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THE CHEN INVARIANTS OF WARPED PRODUCTS OF
HYPERBOLIC PLANES AND THEIR APPLICATIONS TO

IMMERSIBILITY PROBLEMS

By

Bogdan SUCEAV2

Abstract. The classical obstruction to minimal isometric immersions
into Euclidean space is $Ric\geq 0$ . In this article we construct examples
of Riemannian manifolds with $Ric<0$ which don’t admit any min-
imal isometric immersion into Euclidean space for any codimension,
by applying Chen invariants.

1. Introduction

Let $h$ denote the second fundamental form of an isometric immersion of a
Riemannian n-manifold $M^{n}$ into an ambient Riemannian space $\overline{M}^{n+m}$ . Then the
mean curvature vector field is $H=(1/n)$ trace $h$ . The immersion is called minimal
if its mean curvature vector field $H$ vanishes identically.

The following is a classical basic problem in Riemannian geometry:

PROBLEM. When a given Riemannian manifold $M$ admits (or does not admit)
a minimal immersion into $a$ Euclidean space of arbitrary dimension?

For a minimal submanifold $M$ in a Euclidean space the Gauss equation
implies that the Ricci tensor of the minimal submanifold satisfies:

$Ric(X, X)=-\sum_{i=1}^{n}|h(X, e_{j})|^{2}\leq 0$ , (1.1)

where $e_{1},$
$\ldots,$

$e_{n}$ is an orthonormal local frame field on $M$ . This gives rise to the
first solution to the Problem above; namely, the Ricci tensor of a minimal
submanifold $M$ of a Euclidean space is negative semi-definite, and a Ricci-flat
minimal submanifold of a Euclidean space is totally geodesic.
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The second solution to the Problem mentioned above was obtained by B. Y.
Chen as an immediate application of his fundamental inequality and his in-
variants $[3, 5]$ . Based on these facts, it is interesting to construct precise examples
of Riemannian manifolds with $Ric<0$ , but which do not admit any minimal
isometric immersion into a Euclidean space for any codimension.

Let $M^{n}$ be a Riemannian n-manifold. For any orthonormal basis $e_{1},$
$\ldots,$

$e_{n}$ of
the tangent space $T_{p}M$ , the scalar curvature at $p$ is defined to be scal$(p)=$
$2\sum_{i<j}sec(e_{i}\wedge e_{j})$ . Let us denote by $\tau(p)=(1/2)scal(p)$ . For any r-dimensional
subspace of $T_{p}M$ denoted $L$ with orthonormal basis $e_{1},$

$\ldots,$
$e_{r}$ one may define

$\tau(L)=\sum_{1\leq i<j\leq r}sec(e_{j}\wedge e_{j})$
. (1.2)

In [5], Chen considered the finite set $S(n)$ of k-tuples $(n_{1}, \ldots, n_{k})$ with $k\geq 0$

which satisfy the conditions: $n_{1}<n,$ $n_{j}\geq 2$ and $n_{1}+\cdots+n_{k}\leq n$ . For each
$(n_{1}, \ldots, n_{k})\in S(n)$ he introduced the following Riemannian invariants:

$\delta(n_{1}, \ldots, n_{k})(p)=\tau(p)-\inf\{\tau(L_{1})+\cdots+\tau(L_{k})\}(p)$ , (1.3)

where infimum is taken for all possible choices of orthogonal subspaces
$L_{1},$

$\ldots,$
$L_{k}$ , satisfying $n_{j}=\dim L_{j},$ $(j=1, \ldots, k)$ . Recall that the Chen invariant

with $k=0$ is nothing but half the scalar curvature.
As in [5], we put

$c(n_{1}, \ldots, n_{k})=\frac{n^{2}(n+k-1-\sum n_{j})}{2(n+k-\sum n_{j})}$ ,

$b(n_{1}, \ldots, n_{k})=\frac{1}{2}\{(n(n-1)-\sum_{j=1}^{k}n_{j}(n_{j}-1)\}$ .

