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DISCRETELY STAR-LINDEL\"OF SPACES

By

Yan-Kui SONG

Abstract. A space $X$ is called (discretely) star-Lindelof if for every
open cover $\mathscr{U}$ of $X$, there exists a (discrete closed) countable subset $B$

of $X$ such that $St(B, \mathscr{U})=X$ . We investigate the relationship between
these spaces and $\omega_{1}$ -compact spaces, and also study topological prop-
erties of discretely star-Lindelof spaces.

1. Introduction

By a space we mean a topological space. Fleischman [4] defined a space $X$

to be starcompact if for every open cover $\mathscr{U}$ of $X$, there exists a finite subset $B$ of
$X$ such that $St(B, \mathscr{U})=X$ , where $St(B, \mathscr{U})=\cup\{U\in \mathscr{U} : U\cap B\neq\otimes\}$ . He proved
that every countably compact space is starcompact, and conversely, van Douwen-
Reed-Roscoe-Tree [2] proved that every starcompact $T_{2}$ -space is countably com-
pact. As a generalization of starcompactness, the following class of spaces is also
studied by several authors under different names (see [9]):

DEFINITION 1.1. A space $X$ is star-Lindelof if for every open cover $\mathscr{U}$ of
$X$, there exists a countable subset $B$ of $X$ such that $St(B, \mathscr{U})=X$ .

Further, Yasui-Gao [13] defined a space in countable discrete web by replacing
the word ‘countable’ by ‘countable discrete closed’ in the preceding definition. In
this paper, we rename a space in countable discrete web as the following definition,
which seems to be more natural in the context of the history of star-covering
properties:

DEFINITION 1.2. A space $X$ is discretely $star- Lindel\dot{o}f$ if for every open cover
$\mathscr{U}$ of $X$, there exists a countable discrete closed subset $B$ of $X$ and $St(B, \mathscr{U})=X$ .

1991 Mathematics Subject Classification. $54D20,54B10$ and $54B05$ .
Key words and phrases. star-Lindelof, discretely star-Lindelof, $\omega_{1}$ -compact.
Received May 24, 2000.
Revised October 19, 2000.



372 Yan-kui SONG

Recall that a space $X$ is $\omega_{1}$ -compact if there is no uncountable discrete closed
subset of $X$. The following diagram illustrates the relationship among spaces we
shall consider and more familiar ones:

Lindelof – $\omega_{1}$ -compact $-countably$ compact

$\downarrow T_{1}$

discretely star-Lindelof

$\downarrow$

separable – $star- Lindel\ddot{o}f$ – starcompact

The purpose of this paper is to investigate the relationship among spaces on
the vertical centerline in the above diagram and to study topological properties of
discretely star-Lindelof spaces. In particular, we give various examples showing
the difference between discretely star-Lindelof spaces and $\omega_{1}$ -compact spaces, and
improve some results due to Yasui-Gao [13].

Throughout the paper, the cardinality of a set $A$ is denoted by $|A|$ . For a
cardinal $\kappa,$

$\kappa^{+}$ denotes the smallest cardinal greater than $\kappa$ . In particular, let $\omega$

denote the first infinite cardinal, $\omega \mathfrak{l}=\omega^{+}$ and $c$ the cardinality of the continuum.
As usual, a cardinal is the initial ordinal and an ordinal is the set of smaller
ordinals. When viewed as a space, every cardinal has the usual order topology.
Other terms and symbols will be used as in [3].

2. Discretely Star-Lindelof Spaces and Their Subspaces

The square of the Sorgenfrey line is star-Lindel\"of since it is separable, while
Yasui-Gao [13] proved that the square is not discretely star-Lindelof. The fol-
lowing theorem gives an altemative proof of the latter fact.

THEOREM 2.1. Let $\kappa$ be an infinite cardinal with $\kappa^{\omega}=\kappa$ and let $X$ be a dis-
cretely star-Lindelof space with $|X|=\kappa$ . Then, the cardinality of a discrete closed
subset of $X$ is less than $\kappa$ .

PROOF. The proof is based on the idea of that of van Douwen-Reed-Roscoe-
Tree [2, Lemma 2.2.4]. Suppose on the contrary that there exists a discrete closed
subset $H$ of $X$ with $|H|=\kappa$ . Let $\mathscr{F}$ be the set of all countable discrete closed subsets
of $X$. Then, $|\mathscr{F}|=\kappa$ since $|X|=\kappa=\kappa^{\omega}$ , and thus, we can enumerate $\mathscr{F}$ as $\mathscr{F}=$

$\{F_{\alpha} : \alpha<\kappa\}$ . By transfinite induction, we can define a subset $H_{0}=\{x_{\alpha} : \alpha<\kappa\}$

of $H$ satisfying that $x_{\alpha}\neq x_{\beta}$ if $\alpha\neq\beta$ and $x_{\alpha}\not\in\bigcup_{\beta\leq\alpha}F_{\beta}$ for each $\alpha<\kappa$ . Define
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$U_{\alpha}=X\backslash (F_{\alpha}\cup(H_{0}\backslash \{x_{\alpha}\}))$ for each $\alpha<\kappa$ . Then, $U_{\alpha}$ is an open neighborhood of
$x_{\alpha}$ in $X$. Let us consider the open cover

