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ON STRONGLY ALMOST HEREDITARY RINGS

By

Yoshitomo BABA and Hiroyuki MIKI

M. Harada defined an almost projective module in [8] and showed that
semisimple rings, serial rings, QF-rings and H-rings are well-characterized by the
property of an almost projective module in [8], [9]. Using an almost projective
module he further considered the following generalized condition of a hereditary
ring in [7]:

$(*)_{r}$ Every submodule of a finitely generated projective right R-module is
almost projective.

In this paper we call an artinian ring $R$ a right strongly almost hereditary ring
(abbreviated right $SAH$ ring) if $R$ satisfies $(*)_{r}$ . On the other hand, an artinian
hereditary ring is characterized by the following equivalent conditions:

(a) Every submodule of a projective right R-module is also projective;
(b) every submodule of a projective left R-module is also projective;
(c) every factor module of an injective right R-module is also injective;
(d) every factor module of an injective left R-module is also injective.

In section 2 we consider the following generalized condition of (c):
$(*\#)_{r}$ Every factor module of an injective right R-module is a direct sum of

an injective module and finitely generated almost injective modules.
Similarly we define $(*\#)_{l}$ for left R-modules. The first aim of this paper is to show
that an artinian ring $R$ is right SAH if and only if $R$ satisfies $(*\#)_{l}$ . But we see
that the equivalence between a right SAH ring and an artinian ring which satisfies
$(*\#)_{r}$ does not hold in general.

In [7] M. Harada further considered the following two stronger conditions
than $(*)_{r}$ :

$(**)_{r}$ The Jacobson radical of $M$ is almost projective for any finitely
generated almost projective right R-module $M$;

$(***)_{r}$ every submodule of a finitely generated almost projective right R-
module is also almost projective.

And he showed that an artinian ring $R$ satisfies $(**)_{r}$ iff it satisfies $(***)_{r}$ . In
section 3 we consider the following generalized conditions of (c):

Received November 9, 2000.



238 Yoshitomo BABA and Hiroyuki MIKI

$(**\#)_{r}$ $M/Socle(M)$ is a direct sum of an injective module and finitely
generated almost injective modules for any injective or finitely gen-
erated almost injective right R-module $M$;

$(***\#)_{r}$ every factor module of an injective or finitely. generated almost
injective right R-module is a direct sum of an injective module and
finitely generated almost injective modules.

We also consider $(**\#)_{l}$ and $(***\#)_{l}$ for left R-modules. The second aim of this
paper is to show that an artinian ring $R$ satisfies $(**)_{r}$ if and only if $R$ satisfies
$(**\#)_{l}$ if and only if $R$ satisfies $(***\#)_{l}$ . But we see that the equivalence between
the two conditions $(**)_{r}$ and $(**\#)_{r}$ does not hold in general.

1. Preliminaries

In this paper, we always assume that every ring is a basic artinian ring with
identity and every module is unitary. Let $R$ be a ring and let $P(R)=\{e_{j}\}_{i=1}^{n}$ be a
complete set of pairwise orthogonal primitive idempotents in $R$ . We denote the
Jacobson radical, an injective hull and the composition length of a module $M$ by
$J(M),$ $E(M)$ and $|M|$ , respectively. Especially, we put $J:=J(R_{R})$ . For a module
$M$ we denote the socle of $M$ by $S(M)$ and the k-th socle of $M$ by $S_{k}(M)$

(i.e., $S_{k}(M)$ is a submodule of $M$ defined by $S_{k}(M)/S_{k-1}(M)=S(M/S_{k-1}(M))$

inductively).
Let $M$ and $N$ be modules. $M$ is called N-projective (resp. N-injective) if for any

homomorphism $\phi$ : $M\rightarrow L$ (resp. $\phi^{\prime}$ : $L\rightarrow M$) and any epimorphism $\pi$ : $N\rightarrow L$

(resp. monomorphism $\iota$ : $L\rightarrow N$) there exists a homomorphism $\tilde{\phi}:M\rightarrow N$ (resp.
$\tilde{\phi}^{\prime}$ : $N\rightarrow M$) such that $\phi=\pi\tilde{\phi}$ (resp. $\phi^{\prime}=\tilde{\phi}^{\prime}\iota$). And $M$ is called almost N-
projective (resp. almost N-injective) if for any homomorphism $\phi$ : $M\rightarrow L$ (resp.

$\phi^{\prime}$ : $L\rightarrow M$) and any epimorphism $\pi$ : $N\rightarrow L$ (resp. monomorphism $\iota$ : $L\rightarrow N$)
either there exists a homomorphism $\tilde{\phi}:M\rightarrow N$ (resp. $\tilde{\phi}^{\prime}$ : $N\rightarrow M$) such that
$\phi=\pi\tilde{\phi}$ (resp. $\phi^{\prime}=\tilde{\phi}^{\prime}\iota$ ) or there exist a nonzero direct summand $N^{\prime}$ of $N$ and
a homomorphism $\theta:N^{\prime}\rightarrow M$ (resp. $\theta^{\prime}$ : $M\rightarrow N^{\prime}$ ) such that $\phi\theta=\pi i$ (resp.
$\theta^{\prime}\phi^{\prime}=p\iota)$ , where $i$ is an inclusion of $N^{\prime}$ in $N$ (resp. $p$ is a projection on $N$ ‘ of $N$ ).
Further $M$ is called almost projective (resp. almost injective) if $M$ is always almost
N-projective (resp. almost N-injective) for any finitely generated R-module $N$.

We call an artinian ring $R$ a right almost hereditary ring if $J$ is almost
projective as a right R-module. By [8, Theorem 1] this definition is equivalent to
the condition: $J(P)$ is almost projective for any finitely generated projective right
R-module $P$ .

A module is called uniserial if its lattice of submodules is a finite chain, i.e.,
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any two submodules are comparable. An artinian ring $R$ is called a right serial
ring if every indecomposable projective right R-module is uniserial. And we call
a ring $R$ a serial ring if $R$ is a right and left serial ring. Let $f_{1},f_{2},$ $\ldots,f_{n}$ be
primitive idempotents in a serial ring $R$ . Then a sequence $\{f_{1}R,f_{2}R, \ldots,f_{n}R\}$

(resp. $\{Rf_{1},$ $Rf_{2},$
$\ldots,$

$Rf_{n}\}$ ) of indecomposable projective right (resp. left) R-
modules is called a Kupisch series if $f_{j}J/f_{j}J^{2}\cong f_{j+1}R/f_{j+1}J$ (resp. $ Jf_{j}/J^{2}f_{/}\cdot\cong$

$Rf_{j+1}/Jf_{j+1})$ holds for any $j=1,$
$\ldots,$

$n-1$ . Further $\{f_{1}R,f_{2}R, \ldots,f_{n}R\}$ (resp.
$\{Rf_{1}, Rf_{2}, \ldots, Rf_{n}\})$ is called a cyclic Kupisch series if it is a Kupisch series
with $f_{n}J/f_{n}J^{2}\cong f_{1}R/f_{1}J$ (resp. $Jf_{n}/J^{2}f_{n}\cong Rf_{1}/Jf_{1}$ ) holds. Let $R$ be a serial ring
with a Kupisch series $\{f_{1}R,f_{2}R, \ldots,f_{n}R\}$ . If $f_{n}J=0$ and $P(R)=\{f_{1}, \ldots,f_{n}\}$ ,

then $R$ is called a serial ring in the first category. And if $\{f_{1}R,f_{2}R, \ldots,f_{n}R\}$

is a cyclic Kupisch series and $P(R)=\{f_{1}, \ldots,f_{n}\}$ , then $R$ is called a serial
ring in the second category. Moreover a serial ring is called a strongly serial
ring if it is a direct sum of indecomposable serial rings $R$ with a Kupisch
series $\{f_{1,1}R,f_{1,2}R, \ldots,f_{1,\beta_{1}}R,f_{2,1}R, \ldots,f_{m,\beta_{m}}R\}$ such that $|f_{i,\beta_{l}}R|=2$ for any
$i=1,$ $\ldots,m-1$ and $|f_{m,\beta_{m}}R|=1$ or 2, where $P(R)=\{f_{i,j}\}_{i=1,j=1}^{m\beta_{i}}$ and $f_{i,j}R$ is
injective iff $j=1$ . Then, if $|f_{m,\beta_{m}}R|=1$ (resp. $=2$), then $R$ is a serial ring in the
first (resp. second) category. Further we can easily check the following charac-
terization of a strongly serial ring.

