ON STRONGLY ALMOST HEREDITARY RINGS

By
Yoshitomo Baba and Hiroyuki Miki

M. Harada defined an almost projective module in [8] and showed that semisimple rings, serial rings, QF -rings and H -rings are well-characterized by the property of an almost projective module in [8], [9]. Using an almost projective module he further considered the following generalized condition of a hereditary ring in [7]:
$(*)_{r}$ Every submodule of a finitely generated projective right R-module is almost projective.
In this paper we call an artinian ring R a right strongly almost hereditary ring (abbreviated right SAH ring) if R satisfies $(*)_{r}$. On the other hand, an artinian hereditary ring is characterized by the following equivalent conditions:
(a) Every submodule of a projective right R-module is also projective;
(b) every submodule of a projective left R-module is also projective;
(c) every factor module of an injective right R-module is also injective;
(d) every factor module of an injective left R-module is also injective.

In section 2 we consider the following generalized condition of (c):
$\left(*^{\sharp}\right)_{r}$ Every factor module of an injective right R-module is a direct sum of an injective module and finitely generated almost injective modules.
Similarly we define $\left(*^{\sharp}\right)_{l}$ for left R-modules. The first aim of this paper is to show that an artinian ring R is right SAH if and only if R satisfies $\left(*^{\sharp}\right)_{l}$. But we see that the equivalence between a right SAH ring and an artinian ring which satisfies $\left(*^{\#}\right)_{r}$ does not hold in general.

In [7] M. Harada further considered the following two stronger conditions than $(*)_{r}$:
$(* *)_{r}$ The Jacobson radical of M is almost projective for any finitely generated almost projective right R-module M;
$(* * *)_{r}$ every submodule of a finitely generated almost projective right R module is also almost projective.
And he showed that an artinian ring R satisfies ($* *)_{r}$ iff it satisfies ($\left.* * *\right)_{r}$. In section 3 we consider the following generalized conditions of (c):

[^0]$\left(* *^{\sharp}\right)_{r} \quad M / \operatorname{Socle}(M)$ is a direct sum of an injective module and finitely generated almost injective modules for any injective or finitely generated almost injective right R-module M;
$(* * *)_{r}$ every factor module of an injective or finitely generated almost injective right R-module is a direct sum of an injective module and finitely generated almost injective modules.
We also consider $\left(* *^{\sharp}\right)_{l}$ and $\left(* * *^{\sharp}\right)_{l}$ for left R-modules. The second aim of this paper is to show that an artinian ring R satisfies $(* *)_{r}$ if and only if R satisfies $\left(* *^{\sharp}\right)_{l}$ if and only if R satisfies $\left(* * *^{\sharp}\right)_{l}$. But we see that the equivalence between the two conditions $(* *)_{r}$ and $\left(* *^{\sharp}\right)_{r}$ does not hold in general.

1. Preliminaries

In this paper, we always assume that every ring is a basic artinian ring with identity and every module is unitary. Let R be a ring and let $P(R)=\left\{e_{i}\right\}_{i=1}^{n}$ be a complete set of pairwise orthogonal primitive idempotents in R. We denote the Jacobson radical, an injective hull and the composition length of a module M by $J(M), E(M)$ and $|M|$, respectively. Especially, we put $J:=J\left(R_{R}\right)$. For a module M we denote the socle of M by $S(M)$ and the k-th socle of M by $S_{k}(M)$ (i.e., $S_{k}(M)$ is a submodule of M defined by $S_{k}(M) / S_{k-1}(M)=S\left(M / S_{k-1}(M)\right)$ inductively).

Let M and N be modules. M is called N-projective (resp. N-injective) if for any homomorphism $\phi: M \rightarrow L$ (resp. $\phi^{\prime}: L \rightarrow M$) and any epimorphism $\pi: N \rightarrow L$ (resp. monomorphism $l: L \rightarrow N$) there exists a homomorphism $\tilde{\phi}: M \rightarrow N$ (resp. $\tilde{\phi}^{\prime}: N \rightarrow M$) such that $\phi=\pi \tilde{\phi}$ (resp. $\left.\phi^{\prime}=\tilde{\phi}^{\prime} t\right)$. And M is called almost N projective (resp. almost N-injective) if for any homomorphism $\phi: M \rightarrow L$ (resp. $\phi^{\prime}: L \rightarrow M$) and any epimorphism $\pi: N \rightarrow L$ (resp. monomorphism $\imath: L \rightarrow N$) either there exists a homomorphism $\tilde{\phi}: M \rightarrow N$ (resp. $\tilde{\phi}^{\prime}: N \rightarrow M$) such that $\phi=\pi \tilde{\phi}$ (resp. $\phi^{\prime}=\tilde{\phi}^{\prime} l$) or there exist a nonzero direct summand N^{\prime} of N and a homomorphism $\theta: N^{\prime} \rightarrow M$ (resp. $\theta^{\prime}: M \rightarrow N^{\prime}$) such that $\phi \theta=\pi i$ (resp. $\theta^{\prime} \phi^{\prime}=p l$), where i is an inclusion of N^{\prime} in N (resp. p is a projection on N^{\prime} of N). Further M is called almost projective (resp. almost injective) if M is always almost N-projective (resp. almost N-injective) for any finitely generated R-module N.

We call an artinian ring R a right almost hereditary ring if J is almost projective as a right R-module. By [8, Theorem 1] this definition is equivalent to the condition: $J(P)$ is almost projective for any finitely generated projective right R-module P.

A module is called uniserial if its lattice of submodules is a finite chain, i.e.,
any two submodules are comparable. An artinian ring R is called a right serial ring if every indecomposable projective right R-module is uniserial. And we call a ring R a serial ring if R is a right and left serial ring. Let $f_{1}, f_{2}, \ldots, f_{n}$ be primitive idempotents in a serial ring R. Then a sequence $\left\{f_{1} R, f_{2} R, \ldots, f_{n} R\right\}$ (resp. $\left\{R f_{1}, R f_{2}, \ldots, R f_{n}\right\}$) of indecomposable projective right (resp. left) R modules is called a Kupisch series if $f_{j} J / f_{j} J^{2} \cong f_{j+1} R / f_{j+1} J$ (resp. $J f_{j} / J^{2} f_{j} \cong$ $R f_{j+1} / J f_{j+1}$) holds for any $j=1, \ldots, n-1$. Further $\left\{f_{1} R, f_{2} R, \ldots, f_{n} R\right\}$ (resp. $\left.\left\{R f_{1}, R f_{2}, \ldots, R f_{n}\right\}\right)$ is called a cyclic Kupisch series if it is a Kupisch series with $f_{n} J / f_{n} J^{2} \cong f_{1} R / f_{1} J$ (resp. $J f_{n} / J^{2} f_{n} \cong R f_{1} / J f_{1}$) holds. Let R be a serial ring with a Kupisch series $\left\{f_{1} R, f_{2} R, \ldots, f_{n} R\right\}$. If $f_{n} J=0$ and $P(R)=\left\{f_{1}, \ldots, f_{n}\right\}$, then R is called a serial ring in the first category. And if $\left\{f_{1} R, f_{2} R, \ldots, f_{n} R\right\}$ is a cyclic Kupisch series and $P(R)=\left\{f_{1}, \ldots, f_{n}\right\}$, then R is called a serial ring in the second category. Moreover a serial ring is called a strongly serial ring if it is a direct sum of indecomposable serial rings R with a Kupisch series $\left\{f_{1,1} R, f_{1,2} R, \ldots, f_{1, \beta_{1}} R, f_{2,1} R, \ldots, f_{m, \beta_{m}} R\right\}$ such that $\left|f_{i, \beta_{i}} R\right|=2$ for any $i=1, \ldots, m-1$ and $\left|f_{m, \beta_{m}} R\right|=1$ or 2 , where $P(R)=\left\{f_{i, j}\right\}_{i=1, j=1}^{m}$ and $f_{i, j} R$ is injective iff $j=1$. Then, if $\left|f_{m, \beta_{m}} R\right|=1$ (resp. $=2$), then R is a serial ring in the first (resp. second) category. Further we can easily check the following characterization of a strongly serial ring.