$\mathscr{U}=\{U_{\alpha} : \alpha<\kappa\}\cup\{X\backslash H_{0}\}$

of $X$. For each $\alpha<\kappa,$ $x_{\alpha}\not\in St(F_{\alpha}, \mathscr{U})$ , because $U_{\alpha}$ is the only element of $\mathscr{U}$ con-
taining the point $x_{\alpha}$ and $ U_{\alpha}\cap F_{\alpha}=\emptyset$ by the definition. This shows that $X$ is not
discretely star-Lindelof, which is a contradiction. $\square $

COROLLARY 2.2. Let $X$ be a discretely star-Lindelof space with $|X|=c$ . Then,
the cardinality of a discrete closed subset of $X$ is less than $c$ .

This is a special case of Theorem 2.1. The following corollaries are immediate
consequences of Corollary 2.2.

COROLLARY 2.3. The square of the Sorgenfrey line, the Niemytzki plane and
every Isbell-Mr\’owka space $\Psi$ with $|\Psi|=c$ are not discretely star-Lindelof

lt is worth noting that all of the spaces stated in Corollary 2.3 are star-
Lindel\"of since they are separable.

COROLLARY 2.4. Under assuming the continuum hypothesis, every discretely

star-Lindelof space with cardinality $c$ is $\omega_{1}$ -compact.

Next, we give a machine which produces discretely $star- Lindel\ddot{o}f$ spaces. For
a separable space $X$ and its countable dense subset $D$ , we define

$S(X, D)=X\cup(D\times\kappa^{+})$ , where $\kappa=|X|$ ,

and topologize $S(X, D)$ as follows: A basic neighborhood of $x\in X$ in $S(X, D)$ is
a set of the form

$G_{U,\alpha}(x)=U\cup((U\cap D)\times\{\beta:\alpha<\beta<\kappa^{+}\})$ ,

for a neighborhood $U$ of $x$ in $X$ and for $\alpha<\kappa^{+}$ , and a basic neighborhood of
$\langle x, \alpha\rangle\in D\times\kappa^{+}$ in $S(X, D)$ is a set of the form

$G_{V}(\langle x, \alpha\rangle)=\{x\}\times V$

for a neighborhood $V$ of $\alpha$ in $\kappa^{+}$ . When it is not necessary to specify $D$ , we
simply write $S(X)$ instead of $S(X, D)$ . By a Tychonoff space we mean a
completely regular $T_{1}$ -space.
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THEOREM 2.5. Let $X$ be a separable space with a countable dense set D. Then,
the space $S(X, D)$ is discretely star-Lindelof Moreover,

(1) $lfX$ is a Tychonoff space, so is $S(X, D)$ ;
(2) $lfX$ is a normal space, so is $S(X, D)$ .

PROOF. Put $S=S(X, D)$ and let $\mathscr{U}$ be an open cover of $S$ . For every $x\in X$ ,
there exist a neighborhood $U$ of $x$ in $X$ and $\alpha(x)<\kappa^{+}$ such that $G_{U,\alpha(x)}(x)$ is
included in some member of $\mathscr{U}$ . Since $|X|=\kappa$ , we can find $\alpha<\kappa^{+}$ such that
$\alpha>\alpha(x)$ for each $x\in X$ . Then, the set $B_{1}=D\times\{\alpha\}$ is countable, discrete closed
in $S$ and $St(B_{1}, \mathscr{U})\supseteq X$ . For each $x\in D$ , there exists a finite set $F_{x}\subseteq\{x\}\times\kappa^{+}$

such that $St(F_{X}, \mathscr{U})\supseteq\{x\}\times\kappa^{+}$ , because $\{x\}\times\kappa^{+}$ is countably compact. Then,
the set $B_{2}=\cup\{F_{X} : x\in D\}$ is countable, discrete closed in $S$ and $ St(B_{2}, \mathscr{U})\supseteq$

$D\times\kappa^{+}$ . If we put $B=B_{1}\cup B_{2}$ , then $B$ is a countable discrete closed set in $X$ such
that $St(B, \mathscr{U})=S$ , which proves that $S$ is discretely star-Lindelof. The proof of
the statement (1) is left to the reader since it is not difficult.

Finally, to prove the statement (2), assume that $X$ is normal. Let $A_{0}$ and $A_{1}$

be disjoint closed subsets of $S(X, D)$ . Since $X$ is normal and $\kappa^{+}>|X|$ , we can
find disjoint open subsets $U_{0},$ $U_{1}$ of $X$ and $\alpha<\kappa^{+}$ such that $A_{j}\cap X\subseteq U_{j}$ and

$(U_{i}\cup((U_{l}\cap D)\times(\alpha, \kappa^{+})))\cap A_{1-i}=\otimes$

for each $i=0,1$ . Let $X_{0}=D\times\kappa^{+}$ and put

$B_{j}=((U_{i}\cap D)\times(\alpha, \kappa^{+}))\cup(A_{j}\cap X_{0})$ for $j=0,1$ .