LEMMA 1. Let $R$ be an indecomposable strongly serial ring with a Kupisch
series $\{f_{1,1}R,f_{1,2}R, \ldots,f_{1,\beta_{1}}R,f_{2,1}R, \ldots,f_{m,\beta_{m}}R\}$ , where $P(R)=\{f_{i,j}\}_{i=1,j=1}^{m\beta_{i}}$ and
$f_{i,j}R$ is injective iff $j=1$ . Then the following hold:

(1) $S(f_{i,j}R)\cong f_{i+1,1}R/f_{i+1,1}J$ for any $i=1,$
$\ldots,$

$m-1$ and $j=1,$ $\ldots,\beta_{i}$ and
$S(f_{m,k}R)\cong f_{m,\beta_{m}}R/f_{m,\beta_{m}}J$ (resp. $\cong f_{1,1}R/f_{1,1}J$) for any $k=1,$ $\ldots,\beta_{m}$ if
$|f_{m,\beta_{m}}R|=1$ (resp. $=2$);

(2) $\{f_{1,1}R/f_{1,1}J^{j}\}_{i=^{1}1}^{\beta+1}\cup\{f_{i,1}R/f_{i,1}J^{j}\}_{i=2,j=^{i}2^{+1}}^{m-1\beta}\cup\{f_{m,1}R/f_{m,1}J^{j}\}_{j=^{m}2}^{\beta}$ (resp.
$\{f_{i,1}R/f_{i,1}J^{j}\}_{i=1,j=2}^{m\beta_{i}+1})$ is a basic set of indecomposable injective right R-
modules if $|f_{m,\beta_{m}}R|=1$ (resp. $=2$);

(3) $\{Rf_{m,\beta_{m}}, Rf_{m,\beta_{m}-1}, \ldots, Rf_{m,1}, Rf_{m-1,\beta_{m- 1}}, \ldots, Rf_{1,1}\}$ is a Kupisch series
(resp. a cyclic Kupisch series) of left R-modules with $|Rf_{i,2}|=2$ for any
$i=1,$ $\ldots,m$ and $|Rf_{1,1}|=1$ (resp. $=\beta_{m}+1$ ) if $|f_{m,\beta_{m}}R|=1$ (resp. $=2$);

(4) $S(Rf_{1,1})\cong Rf_{1,1}/Jf_{1,1}$ (resp. $\cong Rf_{m,1}/Jf_{m,1}$ ) $\iota f|f_{m,\beta_{m}}R|=1$ (resp. $=2$),
$S(Rf_{i,1})\cong Rf_{i-1,1}/Jf_{i-1,1}$ for any $i=2,$ $\ldots,m$ , and $S(Rf_{k,j})\cong Rf_{k,1}/Jf_{k,1}$

for any $k=1,$ $\ldots,$
$m$ and $j=2,$ $\ldots,\beta_{k}$ ;

(5) $\{Rf_{i,1}/J^{j}f_{i,1}\}_{i=2,j^{-}=^{1}2}^{m\beta_{i}+1}\cup\{Rf_{m,\beta_{m}}/J^{/}f_{m,\beta_{m}}\}_{j=^{m}1}^{\beta}$ (resp. $\{Rfl,1/J^{j}f_{1,1}\}_{j=^{m}2^{+1}}^{\beta}\cup$

$\{Rf_{i,1}/J^{j}f_{i,1}\}_{i=2,j=2}^{m\beta_{i-1}+1})$ is a basic set of indecomposable injective left R-
modules if $|f_{m,\beta_{m}}R|=1$ (resp. $=2$).
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For a set $S$ of R-modules, a subset $S^{\prime}$ of $S$ is called a basic set of $S$ if
(a) for any $M,$ $M^{\prime}\in S^{\prime},$ $M\approx M^{\prime}$ as R-modules iff $M=M^{\prime}$ and
(b) for any $N\in S$ , there exists $M\in S^{\prime}$ such that $M\approx N$ as R-modules.

2. Strongly almost Hereditary Rings

The following is a structure theorem of a right SAH ring given by M.
Harada.

TIffiOREM A ([7, Theorem 3]). A ring is right $SAH_{l}f$ and only if it is a direct
sum of the following rings:

(i) Hereditary rings;
(ii) strongly serial rings;
(iii) rings $R$ with $P(R)=\{h_{1},$

$\ldots,$
$h_{m},f_{1}^{(1)},f_{2}^{(1)},$ $\ldots,f_{n_{1}}^{(1)},f_{1}^{(2)},$ $\ldots,f_{n_{2}}^{(2)}$ ,

$f_{1}^{(3)},$ $\ldots,f_{n_{k}}^{(k)}$ } such that, for each $l=1,$
$\ldots,$

$k$ we put $S_{l}$ $:=\sum_{j^{n}=^{l}1}f_{j}^{(l)}$ and
$H:=\sum_{s=1}^{m}h_{s}+\sum_{l=1}^{k}f_{1}^{(/)}$ , the following three conditions hold for any
$l=1,$ $\ldots,k$ :
(x) $S_{l}RS_{l}$ is a strongly serial ring in the first category with a Kupisch

series $\{f_{1}^{(l)}RS_{l},f_{2}^{(l)}RS_{l}, \ldots,f_{n^{(l)}},RS_{l}\}$ of right $S_{l}RS_{l}$-modules,
(y) $S_{l}R(1-S_{l})=0$ , $(h_{1}+\cdots+h_{m})Rf_{1}^{(l)}\neq 0$ and $(h_{1}+\cdots+h_{m})$ .

$R(f_{2}^{(l)}+\cdots+f_{n_{l}}^{(l)})=0$ , and
(z) $HRH$ is a hereditary ring.

We note that by [4, Lemma 3.1] a ring in Theorem A (iii) coincides with a
ring in [4, Theorem $B$ (iii)] if it satisfies that $\alpha_{l}=1$ and $S_{l}RS_{l}$ is a strongly serial
ring for any $l=1,$

$\ldots,$
$k$ , where $\alpha_{l}$ and $S_{l}$ are as in it.

