_{u_{0},v_{0}}$

into $\gamma_{\epsilon}$ for some $\epsilon\in(-\epsilon_{0},\epsilon_{0})$ ;
(3) for any $v^{\prime}\in(-v_{0}, v_{0}),$ $\Phi$ maps the open line segment $\{v=v^{\prime}\}$ in $U_{u_{0},v_{0}}$

into $l_{y}$ for some $y\in(-y0, yo)$ .
Then the function $ Fo\Phi$ on $U_{u_{0},v_{0}}$ is of $one- va\dot{n}able$ . This implies Lemma
5.1. $\square $

Suppose $m_{F}=2$ . Then $Umb(G_{F})\cap\gamma_{0}=\emptyset$ holds. Therefore by Corollary 3.2,
Proposition 3.3 and by Lemma 3.6, we may find a neighborhood $U_{o}$ of $(0,0)$

in $R^{2}$ and a real-analytic curve $C_{0}$ in $U_{o}$ satisfying (a), (c) of (2) of Theorem 1.3
and $Umb(G_{F|_{U_{0}}})=\emptyset$ .

Suppose $m_{F}\geqq 3$ . Then $\gamma_{0}\subset Umb(G_{F})$ holds. There exist real-analytic func-
tions $\theta_{F},$

$c_{F}$ on $\gamma_{0}$ such that an element $\tilde{F}_{q0}\in \mathscr{A}_{o}^{(2)}$ defined for each $q0\in\gamma_{0}$ by
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$\tilde{F}_{q0}(x,y)$ $:=F_{q0}(x\cos\theta_{F}(qo)-y\sin\theta_{F}(qo), x\sin\theta_{F}(qo)+y\cos\theta_{F}(qo))$

satisfies $m_{\overline{F}_{q0}}=m_{F}$ and $\tilde{F}_{q0}^{(m_{F})}=c_{F}(qo)x^{m_{F}}$ . We may suppose that there exist a
neighborhood $V_{o}^{\prime}$ of $0$ in $V_{0}$ and a neighborhood $\gamma_{0}^{\prime}$ of $0$ in $\gamma_{0}$ such that for
any $(x, y)\in V_{0}^{\prime}$ and for any $q0\in\gamma_{0}^{\prime},$ $\Psi_{F}(x, y, qo):=\tilde{F}_{q0}(x, y)$ makes sense. Then
we see that the function $\Psi_{F}$ is real-analytic on $V_{o}^{\prime}\times\gamma_{0}^{\prime}$ . Therefore we may find a
continuous function $\tilde{x}$ on $\gamma_{0}^{\prime}$ satisfying $\tilde{x}(qo)>0$ and $(x, 0,\tilde{F}_{q0}(x, 0))\not\in Umb(G_{\overline{F}_{q_{0}}})$

for any $x\in(-\tilde{x}(qo),\tilde{x}(q_{0}))\backslash \{0\}$ and for any $q_{0}\in\gamma_{0}^{\prime}$ . Then by Corollary 3.2,
Proposition 3.3 and by Lemma 3.6, we may find a neighborhood $U_{0}$ of $(0,0)$

in $R^{2}$ and a real-analytic curve $C_{0}$ in $U_{o}$ satisfying (a), (c) of (2) of Theorem
1.3 and $C_{0}=Umb(G_{F|_{U_{0}}})$ . Hence we have proved Theorem 1.2 and Theorem
1.3.

6. Classification

In this section, let $S$ be a connected, complete, real-analytic, embedded,
parallel curved surface.

Suppose that there exists an element $P_{0}$ of $\mathscr{B}_{S}$ satisfying $\Xi_{S,P_{0}}=S$ . Then
for each $q\in S$ , we see by Corollary 3.2 that $C_{P_{0},q}^{\perp}$ is isometric to $R$ . There exists
the element $P_{P_{0},q}\in \mathscr{B}_{S}$ satisfying $q\in P_{P_{0},q}$ and the condition that $P_{P_{0},q}$ is parallel
to $P_{0}$ . Then by Proposition 4.2, we see that $P_{P_{0},q}\cap S$ is a real-analytic curve
isometric to $R$ or to a simple closed curve. Therefore we obtain

PROPOSITION 6.1. Let $S$ be a connected, complete, real-analytic, embedded,
parallel curved surface satisfying $\Xi_{S,P_{0}}=S$ for some $P_{0}\in \mathscr{B}_{S}$ . Then there exists a
generating pair $(C_{b}, C_{g})$ of which $C_{b}$ (resp. $C_{g}$ ) is the base (resp. generating) curve
and which satisfies the following:

(1) $P_{b}$ is parallel to $P_{0}$ ;
(2) $C_{b}$ is isometric to $R$ or to a simple closed curve;
(3) $C_{g}$ is isometric to $R$ ;
(4) $S=S_{(C_{b},C_{g})}$ .