Then, $B_{0}$ and $B_{1}$ are disjoint closed in $X_{0}$ . Since $X_{0}$ is normal, there exist disjoint
open sets $V_{0}$ and $V_{1}$ in $X_{0}$ such that $B_{i}\subseteq V_{i}$ for each $i=0,1$ . Let $G_{j}=U_{i}\cup V_{i}$

for $i=0,1$ . Then, $G_{0}$ and $G_{1}$ are disjoint open sets in $S(X, D)$ such that $A_{i}\subseteq G_{j}$

for each $i=0,1$ . The proof is complete. $\square $

COROLLARY 2.6. Every Tychonoff space $X$ with $w(X)\leq c$ can be embedded
in a discretely star-Lindelof Tychonoff space as a closed subspace.

PROOF. Let $X$ be a Tychonoff space $X$ with $w(X)\leq c$ . Then, it is known
that $X$ can be embedded in a separable Tychonoff space $Y$ as a closed subspace.
Indeed, embed $X$ into $[0,1]^{c}$ and take a countable dense subset $D$ of $[0,1]^{c}$ . Then,
the space $Y$ is obtained from the subspace $X\cup D$ by making each point of $D\backslash X$

isolated. Next, consider the space $S(Y)$ defined above. Then, $S(Y)$ is discretely
star-Lindelof by Theorem 2.5 and $X$ is closed in $S(Y)$ . $\square $
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REMARK 1. If $X$ is one of the spaces stated in Corollary 2.3, then $S(X)$ is
discretely star-Lindelof but not $\omega_{1}$ -compact. Examples of discretely star-Lindelof
spaces with richer properties but not $\omega_{1}$ -compact were also given by Matveev [10].

It is quite interesting to find an example of a normal (discretely) star-Lindelof
space which is not $\omega_{1}$ -compact. Now, we give a consistency example:

COROLLARY 2.7. Assume Martin’s axiom and the negation of the continuum
hypothesis and let $\omega_{1}\leq\kappa<c$ . Then, there exists a normal, discretely star-Lindelof
space $X$ containing a closed discrete subset $B$ with $|B|=\kappa$ .

PROOF. Under the assumption, it is known ([12]) that there exists a sep-
arable normal space $Y$ with a closed discrete subset $B$ with $|B|=\kappa$ . Then, the
space $X=S(Y)$ is a required one by Theorem 2.5. $\square $

REMARK 2. Matveev [10] also showed, independently, the existence of a
normal discretely star-Lindelof space which is not $\omega_{1}$ -compact under certain set-
theoretic assumption weaker than ours. He also asked if there exists an example
within ZFC.

If $X$ is a discretely star-Lindelof space which is not $\omega_{1}$ -compact, then $X$ con-
tains an uncountable discrete closed subset $B$ . Since $B$ is not star-Lindelof, this
shows that a closed subspace of a discretely star-Lindelof space need not be star-
Lindelof. Yasui-Gao [13] also gave an example showing that a closed subspace of
a discretely star-Lindelof space need not be discretely $star- Lindel\ddot{o}f$; however, their
space is not Hausdorff. Now, we give another stronger example.

EXAMPLE 2.8. There exists a discretely $star- Lindel\ddot{o}f$, Tychonoff space $X$

having a regular-closed subspace which is not discretely star-Lindelof.

PROOF. Let $\mathscr{R}$ be a maximal almost disjoint family of infinite subsets of $\omega$

with $|\mathscr{R}|=c$ , and consider the Isbell-Mr6wka space $\Psi=\omega\cup \mathscr{R}$ (see [5, $5I$ , p. 79]).
Let $X$ be the space obtained from the space $S(\Psi, \omega)=\Psi\cup(\omega\times c^{+})$ by making
each point of $\omega$ in $\Psi$ isolated. Then, $\Psi$ is a regular-closed subspace of $X$ and
is not discretely $star- Lindel\ddot{o}f$ by Corollary 2.3. Hence, it remains to show that $X$

is discretely star-Lindelof. Let $\mathscr{U}$ be an open cover of $X$. Then, by a similar
argument to the proof of Theorem 2.5, we can find countable discrete closed
subsets $B_{1}$ and $B_{2}$ of $X$ such that $\Psi\backslash \omega\subseteq St(B_{1}, \mathscr{U})$ and $\omega\times c^{+}\subseteq St(B_{2}, \mathscr{U})$ . Since
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no infinite subset of $\omega$ is closed in $\Psi$ , the set $B_{3}=\omega\backslash St(B_{1}, \mathscr{U})$ is finite. Hence, if
we put $B=B_{1}\cup B_{2}\cup B_{3}$ , then $B$ is a countable discrete closed set in $X$ such that
$St(B, \mathscr{U})=X$ . This proves that $X$ is discretely $star- Lindel\ddot{o}f$. $\square $

3. Mappings

In [2, Theorem 2.4.1], van Douwen-Reed-Roscoe-Tree proved that a con-
tinuous image of a star-Lindelof space is star-Lindelof. First, we give examples
showing that a parallel result does not hold for discretely $star- Lindel\ddot{o}f$ spaces.