Moreover, the condition (ii) in the above Theorem is not the same as [7,
Theorem 3], i.e., when $R$ is a serial ring in the second category, he wrote that $R$

is a serial ring in the second category with $J^{2}=0’$ . But this original condition is
not suitable. We give an example. Let $R$ be a serial ring in the second category
with $P(R)=\{f_{1},f_{2},f_{3},f_{4}\}$ such that $\{f_{1}R,f_{2}R,f_{3}R,f_{4}R\}$ is a Kupisch series and
$|f_{1}R|=4,$ $|f_{2}R|=3,$ $|f_{3}R|=2,$ $|f_{4}R|=2$ . Then $R$ is a strongly serial ring. So it
is right SAH by the following proof. But $J^{2}\neq 0$ . In an unpublished lecture note
written by M. Harada the condition is already corrected. Now we give a proof
with respect to this part for reader’s convenience.

PROOF. Assume that $R$ is an indecomposable right SAH serial ring in
the second category. And we show that $R$ is a strongly serial ring. Let
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$\{f_{1}R,f_{2}R, \ldots,f_{n}R\}$ be a Kupisch series with $P(R)=\{f_{i}\}_{i^{n}=1}$ . We may assume
that $f_{1}R$ is injective and $|f_{1}R|\geq|f_{i}R|$ for any $i=1,$ $\ldots,$

$n$ .
First suppose that $f_{1}Jf_{1}\neq 0$ . Then we claim that $f_{1}Jf_{1}$ is simple as a right

$f_{1}Rf_{1}$ -module. Since $f_{1}Jf_{1}\neq 0,$ $f_{1}J^{n}/f_{1}J^{n+1}\cong f_{1}R/f_{1}J$ . Then a right R-module
$f_{1}J^{n}$ is almost projective (but not projective) because $R$ is right SAH. So
$f_{1}R/S_{j}(f_{1}R)$ is injective for any $i=0,$ $\ldots,n-1$ by [8, Theorem 1] sinoe the
kemel of the projective cover: $f_{1}R\rightarrow f_{1}J^{n}$ is $S_{n}(f_{1}R)$ . Hence

(\dagger ) $\{f_{1}R/S_{i}(f_{1}R)\}_{i=0}^{n-1}$ is a basic set of indecomposable injective right R-
modules.

Assume that $f_{1}J^{2}f_{2}\neq 0$ . Then $f_{1}J^{n+1}/f_{1}J^{n+2}\cong f_{2}R/f_{2}J$ . On the other hand,
$f_{1}J^{n+1}$ is almost projective (but not projective) because $R$ is right SAH. Therefore
$f_{2}R$ must be injective by [8, Theorem 1]. This contradicts with (\dagger ). So $f_{1}J^{2}f_{2}=0$ .
Hence $f_{1}Jf_{1}$ is simple as a right $f_{1}Rf_{1}$ -module. Therefore $S(f_{i}R)\cong f_{1}R/f_{1}J$ for
any $i=1,$

$\ldots,$
$n$ and $|f_{n}R|=2$ since $f_{j}R$ is not injective for any $j=2,$

$\ldots,$
$n$ by

(\dagger ). In consequence, $R$ is a strongly serial ring.
Next suppose that $f_{1}Jf_{1}=0$ . Then we note that $f_{i}Jf_{i}=0$ for any $i=1,$

$\ldots,$
$n$

since $|f_{1}R|\geq|f_{i}R|$ . Let $k$ be an integer with $S(f_{1}R)\cong f_{k}R/f_{k}J$ . Then we claim
that $S(f_{j}R)\cong f_{k}R/f_{k}J$ for any $j=1,$ $\ldots,$

$k-1$ and $|f_{k-1}R|=2$ . Assume that
$S(f_{k-1}R)\not\cong f_{k}R/f_{k}J$ . Then there exists an integer $t\geq 2$ with $f_{k-1}J\cong f_{k}R/f_{k}J$ ‘

since $f_{k-1}J/f_{k-1}J^{2}\cong f_{k}R/f_{k}J$ . On the other hand, $S(f_{1}R)(\cong f_{k}R/f_{k}J)$ is almost
projective because $R$ is right SAH. But it is not projective since $R$ is a serial
ring in the second category. So $f_{k}R/f_{k}J^{l}$ is injective for any $i=2,$

$\ldots,$
$|f_{k}R|$ by [8,

Theorem 1]. Therefore $f_{k-1}J(\cong f_{k}R/f_{k}J^{t})$ is injective since $t\geq 2$ . This con-
tradicts with $f_{k-1}J\subset f_{k-1}R$ . So $S(f_{k-1}R)\cong f_{k}R/f_{k}J$ . Hence $S(f_{j}R)\cong f_{k}R/f_{k}J$ for
any $j=1,$

$\ldots,$
$k-1$ and $|f_{k-1}R|=2$ hold since $S(f_{1}R)\cong f_{k}R/f_{k}J$ and $f_{1}Jf_{1}=0$ .

Moreover, let $S(f_{k}R)\cong f_{l}R/f_{l}J$ for some $l$ . Then we obtain that $S(f_{j}R)\cong f_{l}R/f_{l}J$

for any $j=k,$
$\ldots,$

$l-1$ and $|f_{l-1}R|=2$ by the same argument as $f_{1}R$ . Continue
this argument, we see that $R$ is a strongly serial ring.

Conversely, assume that $R$ is a strongly serial ring in the second category. We
can show that $R$ is right SAH by the same way as the case that $R$ is a strongly
serial ring in the first category (see the proof of [7, Theorem 3]).

The purpose of this section is to show the following theorem.

THEOREM 2. A ring $R$ is right $SAHlf$ and only if $R$ satisfies $(*\#)_{l}$ .

To complete the proof, we give a lemma.

LEMMA 3. Let $R$ be a ring in [4, Theorem $B$ (iii)] and we use the same
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notations as in it. Put $E_{s}:=E(Rh_{s}/Jh_{s})$ and $E_{j}^{(/)};=E(Rf_{j}^{(/)}/Jf_{j}^{(l)})$ for any $s=$

$1,$
$\ldots,$ $m,$ $l=1,$

$\ldots,$
$k$ and $j=1,$

$\ldots,$
$n_{l}$ . Then the following hold for each $s,$

$l$

and $j$ .
(1) $HRh_{s}=Rh_{s},$ $HRf_{i}^{(l)}=Rf_{i}^{(l)},$ $HE_{s}=E_{s}$ and $E(HRHRh_{s}/Jh_{s})=E_{s}$ for any

$l=1,$
$\ldots,$

$\alpha_{l}$ .
(2) $E_{j}^{(/)}\cong Rf_{j}^{(l)}/J^{u}f_{j}^{(l)}$ for some positive integers $j^{\prime}(\geq\alpha_{l}+1)$ and $u$ and they

are uniserial left R-modules.
(3) $S_{l}E_{j}^{(l)}=E_{j}^{(l)}$ and $E(s_{l}Rs_{l}^{S_{l}Rf_{j}^{(l)}/S_{l}Jf_{j}^{(l)})}=E_{j}^{(l)}$ .
(4) If $E_{j}^{(l)}/N$ is an almost injective $ lef\iota$ R-module for some submodule $N$ of

$E_{j}^{(/)}$ , then it is almost injective also as a left $S_{l}RS_{l}$-module.
(5) If $R$ satisfies $(*\#)_{l}$ , then so does $S_{l}RS_{l}$ .