Chen’s fundamental inequalities obtained in [5] can be stated as follows:

THEOREM 1. For any n-dimensional submanifold $M$ ofa Riemannian space form
$R^{n+m}(\epsilon)$ of constant sectional curvature $\epsilon$ and for any k-tuple $(n_{1}, \ldots, n_{k})\in S(n)$ ,

we have:

$\delta(n_{1}, \ldots, n_{k})\leq c(n_{1}, \ldots, n_{k})|H|^{2}+b(n_{1}, \ldots, n_{k})\epsilon$ . (1.4)

The equality case of the inequality above holds at a point $p\in M$ if and only if there
exists an orthonormal basis $e_{1},$

$\ldots,$ $e_{n+m}$ at $p$ such that the shape operators of $M$

in $R^{n+m}(\epsilon)$ at $p$ take the following forms: $S_{r}=diag(A_{1}^{r}, \ldots, A_{k}^{r},\mu_{r}, \ldots,\mu_{r})$ for
$r=n+1,$ $\ldots,$

$m$ , where each $Af$ is a symmetric $n_{j}\times n_{j}$ submatrix such that
trace $(A_{1}^{r})=\cdots=trace(A_{k}^{r})=\mu_{r}$ .
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The invariants $\delta(n_{1}, \ldots, n_{k})$ became known as the Chen invariants and in-
equality (1.4) as Chen’s fundamental inequality. Chen’s fundamental inequality
has many nice applications; for example, one has the following important result
as an immediate consequence.

THEOREM 2. Let $M$ be a Riemannian n-manifold. If there exists a k-tuple
$(n_{1}, \ldots, n_{k})\in S(n)$ and a point $p\in M$ such that

$\delta(n_{1}, \ldots, n_{k})(p)>\frac{1}{2}\{n(n-1)-\sum n_{j}(n_{j}-1)\}\epsilon$ , (1.5)

then $M$ admits no minimal isometric immersion into any Riemannian space form
$R^{m}(\epsilon)$ with arbitrary codimension.

In particular, $lf\delta(n_{1}, \ldots, n_{k})(p)>0$ at a point for some k-tuple $(n_{1}, \ldots, n_{k})\in$

$S(n)$ , then $M$ admits no minimal isometric immersion into any Euclidean space for
any codimension.

We will use the second part of this theorem in our applications.

2. Warped Product Spaces

We use the warped product metrics introduced by Kru\v{c}kovi\v{c} in 1957 and by
Bishop and O’Neill in [2] in our constructions in sections 2 and 3. (A reference on
warped product metrics is in [1], which is in particular useful in the calculation on
Ricci curvature of a warped product metric. Another reference is in [6]. A
discussion in the context of manifolds with nonpositive curvature, based mainly
on [2], can be found in [7].)

Let us consider two copies of the hyperbolic plane $(H^{2}, g_{0})$ . The first has
coordinates $(x,y)$ with $y>0$ and has metric $g_{0}=(1/y^{2})(dx^{2}+dy^{2})$ . Let $u$ and $v$

denote the coordinates of the second copy of the hyperbolic plane with $v>0$ . We
consider the open subset $U=\{(x,y)\in H^{2}|y>\epsilon/2\}$ , for sufficiently small $\epsilon>0$ .
On the product manifold $(U\times fH^{2}, g)$ we consider the warped product metric
$g=g0+f^{2}g_{0}$ , i.e.,

$g=\frac{1}{y^{2}}(dx^{2}+dy^{2})+\frac{f^{2}(x,y)}{v^{2}}(du^{2}+dv^{2})$ , (2.1)

where $f$ is a positive differentiable function. We use the subscripts 1, 2, 3, 4
corresponding to the coordinates $x,y,$ $u,$ $v$ , respectively. At every point $p\in M$ , we
denote the tangent vectors