EXAMPLE 3.1. There exists a continuous bijection $f:X\rightarrow Y$ from a dis-
cretely star-Lindelof, Tychonoff space $X$ to a Tychonoff space $Y$ which is not
discretely star-Lindelof.

$PR\infty F$ . Let $\Psi=\omega\cup \mathscr{R}$ be the same Isbell-Mr\’owka space as in the proof of
Example 2.8. Then, the space $S(\Psi, \omega)=\Psi\cup(\omega\times c^{+})$ is discretely star-Lindelof
by Theorem 2.5. Now, we change the topology of $S(\Psi, \omega)$ by declaring that a
basic neighborhood of $r\in \mathscr{R}$ is a set of the form

$G_{U}(r)=U\cup((U\cap\omega)\times c^{+})$

for a neighborhood $U$ of $r$ in $\Psi$ , and that basic neighborhoods of other points
are the same as those in $S(\Psi, \omega)$ . We show that the resulting space $Y$ is not dis-
cretely $star- Lindel\ddot{o}f$. For this end, we enumerate the set of all finite subsets of
$\omega$ as $\{K_{n} : n\in\omega\}$ . Since $|\mathscr{R}|=c$ , we can write $\mathscr{R}=\{r_{n,\alpha} : \langle n, \alpha\rangle\in\omega\times c\}$ , where
$r_{n,\alpha}\neq r_{n^{\prime},\alpha^{\prime}}$ if $\langle n, \alpha\rangle\neq\langle n^{\prime}, \alpha^{\prime}\rangle$ . For each $\langle n, \alpha\rangle\in\omega\times c$ , define

$U_{n,\alpha}=(\{r_{n,\alpha}\}\cup(r_{n,\alpha}\backslash K_{n}))\cup((r_{n,\alpha}\backslash K_{n})\times c^{+})$ .

Then, $U_{n,\alpha}$ is an open neighborhood of $r_{n,\alpha}$ in $Y$. Let us consider the open cover

$\mathscr{U}=\{U_{n,\alpha} : \langle n, \alpha\rangle\in\omega\times c\}U\{\omega U(\omega\times c^{+})\}$ .

It remains to show that $St(B, \mathscr{U})\neq Y$ for every countable discrete closed set $B$

in $Y$. To show this, let $B$ be a countable discrete closed set in Y. Since $B\cap \mathscr{B}$

is countable, there exists $\beta<c$ such that

(1) $ B\cap\{r_{n,\beta} : n\in\omega\}=\otimes$ .

On the other hand, $B\backslash \mathscr{R}$ is finite since every infinite subset of $\omega U(\omega\times c^{+})$ has an
accumulation point in $Y$. Thus, there exists $ m\in\omega$ such that

(2) $B\backslash \mathscr{R}\subseteq K_{m}\cup(K_{m}\times c^{+})$ .
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Now, $U_{m,\beta}$ is the only element of $\mathscr{U}$ containing the point $r_{m,\beta}$ and $ B\cap U_{m,\beta}=\emptyset$

by (1) and (2). Hence, $r_{m,\beta}\not\in St(B, \mathscr{U})$ , which proves that $Y$ is not discretely star-
Lindelof. Finally, let $X=S(\Psi, \omega)$ and let $f$ : $X\rightarrow Y$ be the identity map. Since
$f$ is continuous, the proof is complete. $\square $

Yasui-Gao [13] proved that the image of a discretely star-Lindelof space
under a closed continuous map is discretely $star- Lindel\ddot{o}f$. The following example
shows that ’closed map’ cannot be replaced by ’open map’ in their result.

EXAMPLE 3.2. There exists an open continuous map $f$ : $X\rightarrow Y$ from a dis-
cretely star-Linde16f, Tychonoff space $X$ onto a Tychonoff space $Y$ which is not
discretely $star- Lindel\ddot{o}f$.