$PR\infty F$ . (1). $HRh_{s}=Rh_{s},$ $HRf_{i}^{(l)}=Rf_{i}^{(l)}$ and $HE_{s}=E_{s}$ by [4, Theorem 3.3
$(a^{\prime}),$ $(b^{\prime})$ ]. So $E_{s}$ is considered as a left HRH-module. And further we can easily
see that $E_{s}$ is injective also as a left HRH-module by [4, Lemma 3.1 and Theorem
3.3 $(a^{\prime}),$ $(b^{\prime})$ ] using Baer’s criterion and Azumaya’s theorem (see, for instance,
[1, 16.13. Proposition (2)]), i.e., $E(HRHRh_{s}/Jh_{s})=E_{s}$ .

(2). By $(^{**})$ in the proof for “if” part of [4, Theorem 4.1].
(3). $S_{l}E_{j}^{(l)}=E_{j}^{(l)}$ by (2) and [4, Lemma 3.1 and Theorem $B(iii)(b)$ ]. So $E_{j}^{(l)}$

is considered as a left $S_{l}RS_{l}$-module. And further we can easily see that $E_{j}^{(l)}$ is
$S_{l}Rf_{i}^{(l)}$ -injective for any $i=1,$

$\ldots,$
$n_{l}$ by [4, Theorem 3.3 $(a^{\prime}),$ $(b^{\prime})$ ]. Therefore $E_{/}^{(l)}$

is injective as a left $S_{l}RS_{l}$ -module using Baer’s criterion and Azumaya’s theorem
(see, for instance, [1, 16.13. Proposition (2)]), i.e., $E(S_{l}Rf^{(l)}/S_{l}Jf_{j}^{(l)})=E_{j}^{(l)}$ .

(4). If $E_{j}^{(l)}/N$ is injective as a left R-module, it is also injective as a left
$S_{l}RS_{l}$-module by (3). Assume that a (uniserial) left R-module $E_{j}^{(l)}/N$ is
almost injective but not injective. Then there is a positive integer $p$ such that
$J^{p}E(E_{j}^{(l)}/N)=E_{j}^{(l)}/N$ and $J^{j}E(E_{j}^{(l)}/N)$ is projective for any $i=0,$ $\ldots,p-1$ by
[8, Theorem $ 1\#$ ]. Let $j^{\prime\prime}$ be an integer with $J^{p-1}E(E_{j}^{(l)}/N)\cong Rf_{j}^{(l)}$ . We note that
$\{Rf_{n_{l}}^{(l)}, Rf_{n_{l}-1}^{(l)}, \ldots, Rf_{1}^{(l)}\}$ is a Kupisch series of left R-modules by [4, Lemma 3.4
(1)]. So $J^{i}E(E_{j}^{(/)}/N)\cong Rf_{j^{l}+p-1-i}^{(l)}$ for any $i=0,$

$\ldots,$ $p-1$ . Further $j^{\prime\prime}\geq\alpha_{l}+1$

from (2) since $Jf_{j^{\prime}}^{(l)}=J^{p}E(E_{j}^{(l)}/N)=E_{j}^{(l)}/N$ . Therefore $J^{j}E(E_{j}^{(l)}/N)$ is projec-
tive also as a left $S_{l}RS_{l}$-module for any $i=0,$ $\ldots,$ $p-1$ by [4, Lemma 3.1 and
Theorem $B(iii)(b)$ ] since $j^{\prime\prime}+p-1-i\geq j^{\prime\prime}\geq\alpha_{l}+1$ . Hence $E_{j}^{(l)}/N$ is almost
injective also as a left $S_{l}RS_{l}$-module by (3) and [8, Theorem $ 1\#$ ].

(5). By (3) and (4).

PROOF OF THEOREM 2. $(\Rightarrow)$ . We may assume that $R$ is an indecomposable
ring in (i), (ii) or (iii) of Theorem A.
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Suppose that $R$ is a hereditary ring, then it is well known that $(*\#)_{l}$ holds
(see, for instance, [4, \S 1 Preliminaries]).

Suppose that $R$ is a strongly serial ring with a Kupisch series
$\{f_{1,1}R,f_{1,2}R, \ldots,f_{1,\beta_{1}}R,f_{2,1}R, \ldots,f_{m,\beta_{m}}R\}$ , where $P(R)=\{f_{i,j}\}_{i=1,j=1}^{m\beta_{i}}$ and $f_{i,j}R$

is injective iff $j=1$ . Let $E$ be an injective left R-module and let $N$ be a
proper submodule of $E$. First we consider that $E$ is indecomposable. Then
$E/N\cong Rf_{m,\beta_{m}}/J^{v}f_{m,\beta_{m}}$ or $\cong Rf_{u,1}/J^{v}f_{u,1}$ by Lemma 1 (5), where $u$ and $v$ are
positive integers. If $v\geq 2$ or $E/N\cong Rf_{m,\beta_{m}}/Jf_{m,\beta_{m}}$ , then $E/N$ is injective again by
Lemma 1 (5). Assume that $E/N\cong Rf_{u,1}/Jf_{u,1}$ for some $u\in\{1, \ldots, m-1\}$ . Then
$E/N\cong S(Rf_{u+1,1})$ by Lemma 1 (4). And $E(E/N)\cong Rf_{u+1,1}$ with $J^{\beta_{u}}E(E/N)=$

$E/N$ and $J^{j}E(E/N)\cong Rf_{u,\beta_{u}-j+1}$ , i.e., it is projective, for any $j=1,$ $\ldots,\beta_{u}-1$ by
Lemma 1 (3), (4), (5). Therefore $E/N$ is almost injective by [8, Theorem $ 1\#$ ]. If
$E/N\cong Rf_{m,1}/Jf_{m,1}$ and $|f_{m,\beta_{m}}R|=1$ (resp. $=2$), then $E/N\cong S(Rf_{m,\beta_{m}})$ (resp.
$\cong S(Rf_{1,1}))$ . And we can see that $E/N$ is almost injective by the same way as the
case that $E/N\cong Rf_{u,1}/Jf_{u,1}$ for some $u\in\{1, \ldots,m-1\}$ . In consequence, $E/N$ is
(injective or) almost injective, if $E$ is indecomposable. Next we consider that $E$

is not indecomposable. Since $R$ is a serial ring, we can represent $N=\oplus_{i\in I}N_{i}$ ,
where $N_{i}$ is a nonzero uniserial submodule of $N$ for any $i\in I$ . There is a
direct summand $E$ ‘ of $E$ with $E=E‘\oplus(\oplus_{i\in I}E(N_{i}))$ . Then $ E/N\cong E^{\prime}\oplus$

$(\oplus_{i\in I}E(N_{i})/N_{i})$ . Therefore $E/N$ is a direct sum of an injective module and
finitely generated almost injective modules because a uniserial module $E(N_{i})/N_{i}$

is (injective or) almost injective for any $i\in I$ by the case that $E$ is inde-
composable.