$\frac{\partial}{\partial x}=\partial_{x}$ , $\frac{\partial}{\partial y}=\partial_{y}$ , $\frac{\partial}{\partial u}=\partial_{u}$ , $\frac{\partial}{\partial v}=\partial_{v}$ .
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We claim the following: There exist differentiable functions $f$ on $(U\times fH^{2}, g)$

such that $Ric<0$ and $\delta(2,2)>0$ everywhere.
A straightforward computation gives

$sec(\partial_{X}\wedge\partial_{y})=-1$ , (2.2)

$sec(\partial_{X}\wedge\partial_{u})=sec(\partial_{X}\wedge\partial_{v})=\frac{y}{f(x,y)}(\frac{\partial f}{\partial y}-y\frac{\partial^{2}f}{\partial x^{2}})$ (2.3)

$sec(\partial_{y}\wedge\partial_{u})=sec(\partial_{y}\wedge\partial_{v})=-\frac{y}{f(x,y)}(\frac{\partial f}{\partial y}+y\frac{\partial^{2}f}{\partial y^{2}})$ (2.4)

$sec(\partial_{u}\wedge\partial_{v})=-\frac{1}{f^{2}(x,y)}-\frac{y^{2}}{f^{2}(x,y)}[(\frac{\partial f}{\partial x})^{2}+(\frac{\partial f}{\partial y})^{2}]$ (2.5)

Therefore, the half of scalar curvature at $p=(x,y, u, v)$ is given by

$\tau(p)=-1-\frac{1}{f^{2}(x,y)}-\frac{2y^{2}}{f(x,y)}[\frac{\partial^{2}f}{\partial x^{2}}+\frac{\partial^{2}f}{\partial y^{2}}]$

$-\frac{y^{2}}{f^{2}(x,y)}[(\frac{\partial f}{\partial x})^{2}+(\frac{\partial f}{\partial y})^{2}]$ (2.6)

Using eventually Proposition 9.106 from [1] and the fact that the components of
the Hessian of a function $\phi$ are given in general by:

$(h_{\phi})_{jk}=\frac{\partial^{2}\phi}{\partial x^{j}\partial x^{k}}-\frac{\partial\phi}{\partial x^{r}}\Gamma_{jk}^{r}$

the values of the Ricci tensor are:

$Ric(\partial_{X}, \partial_{X})=-\frac{1}{y^{2}}+\frac{2\partial f}{yf(x,y)\partial y}-\frac{2\partial^{2}f}{f(x,y)\partial x^{2}}$ , (2.7)

$Ric(\partial_{y}, \partial_{y})=-\frac{1}{y^{2}}-\frac{2}{yf(x,y)}(\frac{\partial f}{\partial y}+y\frac{\partial^{2}f}{\partial y^{2}})$ , (2.8)

$Ric(\partial_{u}, \partial_{u})=Ric(\partial_{v}, \partial_{v})=-\frac{1}{v^{2}}-\frac{y^{2}f(x,y)}{v^{2}}[\frac{\partial^{2}f}{\partial x^{2}}+\frac{\partial^{2}f}{\partial y^{2}}]$

$-\frac{y^{2}}{v^{2}}[(\frac{\partial f}{\partial x})^{2}+(\frac{\partial f}{\partial y})^{2}]$ (2.9)
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$Ric(\partial_{X}, \partial_{y})=-\frac{2\partial^{2}f}{f(x,y)\partial y\partial x}-\frac{2\partial f}{yf(x,y)\partial x}$ (2.10)

$Ric(\partial_{x}, \partial_{u})=Ric(\partial_{x}, \partial_{v})=Ric(\partial_{y}, \partial_{u})=Ric(\partial_{y}, \partial_{v})=Ric(\partial_{u}, \partial_{v})=0$ (2.11)

To complete our example, let us choose a function “close” to 1 which has the
desired properties: $Ric<0$ at every point $p=(x,y, u, v)$ , but at least one of Chen
invariants is strictly positive.