PROOF. Let $\Psi$ be the same space as in the proof of Example 2.8 and con-
sider the space $S(\Psi, \omega)=\Psi\cup(\omega\times c^{+})$ . Define a retraction $ f:S(\Psi, \omega)\rightarrow\Psi$ by
$f(p)=p$ for $ p\in\Psi$ and $f(\langle n, \alpha\rangle)=n$ for $\langle n, \alpha\rangle\in\omega\times c^{+}$ . Then, it is easily
checked that $f$ is an open continuous map. The space $S(\Psi, \omega)$ is discretely star-
Lindel\"of by Theorem 2.5, but the space $\Psi$ is not discretely star-Lindel\"of by
Corollary 2.3. $\square $

Next, we tum to consider preimages. To show that the preimage of a dis-
cretely star-Lindelof space under a closed 2-to-l continuous map need not be
discretely star-Lindelof, we use the Alexandorff duplicate $A(X)$ of a space $X$. The
underlying set of $A(X)$ is $X\times\{0,1\}$ ; each point of $X\times\{1\}$ is isolated and a
basic neighbourhood of a point $\langle x, O\rangle\in X\times\{0\}$ is a set of the from $(U\times\{0\})\cup$

$((U\times\{1\})\backslash \{\langle x, 1\rangle\})$ , where $U$ is a neighborhood of $x$ in $X$.

THEOREM 3.3. For a space $X$, the following conditions are equivalent:
(1) $X$ is $\omega_{1}$ -compact;
(2) $A(X)$ is $\omega_{1}$ -compact;
(3) $A(X)$ is discretely star-Lindelof
(4) $A(X)$ is star-Lindelof

PROOF. The implication (1) $\Rightarrow(2)$ follows from the fact that a perfect pre-
image of an $\omega_{1}$ -compact space is $\omega_{1}$ -compact. The implications (2) $\Rightarrow(3)\Rightarrow(4)$

are obvious. To show that (4) $\Rightarrow(1)$ , suppose that $X$ is not $\omega_{1}$ -compact. Then,
there exists an uncountable discrete closed set $D$ in $X$. Since $D\times\{1\}$ is an un-
countable, discrete, open and closed set in $A(X),$ $A(X)$ is not star-Lindelof. $\square $
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Let $X$ be a discretely star-Lindelof space which is not $\omega_{1}$ -compact (see
Remark 1 above). Then, the space $A(X)$ is not star-Lindelof by Theorem 3.3.
Since the projection $A(X)\rightarrow X$ is a closed continuous map, this shows that the
preimage of a discretely star-Lindelof space under a closed 2-to-l continuous map
need not be star-Lindelof. Now, we give a positive result:

THEOREM 3.4. Assume that there exists an open and closed, finlte-to-one,
continuous map $f$from a space $X$ to a discretely star-Lindelof space Y Then, $X$ is
discretely star-Lindelof

PROOF. Since $f[X]$ is open and closed in $Y$, we may assume that $f[X]=$ Y.
Let $\mathscr{U}$ be an open cover of $X$ and let $y\in Y$ . Since $f^{-1}(y)$ is finite, there exists
a finite subcollection $\mathscr{U}_{y}$ of $\mathscr{U}$ such that $f^{-1}(y)\subseteq\cup\{U:U\in \mathscr{U}_{y}\}$ and $ U\cap$

$ f^{-1}(y)\neq\emptyset$ for each $U\in \mathscr{U}_{y}$ . Since $f$ is closed, there exists an open neigh-
borhood $V_{y}$ of $y$ in $Y$ such that $f^{-1}[V_{y}]\subseteq\cup\{U:U\in \mathscr{U}_{y}\}$ . Since $f$ is open, we
can assume that

(3) $V_{y}\subseteq\cap\{f[U] : U\in \mathscr{U}_{y}\}$ .

Taking such open set $V_{y}$ for each $y\in Y$ , we have an open cover $\gamma=$

$\{V_{y} : y\in Y\}$ of Y. Since $Y$ is discretely star-Lindelof, there exists a countable
discrete closed subset $D$ of $Y$ such that $St(D, \mathscr{V})=$ Y. Since $f$ is finite-to-one and
continuous, the set $E=f^{-1}[D]$ is also a countable discrete closed set in $X$. To
show that $S\iota(E, \mathscr{U})=X$ , let $x\in X$ . Then, there exist $y\in Y$ such that $f(x)\in V_{y}$

and $ V_{y}\cap D\neq\emptyset$ . Since

$x\in f^{-1}[V_{y}]\subseteq\cup\{U : U\in \mathscr{U}_{y}\}$ ,

we can choose $U\in \mathscr{U}_{y}$ with $x\in U$ . Then, $ U\cap E\neq\emptyset$ , because $V_{y}\subseteq f[U]$ by (3).
Hence, $x\in St(E, \mathscr{U})$ , and consequently, we have that $St(E, \mathscr{U})=X$ . $\square $

As we shall show in Remark 3 below, Theorem 3.4 fails to be true if ‘open
and closed, finite-to-one’ is replaced by ‘open perfect’.

4. Products

In [2], van Douwen-Reed-Roscoe-Tree showed that the product of a star-
Lindelof Tychonoff space and a compact Hausdorff space need not be $star- Lindel\ddot{o}f$.
We begin by showing a similar example for discretely $star- Lindel\ddot{o}f$ spaces:
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EXAMPLE 4.1. There exist a discretely star-Lindelof Tychonoff space $X$ and a
compact Hausdorff space $Y$ such that $X\times Y$ is not star-Lindelof.