Suppose that $R$ is a ring in Theorem A (iii). Let $E$ be an injective left
R-module and let $N$ be a submodule of $E$. We may assume that $E=$

$(\oplus_{s=1}^{m}E(Rh_{s}/Jh_{s})^{u_{s}})\oplus(\oplus_{l=1,j=1}^{kn_{l}}E(Rf_{j}^{(l)}/Jf_{j}^{(l)})^{v_{J^{l}}})$ , where $u_{s}$ and $v_{j^{f}}$ are non-
negative integers. Put $E_{1}:=\oplus_{s=1}^{m}E(Rh_{s}/Jh_{s})^{u_{s}}$ and $E_{2}:=\oplus_{l=1,j=1}^{kn_{l}}E$

$(Rf_{j}^{(l)}/Jf_{j}^{(l)})^{v_{j}^{l}}$ . For each $i=1,2$ , let $\pi_{i}$ : $E\rightarrow E_{j}$ be the projection with respect to
$E=E_{1}\oplus E_{2}$ and put $N^{i}:=\pi_{j}(N)$ and $N_{i}:=N\cap E_{l}$ . Then there is an isomor-
phism $\eta$ : $N^{1}/N_{1}\rightarrow N^{2}/N_{2}$ with $N=\{x+y_{X}|x\in N^{1},$ $y_{X}\in N^{2}$ with $y_{X}+N_{2}=$

$\eta(x+N_{1})\}+N_{1}+N_{2}$ (see, for instance, [6, p449] or [3, $p54]$ ). And we claim
that there exists a homomorphism $\eta^{\prime}$ : $N^{1}/N_{1}\rightarrow N^{2}$ such that $ v_{2}\eta^{\prime}=\eta$ , where
$v_{2}$ : $N^{2}\rightarrow N^{2}/N_{2}$ is the natural epimorphism. Let $H$ and $S_{l}$ as in Theorem A (iii).
By Lemmas 3 (1), (3) $HN^{1}=N^{1}$ and $(\sum_{l^{k}=1}S_{l})N^{2}=N^{2}$ . So we can repre-
sent $N^{1}/N_{1}\cong\eta N^{2}/N_{2}\cong\oplus_{l^{k}=1}(Rf_{1}^{(l)}/Jf_{1}^{(l)})^{w_{l}}$ by the definitions of $H$ and $S_{l}$ ,
where $w_{1},$

$\ldots,$
$w_{k}$ are non-negative integers. On the other hand, $(\sum_{l^{k}=1}f_{1}^{(l)})N^{2}\subseteq$

$(\sum_{l=1}^{k}f_{1}^{(l)})E_{2}\subseteq S(E_{2})$ by [4, Theorem 3.3 $(a^{\prime})$ ] since $(\sum_{l^{k}=1}S_{l})E_{2}=E_{2}$ from
Lemma 3 (3). Hence there exists a homomorphism $\eta^{\prime}$ : $N^{1}/N_{1}\rightarrow N^{2}$ such
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that $ v_{2}\eta^{\prime}=\eta$ . Then we note that $N=\{x+y_{x}|x\in N^{1},$ $y_{x}\in N^{2}$ with $y_{x}+N_{2}=$

$\eta(x+N_{1})\}+N_{1}+N_{2}=\{x+\eta^{\prime}(x+N_{1})|x\in N^{1}\}+N_{2}$ . Let $v_{1}$ : $N^{1}\rightarrow N^{1}/N_{1}$ be
the natural epimorphism and put $\psi:=\eta^{\prime}v_{1}$ . Then we obtain a homomorphism
$\tilde{\psi}$ : $E_{1}\rightarrow E_{2}$ with $\tilde{\psi}|_{N^{1}}=\psi$ . Put $E_{1}(\tilde{\psi}):=\{x+\tilde{\psi}(x)|x\in E_{1}\}$ and $N^{1}(\tilde{\psi}):=$

$\{x+\tilde{\psi}(x)|x\in N^{1}\}$ . Then $E=E_{1}(\tilde{\psi})\oplus E_{2}$ and $N=N^{1}(\tilde{\psi})\oplus N_{2}$ hold because
$N=\{x+\eta^{\prime}(x+N_{1})|x\in N^{1}\}+N_{2}=$ { $x+\tilde{\psi}(x)$ I $x\in N^{1}$ } $+N_{2}$ . Therefore $ E/N\cong$

$(E_{1}(\tilde{\psi})/N^{1}(\tilde{\psi}))\oplus E_{2}/N_{2}\cong E_{1}/N^{1}\oplus E_{2}/N_{2}$ since the restrictions of $\pi_{1}$ induce
isomorphisms $E_{1}(\tilde{\psi})\cong E_{1}$ and $N^{1}(\tilde{\psi})\cong N^{1}$ . Now $E_{1}/N^{1}$ is injective by Lemma
3 (1) and Theorem A $(iii)(z)$ . And $E_{2}/N_{2}$ is a direct sum of (uniserial) almost
injective modules by Lemma 3 (3), Theorem A $(iii)(x)$ and the case that $R$ is a
strongly serial ring. In consequence, $E/N$ is a direct sum of an injective module
and finitely generated almost injective modules.

$(\Leftarrow)$ . We may assume that $R$ is an indecomposable ring satisfying $(*\#)_{l}$ . And
we show that $R$ is a ring in either (i), (ii) or (iii) of Theorem A.

$R$ satisfies the condition $(\#)_{l}$ . So we may assume that $R$ is a ring in either
(i), (ii) or (iii) of [4, Theorem $B$ ] by [4, Theorem 4.1].

Suppose that $R$ is a serial ring in the first category. Let $P(R)=\{g_{i,j}\}_{i=1}^{m,\gamma_{j^{i}=1}}$

such that $\{Rg, \ldots, Rg_{m,\gamma_{m}}\}$ is a Kupisch series and
$Rg_{i,j}$ is injective iff $j=1$ . If $m=1$ , then clearly $R$ is a strongly serial ring.
Assume that $m\geq 2$ . For each $i=2,$

$\ldots,$ $m,$ $Rg_{i,1}/Jg_{i,1}$ is almost injective by
$(*\#)_{l}$ . But it is not injective since there is a monomorphism: $ Rg_{j\mathfrak{l}}/Jg_{j1}\rightarrow$

$Rg_{i-1,\gamma_{j- 1}}/J^{2}g_{i-1,\gamma_{i- 1}}$ . Put $p:=|E(Rg_{i,1}/Jg_{i,1})|$ . Then $J^{p-1}E(Rg_{i,1}/Jg_{i,1})=$

$Rg_{i,1}/Jg_{i,1}$ and $J^{j}E(Rg_{i,1}/Jg_{i,1})$ is projective for any $j=0,$
$\ldots,$ $p-2$ by [8,

Theorem $ 1\#$ ]. So, in particular, $|J^{p-2}E(Rg_{i,1}/Jg_{i,1})|=2$ and $ J^{p-2}E(Rg_{i,1}/Jg_{i,1})\cong$

$Rg_{i-1,\gamma_{i-1}}$ because $Jg_{i-1,\gamma_{i-1}}/J^{2}g_{i-1,\gamma_{i- 1}}\cong Rg_{i,1}/Jg_{i,1}$ . Therefore $|Rg_{i-1,\gamma_{i- 1}}|=2$ .
Further $|Rg_{m,\gamma_{m}}|=1$ since $R$ is a serial ring in the first category. Hence $R$ is a
strongly serial ring.

Next suppose that $R$ is a serial ring in the second category. By the same
argument as the case that $R$ is a serial ring in the first category with $m\geq 2$ , we
see that $R$ is a strongly serial ring.

