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INTEGRAL GEOMETRY ON PRODUCT OF SPHERES

By

Hong Jae KANG

1. Introduction and Result

One of the oldest results in integral geometry is the Poincar\’e formula for the
average of the intersection number of two curves. Many differential geometers
have studied the Poincar\’e formula from various points of view. In particular,
R. Howard [1] generalized this formula in Riemannian homogeneous spaces and
obtained the following formula.

THEOREM 1.1 [1]. Let $G/K$ be a Riemannian homogeneous space with a G-
invariant Riemannian metric,. and let $M$ and $N$ be submanifolds of $G/K$ with
$\dim M+\dim N=\dim(G/K)$ . Assume that $G$ is unimodular and for almost all
$g\in G,$ $M$ and $gN$ intersect transversely. Then

$\int_{G}\#(M\cap gN)d\mu_{G}(g)=\int_{M\times N}\sigma_{K}(T_{x}^{\perp}M, T_{y}^{\perp}N)d\mu_{M\times N}(x, y)$ ,

where $\#(X)$ denotes the number of points in $X$ and $\sigma_{K}(T_{x}^{\perp}M, T_{y}^{\perp}N)$ is defined by
(2.1) below.

This theorem plays an important role in this paper. In the case that
$G/K=R^{2}$ , this formula implies the classical Poincar\’e’s one. In the case that $G/K$

is a space of constant curvature, the isotropy group $K$ acts transitively on the
Grassmann manifolds consisting of subspaces in $T_{0}(G/K)$ , so $\sigma_{K}(T_{x^{\perp}}M, T_{y^{\perp}}N)$

on the right side of the above integral in Theorem 1.1 is constant. Namely,
$\sigma_{K}(V, W)$ is independent on $V$ and $W$. Hence we can have clearly expressed
$\sigma_{K}(T_{x}^{\perp}M, T_{y^{\perp}}N)$ , that is,

$\sigma_{SO(n)}(T_{X}^{\perp}M^{p}, T_{y}^{\perp}N^{q})=\frac{vol(S^{0})vo1(SO(n+1))}{vo1(S^{p})vo1(S^{q})}$ .
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In the case that $G/K$ is a two-point homogeneous space of dimension $n$ , Howard
[1] showed that

$\sigma_{K}(T_{x}^{\perp}M^{1}, T_{y}^{\perp}N^{n-1})=\frac{vo1(K)vo1(S^{0})vo1(S^{n})}{vo1(S^{1})vo1(S^{n-1})}$ .

Although Theorem 1.1 holds in a general situation, $\sigma_{K}(T_{x^{\perp}}M, T_{y^{\perp}}N)$ is
complicated generally, and is not in a concrete enough form to be easily used.
Moreover, unfortunately, there exist few results of the concrete calculation for
$\sigma_{K}(T_{x^{\perp}}M, T_{y^{\perp}}N)$ . For example in the case that $G/K$ is an n-dimensional complex
projective space $CP^{n}$ , for any real surfaces $M$ and any complex hypersurfaces $N$,
the author and Tasaki [2] gave

$\sigma_{U(1)\times U(n)}(T_{x}^{\perp}M, T_{y}^{\perp}N)=\frac{vo1(U(n+1))}{2vo1(CP^{1})vo1(CP^{n-1})}(1+\cos^{2}\theta_{X})$

using the K\"ahler angle $\theta_{X}$ of $M$ at $x$ . Recently, for any two real surfaces $M$ and
$N$ in $CP^{2}$ , they evaluated the following in [3].

$\sigma_{U(1)\times U(2)(T_{X}^{\perp}M,T_{y}^{\perp}N)}=\frac{vo1(U(3))}{vo1(RP^{2})^{2}}(2+2\cos^{2}\theta_{X}\cos^{2}\tau_{y}+\sin^{2}\theta_{X}\sin^{2}\tau_{y})$

As for other the concrete results for $\sigma_{K}(T_{X}^{\perp}M, T_{y}^{\perp}N)$ , we know of no example
yet. For details see [1] and [5].