PROOF. The proof is essentially same as that of [2, Example 3.3.4]. Let $\Psi=$

$\omega\cup \mathscr{R}$ be the same as in the proof of Example 2.8 and define the space $X=$

$S(\Psi, \omega)(=\Psi\cup(\omega\times c^{+}))$ . Then, $X$ is discretely star-Lindelof by Theorem 2.5.
Since $|\mathscr{B}|=c$ , we can enumerate it as $\mathscr{R}=\{r_{\alpha} : \alpha<c\}$ . On the other hand, let
$D=\{y_{\alpha} : \alpha<c\}$ be the discrete space of cardinality $c$ and let $Y=D\cup\{y_{\infty}\}$ be
the one-point compactification of $D$ . To show that $X\times Y$ is not $star- Lindel\ddot{o}f$, we
consider the open cover

$\mathscr{U}=\{(\{r_{\alpha}\}\cup(\omega\times c^{+}))\times(Y\backslash \{y_{\alpha}\}) : \alpha<c\}$

$\cup\{X\times\{y.\} : \alpha<c\}U\{(\omega U(\omega\times c^{+}))\times Y\}$

of $X\times Y$ . For every countable subset $B$ of $X\times Y$ , there exists $\alpha<c$ such that
$ B\cap(X\times\{y_{\alpha}\})=\emptyset$ . Then, $\langle r_{\alpha},y_{\alpha}\rangle\not\in St(B, \mathscr{U})$ since $X\times\{y_{\alpha}\}$ is the only element
of $\mathscr{U}$ containing $\langle r_{\alpha},y_{\alpha}\rangle$ . Hence, $X\times Y$ is not star-Lindelof. $\square $

REMARK 3. By Example 4.1, we can see that the preimage of a discretely
star-Lindelof space under an open perfect map need not be star-Lindelof.

A map $f$ : $X\rightarrow Y$ is called an s-map if $f^{-1}(y)$ is separable for each $y\in Y$ .
Ikenaga [6] proved that the preimage of a star-Lindelof space under an open perfect
continuous s-map is star-Lindelof. Hence, the product of a $star- Lindel\ddot{o}f$ space
and a separable compact space is star-Lindelof. Moreover, Ikenaga [6] showed
that the product of a Lindel\"of space and a separable metric space need not be
$star- Lindel\ddot{o}f$. For products of star-Lindelof spaces, the reader is also referred to
[1]. By contrast, little seems to be known about discretely $star- Lindel\ddot{o}f$ spaces. In
fact, the following problem is open:

PROBLEM 4.2. Is the product of a discretely star-Lindelof Tychonoff space
and a separable compact Hausdorff space discretely star-Lindelof? In particular,
is the product of a discretely star-Lindelof Tychonoff space and a compact metric
space discretely star-Lindelof?

The following theorem is a partial answer to Problem 4.2.

THEOREM 4.3. Let $X$ be a discretely star-Linde $l\dot{o}f$, countably metacompact
space and $Y$ a compact metric space. Then, $X\times Y$ is discretely star-Lindelof
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$PR\infty F$ . Let $\mathscr{U}$ be an open cover of $X\times Y$ . Fix a countable base $\mathscr{B}$ of $Y$ and
let $\{\mathscr{B}_{n} : n\in\omega\}$ be the set of all finite covers of $Y$ by members of $\mathscr{B}$ . For each
$ n\in\omega$ , we choose a finite set $C_{n}\subseteq Y$ such that $ B\cap C_{n}\neq\emptyset$ for each $B\in \mathscr{B}_{n}$ . For
each $x\in X,$ $Y$ being compact, we can find an open neighborhood $G_{X}$ of $x$ in $X$

and $ n(x)\in\omega$ such that $G_{x}\times B$ is included in some member of $\mathscr{U}$ for each
$B\in \mathscr{B}_{n(x)}$ . For each $ n\in\omega$ , let $U_{n}=\cup\{G_{X} : n(x)=n\}$ . Then, $\{U_{n} : n\in\omega\}$ is a
countable open cover of $X$. Since $X$ is countably metacompact, there exists a
point-finite open cover $\gamma=\{V_{n} : n\in\omega\}$ of $X$ such that $V_{n}\subseteq U_{n}$ for each $ n\in\omega$ .
For each $ n\in\omega$ , let

$\gamma f_{n}^{\prime}=$ { $G_{X}\cap V_{n}$ : $x\in X$ and $n(x)=n$ }.