Lemma 1. Let R be an indecomposable strongly serial ring with a Kupisch series $\left\{f_{1,1} R, f_{1,2} R, \ldots, f_{1, \beta_{1}} R, f_{2,1} R, \ldots, f_{m, \beta_{m}} R\right\}$, where $P(R)=\left\{f_{i, j}\right\}_{i=1, j=1}^{m \beta_{i}}$ and $f_{i, j} R$ is injective iff $j=1$. Then the following hold:
(1) $S\left(f_{i, j} R\right) \cong f_{i+1,1} R / f_{i+1,1} J$ for any $i=1, \ldots, m-1$ and $j=1, \ldots, \beta_{i}$ and $S\left(f_{m, k} R\right) \cong f_{m, \beta_{m}} R / f_{m, \beta_{m}} J$ (resp. $\cong f_{1,1} R / f_{1,1} J$) for any $k=1, \ldots, \beta_{m}$ if $\left|f_{m, \beta_{m}} R\right|=1 \quad$ (resp. $=2$);
(2) $\left.\left\{f_{1,1} R / f_{1,1} J^{j}\right\}_{i=1}^{\beta_{1}+1} \cup\left\{f_{i, 1} R / f_{i, 1} J^{j}\right\}_{i=2, j=2}^{m-1} \cup \beta_{i}+1 \quad \cup f_{m, 1} R / f_{m, 1} J^{j}\right\}_{j=2}^{\beta_{m}} \quad$ (resp. $\left.\left\{f_{i, 1} R / f_{i, 1} J^{j}\right\}_{i=1, j=2}^{m \beta_{i}+1}\right)$ is a basic set of indecomposable injective right R modules if $\left|f_{m, \beta_{m}} R\right|=1 \quad$ (resp. $=2$);
(3) $\left\{R f_{m, \beta_{m}}, R f_{m, \beta_{m}-1}, \ldots, R f_{m, 1}, R f_{m-1, \beta_{m-1}}, \ldots, R f_{1,1}\right\}$ is a Kupisch series (resp. a cyclic Kupisch series) of left R-modules with $\left|R f_{i, 2}\right|=2$ for any $i=1, \ldots, m$ and $\left|R f_{1,1}\right|=1$ (resp. $=\beta_{m}+1$) if $\left|f_{m, \beta_{m}} R\right|=1$ (resp. $=2$);
(4) $S\left(R f_{1,1}\right) \cong R f_{1,1} / J f_{1,1} \quad$ (resp. $\left.\cong R f_{m, 1} / J f_{m, 1}\right)$ if. $\left|f_{m, \beta_{m}} R\right|=1$ (resp. $=2$), $S\left(R f_{i, 1}\right) \cong R f_{i-1,1} / J f_{i-1,1}$ for any $i=2, \ldots, m$, and $S\left(R f_{k, j}\right) \cong R f_{k, 1} / J f_{k, 1}$ for any $k=1, \ldots, m$ and $j=2, \ldots, \beta_{k}$;
(5) $\left\{R f_{i, 1} / J^{j} f_{i, 1}\right\}_{i=2, j=2}^{m \beta_{i-1}+1} \cup\left\{R f_{m, \beta_{m}} / J^{j} f_{m, \beta_{m}}\right\}_{j=1}^{\beta_{m}} \quad$ (resp. $\quad\left\{R f_{1,1} / J^{j} f_{1,1}\right\}_{j=2}^{\beta_{m}+1} \cup$ $\left.\left\{R f_{i, 1} / J^{j} f_{i, 1}\right\}_{i=2, j=2}^{m \beta_{i-1}+1}\right)$ is a basic set of indecomposable injective left R modules if $\left|f_{m, \beta_{m}} R\right|=1$ (resp. $=2$).

For a set S of R-modules, a subset S^{\prime} of S is called a basic set of S if
(a) for any $M, M^{\prime} \in S^{\prime}, M \approx M^{\prime}$ as R-modules iff $M=M^{\prime}$ and
(b) for any $N \in S$, there exists $M \in S^{\prime}$ such that $M \approx N$ as R-modules.

2. Strongly almost Hereditary Rings

The following is a structure theorem of a right SAH ring given by M . Harada.

Theorem A ([7, Theorem 3]). A ring is right SAH if and only if it is a direct sum of the following rings:
(i) Hereditary rings;
(ii) strongly serial rings;
(iii) rings $\quad R$ with $\quad P(R)=\left\{h_{1}, \ldots, h_{m}, f_{1}^{(1)}, f_{2}^{(1)}, \ldots, f_{n_{1}}^{(1)}, f_{1}^{(2)}, \ldots, f_{n_{2}}^{(2)}\right.$, $\left.f_{1}^{(3)}, \ldots, f_{n_{k}}^{(k)}\right\}$ such that, for each $l=1, \ldots, k$ we put $S_{l}:=\sum_{j=1}^{n_{l}} f_{j}^{(l)}$ and $H:=\sum_{s=1}^{m} h_{s}+\sum_{l=1}^{k} f_{1}^{(l)}$, the following three conditions hold for any $l=1, \ldots, k$:
(x) $S_{l} R S_{l}$ is a strongly serial ring in the first category with a Kupisch series $\left\{f_{1}^{(l)} R S_{l}, f_{2}^{(l)} R S_{l}, \ldots, f_{n_{l}}^{(l)} R S_{l}\right\}$ of right $S_{l} R S_{l}$-modules,
(y) $S_{l} R\left(1-S_{l}\right)=0, \quad\left(h_{1}+\cdots+h_{m}\right) R f_{1}^{(l)} \neq 0 \quad$ and $\quad\left(h_{1}+\cdots+h_{m}\right)$. $R\left(f_{2}^{(l)}+\cdots+f_{n_{l}}^{(l)}\right)=0$, and
(z) HRH is a hereditary ring.

We note that by [4, Lemma 3.1] a ring in Theorem A (iii) coincides with a ring in [4, Theorem B (iii)] if it satisfies that $\alpha_{l}=1$ and $S_{l} R S_{l}$ is a strongly serial ring for any $l=1, \ldots, k$, where α_{l} and S_{l} are as in it.

Moreover, the condition (ii) in the above Theorem is not the same as [7, Theorem 3], i.e., when R is a serial ring in the second category, he wrote that " R is a serial ring in the second category with $J^{2}=0$ ". But this original condition is not suitable. We give an example. Let R be a serial ring in the second category with $P(R)=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ such that $\left\{f_{1} R, f_{2} R, f_{3} R, f_{4} R\right\}$ is a Kupisch series and $\left|f_{1} R\right|=4,\left|f_{2} R\right|=3,\left|f_{3} R\right|=2,\left|f_{4} R\right|=2$. Then R is a strongly serial ring. So it is right SAH by the following proof. But $J^{2} \neq 0$. In an unpublished lecture note written by M. Harada the condition is already corrected. Now we give a proof with respect to this part for reader's convenience.