In this paper, under this motivation, we shall explicitly describe $\sigma_{K}(\cdot, \cdot)$

and formulate a Poincar\’e formula for one-dimensional and 3-dimensional sub-
manifolds in the product of unit sphere $S^{2}$ . The purpose of this paper is to prove
the following:

THEOREM 1.2. Let $M$ be a submanifold of $S^{2}\times S^{2}$ of dimension 1 and $N$ a
submanifold of dimension 3. Assume that for almost all $g\in SO(3)\times SO(3),$ $M$ and
$gN$ intersect transversely. For any point $x\in M$ (resp. $y\in N$), $\sin\theta_{x}$ and $\cos\theta_{X}$

(resp. $\sin\tau_{y}$ and $\cos\tau_{y}$ ) denote the length of the first and second component of unit
vector $u_{x}=(u_{1}, u_{2})$ (resp. $v_{y}=(v_{1},$ $v_{2})$ ) of $T_{x}M$ (resp. $T_{y^{\perp}}N$), respectively. Then we
have

$\int_{SO(3)\times SO(3)}\#(M\cap gN)d\mu_{SO(3)\times SO(3)}(g)=\int_{M\times N}\sigma(\theta_{X}, \tau_{y})d\mu_{M\times N}(x, y)$ ,

where
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$\sigma(\theta_{X}, \tau_{y})=\left\{\begin{array}{l}16c_{xy}\{2E(\frac{s_{xy}}{c_{xy}})-(1-\frac{s_{xy}^{2}}{c_{xy}^{2}})K(\frac{s_{1}iy}{c_{xy}})\},\\16s_{xy}\{2E(\frac{c_{xy}}{s_{xy}})-(1-\frac{c_{xy}^{2}}{s_{xy}^{2}})K(\frac{c_{xy}}{s_{xy}})\},\end{array}\right.$ $lfs_{xy}^{xy}\geq c_{xy}^{xy}lfs\leq c.$

’

Here $K$ and $E$ are the first and second kind of complete elliptic integral, and
$s_{xy}=\sin\theta_{X}\sin\tau_{y},$ $c_{xy}=\cos\theta_{X}\cos\tau_{y}$ .

The author would like to express his gratitude to Professor H. Tasaki for his
valuable suggestions during the preparation of this paper. The author is indebted
to the refree suggesting some revisions of this paper.

2. Preliminaries

In this section we shall review the Poincar\’e formula on Riemannian homo-
geneous spaces given by Howard [1] and the elliptic integrals.

Let $E$ be a finite dimensional real vector space with an inner product. For
vector subspaces $V$ and $W$ with orthonormal bases $v_{1},$

$\ldots,$
$v_{p}$ and $w_{1},$

$\ldots,$ $w_{q}$ re-
spectively, we define $\sigma(V, W)$ by

$\sigma(V, W)=|v_{1}\wedge\cdots\wedge v_{p}\wedge w_{1}\wedge\cdots\wedge w_{q}|$ .

This definition is independent of the choice of orthonormal bases. Furthermore, if
$p+q=\dim E$ then

$\sigma(V, W)=\sigma(V^{\perp}, W^{\perp})$ .

Let $G$ be a Lie group and $K$ a closed subgroup of $G$ . We assume that $G$ has a
left invariant Riemannian metric that is also invariant under the right actions of
elements of $K$. This metric induces a G-invariant Riemannian metric on $G/K$ . We
denote by $0$ the origin of $G/K$ . If $x,$ $y\in G/K$ and $V$ is a vector subspace of $T_{X}(G/K)$

and $W$ is a vector subspace of $T_{y}(G/K)$ then we define $\sigma_{K}(V, W)$ by

(2.1) $\sigma_{K}(V, W)=\int_{K}\sigma((dg_{\chi})_{0}^{-1}V, dk_{0}^{-1}(dg_{y})_{0}^{-1}W)d\mu_{K}(k)$

where $g_{X}$ and $g_{y}$ are elements of $G$ such that $g_{\chi}0=x$ and $g_{y}o=y$ . This definition
is independent of the choice of $g_{X}$ and $g_{y}$ in $G$ such that $g_{X}o=x$ and $g_{y}o=y$ .

The action of $SO(2)\times SO(2)$ to $R^{4}$ is defined by $A\cdot v=vA^{-1}$ for $v\in R^{4}$ and
$A\in SO(2)\times SO(2)$ .
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We now recall that the incomplete elliptic integrals of the first and second kind
are defined by

$F(\psi,k)=\int_{0^{\psi}}\frac{d\theta}{\sqrt{1-k^{2}\sin^{2}\theta}}$ $0<k<1$ ,

$ E(\psi,k)=\int_{0}^{\psi}\sqrt{1-k^{2}\sin^{2}\theta}d\theta$ $0<k<1$ ,

respectively. If $\psi=\pi/2$ then the integrals are called the complete elliptic integral
of the first and second kind, and are denoted by $K(k)$ and $E(k)$ or simply $K$ and
$E$ respectively. It is trivial that $K(O)=E(0)=\pi/2$ .