Then, $\mathscr{W}=\bigcup_{n\in\omega}\mathscr{W}_{n}$ is an open cover of $X$. Since $X$ is discretely star-Lindelof,
there exists a countable discrete closed set $D=\{x_{k} : k\in\omega\}$ in $X$ such that
$St(D, \mathscr{W})=X$ . Since $\gamma$ is point-finite, the set $M_{k}=\{n\in\omega : x_{k}\in V_{n}\}$ is finite for
each $ k\in\omega$ . Thus, if we put

$E=\bigcup_{k\in\omega}(\{x_{k}\}\times\bigcup_{n\in M_{k}}C_{n})$ ,

then $E$ is a countable discrete closed subset of $X\times Y$ . To show that $S\iota(E, \mathscr{U})=$

$X\times Y$ , let $\langle s, t\rangle\in X\times Y$ be fixed. Then, there exists $W\in \mathscr{W}$ such that $s\in W$

and $ W\cap D\neq\emptyset$ , because $S\iota(D, \mathscr{W})=X$ . By the definitions of $D$ and $\mathscr{W}$ , there
exist $k,$ $ n\in\omega$ and $x\in X$ such that $x_{k}\in D\cap W$ , $W=G_{X}\cap V_{n}$ and $n(x)=n$ .
Choose $B\in \mathscr{B}_{n}$ with $t\in B$ . Then, $\langle s, \iota\rangle\in G_{X}\times B$ and $(G_{\chi}\times B)\cap(\{x_{k}\}\times C_{n})\neq\emptyset$ .
This implies that $\langle s, t\rangle\in S\iota(E, \mathscr{U})$ , since $G_{X}\times B$ is included in some member of
$\mathscr{U}$ . Hence, $S\iota(E, \mathscr{U})=X\times Y$ . $\square $

The author does not know if the assumption that $X$ is countably meta-
compact can be removed from Theorem 4.3 in case $X$ is Hausdorff. The following
example shows that the assumption is necessary at least in the realm of $T_{1}$ -spaces.

EXAMPLE 4.4. There exists a discretely $star- Lindel\ddot{o}fT_{1}$ -space $X$ such that
the product $X\times(\omega+1)$ is not discretely star-Lindelof.

PROOF. Let $Y$ be a set with $|Y|=\omega_{1}$ . Define $X=Y\cup\omega_{2}$ , where $\omega_{2}=\omega_{1}^{+}$ ,

and topologize $X$ as follows: A basic neighborhood of $y\in Y$ is a set of the form

$G_{\alpha}(y)=\{y\}\cup\{\beta:\alpha<\beta<\omega_{2}\}$

for $\alpha<\omega_{2}$ , and $\omega_{2}$ is an open subspace of $X$ with the usual order topology. Then,
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it is easily checked that $X$ is a discretely star-Lindelof $T_{1}$ -space. To show that
$X\times(\omega+1)$ is not discretely star-Lindelof, we write $Y=\bigcup_{n\in\omega}Y_{n}$ , where $ Y_{m}\cap$

$Y_{n}=\emptyset$ if $m\neq n$ and $Y_{n}|=\omega_{1}$ for each $ n\in\omega$ . Put $G_{y}=\{y\}\cup\omega_{2}$ for each $y\in Y$

and define

$\mathscr{U}=\bigcup_{n\in\omega y}\bigcup_{\in Y_{n}}(\{G_{y}\times\{i\} : i\leq n\}\cup\{G_{y}\times\{j:n<j\leq\omega\}\})$
.

Then, $\mathscr{U}$ is an open cover of $X\times(\omega+1)$ . Let $B$ be a countable discrete closed set
in $X\times(\omega+1)$ . Then, $B\cap(\omega_{2}\times(\omega+1))$ is finite since $\omega_{2}\times(\omega+1)$ is countably
compact. Hence, there exists $ n\in\omega$ such that $ B\cap(\omega_{2}\times\{n\})=\emptyset$ . Since $|Y_{n}|=\omega_{1}$ ,

we can find $y\in Y_{n}$ such that $\langle y, n\rangle\not\in B$ . Then, $ B\cap(G_{y}\times\{n\})=\otimes$ , which implies
that $\langle y, n\rangle\not\in St(B, \mathscr{U})$ , because $G_{y}\times\{n\}$ is the only element of $\mathscr{U}$ containing the
point $\langle y, n\rangle$ . Hence, $X\times(\omega+1)$ is not discretely star-Lindel\"of. $\square $

Let $N$ be the discrete space of non-negative integers. The space $N^{\omega_{1}}$ is star-
Lindelof since it is separable, but is not $\omega_{1}$ -compact by Mycielski [11]. The fol-
lowing problem, however, still remains open.

PROBLEM 4.5. Is the product $N^{\omega_{1}}$ discretely star-Lindel\"of?

There is another star-covering property, called the property $(a)$ , which is
closely related to discretely star-Lindelof spaces. Matveev [8] defined a space $X$ to
have the property $(a)$ if for every open cover $\mathscr{U}$ of $X$ and for every dense subset $D$

of $X$, there exists a closed (in $X$ ) discrete subset $F$ of $D$ such that $St(F, \mathscr{U})=X$ .
It is obvious that every $T_{1}$ -space $X$ satisfies the following condition: For every
open cover $\mathscr{U}$ of $X$, there exists a closed discrete set $F$ in $X$ such that
$St(F, \mathscr{U})=X$ . Both discretely star-Lindelof spaces and spaces with the property
$(a)$ were defined by strengthening this condition. Every uncountable discrete space
has the property $(a)$ , but is not discretely $star- Lindel\ddot{o}f$. On the other hand, the
space $X=\omega_{1}\times(\omega_{1}+1)$ is discretely star-Lindelof since it is countably compact,
while it is known ([7, Example 1.5]) that $X$ does not have the property $(a)$ . We
conclude this paper with the following result due to Ohta under his permission.