Proof. Assume that R is an indecomposable right SAH serial ring in the second category. And we show that R is a strongly serial ring. Let
$\left\{f_{1} R, f_{2} R, \ldots, f_{n} R\right\}$ be a Kupisch series with $P(R)=\left\{f_{i}\right\}_{i=1}^{n}$. We may assume that $f_{1} R$ is injective and $\left|f_{1} R\right| \geq\left|f_{i} R\right|$ for any $i=1, \ldots, n$.

First suppose that $f_{1} J f_{1} \neq 0$. Then we claim that $f_{1} J f_{1}$ is simple as a right $f_{1} R f_{1}$-module. Since $f_{1} J f_{1} \neq 0, f_{1} J^{n} / f_{1} J^{n+1} \cong f_{1} R / f_{1} J$. Then a right R-module $f_{1} J^{n}$ is almost projective (but not projective) because R is right SAH. So $f_{1} R / S_{i}\left(f_{1} R\right)$ is injective for any $i=0, \ldots, n-1$ by [8 , Theorem 1] since the kernel of the projective cover: $f_{1} R \rightarrow f_{1} J^{n}$ is $S_{n}\left(f_{1} R\right)$. Hence
(\dagger) $\left\{f_{1} R / S_{i}\left(f_{1} R\right)\right\}_{i=0}^{n-1}$ is a basic set of indecomposable injective right R modules.
Assume that $f_{1} J^{2} f_{2} \neq 0$. Then $f_{1} J^{n+1} / f_{1} J^{n+2} \cong f_{2} R / f_{2} J$. On the other hand, $f_{1} J^{n+1}$ is almost projective (but not projective) because R is right SAH. Therefore $f_{2} R$ must be injective by [8, Theorem 1]. This contradicts with (\dagger). So $f_{1} J^{2} f_{2}=0$. Hence $f_{1} J f_{1}$ is simple as a right $f_{1} R f_{1}$-module. Therefore $S\left(f_{i} R\right) \cong f_{1} R / f_{1} J$ for any $i=1, \ldots, n$ and $\left|f_{n} R\right|=2$ since $f_{j} R$ is not injective for any $j=2, \ldots, n$ by (\dagger). In consequence, R is a strongly serial ring.

Next suppose that $f_{1} J f_{1}=0$. Then we note that $f_{i} J f_{i}=0$ for any $i=1, \ldots, n$ since $\left|f_{1} R\right| \geq\left|f_{i} R\right|$. Let k be an integer with $S\left(f_{1} R\right) \cong f_{k} R / f_{k} J$. Then we claim that $S\left(f_{j} R\right) \cong f_{k} R / f_{k} J$ for any $j=1, \ldots, k-1$ and $\left|f_{k-1} R\right|=2$. Assume that $S\left(f_{k-1} R\right) \nsubseteq f_{k} R / f_{k} J$. Then there exists an integer $t \geq 2$ with $f_{k-1} J \cong f_{k} R / f_{k} J^{t}$ since $f_{k-1} J / f_{k-1} J^{2} \cong f_{k} R / f_{k} J$. On the other hand, $S\left(f_{1} R\right)\left(\cong f_{k} R / f_{k} J\right)$ is almost projective because R is right SAH. But it is not projective since R is a serial ring in the second category. So $f_{k} R / f_{k} J^{i}$ is injective for any $i=2, \ldots,\left|f_{k} R\right|$ by [8, Theorem 1]. Therefore $f_{k-1} J\left(\cong f_{k} R / f_{k} J^{t}\right)$ is injective since $t \geq 2$. This contradicts with $f_{k-1} J \subset f_{k-1} R$. So $S\left(f_{k-1} R\right) \cong f_{k} R / f_{k} J$. Hence $S\left(f_{j} R\right) \cong f_{k} R / f_{k} J$ for any $j=1, \ldots, k-1$ and $\left|f_{k-1} R\right|=2$ hold since $S\left(f_{1} R\right) \cong f_{k} R / f_{k} J$ and $f_{1} J f_{1}=0$. Moreover, let $S\left(f_{k} R\right) \cong f_{l} R / f_{l} J$ for some l. Then we obtain that $S\left(f_{j} R\right) \cong f_{l} R / f_{l} J$ for any $j=k, \ldots, l-1$ and $\left|f_{l-1} R\right|=2$ by the same argument as $f_{1} R$. Continue this argument, we see that R is a strongly serial ring.

Conversely, assume that R is a strongly serial ring in the second category. We can show that R is right SAH by the same way as the case that R is a strongly serial ring in the first category (see the proof of [7, Theorem 3]).

The purpose of this section is to show the following theorem.
Theorem 2. A ring R is right $S A H$ if and only if R satisfies $\left(*^{\sharp}\right)_{l}$.
To complete the proof, we give a lemma.
Lemma 3. Let R be a ring in [4, Theorem B (iii)] and we use the same
notations as in it. Put $E_{s}:=E\left(R h_{s} / J h_{s}\right)$ and $E_{j}^{(l)}:=E\left(R f_{j}^{(l)} / J f_{j}^{(l)}\right)$ for any $s=$ $1, \ldots, m, l=1, \ldots, k$ and $j=1, \ldots, n_{l}$. Then the following hold for each s, l and j.
(1) $H R h_{s}=R h_{s}, H R f_{i}^{(l)}=R f_{i}^{(l)}, H E_{s}=E_{s}$ and $E\left({ }_{H R H} R h_{s} / J h_{s}\right)=E_{s}$ for any $i=1, \ldots, \alpha_{l}$.
(2) $E_{j}^{(l)} \cong R f_{j^{\prime}}^{(l)} / J^{u} f_{j^{\prime}}^{(l)}$ for some positive integers $j^{\prime}\left(\geq \alpha_{l}+1\right)$ and u and they are uniserial left R-modules.
(3) $S_{l} E_{j}^{(l)}=E_{j}^{(l)}$ and $E\left({ }_{S_{l} R S_{l}} S_{l} R f_{j}^{(l)} / S_{l} J f_{j}^{(l)}\right)=E_{j}^{(l)}$.
(4) If $E_{j}^{(l)} / N$ is an almost injective left R-module for some submodule N of $E_{j}^{(l)}$, then it is almost injective also as a left $S_{l} R S_{l}$-module.
(5) If R satisfies $\left(*^{\sharp}\right)_{l}$, then so does $S_{l} R S_{l}$.