Last suppose that $R$ is a ring in [4, Theorem $B$ (iii)] and we use the same
notations as in it. By Theorem A and [4, Lemma 3.1] we only show that $S_{l}RS_{l}$ is
a strongly serial ring and $\alpha_{l}=1$ for any $l=1,$

$\ldots,$
$k$ . A serial ring $S_{l}RS_{l}$ satisfies

$(*\#)_{l}$ by Lemma 3 (5). So $S_{l}RS_{l}$ is a strongly serial ring by the above case. Next
we show that $\alpha_{l}=1$ . $Rf_{\alpha}^{(l)}$ has a simple subfactor which is isomorphic to $Rh_{s}/Jh_{s}$

for some $s\in\{1, \ldots, m\}$ by the definition of $\alpha_{l}$ . Therefore there exist a submodule
$N$ of $Rf_{\alpha_{l}}^{(l)}$ and a nonzero homomorphism $\phi:N\rightarrow Rh_{s}/Jh_{s}$ . Put $E_{s}$ $:=E(Rh_{s}/Jh_{s})$

and let $\tilde{\phi}:Rf_{\alpha_{l}}^{(l)}\rightarrow E_{s}$ be an extension homomorphism of $\phi$ . Then we claim
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that $\tilde{\phi}(f_{\alpha_{l}}^{(l)})\in E_{s}-J(E_{s})$ . Let $\oplus_{i=1}^{p}Re_{j}$ be the projective cover of $E_{s}$ , where
$\{e_{1}, \ldots, e_{p}\}\subseteq P(R)$ . Then $h_{s}Re_{i}\neq 0$ for any $i=1,$

$\ldots,$ $p$ . So $e_{l}\not\in\{f_{\alpha_{l}+1}^{(l)}, \ldots , f_{n_{l}}^{(l)}\}$

because $h_{s}R(f_{\alpha_{l}+1}^{(l)}+\cdots+f_{n}^{(l)})=0$ by the definition of $\alpha_{l}$ . On the other hand, if
$g\in P(R)$ with $f_{\alpha_{l}}^{(l)}Jg\neq 0$ , then $g\in\{f_{\alpha\prime+1}^{(l)}, \ldots , f_{n_{l}}^{(l)}\}$ by [4, Theorem 3.3 $(a^{\prime})$ ]. Hence
$f_{\alpha_{l}}^{(l)}Je_{j}=0$ for any $i=1,$

$\ldots,$ $p$ , i.e., $f_{\alpha_{l}}^{(l)}J(E_{s})=0$ . Therefore $\tilde{\phi}(f_{\alpha_{l}}^{(l)})\in E_{s}-J(E_{s})$ .
So we have a submodule $X$ of $E_{s}$ with $E_{s}/X\cong Rf_{\alpha_{l}}^{(l)}/Jf_{\alpha}^{(l)}$ . Therefore $Rf_{\alpha_{l}}^{(l)}/Jf_{\alpha_{l}}^{(l)}$

is almost injective by $(*\#)_{l}$ . But $Rf_{\alpha_{l}}^{(l)}/Jf_{\alpha_{l}}^{(l)}$ is not injective by Lemma 3 (2).
Hence, put $E_{\alpha_{l}}^{(l)}:=E(Rf_{\alpha_{l}}^{(l)}/Jf_{\alpha_{l}}^{(l)})$ and $q:=|E_{\alpha_{l}}^{(l)}|$ , then $J^{q-1}E_{\alpha_{l}}^{(l)}\cong Rf_{\alpha_{l}}^{(l)}/Jf_{\alpha_{l}}^{(l)}$ and
$J^{j}E_{\alpha_{l}}^{(l)}$ is projective for any $i=0,$

$\ldots,$ $q-2$ by [8, Theorem $ 1\#$ ]. So, in particular,
$S(Rf_{\alpha_{l}+1}^{(l)})\cong Rf_{\alpha_{l}}^{(l)}/Jf_{\alpha_{l}}^{(l)}$ since $\{Rf_{n_{l}}^{(l)}, Rf_{n_{l}-1}^{(l)}, \ldots, Rf_{1}^{(l)}\}$ is a Kupisch series of left
R-modules by [4, Lemma 3.4 (1)]. But $S(Rf_{\alpha_{l+l}}^{(l)})\cong Rf_{1}^{(l)}/Jf_{1}^{(l)}$ by [4, Lemma 3.4
(2)]. Hence $\alpha_{l}=1$ .

A right SAH ring does not always satisfy $(*\#)_{r}$ and a ring satisfying $(*\#)_{r}$ is
not always a right SAH ring. Now we give an example.

EXAMPLE 4. Consider a factor ring

$R:=[000D00$ $DD0000$ $D00000$ $DDDD00$
$DD\overline{0\frac{0}{}\frac{0}{0}}$

$DD\overline{\frac{}{0}\frac{}{0}\frac{0}{0}}]$ ,

where $D$ is a division ring. And we consider that $R$ is a ring by the ordinary
addition and the multiplication of matrices. Put $H:=e_{1}+e_{2}+e_{3}+e_{4}$ and $S_{1}$ $:=$

$e_{4}+e_{5}+e_{6}$ , where $e_{j}$ is the $(i, i)$ -matrix unit for any $i$ .
Then $HRH$ is a hereditary ring and $S_{1}RS_{1}$ is a strongly serial ring in the first

category. And $R$ is a ring in Theorem A(iii), i.e., $R$ is a right SAH ring.
But we claim that $R$ does not satisfies $(*\#)_{r}$ . $e_{4}R$ is an injective right R-

module with $e_{4}R/S(e_{4}R)\cong e_{4}R/e_{4}J$ . And $e_{4}R/S(e_{4}R)$ is not injective. Further
$e_{4}R/S(e_{4}R)$ is not almost injective by [8, Corollary $ 1\#$ ] since $e_{1}R\oplus e_{3}R$ is a
projective cover of $E(e_{4}R/e_{4}J)$ .

By Theorem 2 $R$ satisfies $(*\#)_{l}$ but is not a left SAH ring.

3. Stronger Conditions than that of a SAH Ring

The following is a stmcture theorem of an artinian ring which satisfies $(**)_{r}$

and $(***)_{r}$ which are stronger conditions than that of a right SAH ring:
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THEOREM $B$ ([7, Theorem 4]). For a ring the following are equivalent:
(a) It satisfies $(**)_{r}$ ;
(b) it satisfies $(***)_{r}$ ;
(c) it is a direct sum of the following rings:

(i) Hereditary rings which are not serial;
(ii) serial rings with the radical square zero;
(iii) rings $R$ in Theorem $A$ (iii) such that $HRH$ is not a serial ring and

$J(S_{l}RS_{l})^{2}=0$ for any $l=1,$
$\ldots,$

$k$ , where $H$ and $S_{l}$ are as in Theorem
$A$ (iii).

The purpose of this section is to show the following theorem.

THEOREM 5. For a ring $R$ the following are equivalent:
(a) $R$ satisfies $(**)_{r}(\Leftrightarrow(***)_{r})$ ;
(b) $R$ satisfies $(**\#)_{l}$ ;
(c) $R$ satisfies $(***\#)_{l}$ .

To complete the proof, we give a lemma.

LEMMA 6. Let $R$ be a ring in [4, Theorem $B$ (iii)] and we use the same
notations as in it.

(1) Suppose that $\alpha_{l}=1$ . And let $M$ be an indecomposable left R-module with
$HM=M$ . Then the following hold.
(i) $Rf_{1}^{(l)}/Jf_{1}^{(l)}$ is injective as a left HRH-module but not injective as a

left R-module for any $l$.
(ii) If $M$ is injective or finitely generated almost injective as a left R-

module, then $M$ is injective or finitely generated almost injective also
as a left HRH-module.

(iii) If $M$ is finitely generated almost injective but not injective as a left
HRH-module, then $M$ is finitely generated almost injective but not
injective also as a left R-module.