EXAMPLE 4.6 (Ohta). The product $N^{\omega_{1}}$ does not have the property $(a)$ .

PROOF. We consider the open cover $\mathscr{U}=\{U(\alpha,\beta, k):\{\alpha,\beta\}\subseteq\omega_{1},$ $\alpha\neq\beta$ ,
$k\in N\}$ of $N^{\omega_{1}}$ , where $U(\alpha,\beta, k)=\{x\in N^{\omega_{1}} : x(\alpha)=x(\beta)=k\}$ . Also, we define
the set $D=\{x\in N^{\omega_{1}} : |supp(x)|<\omega\}$ , where $supp(x)=\{\alpha<\omega_{1} : x(\alpha)\neq 0\}$ . Then,
$D$ is a dense $\sigma$-compact subset of $N^{\omega_{1}}$ . We show that $St(F, \mathscr{U})\neq N^{\omega_{1}}$ for every
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closed (in $N^{\omega_{1}}$ ) discrete subset $F$ of $D$ . For this end, let $F$ be such a subset of $D$ .
Then, $F$ is at most countable since $D$ is $\sigma$-compact, which implies that the set
$S=\cup\{supp(x):x\in F\}$ is also at most countable. Hence, we can find a point
$y\in N^{\omega_{1}}$ such that $y|_{S}$ : $S\rightarrow N$ is one-to-one and $y(\alpha)=1$ for each $\alpha\in\omega_{1}\backslash S$ .
Now, let $U(\alpha,\beta, k)\in \mathscr{U}$ such that $ U(\alpha,\beta, k)\cap F\neq\emptyset$ . It remains to show that
$y\not\in U(\alpha,\beta, k)$ . We distinguish two cases: If $\{\alpha,\beta\}\subseteq S$ , then $y\not\in U(\alpha,\beta, k)$ since
$y(\alpha)\neq y(\beta)$ by the definition of $y$ . If $\{\alpha,\beta\}\not\in S$ , then we may assume that $\alpha\not\in S$ .
Since there is a point $x\in U(\alpha,\beta, k)\cap F$ , we have $k=x(\alpha)=0$ because $\alpha\not\in supp(x)$ .
Hence, if $y\in U(\alpha,\beta, k)$ , then $y(\alpha)=0$ , which contradicts the definition of $y$ . Con-
sequently, $y\not\in U(\alpha,\beta, k)$ . $\square $

Acknowledgements

The author is most grateful to Prof. M. V. Matveev for his helpful com-
ments. The statement (2) in Theorem 2.5 and the present form of Corollary 2.6
are due to his suggestions. He would also like to thank Prof. H. Ohta and Prof.
K. Yamada for helpful discussions with them.

References

[1] M. Bonanzinga and M. V. Matveev, Products of star-Lindelof and related spaces, to appear in
Houston J. of Math.

[2] E. K. van Douwen, G. M. Reed, A. W. Roscoe and I. J. Tree, Star covering properties,
Topology and its Appl. 39 (1991), 71-103.

[3] R. Engelking, General Topology, Revised and completed edition, Heldermann Verlag, Berlin,
1989.

[4] W. M. Fleischman, A new extension of countable compactness, Fund. Math. 67 (1970), 1-7.
[5] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, New York, 1960.
[6] S. Ikenaga, A class which contains Lindelof spaces, separable spaces and countably compact

spaces, Mem. Numazu College of Technology 18 (1983), 105-108.
[7] M. V. Matveev, Absolutely countably compact spaces, Topology and its Appl. 58 (1994), 81-92.
[8] M. V. Matveev, Some questions on property (a), Q and A in General Topology 15 (1997), 103-

111.
[9] M. V. Matveev, A survey on star-covering properties, Topology Atlas, Prepnnt 330 (1998).
[10] M. V. Matveev, On spaces in countable web, preprint.
[11] J. Mycielski, $\alpha$-incompactness of $N^{\alpha}$ , Bull. Acad. Poi. Sci. S\’er. Math. 12 (1964), 437-438.
[12] F. D. Tall, Normality versus collectionwise normality, Handbook of Set-theoretic Topology (K.

Kunen and J. E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 685-732.
[13] Y. Yasui and Z. M. Gao, Space in countable web, Houston J. Math. 25 (1999), 327-335.

Department of Mathematics
Nanjing Normal University
Nanjing, 210097
P.R. China


	DISCRETELY STAR-LINDEL\"OF ...
	1. Introduction
	2. Discretely Star-Lindelof ...
	3. Mappings
	4. Products
	References