Then $S$ is homeomorphic to a plane or to a cylinder.

Suppose $\Xi_{S,P_{0}}\neq S$ and $\Xi_{S,P_{0}}\neq\emptyset$ for $P_{0}\in \mathscr{B}_{S}$ . Then for $P_{0}\in \mathscr{B}_{S}$ and for
$q\in\Xi_{S,P_{0}}$ , we see by Corollary 3.2 and by Proposition 4.2 that the connected
component of $P_{P_{0},q}^{\perp}\cap S$ containing $q$ is a real-analytic curve isometric to $R$ or to
a simple closed curve. There exists the element $P_{P_{0},q}\in \mathscr{B}_{S}$ satisfying $q\in P_{P_{0},q}$ and
that $P_{P_{0},q}$ is parallel to $P_{0}$ . Then by Proposition 4.2, we see that the connected
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component of $P_{P_{0},q}\cap S$ containing $q$ is a real-analytic curve isometric to $R$ or
to a simple closed curve. We shall prove

LEMMA 6.2. Let $P_{0}$ be an element of $\mathscr{B}_{S}$ and $q0$ a point of $\Xi_{S,P_{0}}$ such that
some connected component of $P_{P_{0},q0}\cap S$ shares plural points with some connected
component of $P_{P_{0},q0}^{\perp}\cap S$ . Then $S$ is a surface of revolution such that a line per-
pendicular to $P_{0}$ is an axis of rotation of $S$.

PROOF. Let $0_{q0},0_{q}^{\perp_{0}}$ be domains in $P_{P_{0},q0}\cap S,$ $P_{P_{0},q0}^{\perp}\cap S$ , respectively satisfying
$ O_{q0}\cap O_{q0}^{\perp}=\emptyset$ and $\#(\overline{O}_{q0}\cap\overline{0}_{q0}^{\perp})=2$ , and $q1,$ $q2$ two points of $S$ satisfying
$\overline{0}_{q0}\cap\overline{O}_{q_{0}}^{\perp}=\{q1, q2\}$ . Then by Proposition 3.1, we see that there exists the only one
point $p_{0}$ of $S\backslash \Xi_{S,P_{0}}$ satisfying $P_{P_{0},q}^{\perp}\cap O_{q0}^{\perp}=\{po\}$ for any $q\in 0_{q0}$ . By Proposition 4.2,
we see that $S$ is a surface of revolution such that the line through $p_{0}$ perpendicular
to $P_{0}$ is an axis of rotation of $S$ . Hence we have proved Lemma 6.2. $\square $

By Lemma 6.2, we obtain

PROPOSITION 6.3. Let $S$ be a connected, complete, real-analytic, embedded,
parallel curved surface satisfying $\Xi_{S,P_{0}}\neq S$ and $\Xi_{S,P_{0}}\neq\emptyset$ for any $P_{0}\in \mathscr{B}_{S}$ . Then
one of the following holds:

(1) $S$ is a surface of revolution such that the number of the intersections of $S$

with its axis of rotation is equal to one or two, and then $S$ is homeomorphic
to a plane or to a sphere,

(2) There exists a generating pair $(C_{b}, C_{g})$ of which $C_{b}$ (resp. $C_{g}$ ) is the base
(resp. generating) curve and which satisfies the following:
(a) each of $C_{b}$ and $C_{g}$ is isometric to $R$ or to a simple closed curve,
(b) $S=S_{(C_{b},C_{g})}$ ,
and then $S$ is homeomorphic to a plane, a cylinder or to a torus.

Using Proposition 6.1 and Proposition 6.3, we obtain Theorem 1.5.

REMARK. If $C_{b}$ is a circumference in each of Proposition 6.1 and Propo-
sition 6.3, then $S$ is a surface of revolution and its axis of rotation is per-
pendicular to $P_{b}$ .
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