(2) Suppose that $\alpha_{l}=1$ . If $R$ satisfies $(**\#)_{l}$ , then $HRH$ also satisfies $(**\#)_{l}$ .
(3) Let $M$ be an indecomposable left R-module with $S_{T}M=M$ for some

$l$ . Then $M$ is almost injective but not injective as a left R-module $lf$

and only $lfM$ is almost injective but not injective as a left $S_{l}RS_{l}-$

module.
(4) If $R$ satisfies $(**\#)_{l}$ , then $S_{l}RS_{l}$ also satisfies $(**\#)_{l}$ for any $l=1,$

$\ldots,$
$k$ .
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PROOF. Put $E_{s}$ $:=E(Rh_{s}/Jh_{s})$ and $E_{j}^{(l)}$ $:=E(Rf_{j}^{(l)}/Jf_{j}^{(l)})$ for any $s=1,$
$\ldots,$

$m$ ,
$l=1,$

$\ldots,$
$k$ and $j=1,$ $\ldots,n_{l}$ .

(1)(i). Since $\alpha_{l}=1,$ $H=\sum_{s=1}^{m}h_{s}+\sum_{l=1}^{k}f_{1}^{(l)}$ . So we can easily see that
$Rf_{1}^{(l)}/Jf_{1}^{(l)}$ is injective as a left HRH-module by [4, Lemma 2.3 and Theorem 3.3
$(a^{\prime}),$ $(b^{\prime})$ ] using Baer’s criterion. And $Rf_{1}^{(l)}/Jf_{1}^{(l)}$ is not injective as a left R-
module by Lemma 3 (2).

(ii). First assume that $M$ is injective as a left R-module. Then $M\cong E_{s}$ for
some $s$ by (i) since $HM=M$ . Therefore $M$ is injective also as a left HRH-
module by Lemma 3 (1).

Next assume that $M$ is finitely generated almost injective but not injective
as a left R-module. Then $S(RM)$ is simple by [8, Theorem $ 1\#$ ]. And $ S(RM)\cong$

$Rf_{1}^{(l)}/Jf_{1}^{(l)}$ for some $l$ or $\cong Rh_{s}/Jh_{s}$ for some $s$ since $HM=M$ . If $ S(RM)\cong$

$Rf_{1}^{(l)}/Jf_{1}^{(l)}$ for some 1, then $M$ is simple, i.e., $M\cong Rf_{1}^{(l)}/Jf_{1}^{(l)}$ , by [4, Theorem 3.3
$(a^{\prime}),$ $(b^{\prime})$ ] since $\alpha_{l}=1$ . Therefore $M$ is injective as a left HRH-module by (i). So
we consider that $S(RM)\cong Rh_{s}/Jh_{s}$ for some $s$ . Then there exists a positive integer
$p$ such that $M\cong J^{p}E_{s}$ and $J^{j}E_{s}$ is projective as a left R-module for any
$i=0,$

$\ldots,$ $p-1$ by [8, Theorem $ 1\#$ ]. And $J^{j}E_{s}=J(HRH)^{j}E_{s}$ for any $j=0,$
$\ldots,$ $p$

and $J^{j}E_{s}$ is projective also as a left HRH-module for any $i=0,$ $\ldots,$ $p-1$ by
Lemma 3 (1). So $M$ is almost injective but not injective as a left HRH-module
by [8, Theorem $ 1\#$ ].

(iii). $S(HRHM)$ is simple by [8, Theorem $ 1\#$ ]. But $S(HRHM)\not\cong HRf_{1}^{(l)}/HJf_{1}^{(l)}$

$(=Rf_{1}^{(l)}/Jf_{1}^{(l)})$ for any 1 by (i) because $M$ is not injective as a left HRH-module.
So $S(HRHM)\cong HRh_{s}/HJh_{s}$ for some $s$ since $HM=M$ . Then there is a positive
integer $p$ such that $M\cong J(HRH)^{p}E_{s}$ and $J(HRH)^{i}E_{s}$ is projective as a left
HRH-module for any $i=0,$

$\ldots,$ $p-1$ by [8, Theorem $ 1\#$ ] and Lemma 3 (1). And
$J(HRH)^{j}E_{s}=J^{j}E_{s}$ for any $j=0,$

$\ldots,$ $p$ and $J(HRH){}^{t}E_{s}$ is projective also as a
left R-module for any $i=0,$

$\ldots,$ $p-1$ by Lemma 3 (1). So $M$ is almost injective
but not injective as a left R-module by [8, Theorem $ 1\#$ ].

(2). Let $M$ be an injective or finitely generated almost injective left HRH-
module. We may assume that $M$ is indecomposable and not simple.

Assume that $M$ is injective as a left HRH-module. Then $M\cong E_{s}$ for some $s$

by [4, Theorem 3.3 $(a^{\prime}),$ $(b^{\prime})$ ] and Lemma 3 (1) since $\alpha_{l}=1$ and $M$ is not simple.
Therefore $M$ is injective also as a left R-module. So $M/S(M)$ is a direct sum of
an injective left R-module and finitely generated almost injective left R-modules
by $(**\#)_{l}$ . Hence $M/S(M)$ is a direct sum of an injective left HRH-module and
finitely generated almost injective left HRH-modules by (l)(ii).

Next assume that $M$ is finitely generated almost injective but not injective as
a left HRH-module. Then $M$ is almost injective as a left R-module by (l)(iii). So
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$M/S(M)$ is a direct sum of an injective left R-module and finitely generated
almost injective left R-modules by $(**\#)_{l}$ . Hence $M/S(M)$ is a direct sum of an
injective left HRH-module and finitely generated almost injective left HRH-
modules by (l)(ii).

(3). First we note that $M$ is a uniserial left R- and $S_{l}RS_{l}$-module since
$S_{l}M=M,$ $M$ is indecomposable and a ring $S_{l}RS_{l}$ is serial.

Assume that $M$ is almost injective but not injective as a left R-module. Then
$S(M)$ is simple by [8, Theorem $ 1\#$ ]. So $E(M)\cong E_{j}^{(l)}$ for some $j$ since $S_{l}M=M$ .
And there exists a positive integer $p$ such that $M\cong J^{p}E_{j}^{(l)}$ and $J^{i}E_{j}^{(l)}$ is projective
as a left R-module for any $l=0,$

$\ldots,$
$p-1$ by [8, Theorem $ 1\#$ ]. Now $S_{l}E_{j}^{(l)}=E_{j}^{(l)}$

by Lemma 3 (3). And $S;\cdot S(Rf_{t}^{(l)})\neq S(Rf_{t}^{(/)})$ for any $t\in\{1, \ldots, \alpha_{l}\}$ by [4,
Lemma 3.1 and Lemma 3.4 (1)]. So there is $j_{i}\in\{\alpha_{l}+1, \ldots, n_{l}\}$ with $ J^{j}E_{j}^{(l)}\cong$

$Rf_{j_{i}}^{(l)}$ for any $i=0,$
$\ldots,$

$p-1$ . Therefore $J^{l}E_{j}^{(/)}\cong S_{l}Rf_{j_{i}}^{(l)}$ , i.e., $J^{j}E_{j}^{(l)}$ is projective
also as a left $S_{T}RS_{T}$-module, by [4, Theorem $B$ (iii)(b) and Lemma 3.1] since
$j_{i}\geq\alpha_{T}+1$ . Hence $M$ is almost injective but not injective as a left $S_{l}RS_{l}$-module
by [8, Theorem $ 1\#$ ] and Lemma 3 (3).