Proof. (1). $H R h_{s}=R h_{s}, H R f_{i}^{(l)}=R f_{i}^{(l)}$ and $H E_{s}=E_{s}$ by [4, Theorem 3.3 $\left.\left(\mathrm{a}^{\prime}\right),\left(\mathrm{b}^{\prime}\right)\right]$. So E_{s} is considered as a left $H R H$-module. And further we can easily see that E_{s} is injective also as a left $H R H$-module by [4, Lemma 3.1 and Theorem $3.3\left(\mathbf{a}^{\prime}\right),\left(\mathbf{b}^{\prime}\right)$] using Baer's criterion and Azumaya's theorem (see, for instance, [1, 16.13. Proposition (2)]), i.e., $E\left({ }_{H R H} R h_{s} / J h_{s}\right)=E_{s}$.
(2). By (${ }^{* *}$) in the proof for "if" part of [4, Theorem 4.1].
(3). $S_{l} E_{j}^{(l)}=E_{j}^{(l)}$ by (2) and [4, Lemma 3.1 and Theorem B (iii)(b)]. So $E_{j}^{(l)}$ is considered as a left $S_{l} R S_{l}$-module. And further we can easily see that $E_{j}^{(l)}$ is $S_{l} R f_{i}^{(l)}$-injective for any $i=1, \ldots, n_{l}$ by [4, Theorem $3.3\left(\mathrm{a}^{\prime}\right)$, ($\left.\left.\mathrm{b}^{\prime}\right)\right]$. Therefore $E_{j}^{(l)}$ is injective as a left $S_{l} R S_{l}$-module using Baer's criterion and Azumaya's theorem (see, for instance, $\left[1,16.13\right.$. Proposition (2)]), i.e., $E\left({ }_{S_{l} R S_{l}} S_{l} R f_{j}^{(l)} / S_{l} J f_{j}^{(l)}\right)=E_{j}^{(l)}$.
(4). If $E_{j}^{(l)} / N$ is injective as a left R-module, it is also injective as a left $S_{l} R S_{l}$-module by (3). Assume that a (uniserial) left R-module $E_{j}^{(l)} / N$ is almost injective but not injective. Then there is a positive integer p such that $J^{p} E\left(E_{j}^{(l)} / N\right)=E_{j}^{(l)} / N$ and $J^{i} E\left(E_{j}^{(l)} / N\right)$ is projective for any $i=0, \ldots, p-1$ by [8, Theorem $\left.1^{\sharp}\right]$. Let $j^{\prime \prime}$ be an integer with $J^{p-1} E\left(E_{j}^{(l)} / N\right) \cong R f_{j^{\prime \prime}}^{(l)}$. We note that $\left\{R f_{n_{l}}^{(l)}, R f_{n_{l}-1}^{(l)}, \ldots, R f_{1}^{(l)}\right\}$ is a Kupisch series of left R-modules by [4, Lemma 3.4 (1)]. So $J^{i} E\left(E_{j}^{(l)} / N\right) \cong R f_{j^{\prime \prime}+p-1-i}^{(l)}$ for any $i=0, \ldots, p-1$. Further $j^{\prime \prime} \geq \alpha_{l}+1$ from (2) since $J f_{j^{\prime \prime}}^{(l)}=J^{p} E\left(E_{j}^{(l)} / N\right)=E_{j}^{(l)} / N$. Therefore $J^{i} E\left(E_{j}^{(l)} / N\right)$ is projective also as a left $S_{l} R S_{l}$-module for any $i=0, \ldots, p-1$ by [4, Lemma 3.1 and Theorem B (iii)(b)] since $j^{\prime \prime}+p-1-i \geq j^{\prime \prime} \geq \alpha_{l}+1$. Hence $E_{j}^{(l)} / N$ is almost injective also as a left $S_{l} R S_{l}$-module by (3) and [8, Theorem 1^{\sharp}].
(5). By (3) and (4).

Proof of Theorem 2. (\Rightarrow). We may assume that R is an indecomposable ring in (i), (ii) or (iii) of Theorem A.

Suppose that R is a hereditary ring, then it is well known that $\left(*^{\sharp}\right)_{l}$ holds (see, for instance, [4, §1 Preliminaries]).

Suppose that R is a strongly serial ring with a Kupisch series $\left\{f_{1,1} R, f_{1,2} R, \ldots, f_{1, \beta_{1}} R, f_{2,1} R, \ldots, f_{m, \beta_{m}} R\right\}$, where $P(R)=\left\{f_{i, j}\right\}_{i=1, j=1}^{m \beta_{i}}$ and $f_{i, j} R$ is injective iff $j=1$. Let E be an injective left R-module and let N be a proper submodule of E. First we consider that E is indecomposable. Then $E / N \cong R f_{m, \beta_{m}} / J^{v} f_{m, \beta_{m}}$ or $\cong R f_{u, 1} / J^{v} f_{u, 1}$ by Lemma 1 (5), where u and v are positive integers. If $v \geq 2$ or $E / N \cong R f_{m, \beta_{m}} / J f_{m, \beta_{m}}$, then E / N is injective again by Lemma 1 (5). Assume that $E / N \cong R f_{u, 1} / J f_{u, 1}$ for some $u \in\{1, \ldots, m-1\}$. Then $E / N \cong S\left(R f_{u+1,1}\right)$ by Lemma 1 (4). And $E(E / N) \cong R f_{u+1,1}$ with $J^{\beta_{u}} E(E / N)=$ E / N and $J^{j} E(E / N) \cong R f_{u, \beta_{u}-j+1}$, i.e., it is projective, for any $j=1, \ldots, \beta_{u}-1$ by Lemma 1 (3), (4), (5). Therefore E / N is almost injective by [8, Theorem 1^{\sharp}]. If $E / N \cong R f_{m, 1} / J f_{m, 1}$ and $\left|f_{m, \beta_{m}} R\right|=1$ (resp. $=2$), then $E / N \cong S\left(R f_{m, \beta_{m}}\right)$ (resp. $\left.\cong S\left(R f_{1,1}\right)\right)$. And we can see that E / N is almost injective by the same way as the case that $E / N \cong R f_{u, 1} / J f_{u, 1}$ for some $u \in\{1, \ldots, m-1\}$. In consequence, E / N is (injective or) almost injective, if E is indecomposable. Next we consider that E is not indecomposable. Since R is a serial ring, we can represent $N=\bigoplus_{i \in I} N_{i}$, where N_{i} is a nonzero uniserial submodule of N for any $i \in I$. There is a direct summand E^{\prime} of E with $E=E^{\prime} \oplus\left(\bigoplus_{i \in I} E\left(N_{i}\right)\right)$. Then $E / N \cong E^{\prime} \oplus$ $\left(\bigoplus_{i \in I} E\left(N_{i}\right) / N_{i}\right)$. Therefore E / N is a direct sum of an injective module and finitely generated almost injective modules because a uniserial module $E\left(N_{i}\right) / N_{i}$ is (injective or) almost injective for any $i \in I$ by the case that E is indecomposable.