Let us consider $f(x,y)=e^{\epsilon\arctan y}$ . For this specific function one gets by direct
computation that

$Ric(\partial_{u}, \partial_{u})=Ric(\partial_{v}, \partial_{v})=\frac{-1}{v^{2}(1+y^{2})^{2}}[(1+y^{2})^{2}+2\epsilon y^{2}(\epsilon-y)e^{2\epsilon\arctan y}]<0$ .

(2.12)

This last conclusion shows us that the only minor we need to study is the one
corresponding to subscripts 1 and 2.

The canonical base $we\prime ve$ considered is not an orthonormal one. To com-
plete the computation on an orthonormal basis let us take $e_{1}=y\partial_{x},$ $e_{2}=y\partial_{y}$ ,
$e_{3}=(v/f(x,y))\partial_{u},$ $e_{4}=(v/f(x,y))\partial_{v}$ . Then

$Ric(e_{1}, e_{1})=y^{2}Ric(\partial_{x}, \partial_{x})$ ,

$Ric(e_{1}, e_{2})=y^{2}Ric(\partial x, \partial y)$ ,

$Ric(e_{2}, e_{2})=y^{2}Ric(\partial_{y}, \partial_{y})$ ,

$Ric(e_{3}, e_{3})=(v^{2}/f^{2})Ric(\partial_{u}, \partial_{u})<0$ ,

$Ric(e_{4}, e_{4})=(v^{2}/f^{2})Ric(\partial_{v}, \partial_{v})<0$ .

To see that $Ric<0$ , we have to study the $2\times 2$ minor:

$Ric(e_{1}, e_{1})=-1+\frac{2y}{f}\frac{\partial f}{\partial y}-\frac{2y^{2}}{f}\frac{\partial^{2}f}{\partial x^{2}}$ ,

$Ric(e_{1}, e_{2})=Ric(e_{2}, e_{1})=-\frac{2y^{2}}{f}\frac{\partial^{2}f}{\partial y\partial x}-\frac{2y}{f}\frac{\partial f}{\partial x}$ ,

$Ric(e_{2}, e_{2})=-1-\frac{2y}{f}\frac{\partial f}{\partial y}-\frac{2y^{2}}{f}\frac{\partial^{2}f}{\partial y^{2}}$ ,

or, for the considered function:
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$Ric(e_{1}, e_{1})=-1+\frac{2\epsilon y}{1+y^{2}}$ ,

$Ric(e_{1}, e_{2})=Ric(e_{2}, e_{1})=0$ ,

$Ric(e_{2}, e_{2})=-1-\frac{2\epsilon y}{1+y^{2}}-\frac{2\epsilon y^{2}(\epsilon-2y)}{(1+y^{2})^{2}}$ .

On the other hand, since on $U$ we get $sec(\partial_{x}\wedge\partial_{y})<sec(\partial_{X}\wedge\partial_{u})$ ,
$sec(\partial_{x}\wedge\partial_{y})<sec(\partial_{y\wedge}\partial_{u}),$ $sec(\partial_{u}\wedge\partial_{v})<sec(\partial_{x}\wedge\partial_{u}),$ $sec(\partial_{u}\wedge\partial_{v})<sec(\partial_{y}\wedge\partial_{v})$ ,
the smallest values of $sec(e_{j}\wedge e_{j})$ on the considered basis are $sec(\partial_{x}\wedge\partial_{y})$ and
$sec(\partial_{u}\wedge\partial_{v})$ , we have on $U$ :

$\delta(2,2)\geq 2sec(\partial_{X}\wedge\partial_{u})+2sec(\partial_{y}\wedge\partial_{u})$

$=-\frac{y^{2}}{f(x,y)}(\frac{\partial^{2}f}{\partial x^{2}}+\frac{\partial^{2}f}{\partial y^{2}})=-\frac{2\epsilon y^{2}(\epsilon-2y)}{(1+y^{2})^{2}}>0$ . (2.13)

The last inequality allows us to apply theorem 2 to obtain the following:

PROPOSITION 1. For sufficiently small $\epsilon>0$, the Riemannian manifold
$M=(U\times H^{2}, g0+(e^{2\epsilon\arctan y})go)$

cannot be isometrically immersed in any Euclidean ambient space $E^{m}$ as a minimal
submamfold for any codimension, even though $Ric<0$ .