We can show the converse by the same way.
(4). By the same way as the proof of (2) we can show using (3) and Lemma

3 (3).

$PR\infty F$ OF THEOREM 5. We may assume that $R$ is an indecomposable ring.
$(a)\Rightarrow(c)$ . We may assume that $R$ is a ring in either (i), (ii) or (iii) in

Theorem $B(c)$ .
Suppose that $R$ is a hereditary ring which are not serial. Then $Rg$ is not

injective for any $g\in P(R)$ by [7, Corollary 3]. Therefore every finitely generated
almost injective left R-module is injective by [8, Theorem $ 1\#$ ]. So $(***\#)_{T}$ holds
since $R$ is a hereditary ring.

Suppose that $R$ is a serial ring with $J^{2}=0$ . Let $\{Rf_{1}, Rf_{2}, \ldots, Rf_{n}\}$ be a
Kupisch series with $\{f_{1}, f_{2}, \ldots, f_{n}\}=P(R)$ . If $R$ is a serial ring in the first
(resp. second) category, then $\{Rf_{j}, Rf1/Jf_{1}\}_{j=1}^{n-1}$ (resp. $\{Rf_{j}\}_{j^{n}=1}$ ) is a basic set
of indecomposable injective left R-modules. So $\{Rf_{j}, Rf_{n}, Rf_{j}/Jf_{j}\}_{j=1}^{n-1}$ (resp.
$\{Rf_{j}, Rf_{j}/Jf_{j}\}_{j=1}^{n})$ is a basic set of finitely generated almost injective left R-
modules by [8, Theorem $ 1\#$ ]. Therefore because $R$ is a serial ring with $J^{2}=0$ ,
every factor module of a finitely generated almost injective module is represented
as $\oplus_{j=1}^{n-1}((Rf_{j})^{u};\oplus(Rf_{n})^{u_{n}}\oplus(Rf_{j}/Jf_{j})^{v_{j}})$ (resp. $\oplus_{j^{n}=1}((Rf_{j})^{u_{j}}\oplus(Rf_{j}/Jf_{j})^{v_{j}})$ ),
where $u_{j},$ $u_{n},$ $v_{j}$ are non-negative integers. Hence $(***\#)_{l}$ holds.

Last suppose that $R$ is a ring in Theorem $B(c)(iii)$ . We use the same notations
as in Theorem A (iii). It is obvious that $S_{l}RS_{l}$ is a serial ring in the first category
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with a Kupisch series $\{S_{l}Rf_{n_{l}}^{(l)}, S_{l}Rf_{n_{l}-1}^{(l)}, \ldots, S_{l}Rf_{1}^{(l)}\}$ of left $S_{l}RS_{l}$-modules from
Theorem A (iii)(x). So $S_{l}Rf_{j}^{(l)}$ is injective as a left $S_{l}RS_{l}$-module for any $l$ and
$j=2,$

$\ldots,$
$n_{l}$ since $J(S_{l}RS_{l})^{2}=0$ . Therefore $Rf_{j}^{(l)}$ is an injective left R-module

with $|Rf_{j}^{(l)}|=2$ for any $l$ and $j=2,$
$\ldots,$

$n_{l}$ by Lemma 3 (3). On the other hand,
we claim that $Rh_{s}$ and $Rf_{1}^{(l)}$ are not injective for any $s$ and $l$ . Assume that $Rh_{s}$

(resp. $Rf_{1}^{(l)}$ ) is injective for some $s$ (resp. $l$ ). Then $Rh_{s}$ (resp. $Rf_{1}^{(l)}$ ) $\cong E_{s^{\prime}}$ for
some $s^{\prime}$ by Lemma 3 (1) and Theorem A (iii)(y). Therefore $Rh_{s}$ (resp. $Rf_{1}^{(l)}$ ) is
injective also as a left HRH-module by Lemma 3 (1), i.e., there exists an injective
projective left HRH-module. So $HRH$ is a serial ring by [7, Corollary 3] and
Theorem A (iii)(z). But $HRH$ is not serial by assumption, a contradiction. In
consequence, we obtain that $\{Rf_{j}^{(l)}\}_{l=1,j=2}^{kn_{l}}$ is a basic set of indecomposable
injective projective left R-modules. Therefore $\{Rf_{j}^{(l)},Jf_{j}^{(l)}(\cong Rf_{j-1}^{(l)}/Jf_{j-1}^{(l)})\}_{l=1,j=2}^{kn_{l}}$

is a basic set of finitely generated indecomposable almost injective modules by
[8, Theorem $ 1\#$ ]. So $(***\#)_{l}$ holds by the same reason as the case that $R$ is a serial
ring with $J^{2}=0$ .

$(c)\Rightarrow(b)$ . Clear.
$(b)\Rightarrow(a)$ . Since $R$ satisfies $(**\#)_{l}$ , it satisfies $(\#)_{l}$ , i.e., $R$ is a right almost

hereditary ring by [4, Theorem 4.1]. So we may assume that $R$ is a ring in either
(i), (ii) or (iii) of [4, Theorem $B$ ]. And we show that it is a ring in either (i), (ii)
or (iii) of Theorem $B(c)$ .

Suppose that $R$ is a hereditary ring. Assume that $Rg$ is not injective for
any $g\in P(R)$ , then $R$ is not serial, i.e., $R$ is a ring in Theorem $B(c)(i)$ . Assume
that there is $f\in P(R)$ with $Rf$ injective, then $R$ is a serial ring by [7, Corollary
3].

Suppose that $R$ is a serial ring. Assume that there exists $f\in P(R)$ with
$|Rf|\geq 3$ . Then further we may assume that $Rf$ is injective. $Jf$ is almost injective
by [8, Theorem $ 1\#$ ]. And $Jf/S(Rf)$ is also almost injective by $(**\#)_{l}$ . But $Jf/S(Rf)$

is not injective since there is an inclusion map: $Jf/S(Rf)\rightarrow Rf/S(Rf)$ . Therefore
there exist $e\in P(R)$ and a positive integer $p$ such that $Re\cong E(Jf/S(Rf))$ ,
$J^{p}e\cong Jf/S(Rf)$ and $J^{j}e$ is projective for any $i=0,$

$\ldots,$
$p-1$ by [8, Theorem $ 1\#$ ].

So, in particular, $J^{p-1}e$ is projective. But $J^{p-1}e\cong Rf/S(Rf)$ , a contradiction.
Suppose that $R$ is a ring in [4, Theorem $B$ (iii)]. And let $H$ and $S_{l}$ as in

it. Then $S_{l}RS_{l}$ satisfies $(**\#)_{l}$ for any $l=1,$
$\ldots,$

$k$ by Lemma 6 (4). Therefore
$J(S_{l}RS_{l})^{2}=0$ from the previous case that $R$ is a serial ring. So $\alpha_{l}=1$ since
$E(Rf_{1}^{(l)}/Jf_{1}^{(l)})\cong Rf_{j}^{(l)}/J^{u}f_{j}^{(l)}$ for some $j(\geq\alpha_{l}+1)$ and $u$ by Lemma 3 (2).
Therefore $HRH$ also satisfies $(**\#)_{l}$ by Lemma 6 (2). Hence $HRH$ is not serial
or serial with $J(HRH)^{2}=0$ by the previous two cases. In consequence, $R$ is a
ring in Theorem $B(c)(ii)$ or (iii).
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