Suppose that R is a ring in Theorem A (iii). Let E be an injective left R-module and let N be a submodule of E. We may assume that $E=$ $\left(\bigoplus_{s=1}^{m} E\left(R h_{s} / J h_{s}\right)^{u_{s}}\right) \oplus\left(\oplus_{l=1, j=1}^{k n_{l}} E\left(R f_{j}^{(l)} / J f_{j}^{(l)}\right)^{v_{j}^{l}}\right)$, where u_{s} and v_{j}^{l} are nonnegative integers. Put $\quad E_{1}:=\bigoplus_{s=1}^{m} E\left(R h_{s} / J h_{s}\right)^{u_{s}} \quad$ and $\quad E_{2}:=\bigoplus_{l=1, j=1}^{k n_{l}} E$ $\left(R f_{j}^{(l)} / J f_{j}^{(l)}\right)^{v_{j}^{l}}$. For each $i=1,2$, let $\pi_{i}: E \rightarrow E_{i}$ be the projection with respect to $E=E_{1} \oplus E_{2}$ and put $N^{i}:=\pi_{i}(N)$ and $N_{i}:=N \cap E_{i}$. Then there is an isomorphism $\eta: N^{1} / N_{1} \rightarrow N^{2} / N_{2}$ with $N=\left\{x+y_{x} \mid x \in N^{1}, y_{x} \in N^{2}\right.$ with $y_{x}+N_{2}=$ $\left.\eta\left(x+N_{1}\right)\right\}+N_{1}+N_{2}$ (see, for instance, [6, p449] or [3, p54]). And we claim that there exists a homomorphism $\eta^{\prime}: N^{1} / N_{1} \rightarrow N^{2}$ such that $v_{2} \eta^{\prime}=\eta$, where $v_{2}: N^{2} \rightarrow N^{2} / N_{2}$ is the natural epimorphism. Let H and S_{l} as in Theorem A (iii). By Lemmas 3 (1), (3) $H N^{1}=N^{1}$ and $\left(\sum_{l=1}^{k} S_{l}\right) N^{2}=N^{2}$. So we can represent $N^{1} / N_{1} \xlongequal{\eta} N^{2} / N_{2} \cong \bigoplus_{l=1}^{k}\left(R f_{1}^{(l)} / J f_{1}^{(l)}\right)^{w_{l}}$ by the definitions of H and S_{l}, where w_{1}, \ldots, w_{k} are non-negative integers. On the other hand, $\left(\sum_{l=1}^{k} f_{1}^{(l)}\right) N^{2} \subseteq$ $\left(\sum_{l=1}^{k} f_{1}^{(l)}\right) E_{2} \subseteq S\left(E_{2}\right)$ by [4, Theorem $\left.3.3\left(\mathrm{a}^{\prime}\right)\right]$ since $\left(\sum_{l=1}^{k} S_{l}\right) E_{2}=E_{2}$ from Lemma 3 (3). Hence there exists a homomorphism $\eta^{\prime}: N^{1} / N_{1} \rightarrow N^{2}$ such
that $v_{2} \eta^{\prime}=\eta$. Then we note that $N=\left\{x+y_{x} \mid x \in N^{1}, y_{x} \in N^{2}\right.$ with $y_{x}+N_{2}=$ $\left.\eta\left(x+N_{1}\right)\right\}+N_{1}+N_{2}=\left\{x+\eta^{\prime}\left(x+N_{1}\right) \mid x \in N^{1}\right\}+N_{2}$. Let $\nu_{1}: N^{1} \rightarrow N^{1} / N_{1}$ be the natural epimorphism and put $\psi:=\eta^{\prime} v_{1}$. Then we obtain a homomorphism $\tilde{\psi}: E_{1} \rightarrow E_{2}$ with $\left.\tilde{\psi}\right|_{N^{1}}=\psi$. Put $E_{1}(\tilde{\psi}):=\left\{x+\tilde{\psi}(x) \mid x \in E_{1}\right\}$ and $N^{1}(\tilde{\psi}):=$ $\left\{x+\tilde{\psi}(x) \mid x \in N^{1}\right\}$. Then $E=E_{1}(\tilde{\psi}) \oplus E_{2}$ and $N=N^{1}(\tilde{\psi}) \oplus N_{2}$ hold because $N=\left\{x+\eta^{\prime}\left(x+N_{1}\right) \mid x \in N^{1}\right\}+N_{2}=\left\{x+\tilde{\psi}(x) \mid x \in N^{1}\right\}+N_{2}$. Therefore $E / N \cong$ $\left(E_{1}(\tilde{\psi}) / N^{1}(\tilde{\psi})\right) \oplus E_{2} / N_{2} \cong E_{1} / N^{1} \oplus E_{2} / N_{2}$ since the restrictions of π_{1} induce isomorphisms $E_{1}(\tilde{\psi}) \cong E_{1}$ and $N^{1}(\tilde{\psi}) \cong N^{1}$. Now E_{1} / N^{1} is injective by Lemma 3 (1) and Theorem A (iii)(z). And E_{2} / N_{2} is a direct sum of (uniserial) almost injective modules by Lemma 3 (3), Theorem A (iii)(x) and the case that R is a strongly serial ring. In consequence, E / N is a direct sum of an injective module and finitely generated almost injective modules.
(\Leftarrow). We may assume that R is an indecomposable ring satisfying $\left(*^{\sharp}\right)_{l}$. And we show that R is a ring in either (i), (ii) or (iii) of Theorem A.
R satisfies the condition $(\sharp)_{l}$. So we may assume that R is a ring in either (i), (ii) or (iii) of [4, Theorem B] by [4, Theorem 4.1].

Suppose that R is a serial ring in the first category. Let $P(R)=\left\{g_{i, j}\right\}_{i=1, j=1}^{m, y_{i}}$ such that $\left\{R g_{1,1}, R g_{1,2}, \ldots, R g_{1, \gamma_{1}}, R g_{2,1}, \ldots, R g_{m, \gamma_{m}}\right\}$ is a Kupisch series and $R g_{i, j}$ is injective iff $j=1$. If $m=1$, then clearly R is a strongly serial ring. Assume that $m \geq 2$. For each $i=2, \ldots, m, R g_{i, 1} / J g_{i, 1}$ is almost injective by $\left(*^{\sharp}\right)_{l}$. But it is not injective since there is a monomorphism: $R g_{i, 1} / J g_{i, 1} \rightarrow$ $R g_{i-1, \gamma_{i-1}} / J^{2} g_{i-1, \gamma_{i-1}}$. Put $\quad p:=\left|E\left(R g_{i, 1} / J g_{i, 1}\right)\right|$. Then $\quad J^{p-1} E\left(R g_{i, 1} / J g_{i, 1}\right)=$ $R g_{i, 1} / J g_{i, 1}$ and $J^{j} E\left(R g_{i, 1} / J g_{i, 1}\right)$ is projective for any $j=0, \ldots, p-2$ by [8, Theorem $\left.1^{\sharp}\right]$. So, in particular, $\left|J^{p-2} E\left(R g_{i, 1} / J g_{i, 1}\right)\right|=2$ and $J^{p-2} E\left(R g_{i, 1} / J g_{i, 1}\right) \cong$ $R g_{i-1, \gamma_{i-1}}$ because $J g_{i-1, \gamma_{i-1}} / J^{2} g_{i-1, \gamma_{i-1}} \cong R g_{i, 1} / J g_{i, 1}$. Therefore $\left|R g_{i-1, \gamma_{i-1}}\right|=2$. Further $\left|R g_{m, \gamma_{m}}\right|=1$ since R is a serial ring in the first category. Hence R is a strongly serial ring.

Next suppose that R is a serial ring in the second category. By the same argument as the case that R is a serial ring in the first category with $m \geq 2$, we see that R is a strongly serial ring.