One may obtain similar result by applying the same construction with some
other warping functions on an appropriate open set $U\subset H^{2}$ .

Let us notice that one doesn’t need a specific computation for $\delta(2,2)$ to apply
theorem 2. An estimate as in the relation (2.13) is sufficient to obtain the
obstruction to minimal immersions into a Euclidean space of any codimension.

3. Multiwarped Product Spaces

Let us now consider a multiwarped product of hyperbolic spaces defined as
follows. Let us use a similar notation $U=\{(x,y)\in H^{2}|y>n/2\epsilon\}$ to the previous
section. Consider the product manifold of $U$ with $n$ warped copies of the hy-
perbolic plane $H^{2}$ , endowed with coordinates $(x,y, u_{1}, v_{1}, \ldots, u_{n}, v_{n})$ with
$y,$ $v_{1},$

$\ldots,$
$v_{n}>0$ . At an arbitrary point of the product manifold let $\eta_{1},$ $\eta_{2},$

$\ldots,$ $\eta_{2n+2}$

denote respectively the tangent vectors:
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$\frac{\partial}{\partial x}$

$\frac{\partial}{\partial y}$ $\frac{\partial}{\partial u_{1}}\frac{\partial}{\partial v_{1}}$ $\frac{\partial}{\partial u_{n}}\frac{\partial}{\partial v_{n}}$

The multiwarped product metric on $(U\times f_{1}H^{2}\times f_{2} \times f_{n}H^{2}, g)$ is defined by

$g=\frac{1}{y^{2}}(dx^{2}+dy^{2})+\sum_{i=1}^{n}\frac{f_{i}^{2}(x,y)}{v_{i}^{2}}(du_{i}^{2}+dv_{i}^{2})$ (3.1)

where $f_{1}(x,y),$ $\ldots,f_{n}(x,y)$ are positive differentiable functions.

We claim the following: There are some choices of$f_{1},$ $\ldots,f_{n}$ such that $Ric<0$

everywhere, but some Chen invariant is positive.
By direct computation we have, for $i=1,$

$\ldots,$
$n$ :

$sec(\eta_{1}\wedge\eta_{2})=-1$ , (3.2)

$sec(\eta_{1}\wedge\eta_{2i+1})=sec(\eta_{1}\wedge\eta_{2i+2})=\frac{y}{f_{i}(x,y)}(\frac{\partial f_{i}}{\partial y}-y\frac{\partial^{2}f_{i}}{\partial x^{2}})$ , (3.3)

$sec(\eta_{2}\wedge\eta_{2i+1})=sec(\eta_{2}\wedge\eta_{2i+2})=-\frac{y}{f_{i}(x,y)}(\frac{\partial f_{i}}{\partial y}+y\frac{\partial^{2}f_{i}}{\partial y^{2}})$ , (3.4)

$sec(\eta_{2i+1}\wedge\eta_{2i+2})=-\frac{1}{f_{i}^{2}(x,y)}-\frac{y^{2}}{f_{i}^{2}(x,y)}[(\frac{\partial f_{i}}{\partial x})^{2}+(\frac{\partial f_{i}}{\partial y})^{2}]$ , (3.5)

$sec(\eta_{2i+2}\wedge\eta_{2j+2})=sec(\eta_{2l+2}\wedge\eta_{2j+1})=sec(\eta_{2i+1}\wedge\eta_{2j+1})$