3. Proof of Theorem 1.2

Let $S^{2}$ be the standard sphere of dimension 2. The special orthogonal
group SO(3) acts transitively on $S^{2}$ . The isotropy subgroup of SO(3) at a point
in $S^{2}$ is SO(2). Thus $S^{2}\times S^{2}$ can be realized as a homogeneous space
$(SO(3)\times SO(3))/(S0(2)\times S0(2))$ . Let so(3) $\times so(3)$ be the Lie algebra of
$SO(3)\times SO(3)$ . Define an inner product on so(3) $\times so(3)$ by

(X, $Y$) $=-\frac{1}{2}$ Trace(XY) (X, $Y\in so(3)\times so(3)$ ).

We extend this inner product (. , $\cdot$ ) on so(3) $\times so(3)$ to the left invariant Rie-
mannian metric on $SO(3)\times SO(3)$ . Then we obtain a biinvariant Riemannian
metric on $SO(3)\times SO(3)$ . This biinvariant Riemannian metric on $SO(3)\times S0(3)$

induces an $(SO(3)\times SO(3))$ -invariant Riemannian metric on $(SO(3)\times SO(3))/$

$(SO(2)\times S0(2))$ .
Let $M$ be a submanifold of $S^{2}\times S^{2}$ of dimension 1 and $N$ a submanifold of

dimension 3. By Theorem 1.1, we have

(3.1) $\int_{SO(3)\times SO(3)}\#(M\cap gN)d\mu_{S0(3)\times S0(3)}(g)$

$=\int_{M\times N^{\sigma_{SO(2)\times SO(2)}}}(T_{x}M, T_{y}N)d\mu_{M\times N}(x, y)$ .

Let $u_{X}=(u_{1}, u_{2})$ and $v_{y}=(v_{1}, v_{2})$ be unit vectors of $T_{X}M$ and $T_{y}^{\perp}N$ respec-
tively. By the action of $SO(2)\times SO(2)$ , we can transport $u_{X}$ and $v_{y}$ to
$((\sin\theta_{X}, 0),$ $(\cos\theta_{X}, 0))$ and $((\sin\tau_{y}, 0),$ $(\cos\tau_{y}, 0))$ respectively. Thus we can take

$((-\cos\tau_{y}, 0),$ $(\sin\tau_{y}, 0)),$ $((0,1),$ $(0,0)),$ $((0,0),$ $(0,1))$
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as an orthonormal basis of $T_{y}N$ . We can simply write

$\sigma(\theta_{X}, \tau_{y})=\sigma_{SO(2)xSO(2)(T_{x}M,T_{y}N)}$ ,

since $\sigma_{S0(2)xSO(2)}(T_{X}M, T_{y}N)$ is dependent only on $\theta_{X}$ and $\tau_{y}$ .
Let $e_{1},$

$\ldots,$
$e_{4}$ be the standard orthonormal basis of $R^{4}$ . Then we have

$\sigma(k^{-1}T_{X}M, T_{y}N)$

$=|k^{-1}(\sin\theta e_{1}+\cos\theta e_{3})\wedge(-\cos\tau e_{1}+\sin\tau e_{3})\wedge e_{2}\wedge e_{4}|$

$=|(\sin\theta e_{1}+\cos\theta e_{3})k\wedge(-\cos\tau e_{1}+\sin\tau e_{3})\wedge e_{2}\wedge e_{4}|$

$=|\sin\theta\sin\tau\cos\alpha+\cos\theta\cos\tau\cos\beta|$ ,

where

$ k=[si_{0^{s\alpha}}n\alpha$ $-si_{s}n_{\alpha}\alpha co_{0}0$
$co^{0}\sin\beta o_{s\beta}$ $-\sin_{\beta}\beta co^{0}0_{s}$ $\in S0(2)\times SO(2)$ .

Put $\sin\theta\sin\tau=s$ and $\cos\theta\cos\tau=c$ then we have

$\sigma(\theta, \tau)=\int_{SO(2)xSO(2)}|\sin\theta\sin\tau\cos\alpha+\cos\theta\cos\tau\cos\beta|d\mu_{S0(2)\times SO(2)}(k)$

$=\int_{0^{2\pi}}\int_{0^{2\pi}}|s\cos\alpha+c\cos\beta|d\alpha d\beta$ .

We here give the following lemma to compute the above integral.

LEMMA 3.1. Let $S^{1}(r)$ be a circle with radius $r$ . If $|a|\leq 1$ then

$\int_{S^{1}(r)}|ra+x_{1}|d\mu_{S^{\mathfrak{l}}(r)}(x)=2r^{2}$ ($a$ ($\pi-2$ arccos $a)+2\sqrt{1-a^{2}}$).