Last suppose that R is a ring in [4, Theorem B (iii)] and we use the same notations as in it. By Theorem A and [4, Lemma 3.1] we only show that $S_{l} R S_{l}$ is a strongly serial ring and $\alpha_{l}=1$ for any $l=1, \ldots, k$. A serial ring $S_{l} R S_{l}$ satisfies $\left(*^{\sharp}\right)_{l}$ by Lemma 3 (5). So $S_{l} R S_{l}$ is a strongly serial ring by the above case. Next we show that $\alpha_{l}=1 . R f_{\alpha_{l}}^{(l)}$ has a simple subfactor which is isomorphic to $R h_{s} / J h_{s}$ for some $s \in\{1, \ldots, m\}$ by the definition of α_{l}. Therefore there exist a submodule N of $R f_{\alpha_{l}}^{(l)}$ and a nonzero homomorphism $\phi: N \rightarrow R h_{s} / J h_{s}$. Put $E_{s}:=E\left(R h_{s} / J h_{s}\right)$ and let $\tilde{\phi}: R f_{\alpha_{l}}^{(l)} \rightarrow E_{s}$ be an extension homomorphism of ϕ. Then we claim
that $\tilde{\phi}\left(f_{\alpha_{l}}^{(l)}\right) \in E_{s}-J\left(E_{s}\right)$. Let $\bigoplus_{i=1}^{p} R e_{i}$ be the projective cover of E_{s}, where $\left\{e_{1}, \ldots, e_{p}\right\} \subseteq P(R)$. Then $h_{s} R e_{i} \neq 0$ for any $i=1, \ldots, p$. So $e_{i} \notin\left\{f_{\alpha_{l}+1}^{(l)}, \ldots, f_{n_{l}}^{(l)}\right\}$ because $h_{s} R\left(f_{\alpha_{l}+1}^{(l)}+\cdots+f_{n_{l}}^{(l)}\right)=0$ by the definition of α_{l}. On the other hand, if $g \in P(R)$ with $f_{\alpha_{l}}^{(l)} J g \neq 0$, then $g \in\left\{f_{\alpha_{l}+1}^{(l)}, \ldots, f_{n_{l}}^{(l)}\right\}$ by [4, Theorem $\left.3.3\left(\mathrm{a}^{\prime}\right)\right]$. Hence $f_{\alpha_{l}}^{(l)} J e_{i}=0$ for any $i=1, \ldots, p$, i.e., $f_{\alpha_{l}}^{(l)} J\left(E_{s}\right)=0$. Therefore $\tilde{\phi}\left(f_{\alpha_{l}}^{(l)}\right) \in E_{s}-J\left(E_{s}\right)$. So we have a submodule X of E_{s} with $E_{s} / X \cong R f_{\alpha_{l}}^{(l)} / J f_{\alpha_{l}}^{(l)}$. Therefore $R f_{\alpha_{l}}^{(l)} / J f_{\alpha_{l}}^{(l)}$ is almost injective by $\left(*^{\sharp}\right)_{l}$. But $R f_{\alpha_{l}}^{(l)} / J f_{\alpha_{l}}^{(l)}$ is not injective by Lemma 3 (2). Hence, put $E_{\alpha_{l}}^{(l)}:=E\left(R f_{\alpha_{l}}^{(l)} / J f_{\alpha_{l}}^{(l)}\right)$ and $q:=\left|E_{\alpha_{l}}^{(l)}\right|$, then $J^{q-1} E_{\alpha_{l}}^{(l)} \cong R f_{\alpha_{l}}^{(l)} / J f_{\alpha_{l}}^{(l)}$ and $J^{i} E_{\alpha_{l}}^{(l)}$ is projective for any $i=0, \ldots, q-2$ by [8, Theorem $\left.1^{\sharp}\right]$. So, in particular, $S\left(R f_{\alpha_{l}+1}^{(l)}\right) \cong R f_{\alpha_{l}}^{(l)} / J f_{\alpha_{l}}^{(l)}$ since $\left\{R f_{n_{l}}^{(l)}, R f_{n_{l}-1}^{(l)}, \ldots, R f_{1}^{(l)}\right\}$ is a Kupisch series of left R-modules by [4, Lemma 3.4 (1)]. But $S\left(R f_{\alpha_{l}+1}^{(l)}\right) \cong R f_{1}^{(l)} / J f_{1}^{(l)}$ by [4, Lemma 3.4 (2)]. Hence $\alpha_{l}=1$.

A right SAH ring does not always satisfy $\left(*^{\sharp}\right)_{r}$ and a ring satisfying $\left(*^{\sharp}\right)_{r}$ is not always a right SAH ring. Now we give an example.

Example 4. Consider a factor ring

$$
R:=\left[\begin{array}{llllll}
D & D & 0 & D & \overline{0} & \overline{0} \\
0 & D & 0 & D & \overline{0} & \overline{0} \\
0 & 0 & D & D & \overline{0} & \overline{0} \\
0 & 0 & 0 & D & D & \overline{0} \\
0 & 0 & 0 & 0 & D & D \\
0 & 0 & 0 & 0 & 0 & D
\end{array}\right]
$$

where D is a division ring. And we consider that R is a ring by the ordinary addition and the multiplication of matrices. Put $H:=e_{1}+e_{2}+e_{3}+e_{4}$ and $S_{1}:=$ $e_{4}+e_{5}+e_{6}$, where e_{i} is the (i, i)-matrix unit for any i.

Then $H R H$ is a hereditary ring and $S_{1} R S_{1}$ is a strongly serial ring in the first category. And R is a ring in Theorem A(iii), i.e., R is a right SAH ring.

But we claim that R does not satisfies $\left(*^{\sharp}\right)_{r} . e_{4} R$ is an injective right R module with $e_{4} R / S\left(e_{4} R\right) \cong e_{4} R / e_{4} J$. And $e_{4} R / S\left(e_{4} R\right)$ is not injective. Further $e_{4} R / S\left(e_{4} R\right)$ is not almost injective by [8, Corollary 1^{\sharp}] since $e_{1} R \oplus e_{3} R$ is a projective cover of $E\left(e_{4} R / e_{4} J\right)$.

By Theorem $2 R$ satisfies $\left(*^{\sharp}\right)_{l}$ but is not a left SAH ring.

3. Stronger Conditions than that of a SAH Ring

The following is a structure theorem of an artinian ring which satisfies $(* *)_{r}$ and $(* * *)_{r}$ which are stronger conditions than that of a right SAH ring:

Theorem B ([7, Theorem 4]). For a ring the following are equivalent:
(a) It satisfies $(* *)_{r}$;
(b) it satisfies $(* * *)_{r}$;
(c) it is a direct sum of the following rings:
(i) Hereditary rings which are not serial;
(ii) serial rings with the radical square zero;
(iii) rings R in Theorem A (iii) such that HRH is not a serial ring and $J\left(S_{l} R S_{l}\right)^{2}=0$ for any $l=1, \ldots, k$, where H and S_{l} are as in Theorem \boldsymbol{A} (iii).

The purpose of this section is to show the following theorem.

Theorem 5. For a ring R the following are equivalent:
(a) R satisfies $(* *)_{r}\left(\Leftrightarrow(* * *)_{r}\right)$;
(b) R satisfies $\left(*{ }^{\sharp}\right)_{l}$;
(c) R satisfies $(* * * \sharp)_{l}$.

To complete the proof, we give a lemma.

Lemma 6. Let R be a ring in [4, Theorem B (iii)] and we use the same notations as in it.
(1) Suppose that $\alpha_{l}=1$. And let M be an indecomposable left R-module with $H M=M$. Then the following hold.
(i) $R f_{1}^{(l)} / J f_{1}^{(l)}$ is injective as a left HRH-module but not injective as a left R-module for any l.
(ii) If M is injective or finitely generated almost injective as a left R module, then M is injective or finitely generated almost injective also as a left HRH-module.
(iii) If M is finitely generated almost injective but not injective as a left HRH-module, then M is finitely generated almost injective but not injective also as a left R-module.
(2) Suppose that $\alpha_{l}=1$. If R satisfies $\left(* *^{\sharp}\right)_{l}$, then HRH also satisfies $\left({ }^{* *}\right)_{l}$.
(3) Let M be an indecomposable left R-module with $S_{l} M=M$ for some l. Then M is almost injective but not injective as a left R-module if and only if M is almost injective but not injective as a left $S_{l} R S_{l_{-}}$ module.
(4) If R satisfies $\left(* *^{\sharp}\right)_{l}$, then $S_{l} R S_{l}$ also satisfies $\left(*^{\sharp}\right)_{l}$ for any $l=1, \ldots, k$.

Proof. Put $E_{s}:=E\left(R h_{s} / J h_{s}\right)$ and $E_{j}^{(l)}:=E\left(R f_{j}^{(l)} / J f_{j}^{(l)}\right)$ for any $s=1, \ldots, m$, $l=1, \ldots, k$ and $j=1, \ldots, n_{l}$.
(1)(i). Since $\alpha_{l}=1, \quad H=\sum_{s=1}^{m} h_{s}+\sum_{l=1}^{k} f_{1}^{(l)}$. So we can easily see that $R f_{1}^{(l)} / J f_{1}^{(l)}$ is injective as a left $H R H$-module by [4, Lemma 2.3 and Theorem 3.3 $\left(\mathrm{a}^{\prime}\right),\left(\mathrm{b}^{\prime}\right)$] using Baer's criterion. And $R f_{1}^{(l)} / J f_{1}^{(l)}$ is not injective as a left R module by Lemma 3 (2).
(ii). First assume that M is injective as a left R-module. Then $M \cong E_{s}$ for some s by (i) since $H M=M$. Therefore M is injective also as a left $H R H$ module by Lemma 3 (1).