$=-\frac{y^{2}}{f_{i}(x,y)f_{j}(x,y)}[\frac{\partial f_{i}}{\partial x}\frac{\partial f_{j}}{\partial x}+\frac{\partial f_{i}}{\partial y}\frac{\partial f_{j}}{\partial y}]$ , (3.6)

$\tau(p)=-1-\sum_{i=1}^{n}\{\frac{1}{f_{i}^{2}}+\frac{y^{2}}{f_{i}^{2}}[(\frac{\partial f_{i}}{\partial x})^{2}+(\frac{\partial f_{i}}{\partial y})^{2}]\}$

$-2y^{2}\sum_{i=1}^{n}(\frac{\partial^{2}f_{i}}{\partial x^{2}}+\frac{\partial^{2}f_{i}}{\partial^{2}y})-4y^{2}\sum_{l,j=1,i\neq j}^{n}\frac{1}{f_{i}f_{j}}[\frac{\partial f_{i}}{\partial x}\frac{\partial f_{j}}{\partial x}+\frac{\partial f_{i}}{\partial y}\frac{\partial f_{j}}{\partial j}]$ , (3.7)

$Ric(\eta_{1}, \eta_{1})=-\frac{1}{y^{2}}+\frac{2}{y}\sum_{i=1}^{n}\frac{1}{f_{i}}(\frac{\partial f_{i}}{\partial y}-y\frac{\partial^{2}f_{i}}{\partial x^{2}})$ (3.8)

$Ric(\eta_{2}, \eta_{2})=-\frac{1}{y^{2}}-\frac{2}{y}\sum_{i=1}^{n}\frac{1}{f_{i}}(\frac{\partial f_{i}}{\partial y}+y\frac{\partial^{2}f_{i}}{\partial y^{2}})$ (3.9)
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$Ric(\eta_{2i+2}, \eta_{2i+2})=Ric(\eta_{2i+1}, \eta_{2i+1})$

$=-\frac{1}{v_{i}^{2}}-\frac{y^{2}}{v_{i}^{2}}[(\frac{\partial f_{i}}{\partial x})^{2}+(\frac{\partial f_{i}}{\partial y})^{2}]-\frac{y^{2}f_{i}}{v_{i}^{2}}(\frac{\partial^{2}f_{i}}{\partial x^{2}}+\frac{\partial^{2}f_{i}}{\partial y^{2}}I$

$-\frac{2y^{2}f_{i}^{2}}{v_{i}^{2}}\sum_{i=1,i\neq j}^{n}\frac{1}{f_{i}f_{j}}[\frac{\partial f_{i}}{\partial x}\frac{\partial f_{j}}{\partial x}+\frac{\partial f_{i}}{\partial y}\frac{\partial f_{j}}{\partial y}]$ . (3.10)

A long computation yields the other terms of $Ric$ matrix. Let us explain how
to compute $Ric(\eta_{1}, \eta_{2})$ . We need to compute terms of the type $R_{1k2}^{k}$ . We dis-
tinguish three cases: $k=1,$ $k=2$ and $k\neq 1,2$ . Then

$R_{112}^{1}=0$ , $R_{122}^{2}=0$ , $R_{1k2}^{k}=-\frac{1}{f_{k}}\frac{\partial^{2}f_{k}}{\partial y\partial x}-\frac{1}{yf_{k}}\frac{\partial f_{k}}{\partial x}$ .