We can easily show this lemma and omit its proof.
It is sufficient to calculate the following:

$\int_{0^{2\pi}}\int_{0^{2\pi}}|t\cos\alpha+\cos\beta|d\alpha d\beta$ , $(0\leq t\leq 1)$ .
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Using Lemma 3.1 and the complete elliptic integral, we obtain

$\int_{0^{2\pi}}\int_{0^{2\pi}}|t\cos\alpha+\cos\beta|d\alpha d\beta$

$=\int_{0}^{2\pi}2(t\cos\alpha(\pi-2\arccos(t\cos\alpha))+2\sqrt{1-t^{2}\cos^{2}\alpha})d\alpha$

$=16(1+t^{2})\int_{0^{l}}\frac{1}{\sqrt{t^{2}-x^{2}}.\sqrt{1-x^{2}}}dx-32\int_{0^{t}}\frac{x^{2}}{\sqrt{t^{2}-x^{2}}.\sqrt{1-x^{2}}}dx$

$=16(1+t^{2})K(t)-32(K(t)-E(t))$

$=32E(t)-16(1-t^{2})K(t)$ .

Hence we have the following:

$\sigma(\theta, \tau)=\int_{0}^{2\pi}\int_{0}^{2\pi}|s\cos\alpha+c\cos\beta|d\alpha d\beta$

$=\left\{\begin{array}{l}32cE(\frac{s}{c})-16c(1-(\frac{s}{c})^{2})K(\frac{s}{c}),\\32sE(\frac{c}{s})-l6s(l-(\frac{c}{s})^{2})K(\frac{c}{s}),\end{array}\right.$ $ifs\leq cifs\geq c$

.

Thus (3.1) implies Theorem 1.2.

REMARK 3.2. Let $M=S^{1}$ and $N=S^{1}\times S^{2}$ in Theorem 1.2. Then, for
almost all $g\in SO(3)\times SO(3)$ , we have $\#(M\cap gN)=2$ . Thus we have

$\int_{SO(3)\times SO(3)}\#(M\cap gN)d\mu_{SO(3)\times SO(3)}(g)=2vol(S0(3))vol(SO(3))$ .

Finally we can give the following corollary as an application of the integral
formula in Theorem 1.2.

COROLLARY 3.3. Under the hypothesis of Theorem 1.2:
(1) If $N=S^{1}\times S^{2}$ then we have

$\frac{1}{vol(SO(3)\times SO(3))}\int_{S0(3)\times S0(3)}\#(M\cap gN)d\mu_{SO(3)\times S0(3)}(g)\leq\frac{vol(M)}{\pi}$ .

The inequality becomes an equality if and only if $M$ is a curve in $S^{2}$ .
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(2) If $M=S^{1}(\subset S^{2})$ then we have

$\frac{1}{vol(SO(3)\times SO(3))}\int_{SO(3)\times SO(3)}\#(M\cap gN)d\mu_{SO(3)\times S0(3)}(g)\leq\frac{vo1(N)}{4\pi^{2}}$ .

The equality holds if and only $\iota fN$ is a submanifold of $L\times S^{2}$ . Here $L$ is a curve
in $S^{2}$ .

PROOF. (1) In this case we can take $\sin\theta_{\chi}e_{1}+\cos\theta_{\chi}e_{3}$ and $e_{2},$ $e_{3},$ $e_{4}$ as an
orthonormal basis of $T_{X}M$ and $T_{y}N$ respectively. Here $e_{1},$ $e_{2},$ $e_{3},$ $e_{4}$ is the standard
orthonormal basis of $R^{4}$ . Thus we obtain

$\sigma(\theta_{x}, \tau_{y})=32\sin\theta_{x}E(0)-16\sin\theta_{\chi}K(O)=8\pi\sin\theta_{X}$ .

We therefore have

$\int_{SO(3)\times SO(3)}\#(M\cap gN)d\mu_{SO(3)\times SO(3)}(g)=\int_{M\times N}8\pi\sin\theta_{x}d\mu_{M\times N}(x, y)$

$=8\pi vol(N)\int_{M}\sin\theta_{X}d\mu_{M}(x)$

$\leq 8\pi vol(N)vol(M)$ .

Using known facts that

$vol(N)=vol(S^{1}\times S^{2})=vol(SO(3))=8\pi^{2}$ ,

completes the proof.
(2) In this case we can obtain

$\sigma(\theta_{x}, \tau_{y})=8\pi\sin\tau_{y}$ .

This, by a computation similar to that in (1), completes the proof. $\square $
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