Next assume that M is finitely generated almost injective but not injective as a left R-module. Then $S\left({ }_{R} M\right)$ is simple by [8, Theorem $\left.1^{\sharp}\right]$. And $S\left({ }_{R} M\right) \cong$ $R f_{1}^{(l)} / J f_{1}^{(l)}$ for some l or $\cong R h_{s} / J h_{s}$ for some s since $H M=M$. If $S\left({ }_{R} M\right) \cong$ $R f_{1}^{(l)} / J f_{1}^{(l)}$ for some l, then M is simple, i.e., $M \cong R f_{1}^{(l)} / J f_{1}^{(l)}$, by [4, Theorem 3.3 $\left.\left(\mathrm{a}^{\prime}\right),\left(\mathrm{b}^{\prime}\right)\right]$ since $\alpha_{l}=1$. Therefore M is injective as a left $H R H$-module by (i). So we consider that $S\left({ }_{R} M\right) \cong R h_{s} / J h_{s}$ for some s. Then there exists a positive integer p such that $M \cong J^{p} E_{s}$ and $J^{i} E_{s}$ is projective as a left R-module for any $i=0, \ldots, p-1$ by [8, Theorem $\left.1^{\sharp}\right]$. And $J^{j} E_{s}=J(H R H)^{j} E_{s}$ for any $j=0, \ldots, p$ and $J^{i} E_{s}$ is projective also as a left $H R H$-module for any $i=0, \ldots, p-1$ by Lemma 3 (1). So M is almost injective but not injective as a left HRH-module by [8, Theorem $\left.1^{\sharp}\right]$.
(iii). $S\left({ }_{H R H} M\right)$ is simple by $\left[8\right.$, Theorem $\left.1^{\sharp}\right]$. But $S\left({ }_{H R H} M\right) \nRightarrow H R f_{1}^{(l)} / H J f_{1}^{(l)}$ $\left(=R f_{1}^{(l)} / J f_{1}^{(l)}\right)$ for any l by (i) because M is not injective as a left HRH-module. So $S\left({ }_{H R H} M\right) \cong H R h_{s} / H J h_{s}$ for some s since $H M=M$. Then there is a positive integer p such that $M \cong J(H R H)^{p} E_{s}$ and $J(H R H)^{i} E_{s}$ is projective as a left $H R H$-module for any $i=0, \ldots, p-1$ by [8, Theorem $\left.1^{\sharp}\right]$ and Lemma 3 (1). And $J(H R H)^{j} E_{s}=J^{j} E_{s}$ for any $j=0, \ldots, p$ and $J(H R H)^{i} E_{s}$ is projective also as a left R-module for any $i=0, \ldots, p-1$ by Lemma 3 (1). So M is almost injective but not injective as a left R-module by [8 , Theorem 1^{\sharp}].
(2). Let M be an injective or finitely generated almost injective left $H R H$ module. We may assume that M is indecomposable and not simple.

Assume that M is injective as a left $H R H$-module. Then $M \cong E_{s}$ for some s by [4, Theorem $3.3\left(\mathrm{a}^{\prime}\right)$, $\left.\left(\mathrm{b}^{\prime}\right)\right]$ and Lemma 3 (1) since $\alpha_{l}=1$ and M is not simple. Therefore M is injective also as a left R-module. So $M / S(M)$ is a direct sum of an injective left R-module and finitely generated almost injective left R-modules by $\left(* *{ }^{\sharp}\right)_{l}$. Hence $M / S(M)$ is a direct sum of an injective left $H R H$-module and finitely generated almost injective left $H R H$-modules by (1)(ii).

Next assume that M is finitely generated almost injective but not injective as a left $H R H$-module. Then M is almost injective as a left R-module by (1)(iii). So
$M / S(M)$ is a direct sum of an injective left R-module and finitely generated almost injective left R-modules by $\left(* *^{\sharp}\right)_{l}$. Hence $M / S(M)$ is a direct sum of an injective left $H R H$-module and finitely generated almost injective left $H R H$ modules by (1)(ii).
(3). First we note that M is a uniserial left R - and $S_{l} R S_{l}$-module since $S_{l} M=M, M$ is indecomposable and a ring $S_{l} R S_{l}$ is serial.

Assume that M is almost injective but not injective as a left R-module. Then $S(M)$ is simple by [8, Theorem $\left.1^{\sharp}\right]$. So $E(M) \cong E_{j}^{(l)}$ for some j since $S_{l} M=M$. And there exists a positive integer p such that $M \cong J^{p} E_{j}^{(l)}$ and $J^{i} E_{j}^{(l)}$ is projective as a left R-module for any $i=0, \ldots, p-1$ by [8, Theorem $\left.1^{\sharp}\right]$. Now $S_{l} E_{j}^{(l)}=E_{j}^{(l)}$ by Lemma 3 (3). And $S_{l} \cdot S\left(R f_{t}^{(l)}\right) \neq S\left(R f_{t}^{(l)}\right)$ for any $t \in\left\{1, \ldots, \alpha_{l}\right\}$ by [4, Lemma 3.1 and Lemma 3.4 (1)]. So there is $j_{i} \in\left\{\alpha_{l}+1, \ldots, n_{l}\right\}$ with $J^{i} E_{j}^{(l)} \cong$ $R f_{j_{i}}^{(l)}$ for any $i=0, \ldots, p-1$. Therefore $J^{i} E_{j}^{(l)} \cong S_{l} R f_{j_{i}}^{(l)}$, i.e., $J^{i} E_{j}^{(l)}$ is projective also as a left $S_{l} R S_{l}$-module, by [4, Theorem B (iii)(b) and Lemma 3.1] since $j_{i} \geq \alpha_{l}+1$. Hence M is almost injective but not injective as a left $S_{l} R S_{l}$-module by [8, Theorem $\left.1^{\sharp}\right]$ and Lemma 3 (3).

We can show the converse by the same way.
(4). By the same way as the proof of (2) we can show using (3) and Lemma 3 (3).

Proof of Theorem 5. We may assume that R is an indecomposable ring.
(a) \Rightarrow (c). We may assume that R is a ring in either (i), (ii) or (iii) in Theorem B (c).

Suppose that R is a hereditary ring which are not serial. Then $R g$ is not injective for any $g \in P(R)$ by [7, Corollary 3]. Therefore every finitely generated almost injective left R-module is injective by [8, Theorem 1^{\sharp}]. So $\left(* * *^{\sharp}\right)_{l}$ holds since R is a hereditary ring.