A similar discussion is taking place for every element of the $Ric$ matrix, to
yield that all non-diagonal terms vanish everywhere, except

$Ric(\eta_{1}, \eta_{2})=-2\sum_{k=1}^{n}[\frac{1}{f_{k}}\frac{\partial^{2}f_{k}}{\partial y\partial x}+\frac{1}{yf_{k}}\frac{\partial f_{k}}{\partial x}]$ . (3.11)

For a specific example let us consider $f_{i}(x,y)=f(x,y)=e^{\epsilon\arctan y}$ for
$i=1,$

$\ldots,$
$n$ . To simplify the computations one may choose $0<\epsilon\leq 1/n$ . For the

orthonormal basis we work with, let us denote as above $e_{1}=y\eta_{1},$ $e_{2}=y\eta_{2}$ , and
$e_{2k+1}=(v_{k}/f_{k})\eta_{2k+1},$ $e_{2k+2}=(v_{k}/f_{k})\eta_{2k+2}$ , for $k=1,$ $\ldots,$

$n$ , respectively.
For the subscript 3 to $2n$ , the $Ric$ matrix is in diagonal form at every point.

Through a direct computation, we obtain, for $i=1,$
$\ldots,$

$n$ , that

$Ric(e_{2i+1}, e_{2i+1})=Ric(e_{2i+2}, e_{2i+2})$

$=-\frac{1}{f^{2}}-\frac{(2n+1)y^{2}}{f^{2}}(\frac{\partial f}{\partial y})^{2}-\frac{y^{2}}{f}\frac{\partial^{2}f}{\partial y^{2}}<0$ . (3.12)

In order to estimate Chen invariant, we compute the sectional curvatures as
follows, for $l,j=1,$

$\ldots,$
$n,$ $i\neq j$ :

$sec(\eta_{1}\wedge\eta_{2})=-1$ , (3.13)

$sec(\eta_{1}\wedge\eta_{2i+1})=sec(\eta_{1}\wedge\eta_{2i+2})=\frac{\epsilon y}{1+y^{2}}>0$ , (3.14)

$sec(\eta_{2}\wedge\eta_{2i+1})=sec(\eta_{2}\wedge\eta_{2i+2})=\frac{\epsilon y(y^{2}-\epsilon y-1)}{(1+y^{2})^{2}}>0$ , (3.15)
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$sec(\eta_{2i+1}\wedge\eta_{2i+2})=-\frac{1}{f^{2}}-\frac{\epsilon^{2}y^{2}}{(1+y^{2})^{2}}<0$ , (3.16)

$sec(\eta_{2i+1}\wedge\eta_{2j+1})=sec(\eta_{2l+2}\wedge\eta_{2j+2})=sec(\eta_{2i+1}\wedge\eta_{2j+2})=-\frac{\epsilon^{2}y^{2}}{(1+y^{2})^{2}}<0$ .

(3.17)

In fact, one can easily obtain that

$sec(\eta_{2i+1}\wedge\eta_{2i+2})<sec(\eta_{2i+2}\wedge\eta_{2j+2})$ . (3. 18)

This allows us to obtain the estimate of the $(2, 2, \ldots, 2)$ -order Chen invariant (2
repeats $n+1$ times) such that

$\delta(2, \ldots, 2)\geq\tau(p)-[sec(\eta_{1}\wedge\eta_{2})+\sum_{i=1}^{n}sec(\eta_{2i+1}\wedge\eta_{2i+2})]$

$=\frac{2\epsilon ny^{2}}{(1+y^{2})^{2}}(2y-\epsilon n)>0$ (3.19)

Thus, by applying the theorem 2, we have proved the following:

PROPOSITION 2. The Riemannian manifold $(U\times H^{2}\times\cdots\times H^{2}, g)$ , endowed
with the metric given by (3.1) with $f_{i}(x,y)=e^{\epsilon\arctan y},$ $i=1,$

$\ldots,$
$n$ , cannot be iso-

metricafly immersed as a minimal submanifold into $a$ Euclidean space for arbitrary
dimension, even though $Ric<0$ .

The same procedure with some other functions $f_{i}$ may also give rise to other
specific examples of Riemannian manifolds whose Chen’s invariants obstruct to
minimal immersions via theorem 2, although the classical invariants does not
provide obstruction to minimal immersion.

The author would like to express his many thanks to the referee for the useful
comments that improve the content and the presentation of the paper.
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