Suppose that R is a serial ring with $J^{2}=0$. Let $\left\{R f_{1}, R f_{2}, \ldots, R f_{n}\right\}$ be a Kupisch series with $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}=P(R)$. If R is a serial ring in the first (resp. second) category, then $\left\{R f_{j}, R f_{1} / J f_{1}\right\}_{j=1}^{n-1}$ (resp. $\left\{R f_{j}\right\}_{j=1}^{n}$) is a basic set of indecomposable injective left R-modules. So $\left\{R f_{j}, R f_{n}, R f_{j} / J f_{j}\right\}_{j=1}^{n-1}$ (resp. $\left\{R f_{j}, R f_{j} / J f_{j}\right\}_{j=1}^{n}$) is a basic set of finitely generated almost injective left R modules by [8, Theorem 1^{\sharp}]. Therefore because R is a serial ring with $J^{2}=0$, every factor module of a finitely generated almost injective module is represented as $\oplus_{j=1}^{n-1}\left(\left(R f_{j}\right)^{u_{j}} \oplus\left(R f_{n}\right)^{u_{n}} \oplus\left(R f_{j} / J f_{j}\right)^{v_{j}}\right) \quad$ (resp. $\left.\quad \oplus_{j=1}^{n}\left(\left(R f_{j}\right)^{u_{j}} \oplus\left(R f_{j} / J f_{j}\right)^{v_{j}}\right)\right)$, where u_{j}, u_{n}, v_{j} are non-negative integers. Hence $\left(* * *^{\sharp}\right)_{l}$ holds.

Last suppose that R is a ring in Theorem B (c)(iii). We use the same notations as in Theorem A (iii). It is obvious that $S_{l} R S_{l}$ is a serial ring in the first category
with a Kupisch series $\left\{S_{l} R f_{n_{l}}^{(l)}, S_{l} R f_{n_{l}-1}^{(l)}, \ldots, S_{l} R f_{1}^{(l)}\right\}$ of left $S_{l} R S_{l}$-modules from Theorem A (iii)(x). So $S_{l} R f_{j}^{(l)}$ is injective as a left $S_{l} R S_{l}$-module for any l and $j=2, \ldots, n_{l}$ since $J\left(S_{l} R S_{l}\right)^{2}=0$. Therefore $R f_{j}^{(l)}$ is an injective left R-module with $\left|R f_{j}^{(l)}\right|=2$ for any l and $j=2, \ldots, n_{l}$ by Lemma 3 (3). On the other hand, we claim that $R h_{s}$ and $R f_{1}^{(l)}$ are not injective for any s and l. Assume that $R h_{s}$ (resp. $R f_{1}^{(l)}$) is injective for some s (resp. l). Then $R h_{s}$ (resp. $\left.R f_{1}^{(l)}\right) \cong E_{s^{\prime}}$ for some s^{\prime} by Lemma 3 (1) and Theorem A (iii)(y). Therefore $R h_{s}$ (resp. $R f_{1}^{(l)}$) is injective also as a left $H R H$-module by Lemma 3 (1), i.e., there exists an injective projective left $H R H$-module. So $H R H$ is a serial ring by [7, Corollary 3] and Theorem A (iii)(z). But $H R H$ is not serial by assumption, a contradiction. In consequence, we obtain that $\left\{R f_{j}^{(l)}\right\}_{l=1, j=2}^{k n_{l}}$ is a basic set of indecomposable injective projective left R-modules. Therefore $\left\{R f_{j}^{(l)}, J f_{j}^{(l)}\left(\cong R f_{j-1}^{(l)} / J f_{j-1}^{(l)}\right)\right\}_{l=1, j=2}^{k n_{l}}$ is a basic set of finitely generated indecomposable almost injective modules by [8 , Theorem $\left.1^{\sharp}\right]$. So $\left(* * *^{\sharp}\right)_{l}$ holds by the same reason as the case that R is a serial ring with $J^{2}=0$.
(c) \Rightarrow (b). Clear.
(b) $\Rightarrow(\mathrm{a})$. Since R satisfies $\left(* *^{\sharp}\right)_{l}$, it satisfies $(\sharp)_{l}$, i.e., R is a right almost hereditary ring by [4, Theorem 4.1]. So we may assume that R is a ring in either (i), (ii) or (iii) of [4, Theorem B]. And we show that it is a ring in either (i), (ii) or (iii) of Theorem B (c).

Suppose that R is a hereditary ring. Assume that $R g$ is not injective for any $g \in P(R)$, then R is not serial, i.e., R is a ring in Theorem B (c)(i). Assume that there is $f \in P(R)$ with $R f$ injective, then R is a serial ring by [7, Corollary $3]$.

Suppose that R is a serial ring. Assume that there exists $f \in P(R)$ with $|R f| \geq 3$. Then further we may assume that $R f$ is injective. Jf is almost injective by $\left[8\right.$, Theorem $\left.1^{\sharp}\right]$. And $J f / S(R f)$ is also almost injective by $\left(* *^{\sharp}\right)_{l}$. But $J f / S(R f)$ is not injective since there is an inclusion map: $J f / S(R f) \rightarrow R f / S(R f)$. Therefore there exist $e \in P(R)$ and a positive integer p such that $R e \cong E(J f / S(R f))$, $J^{p} e \cong J f / S(R f)$ and $J^{i} e$ is projective for any $i=0, \ldots, p-1$ by [8, Theorem $\left.1^{\sharp}\right]$. So, in particular, $J^{p-1} e$ is projective. But $J^{p-1} e \cong R f / S(R f)$, a contradiction.

Suppose that R is a ring in [4, Theorem B (iii)]. And let H and S_{l} as in it. Then $S_{l} R S_{l}$ satisfies $\left(* *^{\sharp}\right)_{l}$ for any $l=1, \ldots, k$ by Lemma 6 (4). Therefore $J\left(S_{l} R S_{l}\right)^{2}=0$ from the previous case that R is a serial ring. So $\alpha_{l}=1$ since $E\left(R f_{1}^{(l)} / J f_{1}^{(l)}\right) \cong R f_{j}^{(l)} / J^{u} f_{j}^{(l)}$ for some $j\left(\geq \alpha_{l}+1\right)$ and u by Lemma 3 (2). Therefore $H R H$ also satisfies $\left(* *^{\sharp}\right)_{l}$ by Lemma 6 (2). Hence $H R H$ is not serial or serial with $J(H R H)^{2}=0$ by the previous two cases. In consequence, R is a ring in Theorem B (c)(ii) or (iii).

References

[1] F. W. Anderson and K. R. Fuller: Rings and categories of modules (second edition), Graduate Texts in Math. 13, Springer-Verlag (1991).
[2] M. Auslander: On the dimension of modules and algebras (III), global dimensions, Nagoya Math. J. 9 (1995), 66-77.
[3] Y. Baba and M. Harada, On almost M-projectives and almost M-injectives, Tsukuba J. Math. 14 No. 1 (1990), 53-69.
[4] Y. Baba and H. Miki: Symmetry of almost hereditary rings, Math. J. of Okayama Univ. 42 (2000), 29-54.
[5] M. Harada: Hereditary semi-primary rings and tri-angular matrix rings, Nagoya Math. J. 27 (1966), 463-484.
[6] and A. Tozaki: Almost M-projectives and Nakayama rings, J. Algebra 122 (1989), 447-474.
[7] -: Almost hereditary rings, Osaka J. Math. 28 (1991), 793-809.
[8] -: Almost projective modules, J. Algebra 159 (1993), 150-157.
[9] -: Almost QF rings and almost QF ${ }^{\sharp}$ rings, Osaka J. Math. 30 (1993), 887-892.
[10] I. Murase: On the structure of generalized uni-serial rings I, Sci. Paper College Gen. Ed. Univ. Tokyo 13 (1963), 1-21.
[11] J. J. Rotman: An introduction to homological algebra, Academic Press (1979).
[12] R. Wisbauer: Foundations of module and ring theory, Gordon and Breach Science Publishers (1991).

Department of Mathematics
Osaka Kyoiku University
Kashiwara Osaka
582-8582 Japan

[^0]: Received November 9, 2000.

